SPC5705BEMLQR [FREESCALE]

Microcontroller; 微控制器
SPC5705BEMLQR
型号: SPC5705BEMLQR
厂家: Freescale    Freescale
描述:

Microcontroller
微控制器

微控制器
文件: 总92页 (文件大小:1073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5607B  
Rev. 3, 01/2010  
MPC5607B  
MPC5607B Microcontroller  
Data Sheet  
208 MAPBGA (17 x 17  
)
100 LQFP (14 x 14 )  
144 LQFP (20 x 20 )  
176LQFP (24 x 24)  
Features  
Up to 6 serial peripheral interface (DSPI) modules  
Up to 10 serial communication interface (LINFlex)  
modules  
Single issue, 32-bit CPU core complex (e200z0h)  
— Compliant with the Power Architecture™  
embedded category  
Up to 6 enhanced full CAN (FlexCAN) modules  
with configurable buffers  
— Enhanced instruction set allowing variable  
length encoding (VLE) for code size footprint  
reduction. With the optional encoding of mixed  
16-bit and 32-bit instructions, it is possible to  
achieve significant code size footprint  
reduction.  
2
1 inter-integrated circuit (I C) interface module  
Up to 149 configurable general purpose pins  
supporting input and output operations (package  
dependent)  
Real-Time Counter (RTC)  
Up to 1.5 Mbytes on-chip Flash supported with the  
Flash controller  
— Clock source from internal 128 kHz or 16 MHz  
oscillator supporting autonomous wakeup with  
1 ms resolution with maximum timeout of 2  
seconds  
Up to 96 Kbytes on-chip SRAM  
Memory protection unit (MPU) with 8 region  
descriptors and 32-byte region granularity on certain  
family members  
— Optional support for RTC with clock source  
from external 32 kHz crystal oscillator,  
supporting wakeup with 1 sec resolution and  
maximum timeout of 1 hour  
Interrupt controller (INTC) capable of handling 204  
selectable-priority interrupt sources  
Up to 8 periodic interrupt timers (PIT) with 32-bit  
counter resolution  
Frequency modulated phase-locked loop (FMPLL)  
Crossbar switch architecture for concurrent access to  
peripherals, Flash, or RAM from multiple bus  
masters  
Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 Class Two Plus  
Device/board boundary scan testing supported per  
Joint Test Action Group (JTAG) of IEEE (IEEE  
1149.1)  
16-channel eDMA controller with multiple transfer  
request sources using DMA multiplexer  
Boot assist module (BAM) supports internal Flash  
programming via a serial link (CAN or SCI)  
On-chip voltage regulator (VREG) for regulation of  
input supply for all internal levels  
Timer supports I/O channels providing a range of  
16-bit input capture, output compare, and pulse  
width modulation functions (eMIOS)  
2 analog-to-digital converters (ADC): one 10-bit and  
one 12-bit  
Cross Trigger Unit to enable synchronization of  
ADC conversions with a timer event from the  
eMIOS or PIT  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
Preliminary—Subject to Change Without Notice  
Table of Contents  
1
2
General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
3.10.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 40  
3.11 Electromagnetic compatibility (EMC) characteristics. . 40  
3.11.1 Designing hardened software to avoid  
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1 176LQFP pin configuration . . . . . . . . . . . . . . . . . . . . . . .8  
2.2 144LQFP pin configuration . . . . . . . . . . . . . . . . . . . . . . .9  
2.3 208MAPBGA pin configuration . . . . . . . . . . . . . . . . . . .10  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2.1 NVUSRO[PAD3V5V] field description . . . . . . . .11  
3.2.2 NVUSRO[OSCILLATOR_MARGIN] field  
noise problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.11.2 Electromagnetic interference (EMI) . . . . . . . . . 41  
3.11.3 Absolute maximum ratings (electrical sensitivity)41  
3.12 Fast external crystal oscillator (4 to 16 MHz)  
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.13 Slow external crystal oscillator (32 kHz)  
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 48  
3.15 Fast internal RC oscillator (16 MHz)  
3
description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.2.3 NVUSRO[WATCHDOG_EN] field description . .12  
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .13  
3.4 Recommended operating conditions . . . . . . . . . . . . . .14  
3.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.1 External ballast resistor recommendations . . . .17  
3.5.2 Package thermal characteristics . . . . . . . . . . . .17  
3.5.3 Power considerations. . . . . . . . . . . . . . . . . . . . .18  
3.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .18  
3.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6.2 I/O input DC characteristics. . . . . . . . . . . . . . . .19  
3.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .21  
3.6.4 Output pin transition times. . . . . . . . . . . . . . . . .23  
3.6.5 I/O pad current specification . . . . . . . . . . . . . . .24  
3.7 nRSTIN electrical characteristics . . . . . . . . . . . . . . . . .27  
3.8 Power management electrical characteristics. . . . . . . .30  
3.8.1 Voltage regulator electrical characteristics . . . .30  
3.8.2 Voltage monitor electrical characteristics. . . . . .33  
3.9 Low voltage domain power consumption . . . . . . . . . . .35  
3.10 Flash memory electrical characteristics . . . . . . . . . . . .37  
3.10.1 Program/Erase characteristics. . . . . . . . . . . . . .37  
3.10.2 Flash power supply DC characteristics . . . . . . .38  
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.16 Slow internal RC oscillator (128 kHz)  
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 50  
3.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.17.2 Input impedance and ADC accuracy . . . . . . . . 51  
3.17.3 ADC electrical characteristics . . . . . . . . . . . . . 56  
3.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . 64  
3.18.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 66  
3.18.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 73  
3.18.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 74  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 75  
4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4.1.2 144 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
4.1.3 100 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
4.1.4 208MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4
5
6
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
2
Freescale Semiconductor  
General description  
1
General description  
The MPC5607B is a new family of next generation microcontrollers built on the Power Architecture™ embedded category.  
This document describes the features of the family and options available within the family members, and highlights important  
electrical and physical characteristics of the device.  
The MPC5607B family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It  
belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics  
applications within the vehicle. The advanced and cost-efficient host processor core of the MPC5607B automotive controller  
family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding)  
APU (Auxillary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high  
performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of  
current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist  
with users implementations.  
1
Table 1. MPC5607B Family Comparison  
MPC5605B  
MPC5606B  
MPC5607B  
Feature  
Package  
CPU  
100  
LQFP  
144  
LQFP  
176  
LQFP  
144  
LQFP  
176  
LQFP  
176  
LQFP  
208 MAP  
BGA2  
e200z0h  
Execution speed3  
Code Flash  
Data Flash  
RAM  
Up to 64 MHz  
768 KB  
64 KB  
1 MB  
1.5 MB  
64 (4 x 16) Kbyte  
80 KB  
8-entry  
16 ch  
96 KB  
MPU  
DMA  
10-bit ADC  
Yes  
dedicated4  
shared with 12-bit ADC  
12-bit ADC  
7 ch  
15 ch  
29 ch  
15 ch  
29 ch  
19 ch  
Yes  
dedicated5  
5 ch  
shared with 10-bit ADC  
19 ch  
Total timer I/O6  
eMIOS  
37 ch,  
16-bit  
64 ch,  
16-bit  
Counter / OPWM / ICOC7  
10 ch  
7 ch  
O(I)PWM / OPWFMB /  
OPWMCB / ICOC8  
O(I)PWM / ICOC9  
OPWM / ICOC10  
7 ch  
13 ch  
4
14 ch  
33 ch  
SCI (LINFlex)  
6
5
8
6
6
5
6
8
10  
SPI (DSPI)  
3
6
CAN (FlexCAN)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
3
General description  
1
Table 1. MPC5607B Family Comparison (continued)  
MPC5605B  
MPC5606B  
MPC5607B  
Feature  
I2C  
1
32 kHz oscillator  
GPIO11  
Yes  
121  
77  
121  
149  
149  
149  
Debug  
JTAG  
N2+  
1
2
3
4
5
6
7
Feature set dependent on selected peripheral multiplexing; table shows example.  
208 MAPBGA package is for debug use only.  
Based on 105 °C ambient operating temperature.  
Not shared with 12-bit ADC, but possibly shared with other alternate functions.  
Not shared with 10-bit ADC, but possibly shared with other alternate functions.  
Refer to eMIOS section of device reference manual for information on the channel configuration and functions.  
Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output  
Compare.  
8
9
Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output  
Compare.  
Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and  
Pulse width measurement.  
10 Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.  
11 Maximum I/O count based on multiplexing with peripherals.  
1.1  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5607B.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
4
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
General description  
RAM  
96 KB  
Code Flash DataFlash  
1.5 MB 64 KB  
JTAG  
eDMA  
(Master)  
JTAG Port  
Nexus Port  
Instructions  
SRAM  
Controller  
Flash  
Controller  
e200z0h  
Nexus 2+  
(Master)  
Nexus  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
Regulator  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
MPU  
Registers  
INTC  
WKPU  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
Peripheral Bridge  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
SIUL  
10 x  
LINFlex  
64 ch  
eMIOS  
6 x  
DSPI  
6 x  
FlexCAN  
29 ch 10-bit  
ADC  
19 ch 10bit/12bit  
ADC  
2
CTU  
I C  
Reset Control  
Interrupt  
Request  
External  
Interrupt  
Request  
IMUX  
GPIO &  
Pad Control  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
Legend:  
MC_ME  
MPU  
Nexus  
NMI  
Mode Entry Module  
Memory Protection Unit  
NexuS Development Interface (NDI) Level  
Non-Maskable Interrupt  
ADC  
BAM  
CAN  
CMU  
CTU  
Analog-to-Digital Converter  
Boot Assist Module  
Controller Area Network (FlexCAN)  
Clock Monitor Unit  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
Cross Triggering Unit  
DSPI  
eMIOS  
FMPLL  
I2C  
IMUX  
INTC  
JTAG  
LINFlex  
Deserial Serial Peripheral Interface  
PIT  
RTC  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Enhanced Modular Input Output System  
Frequency-Modulated Phase-Locked Loop  
Inter-integrated Circuit Bus  
Internal Multiplexer  
Interrupt Controller  
SIUL  
SRAM  
SSCM  
STM  
SWT  
JTAG controller  
Serial Communication Interface (LIN support)  
Software Watchdog Timer  
MC_CGM Clock Generation Module  
Figure 1. MPC5607B block diagram  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
