MB89623R [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89623R
型号: MB89623R
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总61页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12534-4E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89620R Series  
MB89623R/625R/P625/W625/626R/627R/P627/W627/T627R  
MB89PV620  
DESCRIPTION  
The MB89620R series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit, single-chip microcontrollers.  
In addition to the F2MC-8L CPU core which can operate at low voltage but at high speed, the microcontrollers  
contain a variety of peripheral functions such as timers, serial interfaces, an A/D converter, and an external  
interrupt.  
The MB89620R series is applicable to a wide range of applications from consumer products to industrial equip-  
ment, including portable devices.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• Various package options  
Three types of QFP packages (1 mm, 0.65 mm, or 0.5 mm lead pitch)  
SDIP packages  
• High-speed processing at low voltage  
Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• Four types of timers  
8-bit PWM timer (also usable as a reload timer)  
8-bit pulse width count timer (Continuous measurement capable, applicable to remote control, etc.)  
16-bit timer/counter  
20-bit timebase timer  
Two serial interfaces  
Switchable transfer direction allows communication with various equipment.  
• 8-bit A/D converter  
Sense mode function enabling comparison at 5 µs  
Activation by an external input capable  
(Continued)  
MB89620R Series  
(Continued)  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low-power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
• Bus interface functions  
Including hold and ready functions  
PACKAGE  
64-pin Plastic SH-DIP  
64-pin Plastic LQFP  
64-pin Plastic QFP  
64-pin Plastic QFP  
(FPT-64P-M09)  
(DIP-64P-M01)  
(FPT-64P-M03)  
(FPT-64P-M06)  
64-pin Ceramic SH-DIP  
64-pin Ceramic MQFP  
64-pin Ceramic MDIP  
(DIP-64C-A06)  
(MQP-64C-P01)  
(MDP-64C-P02)  
2
MB89620R Series  
PRODUCT LINEUP  
Part number  
MB89P625 MB89P627  
MB89W625 MB89W627  
MB89T627R  
MB89PV620  
MB89623R MB89625R MB89626R MB89627R  
Parameter  
Classificati  
on  
Piggyback/  
evaluation  
product for  
evaluation  
and  
External  
ROM  
products  
One-time PROM  
products/EPROM  
products  
Mass production products  
(mask ROM products)  
development  
16 K × 8 bits 32 K × 8 bits  
ROM size 8 K × 8 bits 16 K × 8 bits 24 K × 8 bits 32 K × 8 bits External  
(internal (internal (internal (internal ROM  
mask ROM) mask ROM) mask ROM) mask ROM)  
32 K × 8 bits  
(external  
ROM)  
(internal  
PROM,  
(internal  
PROM,  
programmable programmable  
with  
with  
general-  
purpose  
EPROM  
general-  
purpose  
EPROM  
programmer) programmer)  
RAM size 256 × 8 bits 512 × 8 bits 768 × 8 bits 1 K × 8 bits 1 K × 8 bits 512 × 8 bits 1 K × 8 bits 1 K × 8 bits  
CPU  
functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
0.4 µs /10 MHz  
3.6 µs/10 MHz  
Ports  
Input ports:  
5 (4 ports also serve as peripherals.)  
8 (All also serve as peripherals.)  
8 (4 ports also serve as peripherals.)  
8 (All also serve as bus control pins.)  
24 (All also serve as bus pins or peripherals.)  
53  
Output ports (N-ch open-drain):  
I/O ports (N-ch open-drain)  
Output ports (CMOS):  
I/O ports (CMOS):  
Total:  
8-bit PWM  
timer  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to 3.3 ms)  
8-bit resolution PWM operation (conversion cycle: 102 µs to 839 ms)  
8-bit pulse  
width  
count  
8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit pulse width measurement operation  
timer  
(Continuous measurement “H” pulse width/“L” pulse width/from to /from to capable)  
16-bit  
timer/  
counter  
16-bit timer operation (operating clock cycle: 0.4 µs)  
16-bit event counter operation (Rising/falling/both edges selectable)  
8-bit serial  
I/O 1,  
8-bit serial  
I/O 2  
8 bits  
LSB first/MSB first selectable  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
8-bit A/D  
converter  
8-bit resolution × 8 channels  
A/D conversion mode (conversion time: 18 µs)  
Sense mode (conversion time: 5 µs)  
Continuous activation by an external activation or an internal timer capable  
Reference voltage input  
(Continued)  
3
MB89620R Series  
(Continued)  
Part number  
MB89P625 MB89P627  
MB89W625 MB89W627  
MB89PV620  
MB89623R MB89625R MB89626R MB89627R MB89T627R  
Parameter  
External  
interrupt  
4 independent channels (edge selection, interrupt vector, source flag)  
Rising edge/falling edge selectable  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)  
Standby  
modes  
Sleep mode, stop mode  
CMOS  
Process  
Operating  
voltage*  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256  
A-20TV  
MBM27C256  
A-20CZ  
EPROM  
for use  
*: Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89626R  
MB89623R  
MB89625R  
MB89627R  
MB89T627R  
MB89P625  
MB89W625  
MB89W627  
Package  
MB89P627  
MB89PV620  
DIP-64P-M01  
FPT-64P-M03  
FPT-64P-M06  
FPT-64P-M09  
DIP-64C-A06  
MQP-64C-P01  
MDP-64C-P02  
×
×*  
×
×
×*  
×
×*  
×*  
×*  
×*  
×
×
×
×
×
×
×
×
×
×
×
×
: Available  
×: Not available  
*: Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available.  
64SD-64QF2-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M03  
64SD-64SQF-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M09  
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89620R Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• On the MB89623R, the upper half of the register bank cannot be used.  
• On the MB89P627, the program area starts from address 8007H but on the MB89PV620 and MB89627R starts  
from 8000H.  
(On the MB89P627, addresses 8000H to 8006H comprise the option setting area, option settings can be read  
by reading these addresses. On the MB89PV620 and MB89627R, addresses 8000H to 8006H could also be  
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the  
MB89P627.)  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external area is used.  
