PPXN4030VVU264R [FREESCALE]

PXR40 Microcontroller; PXR40微控制器
PPXN4030VVU264R
型号: PPXN4030VVU264R
厂家: Freescale    Freescale
描述:

PXR40 Microcontroller
PXR40微控制器

微控制器
文件: 总100页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: PXR40  
Rev. 1, 09/2011  
PXR40  
PXR40 Microcontroller Data  
Sheet  
TEPBGA–416  
27mm x 27mm  
• Dual issue, 32-bit CPU core complex (e200z7)  
– Compliant with the Power Architecture embedded  
category  
single action, double action, pulse width modulation  
(PWM) and modulus counter operation  
• Four enhanced queued analog-to-digital converters  
(eQADC)  
– 16 KB I-Cache and 16 KB D-Cache  
– Includes an instruction set enhancement allowing  
variable length encoding (VLE), optional encoding of  
mixed 16-bit and 32-bit instructions, for code size  
footprint reduction  
– Support for 64 analog channels  
– Includes one absolute reference ADC channel  
– Includes eight decimation filters  
• Four deserial serial peripheral interface (SPI) modules  
• Three enhanced serial communication interface (UART)  
modules  
• Four controller area network (CAN) modules  
• Dual-channel FlexRay controller  
– Includes signal processing extension (SPE2) instruction  
support for digital signal processing (DSP) and  
single-precision floating point operations  
• 4 MB on-chip flash  
– Supports read during program and erase operations, and  
multiple blocks allowing EEPROM emulation  
• 256 KB on-chip general-purpose SRAM including 32 KB  
of standby RAM  
• Nexus development interface (NDI) per IEEE-ISTO  
5001-2003/5001-2008 standard  
• Device and board test support per Joint Test Action Group  
(JTAG) (IEEE 1149.1)  
• Two direct memory access controller (eDMA2) blocks  
– One supporting 64 channels  
• On-chip voltage regulator controller regulates supply  
voltage down to 1.2 V for core logic  
– One supporting 32 channels  
• Interrupt controller (INTC)  
• Frequency modulated phase-locked loop (FMPLL)  
• Crossbar switch architecture for concurrent access to  
peripherals, flash, or RAM from multiple bus masters  
• External bus interface (EBI) for calibration and application  
development (not available on all packages)  
• System integration unit (SIU)  
• Error correction status module (ECSM)  
• Boot assist module (BAM) supports serial bootload via  
CAN or SCI  
• Two second-generation enhanced time processor units  
(eTPU2) that share code and data RAM.  
– 32 standard channels per eTPU2  
– 24 KB code RAM  
– 6 KB parameter (data) RAM  
• Enhanced modular input output system supporting 32  
unified channels (eMIOS) with each channel capable of  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table of Contents  
1
2
3
PXR40 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
5.9 eQADC electrical characteristics. . . . . . . . . . . . . . . . . 68  
5.9.1 ADC internal resource measurements. . . . . . . 69  
5.10 C90 flash memory electrical characteristics . . . . . . . . 71  
5.11 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
5.11.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
5.11.2 Pad AC specifications. . . . . . . . . . . . . . . . . . . . 74  
5.12 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.12.1 Generic timing diagrams . . . . . . . . . . . . . . . . . 77  
5.12.2 Reset and configuration pin timing. . . . . . . . . . 78  
5.12.3 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 78  
5.12.4 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5.12.5 External Bus Interface (EBI) timing . . . . . . . . . 84  
5.12.6 External interrupt timing (IRQ pin) . . . . . . . . . . 88  
5.12.7 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
5.12.8 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.12.9 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.1 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
7.1 416-pin package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Product documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
PXR40 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.1 416-ball TEPBGA pin assignments. . . . . . . . . . . . . . . . .6  
Signal properties and muxing. . . . . . . . . . . . . . . . . . . . . . . . .11  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
5.1 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
5.2 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .53  
5.2.1 General notes for specifications at maximum junction  
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.3 EMI (Electromagnetic Interference) characteristics . . .55  
5.4 ESD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
5.5 PMC/POR/LVI electrical specifications . . . . . . . . . . . . .56  
5.6 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . .59  
5.6.1 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
5.6.2 Power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
5.6.3 Power sequencing and POR dependent on VDDA60  
5.7 DC electrical specifications. . . . . . . . . . . . . . . . . . . . . .61  
5.7.1 I/O pad current specifications . . . . . . . . . . . . . .64  
5.7.2 I/O pad VDD33 current specifications . . . . . . . . .64  
5.7.3 LVDS pad specifications . . . . . . . . . . . . . . . . . .65  
5.8 Oscillator and FMPLL electrical characteristics . . . . . .66  
4
5
6
7
8
9
PXR40 Microcontroller Data Sheet, Rev. 1  
2
Freescale Semiconductor  
PXR40 features  
1
PXR40 features  
Table 1 displays the PXR40 feature set.  
Table 1. PXR40 feature set  
Feature  
PXR40  
Core  
SIMD  
VLE  
e200z7  
Yes  
Yes  
Cache  
32 KB  
(16 KB Instruction/16 KB Data)  
Non-maskable interrupt (NMI)  
NMI & Critical Interrupt  
MMU  
64 entry  
Yes  
MPU  
XBAR  
5 × 5  
Windowing software watchdog  
Yes  
Nexus  
3+  
SRAM  
256 KB  
4 MB  
4 × 256 bit  
Flash  
Flash fetch accelerator  
(first 1 MB of memory is 4 × 128; last 3 MB are 4 × 256)  
External bus  
Yes  
Calibration bus  
16 bit non-muxed  
32 bit muxed  
DMA  
96 channel  
DMA Nexus  
Serial  
Class 3  
3
UART_A  
UART_B  
UART_C  
Microsecond bus uplink  
CAN  
Yes  
Yes  
Yes  
Yes  
4
CAN_A  
64 message buffers  
CAN_B  
64 message buffers  
CAN_C  
CAN_D  
CAN_E  
64 message buffers  
64 message buffers  
No  
4
SPI  
SPI_A  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
SPI_B  
SPI_C  
SPI_D  
FlexRay  
Ethernet  
System timers  
4 PIT chan  
4 SWT  
1 Watchdog  
eMIOS  
eTPU  
32 channel  
64 channel  
Yes (eTPU2)  
Yes (eTPU2)  
eTPU_A  
eTPU_B  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
3
PXR40 features  
Table 1. PXR40 feature set (continued)  
PXR40  
Feature  
Code memory  
24 KB  
Data memory  
Interrupt controller  
ADC  
6 KB  
448  
64 channel  
eQADC_A  
Yes  
eQADC_B  
Yes  
Temperature sensor  
Variable gain amp.  
Decimation filter  
Yes  
Yes  
Yes (8 on eQADC_B)  
Sensor diagnostics  
Yes  
FM  
Yes  
5V  
PLL  
VRC  
Supplies  
Low Power Modes  
Stop Mode  
Slow Mode  
Note: 3.3 V is required for certain IO segments only during debug/development (e.g., Nexus 3 trace and bus)  
PXR40 Microcontroller Data Sheet, Rev. 1  
4
Freescale Semiconductor  
PXR40 block diagram  
2
PXR40 block diagram  
Figure 1 shows a top-level block diagram of the PXR40 microcontrollers.  
PXR40 Block Diagram  
System  
Data and Instruction System  
Integration  
Debug  
SPE2  
JTAG  
2 x eDMA  
64- and  
32-ch  
e200z7  
Superscalar  
CPU  
Osc/PLL  
Nexus  
IEEE  
ISTO  
FlexRay™  
Controller  
Interrupt  
Controller  
5001™-2003  
Crossbar Switch (XBAR)  
Memory Protection Unit (MPU)  
256 KB  
SRAM  
w/ECC  
PBRIDGE A  
PBRIDGE B  
4 MB  
Flash  
w/ECC  
Boot Assist  
Module  
(BAM)  
(32 KB S/B)  
Main Memory System  
Timed I/O System  
SIU  
Communications  
6K  
Data  
24K  
3 x  
UART/  
LIN  
4 x  
Dec  
Fil  
64-ch  
QUAD  
ADCi  
eMIOS  
32-ch  
eTPU2  
32-ch  
eTPU2  
32-ch  
4 x  
CAN  
4 x  
SPI  
Code  
RAM  
ADC  
– Analog-to-digital converter  
MMU  
MPU  
– Memory management unit  
– Memory protection unit  
ADCi – ADC interface  
AIPS – Peripheral I/O bridge  
AMux – Analog multiplexer  
PBRIDGE – Peripheral I/O bridge  
S/B  
– Stand-by  
CAN  
DECFIL– Decimation filter  
EBI – External bus interface  
ECSM – Error correction status module  
eDMA2 – Enhanced direct memory access  
eMIOS – Enhanced modular I/O system  
eQADC – Enhanced queued A/D converter module  
eTPU2 – Enhanced time processing unit 2  
– Controller area network  
SIU  
SPE2  
SPI  
– System integration unit  
– Signal processing engine 2  
– Serial peripheral interface controller  
– General-purpose static RAM  
SRAM  
UART/LIN – Universal asynchronous receiver/transmitter/  
local interconnect network  
– Variable length instruction encoding  
VLE  
Figure 1. Block diagram  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
5
Pin assignments  
3
Pin assignments  
The figures in this section show the primary pin function. For the full signal properties and muxing table, see Table 4.  