5
General description  
Table 2 summarizes the functions of the blocks present on the MPC5607B.  
Table 2. MPC5607B series block summary  
Block  
Function  
Analog-to-digital converter (ADC) Converts analog voltages to digital values  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Crossbar switch (XBAR)  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width.  
Cross triggering unit (CTU)  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
Frequency-modulated  
Generates high-speed system clocks and supports programmable frequency  
phase-locked loop (FMPLL)  
modulation  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Memory protection unit (MPU)  
Provides hardware access control for all memory references generated in a  
device  
Periodic interrupt timer (PIT)  
Real-time counter (RTC)  
Produces periodic interrupts and triggers  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Package pinouts  
Table 2. MPC5607B series block summary (continued)  
Function  
Block  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System timer module (STM)  
Provides a set of output compare events to support AutoSAR and operating  
system tasks  
2
Package pinouts  
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,  
please refer to the device reference manual.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Preliminary—Subject to Change Without Notice  
Package pinouts  
2.1  
176LQFP pin configuration  
LIN0RX/WKUP[11]/SCL/E0UC[31]/GPIO[19]/PB[3]  
LIN2RX/WKUP[13]/E0UC[7]/GPIO[41]/PC[9]  
EIRQ[8]/SCK2/E0UC[14]/GPIO[46]/PC[14]  
EIRQ[20]/CS0_2/E0UC[15]/GPIO[47]/PC[15]  
E1UC[18]/SCK_5/GPIO[148]/PJ[4]  
VDD_HV  
1
2
3
4
5
6
7
8
PA[11]/GPIO[11]/E0UC[11]/SCL/EIRQ[16]/LIN2RX/ADC1_S[3]  
PA[10]/GPIO[10]/E0UC[10]/SDA/LIN2TX/ADC1_S[2]  
PA[9]/GPIO[9]/E0UC[9]/CS2_1/FAB  
PA[8]/GPIO[8]/E0UC[8]/E0UC[14]/EIRQ[3]/ABS[0]/LIN3RX  
PA[7]/GPIO[7]/E0UC[7]/LIN3TX/EIRQ[2]/ADC1_S[1]  
PE[13]/GPIO[77]/SOUT_2/E1UC[20]  
PF[14]/GPIO[94]/CAN4TX/E1UC[27]/CAN1TX  
PF[15]/GPIO[95]/E1UC[4]/EIRQ[13]/CAN4RX/CAN1RX  
VDD_HV  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VSS_HV  
E1UC[17]/SOUT_5/GPIO[127]/PH[15]  
E1UC[26]/CS0_3/SOUT_4/GPIO[125]/PH[13]  
E1UC[27]/CS1_3/SCK_4/GPIO[126]/PH[14]  
CS0_4/E1UC[30]/GPIO[134]/PI[6]  
CS1_4/E1UC[31]/GPIO[135]/PI[7]  
SIN_3/WKUP[18]/E1UC[14]/GPIO[101]/PG[5]  
SCK_3/E1UC[13]/GPIO[100]/PG[4]  
WKUP[17]/CS0_3/E1UC[12]/GPIO[99]/PG[3]  
SOUT_3/E1UC[11]/GPIO[98]/PG[2]  
MA[2]/WKUP[3]/E0UC[2]/GPIO[2]/PA[2]  
CAN5RX/WKUP[6]/E0UC[16]/GPIO[64]/PE[0]  
WKUP[2]/NMI/E0UC[1]/GPIO[1]/PA[1]  
CAN5TX/E0UC[17]/GPIO[65]/PE[1]  
CAN3TX/E0UC[22]/CAN2TX/GPIO[72]/PE[8]  
CAN3RX/CAN2RX/WKUP[7]/E0UC[23]/GPIO[73]/PE[9]  
EIRQ[10]/E1UC[30]/CS3_1/LIN3TX/GPIO[74]/PE[10]  
WKUP[19]/E0UC[13]/CLKOUT/E0UC[0]/GPIO[0]/PA[0]  
LIN3RX/WKUP[14]/CS4_1/E0UC[24]/GPIO[75]/PE[11]  
VSS_HV  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VSS_HV  
PG[0]/GPIO[96]/CAN5TX/E1UC[23]  
PG[1]/GPIO[97]/E1UC[24]/EIRQ[14]/CAN5RX  
PH[3]/GPIO[115]/E1UC[5]/CS0_1  
PH[2]/GPIO[114]/E1UC[4]/SCK_1  
PH[1]/GPIO[113]/E1UC[3]/SOUT_1  
PH[0]/GPIO[112]/E1UC[2]/SIN_1  
PG[12]/GPIO[108]/E0UC[26]/SOUT_4  
PG[13]/GPIO[109]/E0UC[27]/SCK_4  
PA[3]/GPIO[3]/E0UC[3]/LIN5TX/CS4_1/EIRQ[0]/ADC1_S[0]  
PI[13]/GPIO[141]/CS1_3/ADC0_S[21]  
PI[12]/GPIO[140]/CS0_3/ADC0_S20]  
PI[11]/GPIO[139]/ANS[19]/SIN_3  
176 LQFP  
Top view  
PI[10]/GPIO[138]/ADC0_S[18]  
PI[9]/GPIO[137]/ADC0_S[17]  
PI[8]/GPIO[136]/ADC0_S[16]  
PB[15]/GPIO[31]/E0UC[7]/CS4_0/ADC0_X[3]  
PD[15]/GPIO[63]/CS2_1/E0UC[27]/ADC0_S[7]  
PB[14]/GPIO[30]/E0UC[6]/CS3_ 0/ADC0_X[2]  
PD[14]/GPIO[62]/CS1_1/E0UC[26]/ADC0_S[6]  
PB[13]/GPIO[29]/E0UC[5]/CS2_0/ADC0_X[1]  
PD[13]/GPIO[61]/CS0_1/E0UC[25]/ADC0_S[5]  
PB[12]/GPIO[28]/E0UC[4]/CS1_0/ADC0_X[0]  
PD[12]/GPIO[60]/CS5_0/E0UC[24]/ADC0_S[4]  
VDD_HV_ADC1  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
LIN7RX/WKUP[21]/SCK_2/E1UC[18]/GPIO[105]/PG[9]  
EIRQ[15]/CS0_2/LIN7TX/E1UC[17]/GPIO[104]/PG[8]  
CAN4RX/CAN1RX/WKUP[5]/MA[2]/GPIO[43]/PC[11]  
MA[1]/CAN4TX/CAN1TX/GPIO[42]/PC[10]  
LIN6RX/WKUP[20]/E1UC[30]/E1UC[16]/GPIO[103]/PG[7]  
LIN6TX/E1UC[15]/GPIO[102]/PG[6]  
LIN0TX/E0UC[30]/CAN0TX/GPIO[16]/PB[0]  
CAN0RX/WKUP[4]/LIN0RX/E0UC[31]/GPIO[17]/PB[1]  
CAN2RX/CAN3RX/WKUP[22]/CS5_0/E1UC[1]/GPIO[89]/PF[9]  
CAN2TX/CS4_0/CAN3TX/GPIO[88]/PF[8]  
VSS_HV_ADC1  
98  
97  
96  
95  
94  
93  
92  
91  
PB[11]/GPIO[27]/E0UC[3]/CS0_0/ADC0_S[3]  
PD[11]/GPIO[59]/ADC0_P[15]/ADC1_P[15]  
PD[10]/GPIO[58]/ADC0_P[14]/ADC1_P[14]  
PD[9]/GPIO[57]/ADC0_P[13]/ADC1_P[13]  
PB[7]/GPIO[23]/ADC0_P[3]/ADC1_P[3]  
PB[6]/GPIO[22]/ADC0_P[2]/ADC1_P[2]  
PB[5]/GPIO[21]/ADC0_P[1]/ADC1_P[1]  
VDD_HV_ADC0  
LIN5TX/E1UC[25]/GPIO[92]/PF[12]  
E1UC[28]/LIN1TX/GPIO[38]/PC[6]  
90  
89  
VSS_HV_ADC0  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 2. 176 LQFP pin configuration (top view)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
8
Freescale Semiconductor  
Package pinouts  
2.2  
144LQFP pin configuration  
LIN0RX/WKUP[11]/SCL/E0UC[31]/GPIO[19]/PB[3]  
LIN2RX/WKUP[13]/E0UC[7]/GPIO[41]/PC[9]  
EIRQ[8]/SCK2/E0UC[14]/GPIO[46]/PC[14]  
EIRQ[20]/CS0_2/E0UC[15]/GPIO[47]/PC[15]  
SIN_3/WKUP[18]/E1UC[14]/GPIO[101]/PG[5]  
SCK_3/E1UC[13]/GPIO[100]/PG[4]  
WKUP[17]/CS0_3/E1UC[12]/GPIO[99]/PG[3]  
SOUT_3/E1UC[11]/GPIO[98]/PG[2]  
MA[2]/WKUP[3]/E0UC[2]/GPIO[2]/PA[2]  
CAN5RX/WKUP[6]/E0UC[16]/GPIO[64]/PE[0]  
WKUP[2]/NMI[0]/E0UC[1]/GPIO[1]/PA[1]  
CAN5TX/E0UC[17]/GPIO[65]/PE[1]  
CAN3TX/E0UC[22]/CAN2TX/GPIO[72]/PE[8]  
CAN3RX/CAN2RX/WKUP[7]/E0UC[23]/GPIO[73]/PE[9]  
EIRQ[10]/E1UC[30]/CS3_1/LIN3TX/GPIO[74]/PE[10]  
WKUP[19]/E0UC[13]/CLKOUT/E0UC[0]/GPIO[0]/PA[0]  
LIN3RX/WKUP[14]/CS4_1/E0UC[24]/GPIO[75]/PE[11]  
VSS_HV  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
PA[11]/GPIO[11]/E0UC[11]/SCL/EIRQ[16]/LIN2RX/ADC1_S[3]  
PA[10]/GPIO[10]/E0UC[10]/SDA/LIN2TX/ADC1_S[2]  
PA[9]/GPIO[9]/E0UC[9]/FAB/CS2_1  
PA[8]/GPIO[8]/E0UC[8]/E0UC[14]/EIRQ[3]/ABS[0]/LIN3RX  
PA[7]/GPIO[7]/E0UC[7]/LIN3TX/EIRQ[2]/ADC1_S[1]  
PE[13]/GPIO[77]/SOUT_2/E1UC[20]  
PF[14]/GPIO[94]/CAN4TX/E1UC[27]/CAN1TX  
PF[15]/GPIO[95]/E1UC[4]/EIRQ[13]/CAN4RX/CAN1RX  
VDD_HV  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSS_HV  
PG[0]/GPIO[96]/CAN5TX/E1UC[23]  
PG[1]/GPIO[97]/E1UC[24]/EIRQ[14]/CAN5RX  
PH[3]/GPIO[115]/E1UC[5]/CS0_1  
PH[2]/GPIO[114]/E1UC[4]/SCK_1  
PH[1]/GPIO[113]/E1UC[3]/SOUT_1  
PH[0]/GPIO[112]/E1UC[2]/SIN_1  
PG[12]/GPIO[108]/E0UC[26]/SOUT_4  
PG[13]/GPIO[109]/E0UC[27]/SCK_4  
PA[3]/GPIO[3]/E0UC[3]/LIN5TX/EIRQ[0]/CS4_1/ADC1_S[0]  
PB[15]/GPIO[31]/E0UC[7]/CS4_0/ADC0_X[3]  
PD[15]/GPIO[63]/CS2_1/E0UC[27]/ADC0_S[7]  
PB[14]/GPIO[30]/E0UC[6]/CS3_ 0/ADC0_X[2]  
PD[14]/GPIO[62]/CS1_1/E0UC[26]/ADC0_S[6]  
PB[13]/GPIO[29]/E0UC[5]/CS2_0/ADC0_X[1]  
PD[13]/GPIO[61]/CS0_1/E0UC[25]/ADC0_S[5]  
/GPIO[28]/E0UC[4]/CS1_0  
144 LQFP  
Top view  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
LIN7RX/EIRQ[21]/SCK_2/E1UC[18]/GPIO[105]/PG[9]  
EIRQ[15]/CS0_2/LIN7TX/E1UC[17]/GPIO[104]/PG[8]  
CAN4RX/CAN1RX/WKUP[5]/MA[2]/GPIO[43]/PC[11]  
MA[1]/CAN4TX/CAN1TX/GPIO[42]/PC[10]  
LIN6RX/WKUP[20]/E1UC[30]/E1UC[16]/GPIO[103]/PG[7]  
LIN6TX/E1UC[15]/GPIO[102]/PG[6]  
E0UC[30]/CAN0TX/GPIO[16]/PB[0]  
LIN0RX/CAN0RX/WKUP[4]/E0UC[31]/GPIO[17]/PB[1]  
CAN2RX/CAN3RX/WKUP[22]/CS5_0/E1UC[1]/GPIO[89]/PF[9]  
CAN2TX/CS4_0/CAN3TX/GPIO[88]/PF[8]  
LIN5TX/E1UC[25]/GPIO[92]/PF[12]  
E1UC[28]/LIN1TX/GPIO[38]/PC[6]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PD[11]/GPIO[59]/ADC0_P[15]/ADC1_P[15]  
PD[10]/GPIO[58]/ADC0_P[14]/ADC1_P[14]  
PD[9]/GPIO[57]/ADC0_P[13]/ADC1_P[13]  
PB[7]/GPIO[23]/ADC0_P[3]/ADC1_P[3]  
PB[6]/GPIO[22]/ADC0_P[2]/ADC1_P[2]  
PB[5]/GPIO[21]/ADC0_P[1]/ADC1_P[1]  
VDD_HV_ADC0  
74  
73  
VSS_HV_ADC0  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 3. 144 LQFP pin configuration (top view)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
9
Package pinouts  
2.3  
208MAPBGA pin configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PC[8] PC[1 PH[1 PJ[4] PH[8] PH[4] PC[5] PC[0] PI[0] PI[1] PC[2] PI[4] PE[1 PH[1 NC  
3] 5] 5] 1]  
NC  
A
B
C
D
A
B
C
D
PC[9] PB[2] PH[1 PC[1 PE[6] PH[5] PC[4] PH[9] PH[1 PI[2] PC[3] PG[1 PG[1 PG[1 PA[1 PA[1  
3] 2] 0] 1] 5] 4] 1] 0]  
PC[14 VDD_ PB[3] PE[7] PH[7] PE[5] PE[3] VSS_ PC[1] PI[3] PA[5] PI[5] PE[1 PE[1 PA[9] PA[8]  
LV 4] 2]  
]
HV  
PH[14 PI[6] PC[1 PI[7] PH[6] PE[4] PE[2] VDD VDD NC PA[6] PH[1 PG[1 PF[1 PE[1 PA[7]  
]
5]  
_LV _HV  
2]  
0]  
4]  
3]  
PG[4] PG[5] PG[3] PG[2]  
PE[0] PA[2] PA[1] PE[1]  
PG[1] PG[0] PF[1 VDD  
E
F
E
F
5] _HV  
PH[0] PH[1] PH[3] PH[2]  
PE[9] PE[8] PE[1 PA[0]  
0]  
VSS_ VSS_ VSS_ VSS_  
VDD PI[12 PI[13 MSE  
G
G
HV  
HV  
HV  
HV  
_HV  
]
]
O
VSS_ PE[1 VDD NC  
VSS_ VSS_ VSS_ VSS_  
HV HV HV HV  
MDO MDO MDO MDO  
H
J
H
J
HV  
1]  
_HV  
3
2
0
1
RESE VSS_ NC  
NC  
VSS_ VSS_ VSS_ VSS_  
HV HV HV HV  
PI[8] PI[9] PI[10 PI[11  
T
LV  
]
]
EVTI NC VDD VDD  
_BV _LV  
VSS_ VSS_ VSS_ VSS_  
HV HV HV HV  
VDD PG[1 PA[3] PG[1  
_HV_ 2]  
3]  
K
K
ADC  
1
PG[9] PG[8] NC EVT  
O
PB[1 PD[1 PD[1 PB[1  
5] 5] 4] 4]  
L
L
PG[7] PG[6] PC[1 PC[1  
PB[1 PD[1 PD[1 PB[1  
3] 3] 2] 2]  
M
M
0]  
1]  
_HV  
PB[1] PF[9] PB[0] VDD PJ[0] PA[4] VSS_ EXTA VDD PF[0] PF[4] VSS_ PB[1 PD[1 PD[9] PD[1  
LV  
L
_HV  
HV_  
ADC  
1
1]  
0]  
1]  
N
P
N
P
PF[8] PJ[3] PC[7] PJ[2] PJ[1] PA[1 VDD XTAL PB[1 PF[1] PF[5] PD[0] PD[3] VDD PB[6] PB[7]  
4]  
_LV  
0]  
_HV_  
ADC  
0
PF[12 PC[6] PF[1 PF[1 VDD PA[1 PA[1 PI[14 XTAL PF[3] PF[7] PD[2] PD[4] PD[7] VSS_ PB[5]  
]
0]  
1]  
_HV  
5]  
3]  
]
HV_  
ADC  
0
R
T
R
T
NC  
NC  
NC MCK NC PF[1 PA[1 PI[15 EXTA PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4]  
O
3]  
2]  
]
L
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NOTE: The 208 MAPBGA is available only as development package for Nexus 2+.  
= Not connected  
NC  
Figure 4. 208 MAPBGA configuration  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
10  
Freescale Semiconductor  
Electrical characteristics  
3
Electrical characteristics  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This could be done by  
DD  
SS  
the internal pull-up and pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
CAUTION  
All of the following figures are indicative and must be confirmed during either silicon validation, silicon characterization or  
silicon reliability trial.  
3.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 3 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 3. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.2  
NVUSRO register  
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are  
controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.  
3.2.1  
NVUSRO[PAD3V5V] field description  
Table 4 shows how NVUSRO[PAD3V5V] controls the device configuration.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
1
Table 4. PAD3V5V field description  
Value2  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
See the device reference manual for more information on the NVUSRO register.  
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.  
2
The DC electrical characteristics are dependent on the PAD3V5V bit value.  
3.2.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