2. Current Consumption  
• In the case of the MB89PV620, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see section  
Electrical Characteristics”.)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be set for P40 to P47 on the MB89P625, MB89W625, MB89P627, and MB89W627.  
• A pull-up resistor is not selectable for P50 to P57 when the A/D converter is used.  
• Options are fixed on the MB89PV620.  
5
MB89620R Series  
4. Differences between the MB89620 and MB89620R Series  
• Memory access area  
Memory access area of the following products is the same; both the MB89625 and MB89625R, and both the  
MB89627 and MB89627R.  
The access area of the MB89623 and MB89626 is different from that of the MB89623R and MB89626R respec-  
tively when using in external bus mode. See below.  
Memory area  
Address  
MB89623  
MB89623R  
0000H to 007FH  
0080H to 017FH  
0180H to 027FH  
0280H to BFFFH  
C000H to DFFFH  
E000H to FFFFH  
I/O area  
I/O area  
RAM area  
RAM area  
Access prohibited  
External area  
External area  
ROM area  
Access prohibited  
ROM area  
Memory area  
Address  
MB89626  
MB89626R  
0000H to 007FH  
0080H to 037FH  
0380H to 047FH  
0480H to 7FFFH  
8000H to 9FFFH  
A000H to FFFFH  
I/O area  
I/O area  
RAM area  
RAM area  
Access prohibited  
External area  
Access prohibited  
ROM area  
External area  
ROM area  
• Other specifications  
Both the MB89620R and MB89620 series is the same.  
• Electrical specifications/electrical characteristics  
Electrical specifications of the MB89620R series are the same with that of the MB89620 series.  
CORRESPONDENCE BETWEEN THE MB89620 AND MB89620R SERIES  
• The MB89620R series is the reduction version of the MB89620 series.  
• The MB89620 and MB89620R series consist of the following products:  
MB89620 series  
MB89623  
MB89625  
MB89626  
MB896267  
MB89P625  
MB89P627 MB89PV620  
MB89620R series  
MB89623R  
MB89625R  
MB89626R MB896267R  
MB89620 series  
MB89620R series  
MB89W625 MB89W627 MB89T627R  
6
MB89620R Series  
PIN ASSIGNMENT  
(Top view)  
1
VCC  
P36/WTO  
P37/PTO  
P40  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
P35/PWC  
P34/EC  
3
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
VCC  
A14  
A13  
A8  
VPP  
A12  
A7  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
4
P33/SI1  
P32/SO1  
P31/SCK1  
P30/ADST  
VSS  
P41  
5
P42  
P43  
6
A6  
7
P44/BZ  
P45/SCK2  
P46/SO2  
P47/SI2  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
A9  
A5  
8
A11  
OE  
A10  
CE  
O8  
A4  
9
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
P21/HAK  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
P27/ALE  
A3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
A2  
A1  
A0  
O7  
O1  
O2  
O3  
VSS  
O6  
O5  
O4  
AVR  
AVSS  
Each pin inside the  
dashed line is for the  
MB89PV620 only.  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
P64  
RST  
MOD0  
MOD1  
X0  
X1  
VSS  
(DIP-64P-M01)  
(DIP-64C-A06)  
(MDP-64C-P02)  
(Top view)  
P46/SO2  
P47/SI2  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
1
2
3
4
5
6
7
8
48  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
9
10  
11  
12  
13  
14  
15  
16  
(FPT-64P-M03)  
(FPT-64P-M09)  
7
MB89620R Series  
(Top view)  
P45/SCK2  
P46/SO2  
P47/SI2  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P30/ADST  
VSS  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
85  
86  
87  
88  
89  
90  
91  
92  
93  
77  
76  
75  
74  
73  
72  
71  
70  
69  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
P64  
Each pin inside the dashed line  
is for the MB89PV620 only.  
(FPT-64P-M06)  
(MQP-64C-P01)  
• Pin assignment on package top (MB89PV620 only)  
Pin no.  
65  
Pin name  
N.C.  
VPP  
Pin no.  
73  
Pin name  
A2  
Pin no.  
81  
Pin name  
N.C.  
O4  
Pin no.  
89  
Pin name  
OE  
66  
74  
A1  
82  
90  
N.C.  
A11  
A9  
67  
A12  
A7  
75  
A0  
83  
O5  
91  
68  
76  
N.C.  
O1  
84  
O6  
92  
69  
A6  
77  
85  
O7  
93  
A8  
70  
A5  
78  
O2  
86  
O8  
94  
A13  
A14  
VCC  
71  
A4  
79  
O3  
87  
CE  
95  
72  
A3  
80  
VSS  
88  
A10  
96  
N.C.: Internally connected. Do not use.  
8
MB89620R Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
X0  
Function  
SH-DIP*1 QFP1*3  
LQFP*5  
MDIP*2  
30  
MQFP*4  
23  
QFP2*6  
22  
A
B
C
Crystal oscillator pins  
31  
24  
23  
X1  
28  
21  
20  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS.  
29  
22  
21  
27  
20  
19  
Reset I/O pin  
This pin is an N-ch open-drain output type with a  
pull-up resistor, and a hysteresis input type.  
“L” is output from this pin by an internal reset source.  
The internal circuit is initialized by the input of “L”.  
56 to 49 49 to 42 48 to 41 P00/AD0 to  
P07/AD7  
D
D
F
F
General-purpose I/O ports  
When an external bus is used, these ports function as  
multiplex pins of lower address output and data I/O.  
48 to 41 41 to 34 40 to 33 P10/A08 to  
P17/A15  
General-purpose I/O ports  
When an external bus is used, these ports function as  
upper address output.  
40  
39  
33  
32  
32  
31  
P20/BUFC  
P21/HAK  
General-purpose output-only port  
When an external bus is used, this port can also be  
used as a buffer control output by setting the BCTR.  
General-purpose output-only port  
When an external bus is used, this port can also be  
used as a hold acknowledge output by setting the  
BCTR.  
38  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
26  
30  
29  
28  
27  
26  
25  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
D
D
F
F
F
F
General-purpose output-only port  
When an external bus is used, this port can also be  
used as a hold request input by setting the BCTR.  
General-purpose output-only port  
When an external bus is used, this port functions as a  
ready input.  
General-purpose output-only port  
When an external bus is used, this port functions as a  
clock output.  
General-purpose output-only port  
When an external bus is used, this port functions as a  