3.1  
416-ball TEPBGA pin assignments  
Figure 2 shows the 416-ball TEPBGA pin assignments in one figure. The same information is shown in Figure 3 through  
Figure 6.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
REF–  
REF–  
ANA4  
ANA8  
ANA11 ANA15 VDDA_A0  
VRL_A VRH_A  
AN28  
AN32  
AN36 VDDA_B0  
AN33 VDDA_B1  
VRL_B VRH_B  
ANB7  
ANB11 ANB14 ANB17 ANB21 ANB23  
VSS  
A
B
VSS  
VDD  
RSTOUT ANA0  
A
BYPCA1  
BYPCB1  
REF–  
AN24  
REF–  
ANB6  
ANA14 VDDA_A1 VSSA_A1  
AN27  
AN26  
AN25  
AN29  
AN30  
AN31  
ANB8  
ANB5  
ANB9  
ANB10 ANB15 ANB18 ANB22  
VSS  
TCRCLKC  
VDDEH1  
VSS  
VDD  
VSS  
TEST  
VDD  
ANA1  
ANA2  
VDD  
ANA5  
ANA6  
ANA3  
ANA10  
ANA9  
ANA7  
VSSA_B0  
AN38  
B
BYPCA  
BYPCB  
ANA13 ANA17 ANA19 ANA21 ANA23  
ANA12 ANA16 ANA18 ANA20 ANA22  
AN34  
AN35  
AN37  
AN39  
ANB0  
ANB2  
ANB4  
ANB3  
ANB12 ANB16 ANB19  
VSS  
ETPUC0 ETPUC1  
ETPUC2 ETPUC3  
C
D
E
ETPUA30 ETPUA31  
C
ANB1  
ANB13 ANB20  
VSS  
VDDEH7  
ETPUA27 ETPUA28 ETPUA29 VSS  
ETPUA23 ETPUA24 ETPUA25 ETPUA26  
ETPUA19 ETPUA20 ETPUA21 ETPUA22  
ETPUA15 ETPUA16 ETPUA17 ETPUA18  
ETPUA11 ETPUA12 ETPUA14 ETPUA13  
ETPUA7 ETPUA8 ETPUA9 ETPUA10  
ETPUA3 ETPUA4 ETPUA5 ETPUA6  
TCRCLKA ETPUA0 ETPUA1 ETPUA2  
D
VDDEH7 ETPUC4 ETPUC5 ETPUC6  
ETPUC7 ETPUC8 ETPUC9 ETPUC10  
ETPUC11 ETPUC12 ETPUC13 ETPUC14  
ETPUC15 ETPUC16 ETPUC17 ETPUC18  
ETPUC19 ETPUC20 ETPUC21ETPUC22  
ETPUC23 ETPUC24ETPUC25ETPUC26  
ETPUC27ETPUC28ETPUC29ETPUC30  
ETPUC31ETPUB15 ETPUB14 VDDEH7  
VDDEH6 ETPUB11 ETPUB12 ETPUB13  
ETPUB7 ETPUB8 ETPUB9 ETPUB10  
ETPUB3 ETPUB4 ETPUB5 ETPUB6  
TCRCLKB ETPUB0 ETPUB1 ETPUB2  
ETPUB19 ETPUB18 ETPUB17 ETPUB16  
ETPUB26 ETPUB22 ETPUB21 ETPUB20  
REGSEL ETPUB25 ETPUB24 ETPUB23  
ETPUB29 ETPUB28 ETPUB27 REGCTL  
VDD33_3 ETPUB30 VDDREG VSSSYN  
E
F
F
PXR40 416-ball TEPBGA  
(as viewed from top through the package)  
G
H
J
G
H
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
K
L
L
VDD33_1 TXDA  
RXDA  
VSTBY  
VSS  
M
N
P
M
N
BOOT–  
RXDB  
VDDE2  
WKPCFG VDD  
CFG1  
VDDE2 VDDE2  
VDDE2 VDDE2  
TXDB  
PLLCFG2 VDDEH1  
P
PLLCFG1  
JCOMP RESET PLLCFG0 RDY  
R
T
R
VDDE2 MCKO MSEO1  
EVTI  
MDO1  
MDO5  
VDDE2  
VDDE2 VDDE2 VDDE2  
VDDE2 VDDE2 VDDE2  
T
EVTO  
MDO2  
MDO6  
MSEO0 MDO0  
U
V
U
MDO3  
MDO7  
MDO4  
MDO8  
V
W
Y
W
Y
MDO9 MDO10 MDO11 MDO15  
MDO12 MDO13 MDO14 VDD33_2  
AA  
AB  
AA  
AB  
AC  
AD  
AE  
AF  
VSSFL  
TDO  
TCK  
TDI  
TMS  
VDD  
VSS  
VDD  
VSS  
VDD ETPUB31  
EXTAL  
PCSA1 PCSA2 PCSB4 PCSB1 VDDEH3 VDDEH4  
VDD  
EMIOS8 EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB CNRXD VDDEH5 PCSC1  
VSS  
VDD  
VSS  
VDDEH6 XTAL  
AC VDDE2  
AD ENGCLK  
VDDE2  
FR_A_  
TX  
FR_B_  
TX  
EMIOS5 EMIOS9 EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30  
RXDC  
SINC  
PCSC3  
VDD  
VSS  
VDDSYN  
VDD  
VDD  
VSS  
PCSA5 SOUTA  
SCKA  
SCKB  
PCSB0 PCSB3 EMIOS2  
CNTXB CNTXD  
SCKC  
FR_A_  
RX  
FR_B_  
RX  
PCSA4 PCSA0 PCSA3  
SINB  
EMIOS0 EMIOS3 EMIOS6 EMIOS10 EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA CNRXC PCSC0  
PCSC2 PCSC5  
AE  
AF  
VDD  
FR_A_  
FR_B_  
EMIOS7 EMIOS11 EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28  
VDDEH4 TXDC  
PCSC4 VDDEH5  
VSS  
26  
VSS  
1
VDDE2  
2
VDDEH3 PCSB5  
SINA  
7
PCSB2 SOUTB EMIOS1 EMIOS4  
10 11  
CNTXA CNTXC SOUTC  
19 20 21  
TX_EN TX_EN  
3
4
5
6
8
9
12  
13  
14  
15  
16  
17  
18  
22  
23  
24  
25  
Figure 2. PXR40 416-ball TEPBGA (full diagram)  
PXR40 Microcontroller Data Sheet, Rev. 1  
6
Freescale Semiconductor  
Pin assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
REFBYP-  
CA1  
A
B
C
D
E
F
VSS  
VDD  
RSTOUT  
ANA0  
ANA4  
ANA8  
ANA11  
ANA15 VDDA_A0  
VRL_A  
VRH_A  
AN28  
A
B
C
D
E
F
VDDEH1  
VSS  
VDD  
VSS  
TEST  
VDD  
VSS  
ANA1  
ANA2  
VDD  
ANA5  
ANA6  
ANA3  
ANA10  
ANA9  
ANA7  
ANA14 VDDA_A1 VSSA_A1 REFBYPCA AN24  
AN27  
AN26  
AN25  
ETPUA30 ETPUA31  
ANA13  
ANA12  
ANA17  
ANA16  
ANA19  
ANA18  
ANA21  
ANA20  
ANA23  
ANA22  
ETPUA27 ETPUA28 ETPUA29  
ETPUA23 ETPUA24 ETPUA25 ETPUA26  
ETPUA19 ETPUA20 ETPUA21 ETPUA22  
ETPUA15 ETPUA16 ETPUA17 ETPUA18  
ETPUA11 ETPUA12 ETPUA14 ETPUA13  
ETPUA7 ETPUA8 ETPUA9 ETPUA10  
ETPUA3 ETPUA4 ETPUA5 ETPUA6  
TCRCLKA ETPUA0 ETPUA1 ETPUA2  
PXR40 416-ball TEPBGA  
(as viewed from top through the package)  
(1 of 4)  
G
H
J
G
H
J
K
L
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
M
N
VDD33_1 TXDA  
RXDA  
VSTBY  
M
N
RXDB BOOTCFG1 WKPCFG  
VDD  
4
VDDE2  
10  
VSS  
11  
VSS  
12  
VSS  
13  
1
2
3
5
6
7
8
9
Figure 3. PXR40 416-ball TEPBGA (1 of 4)  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
7
Pin assignments  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
REFBYP-  
CB1  
A
B
C
D
E
F
AN32  
AN36 VDDA_B0  
VRL_B  
VRH_B  
ANB7  
ANB11  
ANB14  
ANB17  
ANB21  
ANB23  
VSS  
A
B
C
D
E
F
AN29  
AN30  
AN31  
AN33 VDDA_B1 VSSA_B0 REFBYPCB ANB6  
ANB8  
ANB5  
ANB9  
ANB10  
ANB12  
ANB13  
ANB15  
ANB16  
ANB20  
ANB18  
ANB19  
VSS  
ANB22  
VSS  
VSS  
TCRCLKC  
AN34  
AN35  
AN37  
AN39  
AN38  
ANB1  
ANB0  
ANB2  
ANB4  
ANB3  
ETPUC0 ETPUC1  
VDDEH7 ETPUC2 ETPUC3  
VDDEH7 ETPUC4 ETPUC5 ETPUC6  
ETPUC7 ETPUC8 ETPUC9 ETPUC10  
ETPUC11 ETPUC12 ETPUC13 ETPUC14  
ETPUC15 ETPUC16 ETPUC17 ETPUC18  
ETPUC19 ETPUC20 ETPUC21 ETPUC22  
ETPUC23 ETPUC24 ETPUC25 ETPUC26  
ETPUC27 ETPUC28 ETPUC29 ETPUC30  
ETPUC31 ETPUB15 ETPUB14 VDDEH7  
VDDEH6 ETPUB11 ETPUB12 ETPUB13  
PXR40 416-ball TEPBGA  
(as viewed from top through the package)  
(2 of 4)  
G
H
J
G
H
J
K
L
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
M
N
M
N
VSS  
14  
VSS  
15  
VSS  
16  
VSS  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Figure 4. PXR40 416-ball TEPBGA (2 of 4)  
PXR40 Microcontroller Data Sheet, Rev. 1  
8
Freescale Semiconductor  
Pin assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
TXDB  
PLLCFG1 PLLCFG2 VDDEH1  
VDDE2  
VDDE2  
VSS  
VSS  
VSS  
P
R
T
P
JCOMP RESET PLLCFG0  
RDY  
EVTI  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VSS  
VSS  
R
VDDE2  
EVTO  
MDO2  
MDO6  
MDO9  
MCKO  
MSEO0  
MDO3  
MDO7  
MSEO1  
MDO0  
MDO4  
MDO8  
VDDE2  
T
U
V
MDO1  
MDO5  
VDDE2  
U
VDDE2  
VDDE2  
VDDE2  
VSS  
V
W
Y
W
Y
PXR40 416-ball TEPBGA  
(as viewed from top through the package)  
(3 of 4)  
MDO10 MDO11 MDO15  
AA MDO12 MDO13 MDO14 VDD33_2  
AA  
AB  
AC  
AD  
AB  
AC  
AD  
AE  
AF  
TDO  
VDDE2  
ENGCLK  
VDD  
TCK  
TDI  
TMS  
VDD  
VSS  
VDD  
VSS  
VDDE2  
PCSA1  
PCSA2  
SOUTA  
PCSA3  
PCSB4  
SCKA  
SCKB  
PCSB1 VDDEH3 VDDEH4  
VDD  
EMIOS8  
VDD  
VSS  
FR_A_TX FR_B_TX PCSA5  
PCSB0  
PCSB3 EMIOS2 EMIOS5 EMIOS9  
FR_A_RX FR_B_RX PCSA4  
PCSA0  
SINB  
EMIOS0 EMIOS3 EMIOS6 EMIOS10 AE  
FR_A_  
TX_EN  
FR_B_  
TX_EN  
AF  
VSS  
1
VDDE2  
2
VDDEH3 PCSB5  
SINA  
7
PCSB2  
8
SOUTB EMIOS1 EMIOS4 EMIOS7 EMIOS11  
3
4
5
6
9
10  
11  
12  
13  
Figure 5. PXR40 416-ball TEPBGA (3 of 4)  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
9
Pin assignments  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
P
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ETPUB7 ETPUB8 ETPUB9 ETPUB10  
ETPUB3 ETPUB4 ETPUB5 ETPUB6  
TCRCLKB ETPUB0 ETPUB1 ETPUB2  
ETPUB19 ETPUB18 ETPUB17 ETPUB16  
ETPUB26 ETPUB22 ETPUB21 ETPUB20  
REGSEL ETPUB25 ETPUB24 ETPUB23  
ETPUB29 ETPUB28 ETPUB27 REGCTL  
VDD33_3 ETPUB30 VDDREG VSSSYN  
P
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R
T
T
U
U
V
V
W
Y
W
Y
PXR40 416-ball TEPBGA  
(as viewed from top through the package)  
(4 of 4)  
AA  
AB  
AC  
AD  
AA  
AB  
AC  
AD  
AE  
AF  
VDD  
VSS  
ETPUB31 VSSFL  
EXTAL  
XTAL  
EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB CNRXD VDDEH5 PCSC1  
VDD  
VSS  
VDDEH6  
VDD  
EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30 CNTXB CNTXD  
SCKC  
RXDC  
SINC  
PCSC3  
PCSC2  
VDDSYN  
VDD  
AE EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA CNRXC PCSC0  
PCSC5  
VSS  
AF  
EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28 CNTXA CNTXC SOUTC VDDEH4  
TXDC  
23  
PCSC4 VDDEH5  
VSS  
26  
14  
15  
16  
17  
18  
19  
20  
21  
22  
24  
25  
Figure 6. PXR40 416-ball TEPBGA (4 of 4)  
PXR40 Microcontroller Data Sheet, Rev. 1  
10  
Freescale Semiconductor  
Signal properties and muxing  
4
Signal properties and muxing  
Table 2 shows the signals properties for each pin on the PXR40. For each port pin that has an associated SIU_PCRn register to  
control its pin properties, the supported functions column lists the functions associated with the programming of the  
SIU_PCRn[PA] bit in the order: Primary function (P), Function 2 (F2), Function 3 (F3), and GPIO (G). See Figure 7.  