Table 5 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
1
Table 5. OSCILLATOR_MARGIN field description  
Value2  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
2
See the device reference manual for more information on the NVUSRO register.  
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.  
The main external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.  
3.2.3  
NVUSRO[WATCHDOG_EN] field description  
Table 5 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.  
1
Table 6. WATCHDOG_EN field description  
Value2  
Description  
0
1
Disable after reset  
Enable after reset  
1
2
See the device reference manual for more information on the NVUSRO register.  
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
12  
Freescale Semiconductor  
Electrical characteristics  
3.3  
Absolute maximum ratings  
Table 7. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR  
SR  
Digital ground  
on VSS_HV  
pins  
0
0
V
VDD  
Voltage on  
VDD_HV pins  
with respect to  
-0.3  
6.0  
V
ground (VSS  
)
VSS_LV  
VDD_BV  
VSS_ADC  
SR  
SR  
SR  
Voltage on  
VSS-0.1  
VSS+0.1  
V
V
V
VSS_LV (low  
voltage digital  
supply) pins  
with respect to  
ground (VSS  
)
Voltage on  
VDD_BV pin  
(regulator  
supply) with  
respect to  
-0.3  
-0.3  
6.0  
Relative to VDD  
VDD+0.3  
ground (VSS  
)
Voltage on  
VSS_HV_ADC  
0,  
VSS-0.1  
VSS+0.1  
VSS_HV_ADC  
1 (ADC  
reference) pin  
with respect to  
ground (VSS  
)
VDD_ADC  
SR  
Voltage on  
-0.3  
6.0  
V
VSS_HV_ADC  
0,  
Relative to VDD  
VDD 0.3  
VDD+0.3  
VSS_HV_ADC  
1 (ADC  
reference) with  
respect to  
ground (VSS  
)
VIN  
SR  
Voltage on any  
GPIO pin with  
respect to  
-0.3  
6.0  
V
Relative to VDD  
VDD 0.3  
VDD+0.3  
ground (VSS  
)
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
13  
Electrical characteristics  
Table 7. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
IINJPAD  
SR  
SR  
SR  
Injected input  
current on any  
pin during  
overload  
condition  
-10  
10  
mA  
IINJSUM  
Absolute sum  
of all injected  
input currents  
duringoverload  
condition  
-50  
50  
IAVGSEG  
Sum of all the VDD = 5.0 V ±  
static I/O 10%,PAD3V5V  
current within a = 0  
supply  
70  
64  
mA  
V
DD = 3.3 V ±  
10%,PAD3V5V  
= 1  
segment  
TSTORAGE  
SR  
Storage  
-55  
150  
°C  
temperature  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
3.4  
Recommended operating conditions  
Table 8. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect  
3.0  
3.6  
to ground (VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
V
(VSS  
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
3.0  
3.6  
)
Relative to VDD  
VDD0.1 VDD+0.1  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
14  
Freescale Semiconductor  
Electrical characteristics  
Table 8. Recommended operating conditions (3.3 V) (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
VSS_ADC SR Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC reference) pin  
VSS0.1 VSS+0.1  
V
V
with respect to ground (VSS  
)
4
VDD_ADC  
SR Voltage on VSS_HV_ADC0,  
3.05  
VDD0.1 VDD+0.1  
3.6  
VSS_HV_ADC1 (ADC reference) with  
Relative to VDD  
respect to ground (VSS  
)
VIN  
SR Voltage on any GPIO pin with respect  
VSS0.1  
VDD+0.1  
5
V
to ground (VSS  
)
Relative to VDD  
IINJPAD  
IINJSUM  
SR Injected input current on any pin  
during overload condition  
5  
mA  
SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
TVDD  
TA  
SR VDD slope to ensure correct power up6  
SR Ambient temperature under bias  
SR Junction temperature under bias  
0.25 V/µs  
fCPU < 64 MHz  
40  
40  
125  
150  
°C  
TJ  
1
2
3
100 nF capacitance needs to be provided between each VDD/VSS pair  
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
Guaranteed by device validation  
Table 9. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to ground (VSS  
)
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital supply) pins with  
respect to ground (VSS  
VSS-0.1 VSS+0.1  
V
V
)
4
VDD_BV SR Voltage on VDD_BV pin (regulator supply) with respect  
4.5  
3.0  
5.5  
5.5  
to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD-0.1 VDD+0.1  
SS-0.1 VSS+0.1  
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC  
reference) pin with respect to ground (VSS  
V
V
)
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
15  
Electrical characteristics  
Table 9. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
5
VDD_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC  
4.5  
3.0  
5.5  
5.5  
V
reference) with respect to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD-0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to ground (VSS  
)
Relative to VDD  
VSS-0.1  
-
VDD+0.1  
5
V
-
IINJPAD SR Injected input current on any pin during overload  
condition  
-5  
mA  
IINJSUM SR Absolute sum of all injected input currents during  
overload condition  
-50  
50  
TVDD  
SR VDD slope to ensure correct power up6  
3
0.25  
V/µs  
V/s  
°C  
TA C-Grade SR Ambient temperature under bias  
fCPU < 64 MHz  
40  
85  
Part  
TJ C-Grade SR Junction temperature under bias  
fCPU < 64 MHz  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
Part  
TA V-Grade SR Ambient temperature under bias  
Part  
TJ V-Grade SR Junction temperature under bias  
Part  
TA M-Grade SR Ambient temperature under bias  
fCPU < 60 MHz  
Part  
TJ M-Grade SR Junction temperature under bias  
Part  
1
2
100 nF capacitance needs to be provided between each VDD/VSS pair  
Full device operation is guaranteed by design when the voltage drops below 4.5V down to 3.6V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics). This decoupling need to be increased as recommended in  
Section 3.5.1, “External ballast resistor recommendations incase external ballast resistor is planned to be used.  
5
6
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair  
Guaranteed by device validation  
NOTE  
RAM data retention is guaranteed wi‘th V  
not below 1.08 V.  
DD_LV  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
16  
Freescale Semiconductor  
Electrical characteristics  
3.5  
Thermal characteristics  
3.5.1  
External ballast resistor recommendations  
External ballast resistor on V  
pin helps in reducing the overall power dissipation inside the device. This resistor is  
DD_BV  
required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.  
As stated in Table 10 LQFP thermal characteristics, considering thermal resistance of LQFP144 as 48.3 °C/W, at ambient T =  
A
125 °C, the junction temp T will cross 150 °C if total power dissipation > (150 - 125)/48.3 = 517 mW. Therefore, total device  
j
current I  
at 125 °C/5.5V must not exceed 94.1 mA (i.e. PD/VDD). Assuming an average I (V  
) of 15-20 mA  
DDMAX  
DD DD_HV  
consumption typically during device RUN mode, the LV domain consumption I (V  
) is thus limited to I  
-
DD DD_BV  
DDMAX  
I
(V  
) i.e. 80 mA.  
DD DD_HV  
Therefore, respecting the maximum power allowed as explained in Section 3.5.2, “Package thermal characteristics, it is  
recommended to use this resistor only in the 125 °C/5.5V operating corner as per the following guidelines:  
If I (V  
) < 80 mA, then no resistor is required.  
DD DD_BV  
If 80 mA < I (V  
) < 90 mA, then 4 Ohm resistor can be used along with 14.7 µf decoupling.  
DD DD_BV  
If I (V  
) > 90 mA, then 8 Ohm resistor can be used along with 33 µf decoupling.  
DD DD_BV  
Using resistance in the range of 4-8 Ohm, the gain will be around 10-20% of total consumption on V  
. For example, if 8  
DD_BV  
Ohm resistor is used, then power consumption when I (V  
) is 110 mA is equivalent to power consumption when  
DD DD_BV  
I
(V  
) is 90 mA (approximately) when resistor not used.  
DD DD_BV  
3.5.2  
Package thermal characteristics  
1
Table 10. LQFP thermal characteristics  
Value3  
Typ  
Symbol  
C
Parameter Conditions2 Pin count  
Unit  
Min  
Max  
RθJA  
CC  
D
Thermal  
resistance, board—1s  
junction-to-  
Single-layer  
100  
144  
176  
64  
64  
64  
°C/W  
ambient  
natural  
convection4  
Four-layer  
board—2s2p  
100  
144  
176  
49.7  
48.3  
47.3  
1
2
3
4
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.  
All values need to be confirmed during device validation.  
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets  
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA  
.
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
1
Table 11. 208 MAPBGA thermal characteristics  
Symbol  
C
Parameter  
Thermal  
Conditions  
Value  
Unit  
RθJA  
CC  
Single-layer  
board—1s  
TBD  
°C/W  
resistance,  
junction-to-am  
bient natural  
convection2  
Four-layer  
board—2s2p  
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
2
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA  
and RthJMA  
.
3.5.3  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
θJA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be significant, if the device  
I/O  
INT  
I/O  
is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
Where:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
θJA  
K is a constant for the particular part, which may be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T Using this value of K, the values of P and T may be obtained by solving equations 1 and 2  
A.  
D
J
iteratively for any value of T .  
A
3.6  
I/O pad electrical characteristics  
I/O pad types  
3.6.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads - are the most common pads, providing a good compromise between transition time and low  
electromagnetic emission.  
Medium pads - provide transition fast enough for the serial communication channels with controlled current to reduce  
electromagnetic emission.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Fast pads - provide maximum speed. These are used for improved Nexus debugging capability.  
Input only pads - are associated with ADC channels and 32 kHz low power external crystal oscillator providing low  
input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
3.6.2  
I/O input DC characteristics  
Table 12 provides input DC electrical characteristics as described in Figure 5.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 5. I/O input DC electrical characteristics definition  
Table 12. I/O input DC electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD+0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
19  
Electrical characteristics  
Table 12. I/O input DC electrical characteristics (continued)  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
ILKG CC P Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
2
nA  
P
D
P
2
12  
70  
500  
1000  
40  
WFI SR P Width of input pulse surely filtered  
by analog filter3  
ns  
ns  
WNFI SR P Width of input pulse surely not  
filtered by analog filter3  
1000  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Analog filters are available on all wakeup lines.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
20  
Freescale Semiconductor  
Electrical characteristics  