write signal output.  
General-purpose output-only port  
When an external bus is used, this port functions as a  
read signal output.  
P27/ALE  
General-purpose output-only port  
When an external bus is used, this port functions as  
an address latch signal output.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*4: MQP-64C-P01  
*2: MDP-64C-P02  
*5: FPT-64P-M03  
*3: FPT-64P-M06  
*6: FPT-64P-M09  
9
MB89620R Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
Also serves as an A/D converter external activation.  
This port is a hysteresis input type.  
SH-DIP*1 QFP1*3  
LQFP*5  
QFP2*6  
MDIP*2  
MQFP*4  
58  
51  
50  
51  
52  
53  
54  
55  
P30/ADST  
E
E
E
E
E
E
59  
60  
61  
62  
63  
52  
53  
54  
55  
56  
P31/SCK1  
P32/SO1  
P33/SI1  
General-purpose I/O port  
Also serves as the clock I/O for the 8-bit serial I/O 1.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the data output for the 8-bit serial I/O 1.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the data input for the 8-bit serial I/O 1.  
This port is a hysteresis input type.  
P34/EC  
General-purpose I/O port  
Also serves as the external clock input for the 16-bit  
timer/counter. This port is a hysteresis input type.  
P35/PWC  
General-purpose I/O port  
Also serves as the measured pulse input for the 8-bit  
pulse width count timer. This port is a hysteresis input  
type.  
1
2
58  
59  
57  
58  
P36/WTO  
P37/PTO  
E
E
General-purpose I/O port  
Also serves as the toggle output for the 8-bit pulse  
width count timer. This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the toggle output for the 8-bit PWM  
timer. This port is a hysteresis input type.  
3 to 6  
7
60 to 63 59 to 62 P40 to P43  
G
G
N-ch open-drain I/O ports  
These ports are a hysteresis input type.  
64  
1
63  
64  
1
P44/BZ  
N-ch open-drain I/O port  
Also serves as a buzzer output. This port is a  
hysteresis input type.  
8
9
P45/SCK2  
P46/SO2  
P47/SI2  
G
G
G
N-ch open-drain I/O port  
Also serves as the clock I/O for the 8-bit serial I/O 2.  
This port is a hysteresis input type.  
2
N-ch open-drain I/O port  
Also serves as the data output for the 8-bit serial I/O 2.  
This port is a hysteresis input type.  
10  
3
2
N-ch open-drain I/O port  
Also serves as the data input for the 8-bit serial I/O 2.  
This port is a hysteresis input type.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*4: MQP-64C-P01  
*2: MDP-64C-P02  
*5: FPT-64P-M03  
*3: FPT-64P-M06  
*6: FPT-64P-M09  
10  
MB89620R Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-DIP*1 QFP1*3  
LQFP*5  
QFP2*6  
MDIP*2  
MQFP*4  
11 to 18  
4 to 11  
3 to 10 P50/AN0 to  
P57/AN7  
H
I
N-ch open-drain output-only ports  
Also serve as the analog input for the A/D converter.  
22 to 25 15 to 18 14 to 17 P60/INT0 to  
P63/INT3  
General-purpose input-only ports  
Also serve as an external interrupt input. These ports  
are a hysteresis input type.  
26  
19  
18  
P64  
I
General-purpose input-only port  
This port is a hysteresis input type.  
64  
32, 57  
19  
57  
25, 50  
12  
56  
VCC  
Power supply pin  
24, 49 VSS  
Power supply (GND) pins  
11  
12  
13  
AVCC  
A/D converter power supply pin  
A/D converter reference voltage input pin  
20  
13  
AVR  
AVSS  
21  
14  
A/D converter power supply (GND) pin  
Use this pin at the same voltage as VSS.  
*1: DIP-64P-M01, DIP-64C-A06  
*4: MQP-64C-P01  
*2: MDP-64C-P02  
*5: FPT-64P-M03  
*3: FPT-64P-M06  
*6: FPT-64P-M09  
11  
MB89620R Series  
External EPROM pins (MB89PV620 only)  
Pin no.  
Pin name  
I/O  
Function  
MDIP*1  
MQFP*2  
65  
66  
VPP  
O
O
“H” level output pin  
Address output pins  
66  
67  
68  
69  
70  
71  
72  
73  
74  
67  
68  
69  
70  
71  
72  
73  
74  
75  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
75  
76  
77  
77  
78  
79  
O1  
O2  
O3  
I
Data input pins  
78  
80  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
79  
80  
81  
82  
83  
82  
83  
84  
85  
86  
O4  
O5  
O6  
O7  
O8  
84  
87  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
85  
86  
88  
89  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
87  
88  
89  
91  
92  
93  
A11  
A9  
A8  
O
Address output pins  
90  
91  
92  
94  
95  
96  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
65  
76  
81  
90  
N.C.  
Internally connected pins  
Be sure to leave them open.  
*1: MDP-64C-P02  
*2: MQP-64C-P01  
12  
MB89620R Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• At an oscillation feedback resistor of approximately  
1 M/5.0 V  
X1  
X0  
Standby control signal  
B
C
• At an output pull-up resistor (P-ch) of approximately  
50 k/5.0 V  
R
P-ch  
• Hysteresis input  
N-ch  
D
• CMOS output  
• CMOS input  
R
P-ch  
N-ch  
• Pull-up resistor optional (except P22 and P23)  
E
• CMOS output  
• Hysteresis input  
R
P-ch  
N-ch  
• Pull-up resistor optional  
• CMOS output  
F
P-ch  
N-ch  
(Continued)  
13  
MB89620R Series  
(Continued)  
Type  
Circuit  
Remarks  
• N-ch open-drain output  
G
• Hysteresis input  
R
N-ch  
• Pull-up resistor optional  
(MB89623R, MB89625R, MB89626R, and  
MB89627R only)  
H
• N-ch open-drain output  
• Analog input  
R
N-ch  
Analog input  
• Pull-up resistor optional  
I
• Hysteresis input  
• Pull-up resistor optional  
R
14  
MB89620R Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
15  
MB89620R Series  
PROGRAMMING TO THE EPROM ON THE MB89P625  
The MB89P625 is an OTPROM version of the MB89620R series.  
1. Features  
• 16-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.  
EPROM mode  
Single chip  
(Corresponding addresses on the EPROM programmer)  
Address  
0000H  
I/O  
0080H  
0280H  
RAM  
External area  
BFF0H  
BFF6H  
3FF0H  
External area  
External area  
Option area  
3FF6H  
Vacancy  
(Read value: FFH)  
C000H  
FFFFH  
4000H  
7FFFH  
PROM  
16 KB  
EPROM  
16 KB  
3. Programming to the EPROM  
In EPROM mode, the MB89P625 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
When the operating ROM area for a single chip is 16 Kbytes (C000H to FFFFH) the PROM can be programmed  