Table 2. Signal Properties Summary  
P/  
GPIO/  
PCR1  
F/  
G
Pad  
I/O Type  
Signal Name2  
Function3  
TCRCLKA  
Function Summary  
Primary Functions  
are listed First  
P
113 TCRCLKA_IRQ7_GPIO113  
eTPU A TCR clock  
I
I
5V M  
A1  
A2  
G
IRQ7  
External interrupt request  
Secondary Functions  
are alternate functions  
I/O  
GPIO Functions are  
GPIO113  
GPIO  
listed Last  
Function not implemented on this device  
Figure 7. Supported functions example  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
11  
Table 2. Signal Properties and Muxing Summary  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
eTPU_A  
RESET8  
P
113 TCRCLKA_IRQ7_  
TCRCLKA  
IRQ7  
eTPU A TCR clock  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/Up  
—/Up  
L1  
L2  
L3  
L4  
K1  
K2  
GPIO113  
A1  
A2  
G
External interrupt request  
I
I/O  
I/O  
O
GPIO113  
ETPUA0  
ETPUA12  
GPIO  
P
114 ETPUA0_ETPUA12_  
GPIO114  
eTPU A channel  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
I/O  
O
GPIO114  
ETPUA1  
ETPUA13  
GPIO  
P
115 ETPUA1_ETPUA13_  
GPIO115  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
I/O  
O
GPIO115  
ETPUA2  
ETPUA14  
GPIO  
P
116 ETPUA2_ETPUA14_  
GPIO116  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
I/O  
O
GPIO116  
ETPUA3  
ETPUA15  
GPIO  
P
117 ETPUA3_ETPUA15_  
GPIO117  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
I/O  
O
GPIO117  
ETPUA4  
ETPUA16  
GPIO  
P
118 ETPUA4_ETPUA16_  
GPIO118  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
GPIO118  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
119 ETPUA5_ETPUA17_  
GPIO119  
ETPUA5  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
K3  
K4  
J1  
J2  
J3  
J4  
A1  
A2  
G
ETPUA17  
eTPU A channel (output only)  
GPIO119  
ETPUA6  
ETPUA18  
GPIO  
I/O  
I/O  
O
P
120 ETPUA6_ETPUA18_  
GPIO120  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO120  
ETPUA7  
ETPUA19  
GPIO  
I/O  
I/O  
O
P
121 ETPUA7_ETPUA19_  
GPIO121  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO121  
ETPUA8  
ETPUA20  
GPIO  
I/O  
I/O  
O
P
122 ETPUA8_ETPUA20_  
GPIO122  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO122  
ETPUA9  
ETPUA21  
GPIO  
I/O  
I/O  
O
P
123 ETPUA9_ETPUA21_  
GPIO123  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO123  
ETPUA10  
ETPUA22  
GPIO  
I/O  
I/O  
O
P
124 ETPUA10_ETPUA22_  
GPIO124  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO124  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
125 ETPUA11_ETPUA23_  
GPIO125  
ETPUA11  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
H1  
H2  
H4  
H3  
G1  
G2  
A1  
A2  
G
ETPUA23  
eTPU A channel (output only)  
GPIO125  
ETPUA12  
PCSB1  
GPIO  
I/O  
I/O  
O
P
126 ETPUA12_PCSB1_  
GPIO126  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO126  
ETPUA13  
PCSB3  
GPIO  
I/O  
I/O  
O
P
127 ETPUA13_PCSB3_  
GPIO127  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO127  
ETPUA14  
PCSB4  
GPIO  
I/O  
I/O  
O
P
128 ETPUA14_PCSB4_  
GPIO128  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO128  
ETPUA15  
PCSB5  
GPIO  
I/O  
I/O  
O
P
129 ETPUA15_PCSB5_  
GPIO129  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO129  
ETPUA16  
PCSD1  
GPIO  
I/O  
I/O  
O
P
130 ETPUA16_PCSD1_  
GPIO130  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO130  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
131 ETPUA17_PCSD2_  
GPIO131  
ETPUA17  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
G3  
G4  
F1  
F2  
F3  
F4  
A1  
A2  
G
PCSD2  
DSPI D peripheral chip select  
I/O  
I/O  
O
GPIO131  
ETPUA18  
PCSD3  
GPIO  
P
132 ETPUA18_PCSD3_  
GPIO132  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
I/O  
O
GPIO132  
ETPUA19  
PCSD4  
GPIO  
P
133 ETPUA19_PCSD4_  
GPIO133  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
I/O  
I
GPIO133  
ETPUA20  
IRQ8  
GPIO  
P
134 ETPUA20_IRQ8_  
GPIO134  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO134  
ETPUA21  
IRQ9  
GPIO  
P
135 ETPUA21_IRQ9_  
GPIO135  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO135  
ETPUA22  
IRQ10  
GPIO  
P
136 ETPUA22_IRQ10_  
GPIO136  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
GPIO136  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
137 ETPUA23_IRQ11_  
GPIO137  
ETPUA23  
eTPU A channel  
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
E1  
E2  
E3  
E4  
D1  
D2  
A1  
A2  
G
IRQ11  
External interrupt request  
I/O  
I/O  
I
GPIO137  
ETPUA24  
IRQ12  
GPIO  
P
138 ETPUA24_IRQ12_  
GPIO138  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO138  
ETPUA25  
IRQ13  
GPIO  
P
139 ETPUA25_IRQ13_  
GPIO139  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO139  
ETPUA26  
IRQ14  
GPIO  
P
140 ETPUA26_IRQ14_  
GPIO140  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO140  
ETPUA27  
IRQ15  
GPIO  
P
141 ETPUA27_IRQ15_  
GPIO141  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
O
GPIO141  
ETPUA28  
PCSC1  
GPIO  
P
142 ETPUA28_PCSC1_  
GPIO142  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
GPIO142  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
143 ETPUA29_PCSC2_  
GPIO143  
ETPUA29  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
D3  
C1  
C2  
A1  
A2  
G
PCSC2  
DSPI C peripheral chip select  
GPIO143  
ETPUA30  
PCSC3  
GPIO  
I/O  
I/O  
O
P
144 ETPUA30_PCSC3_  
GPIO144  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO144  
ETPUA31  
PCSC4  
GPIO  
I/O  
I/O  
O
P
145 ETPUA31_PCSC4_  
GPIO145  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO145  
GPIO  
I/O  
eTPU_B  
P
146 TCRCLKB_IRQ6_  
GPIO146  
TCRCLKB  
IRQ6  
eTPU B TCR clock  
I
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
—/Up  
—/Up  
T23  
T24  
T25  
A1  
A2  
G
External interrupt request  
I
I/O  
I/O  
O
GPIO146  
ETPUB0  
ETPUB16  
GPIO  
P
147 ETPUB0_ETPUB16_  
GPIO147  
eTPU B channel  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
I/O  
O
GPIO147  
ETPUB1  
ETPUB17  
GPIO  
P
148 ETPUB1_ETPUB17_  
GPIO148  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
GPIO148  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
149 ETPUB2_ETPUB18_  
GPIO149  
ETPUB2  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
T26  
R23  
R24  
R25  
R26  
P23  
A1  
A2  
G
ETPUB18  
eTPU B channel (output only)  
GPIO149  
ETPUB3  
ETPUB19  
GPIO  
I/O  
I/O  
O
P
150 ETPUB3_ETPUB19_  
GPIO150  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO150  
ETPUB4  
ETPUB20  
GPIO  
I/O  
I/O  
O
P
151 ETPUB4_ETPUB20_  
GPIO151  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO151  
ETPUB5  
ETPUB21  
GPIO  
I/O  
I/O  
O
P
152 ETPUB5_ETPUB21_  
GPIO152  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO152  
ETPUB6  
ETPUB22  
GPIO  
I/O  
I/O  
O
P
153 ETPUB6_ETPUB22_  
GPIO153  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO153  
ETPUB7  
ETPUB23  
GPIO  
I/O  
I/O  
O
P
154 ETPUB7_ETPUB23_  
GPIO154  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO154  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
155 ETPUB8_ETPUB24_  
GPIO155  
ETPUB8  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
P24  
P25  
P26  
N24  
N25  
N26  
A1  
A2  
G
ETPUB24  
eTPU B channel (output only)  
GPIO155  
ETPUB9  
ETPUB25  
GPIO  
I/O  
I/O  
O
P
156 ETPUB9_ETPUB25_  
GPIO156  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO156  
ETPUB10  
ETPUB26  
GPIO  
I/O  
I/O  
O
P
157 ETPUB10_ETPUB26_  
GPIO157  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO157  
ETPUB11  
ETPUB27  
GPIO  
I/O  
I/O  
O
P
158 ETPUB11_ETPUB27_  
GPIO158  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO158  
ETPUB12  
ETPUB28  
GPIO  
I/O  
I/O  
O
P
159 ETPUB12_ETPUB28_  
GPIO159  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO159  
ETPUB13  
ETPUB29  
GPIO  
I/O  
I/O  
O
P
160 ETPUB13_ETPUB29_  
GPIO160  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO160  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
161 ETPUB14_ETPUB30_  
GPIO161  
ETPUB14  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
M25  
M24  
U26  
U25  
U24  
U23  
A1  
A2  
G
ETPUB30  
eTPU B channel (output only)  
GPIO161  
ETPUB15  
ETPUB31  
GPIO  
I/O  
I/O  
O
P
162 ETPUB15_ETPUB31_  
GPIO162  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO162  
ETPUB16  
PCSA1  
GPIO  
I/O  
I/O  
O
P
163 ETPUB16_PCSA1_  
GPIO163  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO163  
ETPUB17  
PCSA2  
GPIO  
I/O  
I/O  
O
P
164 ETPUB17_PCSA2_  
GPIO164  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO164  
ETPUB18  
PCSA3  
GPIO  
I/O  
I/O  
O
P
165 ETPUB18_PCSA3_  
GPIO165  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO165  
ETPUB19  
PCSA4  
GPIO  
I/O  
I/O  
O
P
166 ETPUB19_PCSA4_  
GPIO166  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO166  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
167 ETPUB20_  
ETPUB20  
eTPU B channel  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
V26  
V25  
V24  
W26  
W25  
W24  
GPIO167  
A1  
A2  
G
GPIO167  
ETPUB21  
GPIO  
I/O  
I/O  
P
168 ETPUB21_  
GPIO168  
eTPU B channel  