3.6.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 13 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 15 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 14 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 13. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
|IWPU  
|
CC  
P
C
P
Weak  
VIN = VIL, PAD3V5V  
10  
150  
µA  
pull-up  
current  
absolute  
value  
VDD  
=
= 0  
5.0 V ±  
10%  
PAD3V5V  
= 12  
10  
10  
250  
150  
VIN = VIL, PAD3V5V  
VDD = 1  
=
3.3 V ±  
10%  
|IWPD  
|
CC  
P
C
P
Weak  
pull-down VDD  
current  
absolute  
value  
VIN = VIH, PAD3V5V  
10  
10  
10  
150  
250  
150  
µA  
=
= 0  
5.0 V ±  
10%  
PAD3V5V  
= 1  
VIN = VIH, PAD3V5V  
VDD = 1  
=
3.3 V ±  
10%  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Table 14. FAST configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH  
CC  
P
Output  
high level  
FAST  
Push Pull IOH  
14mA,  
VDD  
=
0.8VDD  
V
=
configurati  
on  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
(recomme  
nded)  
C
C
IOH  
7mA,  
VDD  
5.0 V ±  
10%,  
=
0.8VDD  
=
PAD3V5V  
= 12  
IOH  
11mA,  
VDD  
=
VDD0.8  
=
3.3 V ±  
10%,  
PAD3V5V  
= 1  
(recomme  
nded)  
VOL  
CC  
P
Output low Push Pull IOL  
=
0.1VDD  
V
level  
14mA,  
VDD  
5.0 V ±  
10%,  
FAST  
configurati  
on  
=
PAD3V5V  
= 0  
(recomme  
nded)  
C
C
IOL = 7mA,  
0.1VDD  
VDD  
=
5.0 V ±  
10%,  
PAD3V5V  
= 12  
IOL  
11mA,  
VDD  
=
0.5  
=
3.3 V ±  
10%,  
PAD3V5V  
= 1  
(recomme  
nded)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
22  
Freescale Semiconductor  
Electrical characteristics  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
3.6.4  
Output pin transition times  
Table 15. Output pin transition times  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
Ttr  
CC  
D
T
Output  
transition 25 pF  
CL =  
VDD  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
=
50  
ns  
time output  
CL =  
50 pF  
100  
125  
50  
pin3  
SLOW  
configurati  
on  
D
D
T
CL =  
100 pF  
CL =  
25 pF  
VDD =  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
CL =  
50 pF  
100  
125  
10  
D
D
T
CL =  
100 pF  
Ttr  
CC  
Output  
transition 25 pF  
CL =  
VDD  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
SIUL.PCR  
x.SRC = 1  
=
ns  
time output  
CL =  
50 pF  
20  
pin3  
MEDIUM  
configurati  
on  
D
D
T
CL =  
100 pF  
40  
CL =  
25 pF  
VDD  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
SIUL.PCR  
x.SRC = 1  
=
12  
CL =  
50 pF  
25  
D
CL =  
100 pF  
40  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
23  
Electrical characteristics  
Table 15. Output pin transition times (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
Ttr  
CC  
D
Output  
CL =  
VDD  
=
4
ns  
transition 25 pF  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
time output  
CL =  
50 pF  
6
12  
4
pin3  
FAST  
configurati  
on  
CL =  
100 pF  
CL =  
25 pF  
VDD =  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
CL =  
50 pF  
7
CL =  
12  
100 pF  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
CL includes device and package capacitances (CPKG < 5 pF).  
3.6.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 16.  
Table 17 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I  
maximum value.  
AVGSEG  
In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain  
below the I  
maximum value.  
DYNSEG  
Table 16. I/O supply segments  
Supply segment  
Package  
1
2
3
4
5
6
7
8
208  
Equivalent to 176 LQFP segment pad distribution  
MCKO  
MDOn  
/MSEO  
MAPBGA1  
176 LQFP pin7pin27 pin28 –  
pin59 –  
pin85  
pin86 –  
pin123  
pin124 –  
pin150  
pin151 –  
pin6  
pin57  
144 LQFP  
100 LQFP  
pin20 –  
pin49  
pin51 –  
pin99  
pin100 –  
pin122  
pin 123 –  
pin19  
pin16 –  
pin37 –  
pin70 –  
pin84 –  
pin35  
pin69  
pin83  
pin15  
1
208 MAPBGA available only as development package for Nexus2+  
MPC5607B Microcontroller Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Table 17. I/O consumption  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Max  
Min  
Typ  
IDYNSEG  
SR  
D
Sum of all VDD = 5.0 V ± 10%,  
110  
mA  
the  
PAD3V5V = 0  
dynamic  
and static  
I/O current  
within a  
supply  
V
DD = 3.3 V ± 10%,  
65  
PAD3V5V = 1  
segment  
,3  
ISWTSLW  
CC  
D
D
D
Dynamic  
CL =  
VDD  
=
5.0 V ±  
10%,  
20  
16  
mA  
I/O current 25 pF  
for SLOW  
configurati  
on  
PAD3V5V  
= 0  
VDD  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
=
3
ISWTMED  
CC  
Dynamic  
I/O current 25 pF  
for  
MEDIUM  
configurati  
on  
CL =  
VDD  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
=
29  
mA  
VDD  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
=
17  
3
ISWTFST  
CC  
Dynamic  
I/O current 25 pF  
for FAST  
configurati  
on  
CL =  
VDD  
5.0 V ±  
10%,  
PAD3V5V  
= 0  
=
110  
50  
mA  
VDD  
=
3.3 V ±  
10%,  
PAD3V5V  
= 1  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
25  
Electrical characteristics  
Table 17. I/O consumption (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IRMSSLW  
CC  
D
Root  
CL =  
VDD  
=
2.3  
mA  
medium  
square I/O MHz  
25 pF, 2  
5.0 V ±  
10%,  
current for  
SLOW  
configurati  
on  
PAD3V5V  
= 0  
CL =  
25 pF, 4  
MHz  
3.2  
6.6  
1.6  
2.3  
4.7  
6.6  
13.4  
18.3  
5
CL =  
100 pF, 2  
MHz  
CL =  
25 pF, 2  
MHz  
VDD =  
3.3 V ±  
10%,  
PAD3V5V  
= 1  
CL =  
25 pF, 4  
MHz  
CL =  
100 pF, 2  
MHz  
IRMSMED  
CC  
D
Root  
medium  
square I/O MHz  
current for  
MEDIUM  
configurati  
on  
CL =  
VDD  
=
mA  
25 pF, 13 5.0 V ±  
10%,  
PAD3V5V  
= 0  
CL =  
25 pF, 40  
MHz  
CL =  
100 pF, 13  
MHz  
CL =  
VDD =  
25 pF, 13 3.3 V ±  
MHz  
10%,  
PAD3V5V  
= 1  
CL =  
25 pF, 40  
MHz  
8.5  
11  
CL =  
100 pF, 13  
MHz  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
26  
Freescale Semiconductor  
Electrical characteristics  
Table 17. I/O consumption (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Max  
Min  
Typ  
IRMSFST  
CC  
D
Root  
medium  
square I/O MHz  
current for  
FAST  
configurati  
on  
CL =  
VDD  
=
22  
33  
56  
14  
20  
35  
mA  
25 pF, 40 5.0 V ±  
10%,  
PAD3V5V  
= 0  
CL =  
25 pF, 64  
MHz  
CL =  
100 pF, 40  
MHz  
CL =  
VDD =  
25 pF, 40 3.3 V ± 10  
MHz  
%,  
PAD3V5V  
= 1  
CL =  
25 pF, 64  
MHz  
CL =  
100 pF, 40  
MHz  
IAVGSEG  
SR  
D
Sum of all VDD = 5.0 V ± 10%,  
the static PAD3V5V = 0  
I/O current  
70  
65  
mA  
V
DD = 3.3 V ± 10%,  
within a  
supply  
PAD3V5V = 1  
segment  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
3.7  
nRSTIN electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
V
DD  
V
DDMIN  
nRSTIN  
V
IH  
V
IL  
device reset forced by nRSTIN  
device start-up phase  
Figure 6. Start-up reset requirements  
VRSTIN  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 7. Noise filtering on reset signal  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
28  
Freescale Semiconductor  
Electrical characteristics  
Table 18. Reset electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD+0.4  
V
V
V
V
VIL SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2mA,  
0.1VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
Push Pull, IOL = 1mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 13  
Push Pull, IOL = 1mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
Ttr  
CC D Output transition time  
output pin4  
CL = 25pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
40  
ns  
MEDIUM configuration  
CL = 50pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 100pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 25pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 50pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 100pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
WFRST SR P nRSTIN input filtered  
pulse  
ns  
ns  
µA  
WNFRST SR P nRSTIN input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
VDD = 5.0 V ± 10%, PAD3V5V = 15  
10  
10  
10  
150  
150  
250  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
the device reference manual).  
4
5
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.8  
Power management electrical characteristics  
3.8.1  
Voltage regulator electrical characteristics  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from the high voltage  
DD_LV  
ballast supply V  
. The regulator itself is supplied by the common I/O supply V . The following supplies are involved:  
DD_BV  
DD  
HV: High voltage external power supply for voltage regulator module. This must be provided externally through V  
power pin.  
DD  
BV: High voltage external power supply for internal ballast module. This must be provided externally through V  
DD_BV  
power pin. Voltage values should be aligned with V  
.
DD  
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal  
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure  
noise isolation between critical LV modules within the device:  
LV_COR: Low voltage supply for the core. It is also `used to provide supply for FMPLL through double bonding.  
LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
C
(LV_COR/LV_CFLA)  
REG2  
GND  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
GND  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
GND  
(LV_COR/LV_PLL)  
GND  
C
(supply/IO decoupling)  
C
DEC2  
REG3  
Figure 8. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C  
) to be connected to the device in order to provide a stable  
REGn  
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.  
Care should also be taken to limit the serial inductance of the board to less than 5 nH.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Each decoupling capacitor must be placed between each of the three V  
Section 3.4, “Recommended operating conditions).  
/V  
supply pairs to ensure stable voltage (see  
DD_LV SS_LV  
Table 19. Voltage regulator electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
330  
nF  
W
SR — Stability capacitor equivalent serial  
resistance  
0.2  
CDEC1  
CDEC2  
SR — Decoupling capacitance3,4 ballast  
VDD_BV/VSS_LV pair  
VDD/VSS pair  
400  
10  
4705  
100  
nF  
nF  
SR — Decoupling capacitance regulator  
supply  
VMREG  
CC P Main regulator output voltage  
Before trimming  
After trimming  
1.32  
1.28  
V
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
150  
mA  
mA  
IMREGINT CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
VLPREG  
ILPREG  
CC P Low power regulator output voltage After trimming  
1.23  
15  
V
SR — Low power regulator current provided  
to VDD_LV domain  
mA  
ILPREGINT CC D Low power regulator module current ILPREG = 15 mA;  
5
600  
TBD  
µA  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG CC P Ultra low power regulator output  
voltage  
Post trimming  
1.23  
2
V
IULPREG  
SR — Ultra low power regulator current  
provided to VDD_LV domain  
5
mA  
µA  
IULPREGINT CC D Ultra low power regulator module  
current consumption  
IULPREG = 5 mA;  
TA = 55 °C  
100  
TBD  
IULPREG = 0 mA;  
TA = 55 °C  
IVREGREF CC D Main LVDs and reference current  
consumption (low power and main  
regulator switched off)  
TA = 55 °C  
17  
µA  
IVREDLVD12 CC D Main LVD current consumption  