as follows:  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH  
while operating as a single chip assign to 4000H to 7FFFH in EPROM mode).  
Load option data into addresses 3FF0H to 3FF5H of the EPROM programmer. (For information about each  
corresponding option, see “4. Setting OTPROM Options.”)  
(3) Program to 3FF0H to 7FFFH with the EPROM programmer.  
16  
MB89620R Series  
4. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map.  
The relationship between bits and options is shown on the following bit map:  
• OTPROM option bit map (MB89P625)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reset pin  
output  
Power-on  
reset  
1: Yes  
0: No  
Oscillation  
stabilization  
time  
1: Crystal  
0: Ceramic  
3FF0H Readable Readable Readable Readable Readable 1: Yes  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
0: No  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P64  
Pull-up  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF5H Readable Readable Readable 1: No  
and  
and  
and  
0: Yes  
writable  
writable  
writable  
Note: Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is not selected.  
17  
MB89620R Series  
PROGRAMMING TO THE EPROM ON THE MB89P627  
The MB89P627 is an OTPROM version of the MB89620R series.  
1. Features  
• 32-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.  
Single chip  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
Address  
0000H  
I/O  
0080H  
0480H  
RAM  
External area  
External area  
8000H  
0000H  
Option area  
0007H  
8007HH  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P627 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
When the operating ROM area for a single chip is 32 Kbytes (8007H to FFFFH) the PROM can be programmed  
as follows:  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH  
while operating as a single chip assign to 0007H to 7FFFH in EPROM mode).  
Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each  
corresponding option, see “4. Setting OTPROM Options.”)  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
18  
MB89620R Series  
4. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map.  
The relationship between bits and options is shown on the following bit map:  
• OTPROM option bit map (MB89P627)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reset pin Oscillation Power-on  
stabilization  
time  
1: Crystal  
0: Ceramic  
output  
0000H Readable Readable Readable Readable Readable 1: Yes  
reset  
1: Yes  
0: No  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
0: No  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0001H  
0002H  
0003H  
0004H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P64  
Pull-up  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0005H Readable Readable Readable 1: No  
and  
and  
and  
0: Yes  
writable  
writable  
writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
0006H Readable Readable Readable Readable Readable Readable Readable Readable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
and  
writable  
Note: Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is not selected.  
19  
MB89620R Series  
HANDLING THE MB89P625/P627  
1. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 h  
Data verification  
Assembly  
2. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
3. Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 Ws/cm2 is required to completely erase an internal EPROM. This dosage  
can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000  
µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters  
should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000Å. Although erasure time will be much longer than with UV source at 2537Å, never-  
theless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure  
to them should be prevented to realize maximum system reliability. If used in such an environment, the package  
windows should be covered by an opaque label or substance.  
20  
MB89620R Series  
4. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Recommended programmer manufacturer  
and programmer name  
Compatible socket  
adapter  
Sun Hayato Co., Ltd.  
Part number  
Package  
Advantest  
Data I/O Co., Ltd.  
Corp.  
UNISITE  
Recommended  
Recommended  
3900  
2900  
R4945A  
MB89P625P-SH  
MB89P625PF  
SH-DIP-64 ROM-64SD-28DP-8L  
Recommended  
Recommended  
QFP-64  
QFP-64  
ROM-64QF-28DP-8L  
ROM-64QF2-28DP-8L  
Recom-  
mended  
MB89P625PFM  
Recommended  
*: It is required to connect a capacitor of approximately 0.1 µF between VPP and GND, and VCC and GND.  
Inquiry:Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
Data I/O Co., Ltd.: TEL:USA/ASIA(1)-206-881-6444  
EUROPE(49)-8-985-8580  
Advantest Corp.:TEL:Except JAPAN (81)-3-3930-4111  
21  
MB89620R Series  
PROGRAMMING TO THE EPROM PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TV, MBM27C256A-20CZ  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
LCC-32 (Rectangle)  
ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.:TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
3. Memory Space  
Memory space in 32-Kbyte PROM is diagrammed below.  
Corresponding addresses on the EPROM programmer  
Single chip  
Address  
0000H  
I/O  
0080H  
0480H  
8000H  
8006H  
RAM  
Not available  
Not available  
0000H  
0006H  
Not available  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0006H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
22  
MB89620R Series  
BLOCK DIAGRAM  
X0  
X1  
20-bit timebase  
timer  
Oscillator  
Clock controller  
8-bit PWM timer  
P37/PTO  
Reset circuit  
(WDT)  
RST  
P36/WTO  
P35/PWC  
8-bit pulse width  
count timer  
CMOS I/O port  
P00/AD0  
to P07/AD7  
8
8
P34/EC  
16-bit timer/counter  
P10/A08  
to P17/A15  
P33/SI1  
P32/SO1  
P31/SCK1  
8-bit serial I/O 1  
CMOS I/O port  
8-bit serial I/O 2  
Buzzer output  
MOD0  
MOD1  
External bus  
interface  
P30/ADST  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
P47/SI2  
P46/SO2  