A1  
A2  
G
GPIO168  
ETPUB22  
GPIO  
I/O  
I/O  
P
169 ETPUB22_  
GPIO169  
eTPU B channel  
A1  
A2  
G
GPIO169  
ETPUB23  
GPIO  
I/O  
I/O  
P
170 ETPUB23_  
GPIO170  
eTPU B channel  
A1  
A2  
G
GPIO170  
ETPUB24  
GPIO  
I/O  
I/O  
P
171 ETPUB24_  
GPIO171  
eTPU B channel  
A1  
A2  
G
GPIO171  
ETPUB25  
GPIO  
I/O  
I/O  
P
172 ETPUB25_  
GPIO172  
eTPU B channel  
A1  
A2  
G
GPIO172  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
173 ETPUB26_  
ETPUB26  
eTPU B channel  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
V23  
GPIO173  
A1  
A2  
G
GPIO173  
ETPUB27  
GPIO  
I/O  
I/O  
P
174 ETPUB27_  
GPIO174  
eTPU B channel  
Y25  
A1  
A2  
G
GPIO174  
ETPUB28  
GPIO  
I/O  
I/O  
P
175 ETPUB28_  
GPIO175  
eTPU B channel  
Y24  
A1  
A2  
G
GPIO175  
ETPUB29  
GPIO  
I/O  
I/O  
P
176 ETPUB29_  
GPIO176  
eTPU B channel  
Y23  
A1  
A2  
G
GPIO176  
ETPUB30  
GPIO  
I/O  
I/O  
P
177 ETPUB30_  
GPIO177  
eTPU B channel  
AA24  
AB24  
A1  
A2  
G
GPIO177  
ETPUB31  
GPIO  
I/O  
I/O  
P
178 ETPUB31_  
GPIO178  
eTPU B channel  
A1  
A2  
G
GPIO178  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
GPIO, IRQ, FlexRay  
RESET8  
P
440 TCRCLKC_  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/Up  
—/Up  
B26  
C25  
C26  
D25  
D26  
E24  
GPIO4409  
A1  
A2  
G
GPIO440  
GPIO  
P
441 ETPUC0_  
GPIO4419  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
GPIO441  
GPIO  
P
442 ETPUC1_  
GPIO4429  
A1  
A2  
G
GPIO442  
GPIO  
P
443 ETPUC2_  
GPIO4439  
A1  
A2  
G
GPIO443  
GPIO  
P
444 ETPUC3_  
GPIO4449  
A1  
A2  
G
GPIO444  
GPIO  
P
445 ETPUC4_  
GPIO4459  
A1  
A2  
G
GPIO445  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
446 ETPUC5_  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
E25  
E26  
F23  
F24  
F25  
F26  
GPIO4469  
A1  
A2  
G
GPIO446  
GPIO  
P
447 ETPUC6_  
GPIO4479  
A1  
A2  
G
GPIO447  
GPIO  
P
448 ETPUC7_  
GPIO4489  
A1  
A2  
G
GPIO448  
GPIO  
P
449 ETPUC8_  
GPIO4499  
A1  
A2  
G
GPIO449  
GPIO  
P
450 ETPUC9_IRQ0_  
GPIO4509  
A1  
A2  
G
IRQ0  
External interrupt request  
I/O  
I
GPIO450  
GPIO  
P
451 ETPUC10__IRQ1_  
GPIO4519  
A1  
A2  
G
IRQ1  
External interrupt request  
I/O  
GPIO451  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
452 ETPUC11_IRQ2_  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
G23  
G24  
G25  
G26  
H23  
H24  
GPIO4529  
A1  
A2  
G
IRQ2  
External interrupt request  
I/O  
I
GPIO452  
GPIO  
P
453 ETPUC12_IRQ3_  
GPIO4539  
A1  
A2  
G
IRQ3  
External interrupt request  
I/O  
I
GPIO453  
GPIO  
P
454 ETPUC13_3_IRQ4_  
GPIO4549  
A1  
A2  
G
IRQ4  
External interrupt request  
I/O  
I
GPIO454  
GPIO  
P
455 ETPUC14_4_IRQ5_  
GPIO4559  
A1  
A2  
G
IRQ5  
External interrupt request  
I/O  
I/O  
O
GPIO455  
GPIO  
P
456 ETPUC15__  
GPIO4569  
A1  
A2  
G
GPIO456  
GPIO  
P
457 ETPUC16_FR_A_TX_  
GPIO4579  
A1  
A2  
G
FR_A_TX  
FlexRay A transfer  
I/O  
GPIO457  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
458 ETPUC17_FR_A_RX_  
GPIO4589  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
H25  
H26  
J23  
J24  
J25  
J26  
A1  
A2  
G
FR_A_RX  
FlexRay A receive  
I/O  
O
GPIO458  
GPIO  
P
459 ETPUC18_FR_A_TX_EN_  
9
GPIO459  
A1  
A2  
G
FR_A_TX_EN  
FlexRay A transfer enable  
I/O  
O
GPIO459  
GPIO  
P
460 ETPUC19_TXDA_  
GPIO4609  
A1  
A2  
G
TXDA  
eSCI A transmit  
I/O  
I
GPIO460  
GPIO  
P
461 ETPUC20_RXDA _  
GPIO4619  
A1  
A2  
G
RXDA  
eSCI A receive  
I/O  
O
GPIO461  
GPIO  
P
462 ETPUC21_TXDB_  
GPIO4629  
A1  
A2  
G
TXDB  
eSCI B transmit  
I/O  
I
GPIO462  
GPIO  
P
463 ETPUC22_RXDB_  
GPIO4639  
A1  
A2  
G
RXDB  
eSCI B receive  
I/O  
GPIO463  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
464 ETPUC23_PCSD5_  
GPIO4649  
O
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
K23  
K24  
K25  
A1  
A2  
A3  
G
PCSD5  
MAA0  
MAB0  
GPIO464  
DSPI D peripheral chip select  
ADC A Mux Address 0  
O
ADC B Mux Address 0  
O
GPIO  
I/O  
O
P
465 ETPUC24_PCSD4_  
GPIO4659  
A1  
A2  
A4  
G
PCSD4  
MAA1  
MAB1  
GPIO465  
DSPI D peripheral chip select  
ADC A Mux Address 1  
O
ADC B Mux Address 1  
O
GPIO  
I/O  
O
P
466 ETPUC25_PCSD3_  
GPIO4669  
A1  
A2  
A3  
G
PCSD3  
MAA2  
MAB2  
GPIO466  
DSPI D peripheral chip select  
ADC A Mux Address 2  
O
ADC B Mux Address 2  
O
GPIO  
I/O  
O
P
467 ETPUC26_PCSD2_  
GPIO4679  
MH  
MH  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
K26  
L23  
A1  
A2  
G
PCSD2  
DSPI D peripheral chip select  
I/O  
O
GPIO467  
GPIO  
P
468 ETPUC27_PCSD1_  
GPIO4689  
VDDEH7  
A1  
A2  
G
PCSD1  
DSPI D peripheral chip select  
I/O  
GPIO468  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
469 ETPUC28_PCSD0_  
GPIO4699  
I/O  
I/O  
I/O  
I/O  
O
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
L24  
L25  
L26  
M23  
A1  
A2  
G
PCSD0  
DSPI D peripheral chip select  
GPIO469  
GPIO  
P
470 ETPUC29_SCKD_  
GPIO4709  
A1  
A2  
G
SCKD  
DSPI D clock  
GPIO470  
GPIO  
P
471 ETPUC30_SOUTD_  
GPIO4719  
A1  
A2  
G
SOUTD  
DSPI D data output  
I/O  
I
GPIO471  
GPIO  
P
472 ETPUC31_SIND_  
GPIO4729  
A1  
A2  
G
SIND  
DSPI D data input  
I/O  
GPIO472  
GPIO  
eMIOS  
P
179 EMIOS0_ETPUA0_  
GPIO179  
EMIOS0  
ETPUA0  
eMIOS channel  
eTPU A channel  
I/O  
O
MH  
MH  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AE10  
AF10  
A1  
A2  
G
GPIO179  
EMIOS1  
ETPUA1  
GPIO  
I/O  
I/O  
O
P
180 EMIOS1_ETPUA1_  
GPIO180  
eMIOS channel  
eTPU A channel  
VDDEH4  
A1  
A2  
G
GPIO180  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
181 EMIOS2_ETPUA2_  
GPIO181  
EMIOS2  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AD11  
AE11  
AF11  
AD12  
AE12  
AF12  
A1  
A2  
G
ETPUA2  
eTPU A channel  
GPIO181  
EMIOS3  
ETPUA3  
GPIO  
I/O  
I/O  
O
P
182 EMIOS3_ETPUA3_  
GPIO182  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO182  
EMIOS4  
ETPUA4  
GPIO  
I/O  
I/O  
O
P
183 EMIOS4_ETPUA4_  
GPIO183  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO183  
EMIOS5  
ETPUA5  
GPIO  
I/O  
I/O  
O
P
184 EMIOS5_ETPUA5_  
GPIO184  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO184  
EMIOS6  
ETPUA6  
GPIO  
I/O  
I/O  
O
P
185 EMIOS6_ETPUA6_  
GPIO185  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO185  
EMIOS7  
ETPUA7  
GPIO  
I/O  
I/O  
O
P
186 EMIOS7_ETPUA7_  
GPIO186  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO186  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
187 EMIOS8_ETPUA8_  
GPIO187  
EMIOS8  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AC13  
AD13  
AE13  
AF13  
AF14  
AE14  
A1  
A2  
G
ETPUA8  
eTPU A channel  
I/O  
I/O  
O
GPIO187  
EMIOS9  
ETPUA9  
GPIO  
P
188 EMIOS9_ETPUA9_  
GPIO188  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
I/O  
I/O  
O
GPIO188  
EMIOS10  
SCKD  
GPIO  
P
189 EMIOS10_SCKD_  
GPIO189  
eMIOS channel  
DSPI D clock  
A1  
A2  
G
I/O  
I/O  
I
GPIO189  
EMIOS11  
SIND  
GPIO  
P
190 EMIOS11_SIND_  
GPIO190  
eMIOS channel  
DSPI D data input  
A1  
A2  
G
I/O  
O
GPIO190  
EMIOS12  
SOUTC  
GPIO  
P
191 EMIOS12_SOUTC_  
GPIO191  
eMIOS channel  
DSPI C data output  
A1  
A2  
G
O
I/O  
O
GPIO191  
EMIOS13  
SOUTD  
GPIO  
P
192 EMIOS13_SOUTD_  
GPIO192  
eMIOS channel  
DSPI D data output  
A1  
A2  
G
O
I/O  
GPIO192  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
193 EMIOS14_IRQ0_  
EMIOS14  
eMIOS channel  
O
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AC14  
AD14  
AF15  
AE15  
AC15  
AD15  
GPIO193  
A1  
A2  
G
IRQ0  
External interrupt request  
FlexCAN D transmit  
GPIO  
CNTXD  
O
GPIO193  
EMIOS15  
IRQ1  
I/O  
O
P
194 EMIOS15_IRQ1_  
GPIO194  
eMIOS channel  
External interrupt request  
FlexCAN D receive  
GPIO  
A1  
A2  
G
I
CNRXD  
I
GPIO194  
EMIOS16  
ETPUB0  
FR_DBG[3]  
GPIO195  
EMIOS17  
ETPUB1  
FR_DBG[2]  
GPIO196  
EMIOS18  
ETPUB2  
FR_DBG[1]  
GPIO197  
EMIOS19  
ETPUB3  
FR_DBG[0]  
GPIO198  
I/O  
I/O  
O
P
195 EMIOS16_ETPUB0_  
GPIO195  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
I/O  
O
P
196 EMIOS17_ETPUB1_  
GPIO196  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
I/O  
O
P
197 EMIOS18_ETPUB2_  
GPIO197  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
I/O  
O
P
198 EMIOS19_ETPUB3_  
GPIO198  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
199 EMIOS20_ETPUB4_  
GPIO199  
EMIOS20  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AF16  
AE16  
AC16  
AD16  
AF17  
AE17  
A1  
A2  
G
ETPUB4  
eTPU B channel  
GPIO199  
EMIOS21  
ETPUB5  
GPIO  
I/O  
I/O  
O
P
200 EMIOS21_ETPUB5_  
GPIO200  
eMIOS channel  
A1  
A2  
G
eTPU B channel  
GPIO200  
EMIOS22  
ETPUB6  
GPIO  
I/O  
I/O  
O
P
201 EMIOS22_ETPUB6_  
GPIO201  
eMIOS channel  
A1  
A2  
G
eTPU B channel  
GPIO201  
EMIOS23  
ETPUB7  
GPIO  
I/O  
I/O  
O
P
202 EMIOS23_ETPUB7_  
GPIO202  
eMIOS channel  
A1  
A2  
G
eTPU B channel  
GPIO202  
EMIOS24  
PCSB0  
GPIO  
I/O  
I/O  
I/O  
P
203 EMIOS24_PCSB0_  
GPIO203  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO203  
EMIOS25  
PCSB1  
GPIO  
I/O  
I/O  
O
P
204 EMIOS25_PCSB1_  