(switch-off during standby)  
TA = 55 °C  
2
TBD µA  
4006 mA  
IDD_BV  
CC D In-rush current on VDD_BV during  
power-up  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.  
A typical value is in the range of 470 nF.  
4
In case external ballast resistor is planned to be used, then to avoid a LVD reset during standby mode exit, the  
following configuration need to be respected.  
- for 8 ohm ballast resistor, decoupling cap of 33 µf is required.  
- for 4 ohm ballast resistor, decoupling cap of 14.7µf is required.  
These values are only after preliminary validation and are subject to change.  
5
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
6
In-rush current is seen only for short time during power-up and on standby exit (max 20µs, depending on external  
capacitances to be load)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.8.2  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors  
to monitor the V and the V voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply  
DD  
LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range  
DD  
LVDLVCOR monitors power domain No. 1  
LVDLVBKP monitors power domain No. 0  
NOTE  
When enabled, power domain No. 2 is monitored through LVD_DIGBKP.  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 9. Low voltage monitor vs reset  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
33  
Electrical characteristics  
Table 20. Low voltage monitor electrical characteristics  
Condition  
Symbol  
C
Parameter  
Value2  
Unit  
Symbol  
s1  
VPORUP  
SR  
P
Supply for TA = 25 °C,  
functional after  
1.0  
5.5  
V
VPORUP  
POR  
trimming  
module  
VPORH  
CC  
CC  
P
T
Power-on  
reset  
threshold  
1.5  
2.6  
VPORH  
VLVDHV3H  
LVDHV3  
lowvoltage  
detector  
high  
2.95  
VLVDHV3H  
threshold  
VLVDHV3L  
VLVDHV3BH  
VLVDHV3BL  
CC  
CC  
CC  
P
P
P
LVDHV3  
lowvoltage  
detector  
low  
2.7  
2.9  
2.95  
2.9  
VLVDHV3L  
VLVDHV3BH  
VLVDHV3BL  
threshold  
LVDHV3B  
lowvoltage  
detector  
high  
threshold  
LVDHV3B  
L low  
2.7  
voltage  
detector  
low  
threshold  
VLVDHV5H  
CC  
CC  
CC  
T
P
P
LVDHV5  
lowvoltage  
detector  
high  
3.8  
4.5  
4.4  
VLVDHV5H  
threshold  
VLVDHV5L  
LVDHV5  
lowvoltage  
detector  
low  
VLVDHV5L  
threshold  
VLVDLVCOR  
LVDLVCO  
R low  
1.07  
1.11  
VLVDLVCOR  
L
L
voltage  
detector  
low  
threshold  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
34  
Freescale Semiconductor  
Electrical characteristics  
2
All values need to be confirmed during device validation.  
3.9  
Low voltage domain power consumption  
Table 21 provides DC electrical characteristics for significant application modes. These values are indicative values; actual  
consumption depends on the application.  
Table 21. Low voltage power domain electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
2
IDDMAX  
CC  
CC  
D
RUN mode  
maximum  
average  
115  
1403  
mA  
current  
4
IDDRUN  
T
P
RUN mode  
typical  
80  
100  
mA  
TBD  
TBD  
average  
current5  
IDDHALT  
CC  
CC  
P
HALT  
8
TBD  
mA  
µA  
mode  
current6  
IDDSTOP  
P
D
D
D
P
P
D
D
D
P
STOP  
mode  
Slow  
internal  
RC  
oscillator  
(128 kHz)  
running  
TA = 25 °  
C
350  
750  
2
9008  
current7  
TA = 55 °  
C
TA = 85 °  
C
mA  
TA = 105 °  
C
4
TA = 125 °  
C
9
TBD8  
100  
IDDSTDBY2  
CC  
STANDBY Slow  
TA = 25 °  
C
30  
TBD  
µA  
2 mode  
internal  
RC  
oscillator  
(128 kHz)  
running  
current9  
TA = 55 °  
C
TA = 85 °  
C
TA = 105 °  
C
TA = 125 °  
C
TBD  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
35  
Electrical characteristics  
Table 21. Low voltage power domain electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IDDSTDBY1  
CC  
T
D
D
D
D
STANDBY Slow  
TA = 25 °  
C
20  
60  
µA  
1 mode  
internal  
current10 RC  
TA = 55 °  
C
TBD  
oscillator  
(128 kHz)  
running  
TA = 85 °  
C
TA = 105 °  
C
TA = 125 °  
C
280  
TBD  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os  
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value  
with all peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to  
be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default),  
reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode  
when possible.  
3
Higher current may be sinked by device during power-up and standby exit. please refer to in rush current on  
Table 19.  
4
5
RUN current measured with typical application with accesses on both flash and RAM.  
Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPi as Master,  
PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic  
SW/WDG timer reset enabled.  
6
Data Flash Power Down. Code Flash in Low Power. RC-osc128kHz & RC-OSC 16MHz on. 10MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON  
(16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20KHz, instance: 1 clock gated. DSPI: instance: 0  
(clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but not conversion except 2 analogue  
watchdog  
7
8
Only for the “P” classification: No clock, RC 16MHz off, RC128kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All  
possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA , it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances , it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to  
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum  
consumption, all possible modules switched-off.  
10 ULPreg on, HP/LPVreg off, 8KB RAM on, device configured for minimum consumption, all possible modules  
switched-off.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.10 Flash memory electrical characteristics  
3.10.1 Program/Erase characteristics  
Table 22 shows the program and erase characteristics.  
Table 22. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Tdwprogram  
CC  
C
Double  
word (64  
bits)  
22  
TBD  
500  
µs  
program  
time4  
T16Kpperase  
16 KB block  
pre-progra  
m and  
300  
400  
800  
500  
600  
5000  
5000  
7500  
ms  
ms  
ms  
erase time  
T32Kpperase  
32 KB block  
pre-progra  
m and  
erase time  
T128Kpperas  
128 KB  
block  
1300  
e
pre-progra  
m and  
erase time  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Table 23. Flash module life  
Conditions  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
P/E  
CC C Number of program/erase cycles per  
block for 16 Kbyte blocks over the  
operating temperature range (TJ)  
100,000  
10,000  
1,000  
cycles  
P/E  
P/E  
CC C Number of program/erase cycles per  
block for 32 Kbyte blocks over the  
operating temperature range (TJ)  
100,0001 cycles  
100,0001 cycles  
CC C Number of program/erase cycles per  
block for 128 Kbyte blocks over the  
operating temperature range (TJ)  
Retention CC C Minimum data retention at 85 °C  
average ambient temperature2  
Blocks with 0–1,000 P/E  
cycles  
20  
10  
5
years  
years  
years  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
1
To be confirmed  
2
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units  
will experience single bit corrections throughout the life of the product with no impact to product reliability.  
Table 24. Flash read access timing  
Symbol  
C
Parameter  
Conditions1  
Max  
Unit  
fREAD  
CC  
P
C
C
Maximum  
frequency for  
Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
3.10.2 Flash power supply DC characteristics  
Table 25 shows the power supply DC characteristics on external supply.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Table 25. Flash power supply DC electrical characteristics  
Value2  
Symbol  
Parameter  
Conditions1  
Unit  
Max  
Min  
Typ  
3
ICFREAD  
CC  
CC  
Sum of the Flash  
Code Flash  
33  
33  
mA  
current  
module  
3
IDFREAD  
Data Flash  
consumptio read  
n on VDDHV fCPU = 64  
and VDDBV MHz4  
on read  
access  
3
ICFMOD  
Sum of the Program/  
Code Flash  
Data Flash  
52  
33  
mA  
current  
Erase  
3
IDFMOD  
consumptio on-going  
n on VDDHV while  
and VDDBV reading  
on matrix  
Flash  
modificatio registers  
n
fCPU = 64  
(program/er MHz4  
ase)  
3
3
ICFLPW  
IDFLPW  
CC  
Sum of the  
current  
consumptio  
n on VDDHV  
and VDDBV  
during  
Code Flash  
Data Flash  
1.1  
mA  
µA  
900  
Flash low  
power  
mode  
3
ICFPWD  
CC  
Sum of the  
current  
consumptio  
n on VDDHV  
and VDDBV  
during  
Code Flash  
Data Flash  
150  
150  
µA  
3
IDFPWD  
Flash  
power  
down mode  
1
2
3
4
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 / 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Data based on characterization results, not tested in production  
fCPU 64 MHz can be achieved only at up to 105 °C  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
39  
Electrical characteristics  
3.10.3 Start-up/Switch-off timings  
Table 26. Start-up time/Switch-off time  
Value  
Symbol  
C
Parameter Conditions1  
Unit  
Min  
Typ  
Max  
TFLARSTEXI CC  
T
T
Delay for  
Flash  
module to  
exit reset  
mode  
125  
µs  
T
TFLALPEXIT CC  
Delay for  
Flash  
module to  
exit  
low-power  
mode  
0.5  
30  
TFLAPDEXIT CC  
T
T
T
Delay for  
Flash  
module to  
exit  
power-dow  
n mode  
TFLALPENTR CC  
Delay for  
Flash  
module to  
enter  
low-power  
mode  
0.5  
1.5  
Y
TFLAPDENT CC  
Delay for  
RY  
Flash mod-  
ule to enter  
power-dow  
n mode  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
3.11 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
3.11.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application environment and simplified  
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in  
particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC  
level requested for the application.  
Software recommendations The software flowchart must include the management of runaway conditions such as:  
— Corrupted program counter  
MPC5607B Microcontroller Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the  
software can be hardened to prevent unrecoverable errors occurring.  
3.11.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1  
standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 27. EMI radiated emission measurement  
Value  
Paramete  
Symbol  
C
Conditions  
Unit  
r
Min  
Typ  
Max  
SR  
SR  
SR  
Scan  
range  
0.150  
1000  
MHz  
MHz  
V
fCPU  
Operating  
frequency  
64  
VDD_LV  
LV  
1.28  
operating  
voltages  
SEMI  
CC  
T
Peak level VDD  
5 V,  
=
No PLL  
frequency  
18  
dBµV  
dBµV  
TA = 25 ° modulatio  
C,  
n
LQFP144  
package  
Test  
conformin  
g to IEC  
61967-2,  
fOSC = 8  
MHz/fCPU  
= 64 MHz  
± 2% PLL  
frequency  
modulatio  
n
143  
1
2
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
3
All values need to be confirmed during device validation  
3.11.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine  
its performance in terms of electrical sensitivity.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.11.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according  
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts×(n+1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
1,2  
Table 28. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
TA = 25 °C  
Class  
Max value3  
Unit  