P45/SCK2  
CMOS output port  
P44/BZ  
4
8
P40 to P43  
N-ch open-drain I/O port  
N-ch open-drain output port  
RAM  
8
P50/AN0  
to P57/AN7  
8-bit A/D converter  
F2MC-8L  
CPU  
AVR  
AVCC  
AVSS  
ROM  
4
4
P60/INT0  
to P63/INT3  
External interrupt  
P64  
Input port  
The other pins  
VCC, VSS × 2  
23  
MB89620R Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89620R series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89620R series is structured as illustrated below.  
Memory Space  
MB89627R  
MB89P627  
MB89T627R  
MB89W627  
MB89625R  
MB89P625  
MB89W625  
MB89623R  
I/O  
MB89PV620  
I/O  
MB89626R  
I/O  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0100H  
0000H  
0080H  
0100H  
I/O  
I/O  
RAM  
512 B  
RAM  
768 B  
RAM  
256 B  
RAM  
1 KB  
RAM  
1 KB  
0100H  
0200H  
0100H  
0200H  
0100H  
0180H  
0280H  
Register  
Register  
Register  
Register  
Register  
0200H  
0280H  
0200H  
0380H  
3
*
3
*
0480H  
8000H  
0480H  
8000H  
8006H  
0480H  
8000H  
External area  
External area  
External area  
External area  
External area  
2
2
*
*
3
*
8006H  
A000H  
C000H  
FFFFH  
C000H  
E000H  
ROM  
32 KB  
External ROM  
32 KB  
ROM  
24 KB  
3
*
ROM*1  
16 KB  
ROM*1  
8 KB  
FFFFH  
FFFFH  
FFFFH  
FFFFH  
*1: The ROM area is an external area depending on the mode.  
*2: Since addresses 8000H to 8005H for the MB89P627 and MB89W627 comprise an option area, do not  
use this area for the MB89PV620 and MB89627R.  
*3: Access to this area is prohibited when using external bus mode.  
24  
MB89620R Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whentheinstructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
25  
MB89620R Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag:Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared  
to ‘0’ at the reset.  
IL1, 0:Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag:Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit is  
cleared to ‘0’.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag:Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ‘0’  
otherwise.  
Set to the shift-out value in the case of a shift instruction.  
26  
MB89620R Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89620R. In the MB89623R, there are 16  
banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to  
addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank  
pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
27  
MB89620R Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
(R/W)  
PDR2  
BCTR  
External bus pin control register  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
STBC  
WDTC  
TBTC  
Standby control register  
Watchdog timer control register  
Timebase timer control register  
Vacancy  
(R/W)  
(W)  
PDR3  
DDR3  
PDR4  
BZCR  
PDR5  
PDR6  
CNTR  
COMR  
PCR1  
PCR2  
RLBR  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
(R/W)  
(R/W)  
(R/W)  
(R)  
Buzzer register  
Port 5 data register  
Port 6 data register  
(R/W)  
(W)  
PWM control register  
PWM compare register  
PWC pulse width control register 1  
PWC pulse width control register 2  
PWC reload buffer register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
TMCR  
TCHR  
TCLR  
16-bit timer control register  
16-bit timer count register (H)  
16-bit timer count register (L)  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SMR1  
SDR1  
SMR2  
SDR2  
Serial I/O 1 mode register  
Serial I/O 1 data register  
Serial I/O 2 mode register  
Serial I/O 2 data register  
(Continued)  
28  
MB89620R Series  
(Continued)  
Address  
Read/write  
(R/W)  
Register name  
ADC1  
Register description  
20H  
21H  
A/D converter control register 1  
(R/W)  
ADC2  
A/D converter control register 2  
A/D converter data register  
Vacancy  
22H  
(R/W)  
ADCD  
23H  
24H  
(R/W)  
(R/W)  
EIC1  
EIC2  
External interrupt 1 control register 1  
External interrupt 1 control register 2  
Vacancy  
25H  
26H to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
7DH  
7EH  
7FH  
Note: Do not use vacancies.  
29  
MB89620R Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Rating  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
1
Power supply voltage  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
V
V
*
AVR must not exceed AVCC + 0.3  
V.  
A/D converter reference input  
voltage  
AVR  
VSS + 7.0  
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
VCC + 0.3  
VSS + 7.0  
V
V
V
V
Except P40 to P47*2  
P40 to P47  
Input voltage  
VI2  
VO  
VO2  
Except P40 to P47*2  
P40 to P47  
Output voltage  
“L” level maximum output  
current  
IOL  
20  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Average value (operating  
current × operating rate)  
“L” level average output current  
IOLAV  
IOL  
IOLAV  
IOH  
“L” level total maximum output  
current  
100  
40  
“L” level total average output  
current  
Average value (operating  
current × operating rate)  
“H” level maximum output  
current  
–20  
–4  
Average value (operating  
current × operating rate)  
“H” level average output current  
IOHAV  
IOH  
IOHAV  
“H” level total maximum output  
current  
–50  
–20  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
*1: Use AVCC and VCC set to the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
*2: VI and VO must not exceed VCC + 0.3 V.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
30  
MB89620R Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance range*  
(MB89623R/625R/626R/627R)  
2.2*  
6.0*  
V
VCC  
AVCC  
Power supply voltage  
Normal operation assurance range*  
(MB89P625/W625/P627/T627R/W627/PV620)  
2.7*  
1.5  
6.0*  
6.0  
V
V
Retains the RAM state in stop mode  
A/D converter reference input  
voltage  
AVR  
TA  
0.0  
AVCC  
+85  
V
Operating temperature  
–40  
°C  
*: These values vary with the operating frequency and analog assurance range. See Figure 1 and “5. A/D Converter  
Electrical Characteristics.”  
Figure 1 Operating Voltage vs. Clock Operating Frequency  
6
Analog accuracy assured in the  