GPIO204  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO204  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
432 EMIOS26_PCSB2_  
GPIO432  
EMIOS26  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
AD17  
AC17  
AF18  
AE18  
AD18  
AC18  
A1  
A2  
G
PCSB2  
DSPI B peripheral chip select  
GPIO432  
EMIOS27  
PCSB3  
GPIO  
I/O  
I/O  
O
P
433 EMIOS27_PCSB3_  
GPIO433  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO433  
EMIOS28  
PCSC0  
GPIO  
I/O  
I/O  
I/O  
P
434 EMIOS28_PCSC0_  
GPIO434  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO434  
EMIOS29  
PCSC1  
GPIO  
I/O  
I/O  
O
P
435 EMIOS29_PCSC1_  
GPIO435  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO435  
EMIOS30  
PCSC2  
GPIO  
I/O  
I/O  
O
P
436 EMIOS30_PCSC2_  
GPIO436  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO436  
EMIOS31  
PCSC5  
GPIO  
I/O  
I/O  
O
P
437 EMIOS31_PCSC5_  
GPIO437  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO437  
GPIO  
I/O  
eQADC  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
P
P
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA010  
eQADC A analog input  
I
I
I
I
I
I
I
I
AE/up-  
down  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
A4  
B5  
C5  
D6  
A5  
B6  
C6  
D7  
ANA110  
ANA210  
ANA310  
ANA410  
ANA510  
ANA610  
ANA710  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
P
P
P
P
P
P
P
P
P
P
P
P
ANA8  
ANA9  
ANA8  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
I
I
I
I
I
I
I
I
I
I
I
I
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
ANA8  
ANA9  
ANA8  
ANA9  
A6  
C7  
B7  
ANA9  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
A7  
D8  
C8  
B8  
A8  
D9  
C9  
D10  
C10  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
ANA20  
ANA20  
eQADC A analog input  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_B1  
VDDA_B1  
VDDA_B1  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B1  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
D11  
C11  
D12  
C12  
B12  
D13  
C13  
B13  
A13  
B14  
C14  
D14  
A14  
B15  
C15  
D15  
A15  
C16  
C17  
D16  
C18  
ANA21  
ANA22  
ANA23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
ANA21  
ANA22  
ANA23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC A and B shared analog input  
eQADC B analog input  
AE/up-  
down  
P
P
ANB1  
ANB2  
ANB1  
ANB2  
eQADC B analog input  
eQADC B analog input  
I
I
AE/up-  
down  
VDDA_B0  
ANB1  
ANB2  
ANB1  
ANB2  
D17  
D18  
AE/up-  
down  
VDDA_B0  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
ANB3  
eQADC B analog input  
I
I
I
I
I
AE/up-  
down  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
D19  
C19  
C20  
B19  
A20  
ANB4  
ANB5  
ANB6  
ANB7  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
AE/up-  
down  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
ANB8  
ANB9  
ANB8  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
ADC A Voltage reference high  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AE  
AE  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VRH_A  
ANB8  
ANB9  
ANB8  
ANB9  
B20  
D20  
B21  
A21  
C21  
D21  
A22  
B22  
C22  
A23  
B23  
C23  
D22  
A24  
B24  
A25  
A12  
ANB9  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB17  
ANB18  
ANB19  
ANB20  
ANB21  
ANB22  
ANB23  
VRH_A  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB17  
ANB18  
ANB19  
ANB20  
ANB21  
ANB22  
ANB23  
VRH_A  
AE  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB17  
ANB18  
ANB19  
ANB20  
ANB21  
ANB22  
ANB23  
VRH_A  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB17  
ANB18  
ANB19  
ANB20  
ANB21  
ANB22  
ANB23  
VRH_A  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
VDDINT  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
P
P
P
P
P
P
P
VRL_A  
VRL_A  
ADC A Voltage reference low  
ADC B Voltage reference high  
ADC B Voltage reference low  
ADC B Reference bypass capacitor  
ADC A Reference bypass capacitor  
Internal logic supply input  
Internal logic supply input  
ADC A Reference bypass capacitor  
Ground  
I
I
I
I
I
I
I
I
I
I
I
I
I
VSSINT  
VDDINT  
VSSINT  
AE  
VRL_A  
VRH_B  
VRL_A  
VRH_B  
VRL_A  
VRH_B  
A11  
A19  
A18  
B18  
B11  
A9  
VRH_B  
VRH_B  
VRL_B  
VRL_B  
VRL_B  
VRL_B  
VRL_B  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
REFBYPCA1  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
REFBYPCB1  
REFBYPCB  
REFBYPCA  
VDDA_A  
VDDA_B0  
VDDA_A1  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
AE  
VDDE VDDA_A0  
VDDE VDDA_A1  
VDDA_A  
B9  
REFBYPCA1  
VSSA_A  
AE  
VDDA_A1 REFBYPCA1 REFBYPCA1  
A10  
B10  
A16  
B16  
B17  
A17  
VSSE VSSA_A1  
VDDE VDDA_B0  
VDDE VDDA_B1  
VSSE VSSA_B0  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
VDDA_B  
Internal logic supply input  
Internal logic supply input  
Ground  
VDDA_B  
VSSA_B  
REFBYPCB1  
ADC B Reference bypass capacitor  
AE  
VDDA_B0 REFBYPCB1 REFBYPCB1  
FlexRay  
P
248 FR_A_TX_  
GPIO248  
FR_A_TX  
FlexRay A transfer  
O
I/O  
I
FS  
VDDE2  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
AD4  
AE3  
A1  
A2  
G
GPIO248  
FR_A_RX  
GPIO  
P
249 FR_A_RX_  
GPIO249  
FlexRay A receive  
FS  
VDDE2  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
A1  
A2  
G
I/O  
GPIO249  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
250 FR_A_TX_EN_  
FR_A_TX_EN  
FlexRay A transfer enable  
O
I/O  
O
FS  
FS  
FS  
FS  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
AF3  
AD5  
AE4  
AF4  
GPIO250  
A1  
A2  
G
GPIO250  
FR_B_TX  
GPIO  
P
251 FR_B_TX_  
GPIO251  
FlexRay B transfer  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
A1  
A2  
G
I/O  
I
GPIO251  
FR_B_RX  
GPIO  
P
252 FR_B_RX_  
GPIO252  
FlexRay B receive  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
A1  
A2  
G
I/O  
O
GPIO252  
FR_B_TX_EN  
GPIO  
P
253 FR_B_TX_EN_  
GPIO253  
FlexRay B transfer enable  
—/Up  
(–/– for Rev.1  
of the device) of the device)  
—/Up  
(–/– for Rev.1  
A1  
A2  
G
I/O  
GPIO253  
GPIO  
FlexCAN  
P
83 CNTXA_TXDA_  
GPIO83  
CNTXA  
TXDA  
FlexCAN A transmit  
O
O
MH  
MH  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
AF19  
AE19  
A1  
A2  
G
eSCI A transmit  
I/O  
I
GPIO83  
CNRXA  
RXDA  
GPIO  
P
84 CNRXA_RXDA_  
GPIO84  
FlexCAN A receive  
eSCI A receive  
VDDEH4  
A1  
A2  
G
I
I/O  
GPIO84  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
85 CNTXB_PCSC3_  
CNTXB  
FlexCAN B transmit  
O
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AD19  
AC19  
AF20  
AE20  
AD20  
AC20  
GPIO85  
A1  
A2  
G
PCSC3  
DSPI C peripheral chip select  
I/O  
I
GPIO85  
CNRXB  
PCSC4  
GPIO  
P
86 CNRXB_PCSC4_  
GPIO86  
FlexCAN B receive  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
O
GPIO86  
CNTXC  
PCSD3  
GPIO  
P
87 CNTXC_PCSD3_  
GPIO87  
FlexCAN C transmit  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
I
GPIO87  
CNRXC  
PCSD4  
GPIO  
P
88 CNRXC_PCSD4_  
GPIO88  
FlexCAN C receive  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
O
GPIO88  
CNTXD  
GPIO  
P
246 CNTXD_  
GPIO246  
FlexCAN D transmit  
A1  
A2  
G
I/O  
I
GPIO246  
CNRXD  
GPIO  
P
247 CNRXD_  
GPIO247  
FlexCAN D receive  
A1  
A2  
G
I/O  
GPIO247  
GPIO  
eSCI  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
89 TXDA_  
TXDA  
eSCI A transmit  
O
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH4  
VDDEH5  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
M2  
GPIO89  
A1  
A2  
G
GPIO89  
RXDA  
GPIO  
P
90 RXDA _  
GPIO90  
eSCI A receive  
M3  
A1  
A2  
G
I
GPIO90  
TXDB  
PCSD1  
GPIO  
P
91 TXDB_PCSD1_  
GPIO91  
eSCI B transmit  
O
P1  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
I
GPIO91  
RXDB  
PCSD5  
GPIO  
P
92 RXDB_PCSD5_  
GPIO92  
eSCI B receive  
N1  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
O
GPIO92  
TXDC  
ETRIG0  
GPIO  
P
244 TXDC_ETRIG0_  
GPIO244  
eSCI C transmit  
AF23  
AD22  
A1  
A2  
G
eQADC trigger input  
I
I/O  
I
GPIO244  
RXDC  
GPIO  
P
245 RXDC_  
GPIO245  
eSCI C receive  
A1  
A2  
G
I/O  
GPIO245  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
DSPI  
RESET8  
P
93 SCKA_PCSC1_  
SCKA  
DSPI A clock  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AD8  
AF7  
AD7  
AE6  
AC6  
AC7  
GPIO93  
A1  
A2  
G
PCSC1  
DSPI C peripheral chip select  
I/O  
I
GPIO93  
SINA  
PCSC2  
GPIO  
P
94 SINA_PCSC2_  
GPIO94  
DSPI A data input  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
O
GPIO94  
SOUTA  
PCSC5  
GPIO  
P
95 SOUTA_PCSC5_  
GPIO95  
DSPI A data output  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
I/O  
O
GPIO95  
PCSA0  
PCSD2  
GPIO  
P
96 PCSA0_PCSD2_  
GPIO96  
DSPI A peripheral chip select  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
O
GPIO96  
PCSA1  
GPIO  
P
97 PCSA1_  
GPIO97  
DSPI A peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO97  
PCSA2  
GPIO  
P
98 PCSA2_  
GPIO98  
DSPI A peripheral chip select  
A1  
A2  
G
I/O  
GPIO98  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
99 PCSA3_  
PCSA3  
DSPI A peripheral chip select  
O
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE7  