VESD(HBM) Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
3
Data based on characterization results, not tested in production  
3.11.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 29. Latch-up results  
Symbol  
Parameter  
Static latch-up class  
Conditions  
Class  
LU  
TA = 125 °C  
II level A  
conforming to JESD 78  
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure describes a simple model of the internal oscillator driver and provides  
an example of a connection for an oscillator or a resonator.  
Table 30 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
EXTAL  
C1  
EXTAL  
R
P
XTAL  
C2  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Figure 10. Crystal oscillator and resonator connection scheme  
NOTE  
XTAL/EXTAL must not be directly used to drive external circuits.  
Table 30. Crystal description  
Shunt  
capacitance  
between  
xtalout  
Crystal  
equivalent  
series  
resistance  
ESR Ω  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
xtalin/xtalout  
C1 = C2  
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
S_MTRANS bit (ME_GS register)  
1
0
V
XTAL  
1/f  
MXOSC  
V
MXOSC  
90%  
10%  
V
MXOSCOP  
T
valid internal clock  
MXOSCSU  
Figure 11. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Table 31. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
oscillator  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
transconductance  
CC P  
CC C  
CC C  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC  
CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC P Oscillation operating point  
0.95  
2
V
,3  
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
3
mA  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
44  
Freescale Semiconductor  
Electrical characteristics  
Table 31. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
TFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
6
ms  
f
OSC = 16 MHz,  
1.8  
OSCILLATOR_MARGIN = 1  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD+0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals)  
3.13 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
R
P
OSC32K_XTAL  
OSC32K_XTAL  
C2  
DEVICE  
DEVICE  
Figure 12. Crystal oscillator and resonator connection scheme  
NOTE  
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
l
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 13. Equivalent circuit of a quartz crystal  
1
Table 32. Crystal motional characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled @ C0 = 2.85 pF4  
AC coupled @ C0 = 4.9 pF4  
AC coupled @ C0 = 7.0 pF4  
AC coupled @ C0 = 9.0 pF4  
65  
50  
35  
30  
kW  
3
Rm  
Motional resistance  
1
2
The crystal used is Epson Toyocom MC306.  
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 kΩ  
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins  
MPC5607B Microcontroller Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
LPXOSC32K  
V
LPXOSC32K  
90%  
10%  
T
valid internal clock  
LPXOSC32KSU  
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics  
Table 33. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC  
SR — Slow external crystal oscillator  
frequency  
32  
32.768  
40  
kHz  
gmSXOSC CC — Slow external crystal oscillator  
transconductance  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
TBD  
TBD  
TBD  
TBD  
mA/V  
VDD = 5.0 V ± 10%  
PAD3V5V = 0  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
VSXOSC  
CC T Oscillation amplitude  
2.1  
TBD  
V
ISXOSCBIAS CC T Oscillation bias current  
µA  
µA  
ISXOSC  
CC T Slow external crystal oscillator  
consumption  
8
TSXOSCSU CC T Slow external crystal oscillator  
start-up time  
23  
s
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.14 FMPLL electrical characteristics  
The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the main  
oscillator driver.  
Table 34. FMPLL electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock3  
4
64  
60  
MHz  
%
ΔPLLIN SR — FMPLL reference clock duty  
40  
cycle3  
fPLLOUT CC P FMPLL output clock frequency  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
16  
20  
40  
64  
MHz  
644 MHz  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
100  
10  
µs  
ns  
ΔtLTJIT CC — FMPLL long term jitter  
fPLLIN = 16 MHz (resonator),  
fPLLCLK @ 64 MHz, 4000 cycles  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
4
mA  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
fCPU 64 MHz can be achieved only at up to 105 °C  
.
4
3.15 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.  
Table 35. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value2  
Symbol  
fFIRC  
3,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high TA = 25 °C, trimmed  
frequency  
12  
16  
20  
MHz  
SR —  
IFIRCRUN  
CC T Fast internal RC oscillator high TA = 25 °C, trimmed  
200  
µA  
µA  
frequency current in running  
mode  
IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C  
frequency current in power  
TBD  
10  
TA = 55 °C  
TBD TBD  
down mode  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
48  
Freescale Semiconductor  
Electrical characteristics  
Table 35. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
1  
500  
600  
700  
900  
1250  
1.1  
1.2  
µA  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
TFIRCSU CC C Fast internal RC oscillator  
TA = 55 °C VDD = 5.0 V ± 10%  
VDD = 3.3 V ± 10%  
2.0  
TBD  
2.0  
TBD  
+1  
µs  
%
start-up time  
TA = 125 °C VDD = 5.0 V ± 10%  
VDD = 3.3 V ± 10%  
ΔFIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
trimming of fFIRC  
ΔFIRCTRIM CC C Fast internal RC oscillator  
TA = 25 °C  
1.6  
%
%
trimming step  
ΔFIRCVAR CC C Fast internal RC oscillator  
variation over temperature and  
supply with respect to fFIRC at  
TA = 25 °C in high-frequency  
configuration  
5  
+5  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
3.16 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.  
Table 36. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
3,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
49  
Electrical characteristics  
Table 36. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10%  
time  
8
12  
µs  
%
ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
2  
2.7  
+2  
after software trimming of fSIRC  
ΔSIRCTRIM CC C Slow internal RC oscillator trimming  
step  
ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
+10  
%
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
3.17 ADC electrical characteristics  
3.17.1 Introduction  
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).  
MPC5607B Microcontroller Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
Figure 15. ADC0 characteristic and error definitions  
3.17.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources  
charge during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kΩ is obtained (R  
S
EQ  
= 1 / (fc*C ), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
S
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
Eqn. 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
--------------------------------------------------------------------------  
V •  
< -- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 16. Input equivalent circuit (precise channels)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
52  
Freescale Semiconductor  
Electrical characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
S
F
F
L
and R  
)
SW2  
SW  
AD  
P
SW1  
Pin Capacitance (three contributions, C , C and C )  
Sampling Capacitance  
P1  
P2  
P3  
S
Figure 17. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon  
A
is installed when the sampling phase is started (A/D switch close).  
Voltage Transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << TS  
V
A1  
τ
2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 18. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
S
P1  
P2  
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
53  
Electrical characteristics  
Eqn. 5  
C C  
P
S
--------------------  
) •  
τ
= (R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T  
is always much longer than the internal time constant:  
S
Eqn. 6  
τ < (R  
+ R  
) C « T  
1
SW  
AD  
S
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
(C + C + C ) = V (C + C  
)
A1  
S
P1  
P2  
A
P1  
P2  
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
τ < R (C + C + C  
P1 P2  
)
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
Eqn. 9  
10 τ = 10 R (C + C + C ) < T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (T ). The filter is typically designed to act as anti-aliasing.  
S
MPC5607B Microcontroller Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Analog source bandwidth (VA)  
Noise  
T
C < 2 RFCF (Conversion rate vs. filter pole)  
fF = f0 (Anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = Conversion rate)  
fF  
f0  
fC  
f
f
Figure 19. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (T ). Again the conversion period T is longer than the sampling time T ,  
C
C
S
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time T , so the charge level on C cannot be modified by the analog signal source during the time in which the  
S
S
sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
F
V
C
+ C + C + C  
A2  
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
ADC0 (10-bit)  
> 2048 C  
Eqn. 12  
Eqn. 13  
C
F
S
ADC1 (12-bit)  
> 8192 C  
C
F
S
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
55  
Electrical characteristics  
3.17.3 ADC electrical characteristics  
Table 37. ADC input leakage current  
Value  
Typ  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
nA  
C
C
P
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
8
200  
400  
45  
Table 38. ADC conversion characteristics (10-bit ADC0)  
Value  
Paramete  
Symbol  
C
Conditions1  
Unit  
r
Min  
Typ  
Max  
VSS_ADC0  
SR  
Voltageon  
VSS_HV_  
ADC0  
0.1  
0.1  
V
(ADC0  
reference)  
pin with  
respect to  
ground  
2
(VSS  
)
VDD_ADC0  
SR  
Voltageon  
VDD_HV_  
ADC pin  
(ADC  
VDD0.1  
VDD+0.1  
V
reference)  
with  
respect to  
ground  
(VSS  
)
VAINx  
SR  
SR  
SR  
Analog  
input  
VSS_ADC0  
VDD_ADC0  
+0.1  
V
MHz  
%
0.1  
voltage3  
fADC0  
ADC0  
analog  
frequency  
6
32 + 4%  
55  
ΔADC0_SY  
ADC0  
ADCLKSEL = 14  
45  
digital  
S
clock duty  
cycle  
(ipg_clk)  
tADC0_PU  
SR  
ADC0  
1.5  
µs  
power up  
delay  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
56  
Freescale Semiconductor  
Electrical characteristics  
Table 38. ADC conversion characteristics (continued)(10-bit ADC0)  
Value  
Paramete  
r
Symbol  
C
Conditions1  
Unit  
Min  
Typ  
Max  
tADC0_S  
CC  
T
Sample  
time5  
fADC = 32 MHz,  
ADC0_conf_sample_i  
nput = 17  
0.5  
µs  
f
ADC = 6 MHz,  
42  
3
INPSAMP = 255  
tADC0_C  
CS  
CC  
CC  
P
D
Conversio fADC = 32 MHz,  
0.625  
µs  
n time6  
ADC_conf_comp = 2  
ADC0  
input  
pF  
sampling  
capacitan  
ce  
CP1  
CC  
CC  
CC  
CC  
CC  
CC  
SR  
D
D
D
D
D
D
ADC0  
3
1
1
3
2
2
pF  
pF  
pF  
kΩ  
kΩ  
kΩ  
mA  
input pin  
capacitan  
ce 1  
CP2  
ADC0  
input pin  
capacitan  
ce 2  
CP3  
ADC0  
input pin  
capacitan  
ce 3  
RSW1  
RSW2  
RAD  