AVCC = VCC = 3.5 V to 6.0 V range  
5
Operation assurance range  
4
3
2
1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Clock operating frequency (MHz)  
Note: The shaded area is assured only for the MB89623R/625R/626R/627R.  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FC.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
31  
MB89620R Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P10 to P17,  
P22, P23  
0.7 VCC  
VCC + 0.3  
VIH  
V
“H” level input  
voltage  
RST, MOD0,  
MOD1,  
P30 to P37,  
P60 to P64  
0.8 VCC  
VCC + 0.3  
VIHS  
V
0.8 VCC  
VCC + 0.3  
0.3 VCC  
VIHS2  
VIL  
P40 to P47  
V
V
P00 to P07,  
P10 to P17,  
P22, P23  
VSS 0.3  
“L” level input  
voltage  
RST, MOD0,  
MOD1,  
VSS 0.3  
0.2 VCC  
VILS  
P30 to P37,  
P40 to P47,  
P60 to P64  
V
Open-drain  
output pin  
application  
voltage  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
VSS + 6.0  
VD  
V
V
P50 to P57  
P40 to P47  
VD2  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37  
“H” level output  
voltage  
4.0  
VOH  
IOH = –2.0 mA  
IOL = +4.0 mA  
V
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P47,  
P50 to P57  
0.4  
0.4  
VOL  
V
V
“L” level output  
voltage  
VOL2  
RST  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P47,  
P60 to P64,  
MOD0, MOD1  
Input leakage  
current  
(Hi-z output  
leakage current)  
0.0 V < VI <  
VCC  
Without  
pull-up resistor  
±5  
ILI1  
µA  
kΩ  
P00 to P07,  
P10 to P17,  
P30 to P37,  
P40 to P47,  
P50 to P57,  
P60 to P64,  
RST  
Pull-up  
resistance  
25  
50  
100  
RPULL  
VI = 0.0 V  
(Continued)  
32  
MB89620R Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
MB89623R/  
625R/626R/  
627R/T627R/  
PV620  
9
15  
mA  
FC = 10 MHz  
Normal  
operating  
mode  
ICC  
MB89P625/  
W625  
MB89P627/  
W627  
*2  
tinst = 0.4 µs  
10  
18  
mA  
VCC  
FC = 10 MHz  
Sleep mode  
tinst = 0.4 µs  
ICCS  
ICCH  
IA  
3
1
4
1
3
mA  
µA  
Power supply  
current*1  
*2  
Stop mode  
TA = +25°C  
FC = 10 MHz,  
when starting  
A/D conversion  
mA  
AVCC  
FC = 10 MHz,  
TA = +25°C,  
IAH  
1
µA  
when stopping  
A/D conversion  
Other than  
AVCC, AVSS,  
VCC, and VSS  
Input  
capacitance  
CIN  
f = 1 MHz  
10  
pF  
*1: In the case of the MB89PV620, the current consumed by the connected EPROM and ICE is not included.  
The power supply current is measured at the external clock.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
33  
MB89620R Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
16 tXCYL  
ns  
Note: tXCYL is the oscillation cycle (1/FC) to input to the X0 pin.  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
1
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tR  
tOFF  
2.0 V  
VCC  
0.2 V  
0.2 V  
0.2 V  
34  
MB89620R Series  
(3) Clock Timing  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Min.  
1
Max.  
10  
Clock frequency  
Clock cycle time  
FC  
X0, X1  
X0, X1  
MHz  
ns  
tXYCL  
100  
1000  
PWH  
PWL  
Input clock pulse width  
X0  
X0  
20  
ns  
ns  
External clock  
External clock  
Input clock rising/falling tCR  
time  
10  
tCF  
X0 and X1 Timing and Conditions  
tXCYL  
PW  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
Instruction cycle  
(minimum execution time)  
tinst = 0.4 µs when operating at  
FC = 10 MHz  
tinst  
4/FC  
µs  
35  
MB89620R Series  
(5) Clock Output Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Parameter  
Cycle time  
CLK ↑ → CLK ↓  
Min.  
Max.  
tXCYL × 2 at 10 MHz  
oscillation  
tCYC  
200  
ns  
ns  
CLK  
Approx. tCYC/2 at  
10 MHz oscillation  
tCHCL  
30  
100  
tCYC  
tCHC  
2.4 V  
2.4 V  
CLK  
0.8 V  
36  
MB89620R Series  
(6) Bus Read Timing  
Parameter  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
1/4 tinst*– 64 ns  
1/4 tinst*– 20 ns  
Max.  
RD, A15 to A08,  
AD7 to AD0  
Valid address RD time  
RD pulse width  
tAVRL  
tRLRH  
tAVDV  
µs  
µs  
RD  
AD7 to AD0,  
A15 to A08  
In the case  
µs  
Valid address data read time  
1/2 tinst*  
of no wait  
1/2 tinst*– 80  
ns  
In the case  
µs  
RD, AD7 to AD0  
RD ↓ → data read time  
tRLDV  
of no wait  
AD7 to AD0, RD  
RD, ALE  
0
RD ↑ → data hold time  
RD ↑ → ALE time  
tRHDX  
tRHLH  
µs  
µs  
µs  
µs  
ns  
µs  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
0
RD, A15 to A08  
RD ↑ → address invalid time tRHAX  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD ↓ → BUFC time  
tRLCH  
tCLRH  
tRLBL  
RD, CLK  
RD, BUFC  
–5  
A15 to A08,  
AD7 to AD0,  
BUFC  
5
BUFC ↑ → valid address time tBHAV  
µs  
*: For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
tRHL  
ALE  
0.8 V  
0.7 VCC  
2.4 V  
2.4 V  
0.7 VCC  
0.3 VCC  
AD  
0.8 V  
0.8 V  
0.3 VCC  
tRHDX  
tAVD  
2.4 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
tCLRH  
A
tRLC  
0.8 V  
tAVRL  
tRLDV  
tRHA  
tRLR  
2.4 V  
RD  
0.8 V  
tRLBL  
tBHAV  
2.4 V  
BUFC  
0.8 V  
37  
MB89620R Series  
(7) Bus Write Timing  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
AD7 to AD0,  
ALE, A15 to A08  
1/4 tinst*1– 64 ns  
Valid address ALE time tAVLL  
µs  
ALE time address  
tLLAX  
AD7 to AD0,  
ALE, A15 to A08  
5
ns  
invalid time  
WR, ALE  
inst*1– 60 ns  
1/4 t  
Valid address WR time  
WR pulse width  
tAVWL  
tWLWH  
tDVWH  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
ns  
µs  
µs  
WR  
1/2 tinst*1– 20 ns  
1/2 tinst*1– 60 ns  
AD7 to AD0, WR  
WR, A15 to A08  
AD7 to AD0, WR  
WR, ALE  
Write data WR time  
inst*1– 40 ns  
1/4 t  
WR ↑ → address invalid time tWHAX  
1/4 tinst*1– 40 ns  
1/4 tinst*1– 40 ns  
1/4 tinst*1– 40 ns  
0
WR ↑ → data hold time  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
tWHDX  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
WR, CLK  
ALE  
1/4 tinst*1– 35 ns*2  
ALE,CLK  
inst*1– 30 ns*2  
1/4 t  
ALE ↓ → CLK time  
tLLCH  
*1: For information on tinst, see “(4) Instruction Cycle.”  
*2: These characteristics are also applicable to the bus read timing.  
2.4 V  
CLK  
0.8 V  
tLHLL  
tLLC  
tWHL  
2.4 V  
ALE  
AD  
A
0.8 V  
0.8 V  
tAVL  
tLLAX  
2.4 V  