AE5  
AD6  
AE8  
AE9  
AF9  
GPIO99  
A1  
A2  
G
GPIO99  
PCSA4  
GPIO  
P
100 PCSA4_  
GPIO100  
DSPI A peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO100  
PCSA5  
ETRIG1  
GPIO  
P
101 PCSA5_ETRIG1_  
GPIO101  
DSPI A peripheral chip select  
A1  
A2  
G
eQADC trigger input  
I
I/O  
I/O  
I/O  
I
GPIO101  
SCKB  
GPIO  
P
102 SCKB_  
GPIO102  
DSPI B clock  
A1  
A2  
G
GPIO102  
SINB  
GPIO  
P
103 SINB_  
GPIO103  
DSPI B data input  
A1  
A2  
G
I/O  
O
GPIO103  
SOUTB  
GPIO  
P
104 SOUTB_  
GPIO104  
DSPI B data output  
A1  
A2  
G
I/O  
GPIO104  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
105 PCSB0_PCSD2_  
PCSB0  
DSPI B peripheral chip select  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AD9  
AC9  
AF8  
GPIO105  
A1  
A2  
G
PCSD2  
DSPI D peripheral chip select  
I/O  
O
GPIO105  
PCSB1  
PCSD0  
GPIO  
P
106 PCSB1_PCSD0_  
GPIO106  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
I/O  
O
GPIO106  
PCSB2  
SOUTC  
GPIO  
P
107 PCSB2_SOUTC_  
GPIO107  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI C data output  
O
I/O  
O
GPIO107  
PCSB3  
SINC  
GPIO  
P
108 PCSB3_SINC_  
GPIO108  
DSPI B peripheral chip select  
AD10  
AC8  
AF6  
A1  
A2  
G
DSPI C data input  
I
I/O  
O
GPIO108  
PCSB4  
SCKC  
GPIO  
P
109 PCSB4_SCKC_  
GPIO109  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI C clock  
I/O  
I/O  
O
GPIO109  
PCSB5  
PCSC0  
GPIO  
P
110 PCSB5_PCSC0_  
GPIO110  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
I/O  
GPIO110  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
235 SCKC_SCK_C_LVDSP_  
GPIO235  
SCKC  
DSPI C clock  
I/O  
O
MH+  
LVDS  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AD21  
AE22  
AF21  
AE21  
AC22  
A1  
SCK_C_LVDSP  
LVDS+ downstream signal positive  
output clock  
A2  
G
I/O  
I
GPIO235  
SINC  
GPIO  
P
236 SINC_SCK_C_LVDSM_  
GPIO236  
DSPI C data input  
MH+  
LVDS  
A1  
SCK_C_LVDSM  
LVDS– downstream signal negative  
output clock  
O
A2  
G
I/O  
O
GPIO236  
SOUTC  
GPIO  
P
237 SOUTC_SOUT_C_LVDSP_  
GPIO237  
DSPI C data output  
MH+  
LVDS  
A1  
SOUT_C_LVDSP  
LVDS+ downstream signal positive  
output data  
O
A2  
G
I/O  
I/O  
O
GPIO237  
PCSC0  
GPIO  
P
238 PCSC0_SOUT_C_LVDSM_  
GPIO238  
DSPI C peripheral chip select  
MH+  
LVDS  
A1  
SOUT_C_LVDSM  
LVDS– downstream signal negative  
output data  
A2  
G
I/O  
O
GPIO238  
PCSC1  
GPIO  
P
239 PCSC1_  
GPIO239  
DSPI C peripheral chip select  
MH  
A1  
A2  
G
GPIO239  
GPIO  
I/O  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
240 PCSC2_GPIO240  
PCSC2  
DSPI C peripheral chip select  
O
I/O  
O
MH  
MH  
MH  
MH  
VDDEH5  
VDDEH5  
VDDEH5  
VDDEH5  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE23  
AD23  
AF24  
AE24  
A1  
A2  
G
GPIO240  
PCSC3  
GPIO  
P
241 PCSC3_GPIO241  
242 PCSC4_GPIO242  
243 PCSC5_GPIO243  
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO241  
PCSC4  
GPIO  
P
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO242  
PCSC5  
GPIO  
P
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
GPIO243  
GPIO  
Reset and Clocks  
P
P
RESET  
RESET  
External reset input  
External reset output  
I
MH  
MH  
VDDEH1  
RESET/Up  
RESET/Up  
R2  
A3  
230 RSTOUT  
RSTOUT  
O
VDDEH1 RSTOUT/Low  
RSTOUT/  
High  
P
212 BOOTCFG1_IRQ3_  
GPIO212  
BOOTCFG1  
IRQ3  
Boot configuration  
I
I
MH  
VDDEH1  
BOOTCFG/  
Down  
Input/Down  
N2  
A1  
A2  
G
External interrupt request  
I/O  
GPIO212  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
213 WKPCFG_NMI_  
WKPCFG  
Weak pull configuration input  
Critical interrupt to core11  
I
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
WKPCFG/Up  
PLLCFG/Up  
PLLCFG/Up  
Input/Up  
N3  
R3  
P2  
P3  
GPIO213  
A1  
A2  
G
NMI  
I
I
GPIO213  
PLLCFG0  
IRQ4  
GPIO  
P
208 PLLCFG0_IRQ4_  
GPIO208  
FMPLL mode configuration input  
External interrupt request  
I
Input/Up  
A1  
A2  
G
I
I/O  
I
GPIO208  
PLLCFG1  
IRQ5  
GPIO  
P
209 PLLCFG1_IRQ5_  
GPIO209  
FMPLL mode configuration input  
External interrupt request  
DSPI D data output  
GPIO  
Input/Up  
(for Rev2 of  
the device:  
—/Up)  
A1  
A2  
G
I
SOUTD  
GPIO209  
PLLCFG2  
O
I/O  
I
P
PLLCFG2  
FMPLL mode configuration input  
PLLCFG/  
Down  
PLLCFG/  
Down  
P
P
P
XTAL  
XTAL  
Crystal oscillator output  
Crystal oscillator input  
O
I
AE  
AE  
F
VDD33  
VDD33  
VDDE2  
XTAL  
XTAL  
AC26  
AB26  
AD1  
EXTAL  
EXTAL  
ENGCLK  
EXTAL  
EXTAL  
214 ENGCLK  
EBI engineering clock output  
O
ENGCLK/  
Enabled  
ENGCLK/  
Enabled  
Note: EXTCLK (External clock input)  
selected through SIU register)  
JTAG and Nexus  
(see footnote12 about resets)  
13  
EVTI  
EVTI  
Nexus event in  
I
F
F
VDDE2  
VDDE2  
—/Up  
EVTI/Up  
EVTO/HI  
T4  
U1  
13  
227 EVTO  
(the BAM uses this pin to  
EVTO  
Nexus event out  
O
ABS/Up  
select if auto baud rate is on  
or off)  
13  
Disabled14  
T2  
219 MCKO  
MCKO  
Nexus message clock out  
O
F
VDDE2  
O/Low  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
13  
220 MDO0_GPIO220  
MDO015  
Nexus message data out  
O
I/O  
O
F
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
MDO0/Low  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
U3  
U4  
V1  
V2  
V3  
V4  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
GPIO220  
MDO115  
GPIO  
13  
221 MDO1_GPIO221  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO221  
MDO215  
GPIO  
13  
222 MDO2_GPIO222  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO222  
MDO315  
GPIO  
13  
223 MDO3_GPIO223  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO223  
MDO415  
GPIO  
13  
75 MDO4_GPIO75  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO75  
MDO515  
GPIO  
13  
76 MDO5_GPIO76  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
GPIO76  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
13  
77 MDO6_GPIO77  
MDO615  
Nexus message data out  
O
I/O  
O
F
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
W1  
W2  
W3  
Y1  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
GPIO77  
MDO715  
GPIO  
13  
78 MDO7_GPIO78  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO78  
MDO815  
GPIO  
13  
79 MDO8_GPIO79  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO79  
MDO915  
GPIO  
13  
80 MDO9_GPIO80  
Nexus message data out  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
A1  
A2  
G
I/O  
O
GPIO80  
MDO1015  
GPIO  
13  
81 MDO10_GPIO81  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
Nexus message data out  
Y2  
A1  
A2  
G
I/O  
O
GPIO81  
MDO1115  
GPIO  
13  
82 MDO11_GPIO82  
(GPIO function on this pin is  
only available on Rev.2 of the  
device)  
Nexus message data out  
Y3  
A1  
A2  
G
I/O  
GPIO82  
GPIO  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
13  
231 MDO12_GPIO231  
MDO1215  
Nexus message data out  
O
I/O  
O
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
—/Down  
—/Down  
—/Down  
—/Down  
AA1  
AA2  
AA3  
Y4  
A1  
A2  
G
GPIO231  
MDO1315  
GPIO  
13  
232 MDO13_GPIO232  
233 MDO14_GPIO233  
234 MDO15_GPIO234  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO232  
MDO1415  
GPIO  
13  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO233  
MDO1515  
GPIO  
13  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO234  
MSEO015  
MSEO115  
RDY  
GPIO  
13  
224 MSEO0  
225 MSEO1  
226 RDY  
Nexus message start/end out  
Nexus message start/end out  
Nexus ready output  
JTAG test clock input  
JTAG test data input  
JTAG test data output  
JTAG test mode select input  
JTAG TAP controller enable  
F
F
F
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
MSEO/HI  
MSEO/HI  
RDY/HI  
U2  
T3  
13  
13  
13  
13  
13  
13  
13  
O
O
O/Low  
R4  
TCK  
TDI  
TCK  
I
TCK/Down  
TDI/Up  
TCK/Down  
TDI/Up  
AB2  
AC2  
AB1  
AB3  
R1  
TDI  
I
228 TDO  
TDO  
O
TDO/Up  
TMS/Up  
TDO/Up  
TMS/Up  
TMS  
TMS  
I
JCOMP  
JCOMP  
I
JCOMP/Down JCOMP/Down  
Table 2. Signal Properties and Muxing Summary (continued)  
State  
during  
RESET7  
State  
after  
Package  
Location  
(416)  
Signal Name2  
Function4  
Function Summary  
RESET8  
TEST  
TEST  
Test mode select (not for customer  
use)  
I
F
VDDEH1  
TEST/Down  
TEST/Down  
B4  
VDDSYN  
VSSSYN  
VSTBY  
VDDSYN  
VSSSYN  
VSTBY  
Clock synthesizer power input  
Clock synthesizer ground input  
SRAM standby power input  
I
I
I
I
VDDE  
VSSE  
VHV  
AE  
VDDSYN  
VDDSYN  
VDDEH1  
VDDREG  
VDDSYN  
VSSSYN  
VSTBY  
VDDSYN  
VSSSYN  
VSTBY  
AD26  
AA26  
M4  
REGSEL  
REGSEL  
Selects regulator mode  
(Linear/Switch mode)  
REGSEL  
REGSEL  
W23  
REGCTL  
REGCTL  
Regulator controller output to  
base/gate of power transistor  
O
AE  
VDDREG  
REGCTL  
REGCTL  
Y26  
VSSFL  
VSSFL  
Tie to VSS  
I
I
VSS  
VDDREG  
VSSFL  
VSSFL  
AB25  
AA25  
VDDREG  
VDDREG  
Source voltage for on-chip regulators  
and Low voltage detect circuits  
VDDINT VDDREG  
VDDREG  
VDDREG  
1
2
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number in pins that have GPIO functionality. For pins that do not  
have GPIO functionality, this number is the PCR number.  