IINJ  
Internal  
resistance  
of analog  
source  
Internal  
resistance  
of analog  
source  
Internal  
resistance  
of analog  
source  
Input  
current  
Injection on one  
ADC0  
Current  
VDD  
=
5  
5  
5
5
injection 3.3 V ±  
10%  
VDD  
5.0 V ±  
10%  
=
input,  
different  
from the  
converted  
one  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
57  
Electrical characteristics  
Table 38. ADC conversion characteristics (continued)(10-bit ADC0)  
Value  
Paramete  
r
Symbol  
C
Conditions1  
Unit  
Min  
Typ  
Max  
| INL |  
CC  
T
Absolute No overload  
0.5  
1.5  
LSB  
value for  
integral  
non-linear  
ity  
| DNL |  
| OFS |  
CC  
CC  
T
T
Absolute No overload  
0.5  
0.5  
1.0  
LSB  
LSB  
differential  
non-linear  
ity  
Absolute  
offset  
error  
| GNE |  
TUEP  
CC  
CC  
T
P
T
Absolute  
gain error  
2  
3  
0.6  
0.6  
2
LSB  
LSB  
Total  
Without current  
unadjuste injection  
derror7 for  
With current injection  
3
precise  
channels,  
input only  
pins  
TUEX  
CC  
T
T
Total  
Without current  
3  
4  
1
3
4
LSB  
unadjuste injection  
derror7 for  
With current injection  
extended  
channel  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the  
end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC0_S depend on programming.  
6
7
This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Offset Error OSE  
Gain Error GE  
4095  
4094  
4093  
4092  
4091  
1 LSB ideal = AVDD / 4096  
4090  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4090 4091 4092 4093 4094 4095  
V
(LSB  
)
in(A)  
ideal  
Offset Error OSE  
Figure 20. ADC1 characteristic and error definitions  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
59  
Electrical characteristics  
Table 39. Conversion characteristics (12-bit ADC1)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC1  
SR  
Voltage on  
VSS_HV_A  
DC1(ADC1  
reference)  
pin with  
-0.1  
0.1  
V
respect to  
ground  
2
(VSS  
)
VDD_ADC1  
SR  
Voltage on  
VDD_HV_  
ADC1 pin  
(ADC1  
VDD-0.1  
VDD+0.1  
V
reference)  
with  
respect to  
ground  
(VSS  
)
VAINx  
SR  
SR  
SR  
CC  
Analog  
input  
VSS_ADC1-0  
.1  
VDD_ADC1  
0.1  
+
V
MHz  
µs  
voltage3  
fADC1  
ADC1  
analog  
frequency  
32 + 3%  
32 + 4%  
tADC1_PU  
ADC1  
power up  
delay  
1.5  
tADC1_S  
Sample  
time4  
VDD=3.3 V ut = 20  
f
ADC1= 32 MHz,  
ADC1_conf_sample_inp  
600  
500  
ns  
Sample  
time4  
f
ADC1= 32 MHz,  
ADC1_conf_sample_inp  
VDD =5.0 V ut = 17  
Sample  
time4  
VDD=3.3 V ut = 255  
f
ADC1= 3.33 MHz,  
76.2  
76.2  
µs  
ADC1_conf_sample_inp  
Sample  
time4  
fADC1= 3.33 MHz,  
ADC1_conf_sample_inp  
VDD =5.0 V ut = 255  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
60  
Freescale Semiconductor  
Electrical characteristics  
Table 39. Conversion characteristics (12-bit ADC1) (continued)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Max  
Min  
Typ  
tADC1_C  
CC  
Conversion fADC1 = 20MHz,  
2.4  
µs  
µs  
µs  
µs  
time5  
ADC1_conf_comp = 0  
VDD=3.3 V  
Conversion fADC 1= 13.33 MHz,  
1.5  
3.6  
3.6  
time5  
ADC1_conf_comp = 0  
VDD =5.0 V  
Conversion fADC 1= 13.33 MHz,  
time5  
ADC1_conf_comp = 0  
VDD=3.3 V  
Conversion fADC1 = 32 MHz,  
time5  
ADC1_conf_comp = 0  
VDD =5.0 V  
ΔADC0_SYS  
SR  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
ADC1  
digital clock  
duty cycle  
(ipg_clk)  
ADCLKSEL = 16  
45  
5
55  
%
CS  
ADC1 input  
sampling  
capacitanc  
e
pF  
pF  
pF  
pF  
kΩ  
kΩ  
kΩ  
CP1  
ADC1 input  
pin  
capacitanc  
e 1  
3
CP2  
ADC1 input  
pin  
capacitanc  
e 2  
1
CP3  
ADC1 input  
pin  
capacitanc  
e 3  
1.5  
RSW1  
RSW2  
RAD  
Internal  
1
2
resistance  
of analog  
source  
Internal  
resistance  
of analog  
source  
Internal  
0.3  
resistance  
of analog  
source  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
61  
Electrical characteristics  
Table 39. Conversion characteristics (12-bit ADC1) (continued)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IINJ  
SR  
Input  
Current  
VDD = 3.3 V  
-5  
5
mA  
current  
Injection  
injection on ± 10%  
one ADC1  
VDD = 5.0 V  
-5  
5
input,  
± 10%  
different  
from the  
converted  
one  
INLP  
INLX  
DNL  
CC  
CC  
CC  
Absolute  
Integral  
non-linearit  
y-Precise  
channels  
No overload  
No overload  
No overload  
1
3
5
1
LSB  
LSB  
LSB  
Absolute  
Integral  
non-linearit  
y-Extended  
channels  
1.5  
0.5  
Absolute  
Differential  
non-linearit  
y
OFS  
GNE  
CC  
CC  
CC  
Absolute  
Offset error  
2
2
LSB  
LSB  
Absolute  
Gain error  
TUEP7  
Total  
Unadjusted  
Error for  
precise  
channels,  
input only  
pins  
Without current injection  
With current injection  
-6  
-8  
6
8
TUEX7  
CC  
Total  
Unadjusted  
Error for  
extended  
channel  
Without current injection  
With current injection  
-10  
-12  
10  
12  
LSB  
LSB  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 / 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
4
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the  
end of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC1_S depend on programming.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
5
6
7
This parameter does not include the sample time tADC1_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.18 On-chip peripherals  
3.18.1 Current consumption  
1
Table 40. On-chip peripherals current consumption  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
IDD_BV(CAN  
CC  
T
CAN  
500 Kbps Total(static  
7.652 * fperiph + 84.73  
µA  
(FlexCAN)  
supply  
+ dynamic)  
consumpti  
)
125 Kbps  
8.0743 * fperiph + 26.757  
current on  
VDD_BV  
on:  
• FlexCAN  
in  
loop-ba  
ckmode  
• XTAL@8  
MHz  
used as  
CAN  
engine  
clock  
source  
• Message  
sending  
periodis  
580 µs  
IDD_BV(eMI  
CC  
T
eMIOS  
supply  
Static consumption:  
• eMIOS channel OFF  
28.7 * fperiph  
OS)  
current on • Global prescaler  
VDD_BV  
enabled  
Dynamic consumption:  
• It does not change  
varying the  
3
frequency (0.003  
mA)  
IDD_BV(SCI)  
CC  
CC  
T
T
SCI  
Total (static + dynamic)  
4.7804 * fperiph + 30.946  
(LINFlex) consumption:  
supply • LIN mode  
current on • Baudrate: 20 Kbps  
VDD_BV  
IDD_BV(SPI)  
SPI (DSPI) Ballast static  
1
supply  
consumption (only  
current on clocked)  
VDD_BV  
Ballast dynamic  
16.3 * fperiph  
consumption  
(continuus  
communication):  
• Baudrate: 2 Mbit  
Trasmission every 8  
µs  
• Frame: 16 bits  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
64  
Freescale Semiconductor  
Electrical characteristics  
1
Table 40. On-chip peripherals current consumption (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
IDD_BV(ADC  
CC  
T
ADC  
supply  
V
DD = 5.5  
Ballast  
static  
0.0409 * fperiph  
mA  
V
)
current on  
VDD_BV  
consumpti  
on (no  
conversion  
)
VDD = 5.5  
V
Ballast  
dynamic  
consumpti  
on  
0.0049 * fperiph  
(continuus  
conversion  
)
IDD_HV_AD  
CC  
T
ADC  
supply  
V
DD = 5.5  
Analog  
static  
0.0017 * fperiph  
V
C(ADC)  
current on  
VDD_HV_AD  
consumpti  
on (no  
conversion  
)
C
VDD = 5.5  
V
Analog  
dynamic  
consumpti  
on  
0.075 * fperiph + 0.032  
(continuus  
conversion  
)
IDD_HV(FLA  
CC  
CC  
T
T
CFlash +  
DFlash  
supply  
current on  
VDD_HV_AD  
VDD = 5.5  
V
-
13.25  
SH)  
C
IDD_HV(PLL)  
PLLsupply  
current on  
VDD_HV  
VDD = 5.5  
-
0.0031 * fperiph  
V
1
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
65  
Electrical characteristics  
3.18.2 DSPI characteristics  
Table 41. DSPI characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
tSCK  
SR  
SR  
D
D
SCK cycle time  
64  
ns  
fDSPI  
DSPI digital controller  
frequency  
fCPU  
MHz  
ΔtCSC  
CC  
D
Internal delay  
between pad  
associated to SCK  
and pad associated to  
CSn in master mode  
1201  
ns  
ns  
2
2
3
4
tCSCext  
CC  
SR  
CC  
SR  
CC  
SR  
SR  
D
D
D
D
D
D
D
CS to  
Master  
tCSCext = tCSC + ΔtCSC  
SCK delay mode  
Slave  
mode  
32  
3
tASCext  
After SCK Master  
tASCext = tASC + ΔtCSC  
ns  
ns  
ns  
delay  
mode  
Slave  
mode  
1/fDSPI + 5  
tSCK/2  
ns  
tSDC  
SCK duty Master  
cycle  
mode  
Slave  
mode  
tSCK/2  
27  
5
6
tA  
Slave  
access  
time  
ns  
ns  
tDI  
SR  
SR  
D
D
Slave  
SOUT  
disable  
time  
0
7
tSUI  
Data  
Master  
35  
ns  
setup time (MTFE =  
for inputs 0)  
Slave  
5
Master  
(MTFE =  
1)  
35  
8
tHI  
SR  
D
Data hold Master  
0
ns  
time for  
inputs  
(MTFE =  
0)  
Slave  
24  
0
Master  
(MTFE =  
1)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
66  
Freescale Semiconductor  
Electrical characteristics  
Table 41. DSPI characteristics (continued)  
Value  
No.  
Symbol  
C
Parameter  
Unit  
Max  
Min  
Typ  
5
9
tSUO  
CC  
D
Data valid Master  
32  
ns  
after SCK (MTFE =  
edge  
0)  
Slave  
34  
32  
Master  
(MTFE =  
1)  
5
10  
tHO  
CC  
D
Data hold Master  
2
ns  
time for  
outputs  
(MTFE =  
0)  
Slave  
5.5  
2
Master  
(MTFE =  
1)  
1
2
Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad.  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields  
in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtCSC to ensure  
positive tCSCext  
.
3
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in  
DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtASC to ensure positive  
tASCext  
.
4
5
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.  
SCK and SOUT configured as MEDIUM pad  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Figure 21. DSPI classic SPI timing - master, CPHA = 0  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 41.  
Figure 22. DSPI classic SPI timing - master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 41.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
68  
Freescale Semiconductor  
Electrical characteristics  
Figure 23. DSPI classic SPI timing - slave, CPHA = 0  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
First Data  
11  
12  
Data  
6
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 41.  
Figure 24. DSPI classic SPI timing - slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 41.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
69  
Electrical characteristics  
Figure 25. DSPI modified transfer format timing - master, CPHA = 0  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 41.  
Figure 26. DSPI modified transfer format timing - master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 41.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
70  
Freescale Semiconductor  
Electrical characteristics  
Figure 27. DSPI modified transfer format timing - slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 41.  
Figure 28. DSPI modified transfer format timing - slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 41.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
Figure 29. DSPI PCS strobe (PCSS) timing  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 41.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
72  
Freescale Semiconductor  
Electrical characteristics  
3.18.3 Nexus characteristics  
Table 42. Nexus characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Max  