0.8 V  
2.4 V 2.4 V  
0.8 V 0.8 V  
2.4 V  
0.8 V  
tWHD  
tDVW  
2.4 V  
tCLWH  
2.4 V  
0.8 V  
tWLC  
0.8 V  
tAVW  
tWHA  
tWLW  
2.4 V  
WR  
0.8 V  
38  
MB89620R Series  
(8) Ready Input Timing  
Parameter  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name Condition  
Unit Remarks  
Min.  
60  
0
Max.  
RDY valid CLK time  
CLK ↑ → RDY invalid time  
tYVCH  
tCHYX  
ns  
ns  
*
*
RDY, CLK  
*: These characteristics are also applicable to the read cycle.  
2.4 V  
2.4 V  
CLK  
ALE  
AD  
A
Address  
Data  
WR  
tYVCH tCHYX  
RDY  
tYVCH tCHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
39  
MB89620R Series  
(9) Serial I/O Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
SCK1,  
SCK2  
Serial clock cycle time  
tSCYC  
2 tinst*  
µs  
SCK1,  
SO1  
SCK2,  
SO2  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
tSLOV  
–200  
200  
ns  
Internal shift  
clock mode  
SI1, SCK1  
SI2, SCK2  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
µs  
µs  
µs  
µs  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
SCK1,  
SCK2  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK1,  
SCK2  
1 tinst*  
SCK1,  
SO1  
SCK2,  
SO2  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
External shift  
clock mode  
tSLOV  
0
200  
ns  
SI1, SCK1  
SI2, SCK2  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
tIVSH  
tSHIX  
1/2 tinst*  
1/2 tinst*  
µs  
µs  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
*: For information on tinst, see “(4) Instruction Cycle.”  
40  
MB89620R Series  
Internal Shift Clock Mode  
tSCYC  
SCK1  
SCK2  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
SO1  
SO2  
2.4 V  
0.8 V  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
SI1  
SI2  
0.8 VCC  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK1  
SCK2  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
SO1  
SO2  
2.4 V  
0.8 V  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
41  
MB89620R Series  
(10) Peripheral Input Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
tILIH1  
PWC,  
EC, INT0  
to INT3  
2 tinst*  
µs  
µs  
tIHIL1  
2 tinst*  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
tILIH2  
tIHIL2  
tILIH2  
tIHIL2  
32 tinst*  
32 tinst*  
8 tinst*  
µs  
µs  
µs  
µs  
A/D mode  
ADST  
Sense mode  
8 tinst*  
*: For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.2 VCC  
PWC  
EC  
INT0 to INT3  
0.2 VCC  
tIHIL2  
tILIH2  
0.8 VCC  
0.8 VCC  
0.2 VCC  
ADST  
0.2 VCC  
42  
MB89620R Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Resolution  
Pin name Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
8
bit  
Total error  
±1.5  
±1.0  
LSB  
LSB  
Linearity error  
Differential linearity  
error  
±0.9  
LSB  
mV  
mV  
LSB  
µs  
Zero transition  
voltage  
AVR=AVCC  
AVSS –1.0LSB AVSS +0.5LSB AVSS +2.0LSB  
VOT  
Full-scale transition  
voltage  
AVR–3.0LSB AVR–1.5LSB  
AVR  
0.5  
VFST  
Interchannel  
disparity  
A/D mode  
conversion time  
44 tinst*  
12 tinst*  
Sense mode  
conversion time  
µs  
Analog port input  
current  
IAIN  
10  
µA  
AN0 to AN7  
Analog input voltage  
Reference voltage  
0.0  
0.0  
AVR  
AVCC  
V
V
AVR = 5.0 V,  
when starting  
A/D  
IR  
100  
µA  
µA  
AVR  
conversion  
Reference voltage  
supply current  
AVR = 5.0 V,  
when  
stopping A/D  
conversion  
IRH  
1
*: For information on tinst, see “(4) Instruction Cycle” in “4 AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
43  
MB89620R Series  
Digital output  
1
Theoretical conversion value  
1111 1111  
1
11111110  
Actual conversion value  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V(N+1)TVNT
Differential linearity error =  
– 1  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
Total error =  
1 LSB  
0
0000 0010  
0
0000 0001  
0
0000 0000  
VOT  
VNT V (N + I)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the  
sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circiut  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after activating  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
44  
MB89620R Series  
EXAMPLE CHARACTERISTICS  
(2) “H” Level Output Voltage  
(1) “L” Level Output Voltage  
VOL vs. IOL  
VCC VOH vs. IOH  
TA = +25°C  
VOL (V)  
VCC – VOH (V)  
1.0  
VCC = 3.0 V  
VCC = 4.0 V  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
0.5  
0.4  
0.3  
0.2  
0.1  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
5.0  
VIN vs. VCC  
VIN (V)  
5.0  
TA = +25°C  
TA = +25°C  
4.5  
4.5  
VIHS  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
45  
MB89620R Series  
(5) Power Supply Current (External Clock)  
ICCS vs. VCC  
ICC vs. VCC  
ICC (mA)  
16  
ICCS (mA)  
5
TA = +25°C  
FC = 10 MHz  
TA = +25°C  
14  
4
12  
10  
FC = 8 MHz  
3
2
FC = 10 MHz  
8
FC = 8 MHz  
6
4
2
FC = 4 MHz  
FC = 1 MHz  
FC = 4 MHz  
FC = 1 MHz  
1
0
1
0
2
3
4
5
6
7
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
IA vs. AVCC  
IR vs. AVR  
IA (mA)  
5.0  
IR (µA)  
200  
TA = +25°C  
FC = 10 MHz  
TA = +25°C  
4.5  
4.0  
180  
160  
3.5  
3.0  
140  
120  
2.5  
2.0  
100  
80  
1.5  
1.0  
60  
40  
0.5  
0
20  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
AVCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
AVR (V)  
(6) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25°C  
100  
10  
1
2
3
4
5
6
VCC (V)  
46  
MB89620R Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
47  
MB89620R Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
48  
MB89620R Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
49  
MB89620R Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
50  
MB89620R Series  
INSTRUCTION MAP  
51  
MB89620R Series  
MASK OPTIONS  
MB89623R  
MB89625R  
MB89626R  
MB89627R  
MB89P625  
MB89W625  
MB89P627  
MB89W627  
MB89PV620  
MB89T627R  
Part number  
No.  
Specify when  
ordering masking  
Set with EPROM  
programmer  
Setting not  
possible  
Specifying procedure  
Selectable per pin.  
(P50 to P57 must  
be set to without a  
pull-up resistor  
when an A/D  
converter is used.)  