The primary signal name is used as the pin label on the BGA map for identification purposes. However, the primary signal function is not available on all devices  
and is indicated by a dash in the following table columns: Signal Functions, P/F/G, and I/O Type.  
3
4
P/A/G stands for Primary/Alternate/GPIO. This column indicates which function on a pin is Primary, Alternate 1, Alternate 2, (Alternate n) and GPIO.  
Each line in the Function column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions  
are designated in the PA field of the SIU_PCRn registers except where explicitly noted.  
5
MH = High voltage, medium speed  
F = Fast speed  
FS = Fast speed with slew  
AE = Analog with ESD protection circuitry (up/down = pull up and pull down circuits included in the pad)  
VHV = Very high voltage  
6
7
VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins can connect to a separate 3.3–5.0 V  
(+5%/–10%) power supply input. Each segment of VDDE pins can connect to a separate 1.8–3.3 V (±10%) power supply.  
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. The terminology used in  
this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown enabled, Low – output driven low, High – output driven high, ABS —  
Auto Baud Select (during Reset or until JCOMP assertion). A dash on the left side of the slash denotes that both the input and output buffers for the pin are  
off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. The signal name to the left or right of the slash indicates  
the pin is enabled.  
8
The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the  
pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.  
9
This signal name includes eTPU_C functionality that this device does not have. This is for forward compatibility with devices that have an eTPU_C.  
10  
During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when  
the system clock propagates through the device.  
11 NMI does not have a PCR PA configuration; it is enabled when NMI is enabled through the SIU_IREER and SIU_IFEER registers.  
12 Nexus reset is different than system reset; MDO 1-11 are enabled when trace (RPM or FPM) is enabled, and MDO 12-15 when FPM trace is enabled. MSEO  
and MCKO are also dependent on trace (RPM or FPM) being enabled.  
13 The Nexus pins don’t have a “primary” function as they are not configured by the SIU. The pins are selected by asserting JCOMP and configuring the NPC.  
SIU values have no effect on the function of these pins once enabled.  
14 MCKO is disabled from reset; it can be enabled from the tool (controlled by Nexus NPC_PCR register).  
15 Do not connect pin directly to a power supply or ground.  
Electrical characteristics  
5
Electrical characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the PXR40.  
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These  
specifications may not be fully tested or guaranteed at this stage of the product life cycle, however for production silicon these  
specifications will be met. Finalized specifications will be published after complete characterization and device qualifications  
have been completed.  
5.1  
Maximum ratings  
1
Table 3. Absolute maximum ratings  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
1.2 V Core Supply Voltage  
SRAM Standby Voltage  
Clock Synthesizer Voltage  
VDD  
VSTBY  
VDDSYN  
VDD33  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.1  
–0.1  
–3 11  
2.0 2  
V
V
3,4  
6.4  
3
5.3 4,5  
5.3 4,5  
6.4 3,4  
5.3 4,5  
6.4 3,4  
6.4 3,4  
6.4 3,4  
0.1  
V
4
I/O Supply Voltage (I/O buffers and predrivers)  
V
6
7
5
Analog Supply Voltage (reference to VSSA  
)
VDDA  
V
6
I/O Supply Voltage (fast I/O pads)  
VDDE  
VDDEH  
VDDREG  
V
7
I/O Supply Voltage (medium I/O pads)  
Voltage Regulator Input Supply Voltage  
V
8
V
8
9
9
Analog Reference High Voltage (reference to VRL  
VSS to VSSA8 Differential Voltage  
)
VRH  
V
10  
11  
12  
13  
14  
15  
VSS – VSSA  
VRH – VRL  
V
VREF Differential Voltage  
6.4 3,4  
0.3  
V
VRL to VSSA Differential Voltage  
VRL – VSSA  
VDD33 – VDDSYN  
VSSSYN – VSS  
IMAXD  
V
VDD33 to VDDSYN Differential Voltage  
SSSYN to VSS Differential Voltage  
0.1  
V
V
0.1  
V
Maximum Digital Input Current 10 (per pin, applies to all  
digital pins)  
3 11  
mA  
16  
17  
Maximum Analog Input Current 12 (per pin, applies to all  
analog pins)  
IMAXA  
– 3 7  
–40.0  
–55.0  
3 7,11  
150.0  
150.0  
mA  
oC  
Maximum Operating Temperature Range 13 – Die Junction  
Temperature  
TJ  
18  
19  
Storage Temperature Range  
Tstg  
Tsdr  
oC  
oC  
Maximum Solder Temperature 14  
Pb-free package  
260.0  
245.0  
SnPb package  
20  
Moisture Sensitivity Level 15  
MSL  
3
PXR40 Microcontroller Data Sheet, Rev. 1  
52  
Freescale Semiconductor  
Electrical characteristics  
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or  
cause permanent damage to the device.  
2
3
4
5
6
7
8
9
2.0 V for 10 hours cumulative time, 1.32 V +10% for time remaining.  
6.4 V for 10 hours cumulative time, 5.25 V +10% for time remaining.  
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
5.3 V for 10 hours cumulative time, 3.60 V +10% for time remaining.  
PXR40 has two analog power supply pins on the pinout: VDDA_A and VDDA_B.  
PXR40 has two analog ground supply pins on the pinout: VSSA_A and VSSA_B.  
PXR40 has two analog low reference voltage pins on the pinout: VRL_A and VRL_B.  
PXR40 has two analog high reference voltage pins on the pinout: VRH_A and VRH_B.  
10 Total injection current for all pins must not exceed 25 mA at maximum operating voltage.  
11 Injection current of ±5 mA allowed for limited duration for analog (ADC) pads and digital 5 V pads. The maximum accumulated  
time at this current shall be 60 hours. This includes an assumption of a 5.25 V maximum analog or VDDEH supply when under  
this stress condition.  
12 Total injection current for all analog input pins must not exceed 15 mA.  
13 Lifetime operation at these specification limits is not guaranteed.  
14 Solder profile per CDF-AEC-Q100.  
15 Moisture sensitivity per JEDEC test method A112.  
5.2  
Thermal characteristics  
1
Table 4. Thermal characteristics, 416-pin TEPBGA package  
Characteristic  
Symbol  
Value  
Unit  
Junction to Ambient 2,3 Natural Convection (Single layer board)  
Junction to Ambient 2,4 Natural Convection (Four layer board 2s2p)  
Junction to Ambient (@200 ft./min., Single layer board)  
Junction to Ambient (@200 ft./min., Four layer board 2s2p)  
Junction to Board 5  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
24  
18  
19  
14  
9
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Case 6  
6
Junction to Package Top 7 Natural Convection  
2
1
Thermal characteristics are targets based on simulation that are subject to change per device  
characterization. This data is PRELIMINARY based on similar package used on other devices.  
2
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting  
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the  
board, and board thermal resistance.  
3
4
5
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
6
7
Indicates the average thermal resistance between the die and the case top surface as measured by the  
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case  
temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
53  
Electrical characteristics  
5.2.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
T = ambient temperature for the package ( C)  
o
A
o
R
= junction to ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value  
obtained on a board with two planes. For packages such as the TEPBGA, these values can be different by a factor of two. Which  
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to  
ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 2  
JA  
JC  
where:  
o
R
R
R
= junction to ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction to case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
JC  
ambient thermal resistance, R  
. For instance, the user can change the size of the heat sink, the air flow around the device, the  
CA  
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit  
board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T = T + (x P )  
Eqn. 3  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm. of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
PXR40 Microcontroller Data Sheet, Rev. 1  
54  
Freescale Semiconductor  
Electrical characteristics  
San Jose, CA 95134  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic  
Packaging and Production, pp. 53-58, March 1998.  
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
5.3  
EMI (Electromagnetic Interference) characteristics  
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go  
to www.freescale.com and perform a keyword search for “radiated emissions.” The following tables list the values of the  
device's radiated emissions operating behaviors.  
Table 5. EMC radiated emissions operating behaviors: 416 BGA  
fOSC  
fSYS  
Frequency  
band (MHz)  
Level  
(max.)  
Symbol  
Description  
Conditions  
Unit Notes  
1
VRE_TEM  
Radiated emissions,  
electric field and  
magnetic field  
VDD = 1.2 V  
VDDE = 3.3 V  
VDDEH = 5 V  
TA = 25 °C  
416 BGA  
EBI off  
40 MHz crystal  
264 MHz  
(fEBI_CAL = 66  
MHz)  
0.15–50  
50–150  
26  
30  
34  
30  
I2  
dBV  
150–500  
500–1000  
1, 3  
CLK on  
FM off  
IEC and SAE level  
1
VRE_TEM  
Radiated emissions,  
electric field and  
magnetic field  
VDD = 1.2 V  
VDDE = 3.3 V  
VDDEH = 5 V  
TA = 25 °C  
416 BGA  
EBI off  
40 MHz crystal  
264 MHz  
(fEBI_CAL = 66  
MHz)  
0.15–50  
50–150  
24  
25  
25  
21  
K5  
dBV  
150–500  
500–1000  
1,3  
CLK off  
IEC and SAE level  
FM on4  
1
Determined according to IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell  
Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM  
(GTEM) Cell Method.  
2
3
I = 36 dBV  
Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated  
Circuits—TEM/Wideband TEM (GTEM) Cell Method.  
4
5
“FM on” = FM depth of ±2%  
K = 30 dBV  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
55  
Electrical characteristics  
5.4  
ESD characteristics  
1,2  
Table 6. ESD ratings  
Spec  
Characteristic  
Symbol  
VHBM  
VCDM  
Value  
Unit  
1
2
ESD for Human Body Model (HBM)  
ESD for Charged Device Model (CDM)  
2000  
V
V
750 (corners)  
500 (other)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the  
device specification.  
5.5  
PMC/POR/LVI electrical specifications  
Note: For ADC internal resource measurements, see Table 18 in Section 5.9.1 ADC internal resource measurements.  