Min  
1
2
3
4
5
6
tTCYC  
tMCYC  
tMDOV  
tMSEOV CC D MCKO low to MSEO_b data valid  
CC D TCK cycle time  
64  
32  
15  
15  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC D MCKO cycle time  
CC D MCKO low to MDO data valid  
8
tEVTOV  
tNTDIS  
CC D MCKO low to EVTO data valid  
CC D TDI data setup time  
8
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
7
5
8
9
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
35  
6
Figure 30. Nexus TDI, TMS, TDO timing  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Note: Numbers shown reference Table 42.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
73  
Preliminary—Subject to Change Without Notice  
Electrical characteristics  
3.18.4 JTAG characteristics  
Table 43. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
Figure 31. Timing diagram - JTAG boundary scan  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 43.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
74  
Freescale Semiconductor  
Package characteristics  
4
Package characteristics  
Package mechanical data  
176 LQFP  
4.1  
4.1.1  
Figure 32. 176 LQFP package mechanical drawing (Part 1 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
75  
Package characteristics  
Figure 33. 176 LQFP package mechanical drawing (Part 2 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
76  
Freescale Semiconductor  
Package characteristics  
Figure 34. 176 LQFP package mechanical drawing (Part 3 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
77  
Package characteristics  
1
Table 44. LQFP176 mechanical data  
mm  
inches2  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
1.400  
0.050  
1.350  
0.170  
0.090  
23.900  
23.900  
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
24.100  
0.063  
A1  
0.002  
0.053  
0.007  
0.004  
0.941  
0.941  
A2  
0.057  
0.011  
0.008  
0.949  
0.949  
b
C
D
E
e
HD  
0.500  
0.020  
25.900  
25.900  
0.450  
26.100  
26.100  
0.750  
1.020  
1.020  
0.018  
1.028  
1.028  
0.030  
HE  
L3  
L1  
1.000  
1.250  
1.250  
0.039  
0.049  
0.049  
ZD  
ZE  
q
0 °  
7 °  
0 °  
7 °  
Tolerance  
mm  
inches  
0.0031  
ccc  
0.080  
1
Controlling dimension: millimeter  
2
3
Values in inches are converted from mm and rounded to 4 decimal digits.  
L dimension is measured at gauge plane at 0.25 mm above the seating plane  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
78  
Freescale Semiconductor  
Package characteristics  
4.1.2  
144 LQFP  
Figure 35. 144 LQFP package mechanical drawing (Part 1 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
79  
Package characteristics  
Figure 36. 144 LQFP package mechanical drawing (Part 2 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
80  
Freescale Semiconductor  
Package characteristics  
Table 45. LQFP144 mechanical data  
mm  
inches1  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.8740  
0.7953  
A1  
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
A2  
1.400  
0.220  
0.0551  
0.0087  
b
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5 °  
0.8661  
0.7874  
0.6890  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
0.0 °  
D1  
D3  
E
21.800  
19.800  
22.200  
20.200  
0.8583  
0.7795  
0.8740  
0.7953  
E1  
E3  
e
L
0.450  
0.0 °  
0.750  
7.0°  
0.0177  
3.5 °  
0.0295  
7.0 °  
L1  
k
Tolerance  
ccc  
mm  
inches  
0.0031  
0.080  
1
Values in inches are converted from mm and rounded to 4 decimal digits.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
81  
Preliminary—Subject to Change Without Notice  
Package characteristics  
4.1.3  
100 LQFP  
Figure 37. 100 LQFP package mechanical drawing (Part 1 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
82  
Freescale Semiconductor  
Package characteristics  
Figure 38. 100 LQFP package mechanical drawing (Part 2 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
83  
Package characteristics  
Figure 39. 100 LQFP package mechanical drawing (Part 3 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
84  
Freescale Semiconductor  
Package characteristics  
Table 46. LQFP100 mechanical data  
mm  
inches1  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
A1  
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
A2  
1.400  
0.220  
0.0551  
0.0087  
b
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5 °  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5 °  
D1  
D3  
E
15.800  
13.800  
16.200  
14.200  
0.6220  
0.5433  
0.6378  
0.5591  
E1  
E3  
e
L
0.450  
0.0 °  
0.750  
7.0 °  
0.0177  
0.0 °  
0.0295  
7.0 °  
L1  
k
Tolerance  
ccc  
mm  
inches  
0.0031  
0.080  
1
Values in inches are converted from mm and rounded to 4 decimal digits.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Freescale Semiconductor  
85  
Preliminary—Subject to Change Without Notice  
Package characteristics  
4.1.4  
208MAPBGA  
Figure 40. 208 MAPBGA package mechanical drawing (Part 1 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 3  
86  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Package characteristics  
Figure 41. 208 MAPBGA package mechanical drawing (Part 2 of 2)  
Table 47. LBGA208 mechanical data  
inches1  
mm  
Symbol  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
2
A
1.70  
0.0669  
A1  
A2  
A3  
A4  
b
0.30  
0.0118  
1.085  
0.30  
0.0427  
0.0118  
0.80  
0.70  
0.0315  
0.0276  
3
0.50  
0.60  
0.0197  
0.0236  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
87  
Package characteristics  
Table 47. LBGA208 mechanical data (continued)  
mm  
Typ  
inches1  
Typ  
Symbol  
Notes  
Min  
Max  
Min  
Max  
D
D1  
E
16.80  
17.00  
15.00  
17.00  
15.00  
1.00  
17.20  
0.6614  
0.6693  
0.5906  
0.6693  
0.5906  
0.0394  
0.0394  
0.6772  
16.80  
17.20  
0.6614  
0.6772  
E1  
e
F
1.00  
ddd  
eee  
fff  
0.20  
0.25  
0.10  
0.0079  
0.0098  
0.0039  
4
5
1
2
Values in inches are converted from mm and rounded to 4 decimal digits.  
LBGA stands for Low profile Ball Grid Array.  
- Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the component  
- The maximum total package height is calculated by the following methodology:  
A2 Typ+A1 Typ +(A12+A32+A42 tolerance values)  
- Low profile: 1.20mm < A < 1.70mm  
3
4
The typical ball diameter before mounting is 0.60mm.  
The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.  
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with  
respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this  
tolerance zone.  
5
The tolerance of position that controls the location of the balls within the matrix with respect to each other.  
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as  
defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.  
Each tolerance zone fff in the array is contained entirely in the respective zone eee above.  
The axis of each ball must lie simultaneously in both tolerance zones.  
MPC5607B Microcontroller Data Sheet, Rev. 3  
88  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Ordering information  
5
Ordering information  
Figure 42. Commercial product code structure  
Example code:  
M
PC  
56  
0
7
B
E
M
LL  
R
Qualification Status  
PowerPC Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Temperature spec.  
Package Code  
R = Tape & Reel (blank if Tray)  
Qualification Status  
M = MC status  
Flash Size (z0 core)  
5 = 768 KB  
Temperature spec.  
C = –40° C to 85°C  
V = –40° C to 105°C  
M = –40° C to 125°C  
S = Auto qualified  
P = PC status  
6 = 1024 KB  
7 = 1.5 MB  
Automotive Platform  
56 = PPC in 90nm  
Product  
B = Body  
Package Code  
LL = 100 LQFP  
LQ = 144 LQFP  
LU= 176 LQFP  
57 = PPC in 65nm  
C = Gateway  
1
208 MAPBGA available only as development package for Nexus2+  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
89  
Revision history  
6
Revision history  
Table 48 summarizes revisions to this document.  
Table 48. Revision history  
Substantive changes  
Revision  
Date  
1
2
12-Jan-2009 Initial release  
09 Nov-2009 Updated Features  
-Replaced 27 IRQs in place of 23  
-ADC features  
-External Ballast resistor support conditions  
-updated device summary-added 208 BGA details  
-updated block diagram to include WKUP  
-updated block diagram to include 5 ch ADC 12 -bit  
-updated Block summary table  
-updated LQFP 144, 176 and 100 pinouts. Applied new naming convention for ADC  
signals as ADCx_P[x] and ADCx_S[x]  
Section 1, “General description  
-updated Bolero 1.5M device comparison table  
-updated block diagram-aligned with 512k  
-updated block summary-aligned with 512k  
Section 2, “Package pinouts  
-updated 100,144,176,208 packages according to cut2.0 changes  
Added Section 3.5.1, “External ballast resistor recommendations  
Added NVUSRO [WATCHDOG_EN] field description  
updated Absolute maximum ratings  
updated LQFP thermal characteristics  
updated I/O supply segments  
updated Voltage regulator capacitance connection  
updated Low voltage monitor electrical characteristics  
updated Low voltage power domain electrical characteristics  
updated DC electrical characteristics  
updated Program/Erase specifications  
updated Conversion characteristics (10 bit ADC)  
updated FMPLL electrical characteristics  
updated Fast RC oscillator electrical characteristics-aligned with Bolero 512K  
updated On-chip peripherals current consumption  
updated ADC characteristics and error definitions diagram  
updated ADC conversion characteristics (10 bit and 12 bit)  
Added ADC characteristics and error definitions diagram for 12 bit ADC  
3
25 Jan-2010 Updated Features  
Updated block diagram to connect peripherals to pad I/O  
Updated block summary to include ADC 12-bit  
Updated 144, 176 and 100 pinouts to adjust format issues  
Table 26 Flash module life-retention value changed from 1-5 to 5 yrs  
Minor editing changes  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
90  
Freescale Semiconductor  
Abbreviations  
Appendix A  
Abbreviations  
Table 49 lists abbreviations used but not defined elsewhere in this document.  
Table 49. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Event out  
EVTO  
LED  
Light emitting diode  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5607B Microcontroller Data Sheet, Rev. 3  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
91  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd. Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. The described product contains a PowerPC processor  
core. The PowerPC name is a trademark of IBM Corp. and used under license.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
MPC5607B  
Rev. 3  
01/2010  

相关型号:

SPC5705BEMLUR

Microcontroller
FREESCALE

SPC5705BEVLLR

Microcontroller
FREESCALE

SPC5705BEVLQR

Microcontroller
FREESCALE

SPC5705BEVLUR

Microcontroller
FREESCALE

SPC5705CECLLR

Microcontroller
FREESCALE

SPC5705CECLQR

Microcontroller
FREESCALE

SPC5705CECLUR

Microcontroller
FREESCALE

SPC5705CEMLLR

Microcontroller
FREESCALE

SPC5705CEMLQR

Microcontroller
FREESCALE

SPC5705CEMLUR

Microcontroller
FREESCALE

SPC5705CEVLLR

Microcontroller
FREESCALE

SPC5705CEVLQR

Microcontroller
FREESCALE