Can be set per pin.  
(P40 to P47 are  
available only for  
without a pull-up  
resistor.)  
Pull-up resistors  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P50 to P57, P60 to P64  
Fixed to without pull-up  
resistor  
1
Power-on reset selection  
Fixed to with power-on  
reset  
2
3
4
With power-on reset  
Without power-on reset  
Selectable  
Selectable  
Selectable  
Setting possible  
Setting possible  
Setting possible  
Oscillation stabilization time  
selection  
Crystal oscillator  
(218/FC(s))  
Crystal oscillator: 218/FC(s)  
Ceramic oscillator: 214/FC(s)  
Reset pin output  
With reset output  
Without reset output  
With reset output  
52  
MB89620R Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89623RP-SH  
MB89625RP-SH  
MB89626RP-SH  
MB89627RP-SH  
MB89P625P-SH  
MB89P627-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
MB89T627RP-SH  
MB89623RPFV  
MB89625RPFV  
64-pin Plastic LQFP  
(FPT-64P-M03)  
Lead pitch: 0.5 mm  
Lead pitch: 1.0 mm  
MB89623RPF  
MB89625RPF  
MB89626RPF  
MB89627RPF  
MB89P625PF  
MB89P627PF  
MB89T623RPF  
MB89T625RPF  
MB89T627RPF  
64-pin Plastic QFP  
(FPT-64P-M06)  
MB89623RPFM  
MB89625RPFM  
MB89626RPFM  
MB89627RPFM  
MB89P625PFM  
MB89P627PFM  
MB89T627RPFM  
64-pin Plastic QFP  
(FPT-64P-M09)  
Lead pitch: 0.65 mm  
MB89W625C-SH  
MB89W627C-SH  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
MB89PV620CF  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
MB89PV620C-SH  
53  
MB89620R Series  
PACKAGE DIMENSIONS  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
58.00 +00..5252  
2.283 +..002028  
INDEX-1  
INDEX-2  
17.00±0.25  
(.669±.010)  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
1.00 +00.50  
.039 +0.020  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
Dimensions in mm(inches).  
(Continued)  
C
1994 FUJITSU LIMITED D64001S-3C-4  
54  
MB89620R Series  
(Continued)  
64-pin Plastic LQFP  
(FPT-64P-M03)  
12.00±0.20(.472±.008)SQ  
10.00±0.10(.394±.004)SQ  
48  
33  
49  
32  
0.08(.003)  
Details of "A" part  
1.50 +00..1200  
INDEX  
(Mounting height)  
.059 +..000048  
64  
17  
"A"  
0~8°  
1
16  
LEAD No.  
0.50±0.08  
(.020±.003)  
0.18 +00..0038  
.007 +..000013  
0.145±0.055  
(.006±.002)  
M
0.08(.003)  
0.10±0.10  
(.004±.004)  
(Stand off)  
0.50±0.20  
(.020±.008)  
0.45/0.75  
(.018/.030)  
0.25(.010)  
Dimensions in mm (inches).  
(Continued)  
C
1998 FUJITSU LIMITED F64009S-3C-6  
55  
MB89620R Series  
(Continued)  
64-pin Plastic QFP  
(FPT-64P-M06)  
24.70±0.40(.972±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
51  
33  
0.05(.002)MIN  
(STAND OFF)  
52  
32  
14.00±0.20 18.70±0.40  
(.551±.008) (.736±.016)  
12.00(.472)  
REF  
16.30±0.40  
(.642±.016)  
INDEX  
64  
20  
"A"  
1
19  
LEAD No.  
0.15±0.05(.006±.002)  
Details of "B" part  
1.00(.0394)  
TYP  
0.40±0.10  
(.016±.004)  
M
0.20(.008)  
Details of "A" part  
0.25(.010)  
"B"  
0.30(.012)  
0.18(.007)MAX  
0.10(.004)  
18.00(.709)REF  
0
10°  
1.20±0.20  
0.63(.025)MAX  
(.047±.008)  
22.30±0.40(.878±.016)  
Dimensions in mm (inches).  
C
2000 FUJITSU LIMITED F64013S-3C-3  
(Continued)  
56  
MB89620R Series  
(Continued)  
64-pin Plastic QFP  
(FPT-64P-M09)  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
1.50 +00..1200  
48  
49  
33  
32  
(Mounting height)  
.059 +..000048  
9.75  
(.384)  
REF  
13.00  
(.512)  
NOM  
1 PIN INDEX  
64  
17  
M
1
16  
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.127 +00..0025  
.005 +..000012  
0.13(.005)  
(STAND OFF)  
(.004±.004)  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
Dimensions in mm (inches).  
(Continued)  
C
2000 FUJITSU LIMITED F64018S-1C-3  
57  
MB89620R Series  
(Continued)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
3.40±0.36  
0.25±0.05  
(.010±.004)  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46 +00..0183  
19.05±0.25  
(.750±.010)  
(.134±.014)  
.018 +..000035  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
Dimensions in mm (inches).  
(Continued)  
C
1994 FUJITSU LIMITED D64006SC-1-2  
58  
MB89620R Series  
(Continued)  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
18.70(.736)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
12.00(.472)TYP  
1.00±0.25  
INDEX AREA  
1.20 +00..2400  
.047 +..000186  
(.039±.010)  
1.00±0.25  
(.039±.010)  
1.27±0.13  
(.050±.005)  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.00(.709)  
TYP  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20 +00..2400  
.047 +..000186  
10.82(.426)  
MAX  
0.15±0.05  
0.50(.020)TYP  
(.006±.002)  
Dimensions in mm (inches).  
(Continued)  
C
1994 FUJITSU LIMITED M64004SC-1-3  
59  
MB89620R Series  
(Continued)  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
0°~9°  
56.90±0.64  
(2.240±.025)  
15.24(.600)  
TYP  
18.75±0.30  
(.738±.012)  
19.05±0.30  
(.750±.012)  
INDEX AREA  
2.54±0.25  
(.100±.010)  
0.25±0.05  
(.010±.002)  
33.02(1.300)REF  
1.27±0.25  
(.050±.010)  
10.16(.400)MAX  
0.46+00..0183  
0.90±0.13  
(.035±.005)  
3.43±0.38  
(.135±.015)  
1.778±0.25  
(.070±.010)  
.018+..000035  
55.12(2.170)REF  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED M64002SC-1-4  
60  
MB89620R Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
http://edevice.fujitsu.com/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0012  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89623RP-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89623RPF

8-bit Proprietary Microcontroller
FUJITSU

MB89623RPFM

8-bit Proprietary Microcontroller
FUJITSU

MB89623RPFV

8-bit Proprietary Microcontroller
FUJITSU

MB89625

8-bit Proprietary Microcontroller
FUJITSU

MB89625P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89625PF

8-bit Proprietary Microcontroller
FUJITSU

MB89625PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89625PFV

8-bit Proprietary Microcontroller
FUJITSU

MB89625R

8-bit Proprietary Microcontroller
FUJITSU

MB89625RP-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89625RPF

8-bit Proprietary Microcontroller
FUJITSU