Table 7. PMC operating conditions  
Name  
VDDREG  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Note  
1
1
2
3
Supply voltage VDDREG  
5V nominal  
LDO5V / SMPS5V mode  
4.5  
5
5.5  
V
VDDREG  
VDD33  
VDD  
Supply voltage VDDREG  
3V nominal  
LDO3V mode  
3.0  
3.0  
3.3  
3.3  
1.2  
3.6  
3.6  
V
V
V
Supply voltage VDDSYN / LDO3V mode  
VDD33 3.3V nominal  
Supply voltage VDD  
1.2V nominal  
1.14  
1.32  
1
2
Voltage should be higher than maximum VLVDREG to avoid LVD event  
Applies to both VDD33 (flash supply) and VDDSYN (PLL supply) pads. Voltage should be higher than maximum VLVD33 to avoid  
LVD event  
3
Voltage should be higher than maximum VLVD12 to avoid LVD event  
NOTE  
In the following table, “untrimmed” means “at reset” and “trimmed” means “after reset”.  
Table 8. PMC electrical specifications  
ID  
Name  
VBG  
Parameter  
Min  
Typ  
Max  
Unit  
1
Nominal bandgap reference voltage  
Untrimmed bandgap reference voltage  
Nominal VRC regulated 1.2V output VDD  
0.608  
VBG – 5%  
0.620  
VBG  
1.2  
0.632  
VBG + 5%  
V
V
V
1a  
2
VDD12OUT  
PXR40 Microcontroller Data Sheet, Rev. 1  
56  
Freescale Semiconductor  
Electrical characteristics  
Table 8. PMC electrical specifications (continued)  
ID  
Name  
Parameter  
Min  
Typ  
Max  
Unit  
2a  
Untrimmed VRC 1.2V output variation before  
band gap trim (unloaded)  
Note: Voltage should be higher than maximum  
VLVD12 to avoid LVD event  
V
DD12OUT – 8% VDD12OUT VDD12OUT + 17%  
V
2b  
Trimmed VRC 1.2V output variation after band  
gap trim (REGCTL load max. 20mA, VDD load  
max. 1A)1  
VDD12OUT – 5% VDD12OUT VDD12OUT + 10%  
V
2c VSTEPV12  
Trimming step VDD12OUT  
POR rising VDD 1.2V  
POR VDD 1.2V variation  
POR 1.2V hysteresis  
10  
0.7  
mV  
V
3
VPORC  
3a  
3b  
4
VPORC – 30%  
VPORC  
75  
VPORC + 30%  
mV  
V
VLVD12  
Nominal rising LVD 1.2V  
1.100  
Note: ~VDD12OUT × 0.87  
4a  
Untrimmed LVD 1.2V variation before band gap  
trim  
Note: Rising VDD  
VLVD12 – 6%  
VLVD12  
VLVD12 + 6%  
V
V
4b  
4c  
Trimmed LVD 1.2V variation after band gap trim  
Rising VDD  
VLVD12 – 3%  
VLVD12  
VLVD12 + 3%  
LVD 1.2V Hysteresis  
15  
20  
10  
3
25  
20  
mV  
mV  
mA  
mA  
4d VLVDSTEP12  
Trimming step LVD 1.2V  
5
6
IREGCTL  
VRC DC current output on REGCTL  
Voltage regulator 1.2V current consumption  
VDDREG  
7
VDD33OUT  
Nominal VREG 3.3V output  
3.3  
V
V
7a  
Untrimmed VREG 3.3V output variation before  
band gap trim (unloaded)  
VDD33OUT – 6% VDD33OUT VDD33OUT + 10%  
Note: Rising VDDSYN  
7b  
Trimmed VREG 3.3V output variation after band VDD33OUT – 5% VDD33OUT VDD33OUT + 10%  
gap trim (max. load 80mA)  
V
7c VSTEPV33  
Trimming step VDDSYN  
30  
mV  
V
8
VLVD33  
Nominal rising LVD 3.3V  
2.950  
Note: ~VDD33OUT × 0.872  
8a  
Untrimmed LVD 3.3V variation before band gap  
trim  
Note: Rising VDDSYN  
V
LVD33 – 5%  
VLVD33  
VLVD33 + 5%  
V
V
8b  
8c  
Trimmed LVD 3.3V variation after bad gap trim  
Note: Rising VDDSYN  
VLVD33 – 3%  
VLVD33  
VLVD33 + 3%  
LVD 3.3V Hysteresis  
30  
30  
mV  
mV  
8d VLVDSTEP33  
Trimming step LVD 3.3V  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
57  
Electrical characteristics  
Table 8. PMC electrical specifications (continued)  
ID  
Name  
IDD33  
Parameter  
Min  
Typ  
Max  
Unit  
9
VREG = 4.5 V, max DC output current  
VREG = 4.25 V, max DC output current, crank  
condition  
80  
40  
mA  
mA  
Note: Max current supplied by VDDSYN that  
does not cause it to drop below VLVD33  
10  
Voltage regulator 3.3V current consumption  
VDDREG  
Note: Except IDD33  
2
mA  
11 VPORREG  
11a —  
POR rising on VDDREG  
POR VDDREG variation  
POR VDDREG hysteresis  
2.00  
V
V
VPORREG – 30% VPORREG VPORREG + 30%  
11b —  
250  
mV  
V
12 VLVDREG  
Nominal rising LVD VDDREG  
(LDO3V / LDO5V mode)  
2.950  
12a —  
12b —  
12c —  
Untrimmed LVD VDDREG variation before band VLVDREG – 5% VLVDREG  
gap trim  
Note: Rising VDDREG  
VLVDREG + 5%  
V
V
Trimmed LVD VDDREG variation after band gap VLVDREG – 3% VLVDREG  
trim  
Note: Rising VDDREG  
VLVDREG + 3%  
LVD VDDREG Hysteresis  
(LDO3V / LDO5V mode)  
30  
30  
mV  
mV  
V
12d VLVDSTEPREG Trimming step LVD VDDREG  
(LDO3V / LDO5V mode)  
13 VLVDREG  
Nominal rising LVD VDDREG  
(SMPS5V mode)  
4.360  
13a —  
Untrimmed LVD VDDREG variation before band VLVDREG – 5% VLVDREG  
VLVDREG + 5%  
V
gap trim  
Note: Rising VDDREG  
13b —  
13c —  
Trimmed LVD VDDREG variation after band gap VLVDREG – 3% VLVDREG  
trim  
Note: Rising VDDREG  
VLVDREG + 3%  
V
LVD VDDREG Hysteresis  
(SMPS5V mode)  
50  
50  
mV  
mV  
13d VLVDSTEPREG Trimming step LVD VDDREG  
(SMPS5V mode)  
14 VLVDA  
14a —  
Nominal rising LVD VDDA  
4.60  
V
V
Untrimmed LVD VDDA variation before band  
gap trim  
VLVDA – 5%  
VLVDA  
VLVDA + 5%  
14b —  
14c —  
Trimmed LVD VDDA variation after band gap  
trim  
VLVDA – 3%  
VLVDA  
150  
VLVDA + 3%  
V
LVD VDDA Hysteresis  
mV  
PXR40 Microcontroller Data Sheet, Rev. 1  
58  
Freescale Semiconductor  
Electrical characteristics  
Table 8. PMC electrical specifications (continued)  
ID  
Name  
Parameter  
Trimming step LVD VDDA  
Min  
Typ  
Max  
Unit  
14d VLVDASTEP  
20  
15  
mV  
15  
SMPS regulator output resistance  
Note: Pullup to VDDREG when high, pulldown  
to VSSREG when low.  
25  
Ohm  
16  
17  
18  
19  
SMPS regulator clock frequency (after reset)  
SMPS regulator overshoot at start-up2  
SMPS maximum output current  
1.0  
1.5  
1.32  
1.0  
2.4  
1.4  
MHz  
V
A
Voltage variation on current step2 (20% to 80%  
of maximum current with 4 µsec constant time)  
0.1  
V
1
VRC linear regulator is capable of sourcing a current up to 20 mA and sinking a current up to 500 µA. When using the  
recommended ballast transistor the maximum output current provided by the voltage regulator VRC/ballast to the VDD core  
voltage is up to 1A.  
2
Parameter cannot be tested; this value is based on simulation and characterization.  
5.6  
Power up/down sequencing  
There is no power sequencing required among power sources during power up and power down in order to operate within  
specification as long as the following two rules are met:  
When VDDREG is tied to a nominal 3.3V supply, VDD33 and VDDSYN must be both shorted to VDDREG.  
When VDDREG is tied to a 5V supply, VDD33 and VDDSYN must be tied together and shall be powered by the  
internal 3.3V regulator.  
The recommended power supply behavior is as follows: Use 25 V/millisecond or slower rise time for all supplies. Power up  
each V /V first and then power up V . For power down, drop V to 0 V first, and then drop all V /V  
DDE DDEH  
DD  
DD  
DDE DDEH  
supplies. There is no limit on the fall time for the power supplies.  
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc.,  
the state of the I/O pins during power up/down varies according to Table 9 and Table 10.  
Table 9. Power sequence pin states for MH and AE pads  
VDD  
VDD33  
VDDE  
MH Pad  
MH+LVDS Pads1  
AE/up-down Pads  
High  
High  
Low  
High  
High  
Normal operation  
Normal operation  
Normal operation  
Pin is tri-stated (output buffer,  
input buffer, and weak pulls  
disabled)  
Outputs driven high  
Pull-ups enabled,  
pull-downs disabled  
Low  
Low  
High  
High  
Low  
Output low,  
pin unpowered  
Outputs disabled  
Outputs disabled  
Output low,  
pin unpowered  
High  
Pin is tri-stated (output buffer,  
input buffer, and weak pulls  
disabled)  
Pull-ups enabled,  
pull-downs disabled  
1
MH+LVDS pads are output-only.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
59  
Electrical characteristics  
Table 10. Power sequence pin states for F and FS pads  
VDD  
VDD33  
VDDE  
F and FS pads  
low  
low  
low  
high  
low  
high  
Outputs drive high  
Outputs Disabled  
Outputs Disabled  
Outputs drive high  
high  
high  
high  
low  
high  
low  
low  
high  
Normal operation - except no drive current  
and input buffer output is unknown.1  
high  
high  
high  
Normal Operation  
1
The pad pre-drive circuitry will function normally but since VDDE is unpowered  
the outputs will not drive high even though the output pmos can be enabled.  
5.6.1  
Power-up  
If V  
/V  
is powered up first, then a threshold detector tristates all drivers connected to V  
/V  
. There is no limit  
DDE DDEH  
DDE DDEH  
to how long after V  
/V  
powers up before V must power up. If there are multiple V  
/V  
supplies, they can  
DDE DDEH  
DD  
DDE DDEH  
be powered up in any order. For each V  
/V  
supply not powered up, the drivers in that V  
/V  
segment exhibit  
DDE DDEH  
DDE DDEH  
the characteristics described in the next paragraph.  
If V is powered up first, then all pads are loaded through the drain diodes to V  
/V . This presents a heavy load that  
DDE DDEH  
DD  
pulls the pad down to a diode above V . Current injected by external devices connected to the pads must meet the current  
SS  
injection specification. There is no limit to how long after V powers up before V  
/V  
must power up.  
DD  
DDE DDEH  
The rise times on the power supplies are to be no faster than 25 V/millisecond.  
5.6.2  
Power-down  
If V is powered down first, then all drivers are tristated. There is no limit to how long after V powers down before  
DD  
DD  
V
/V  
must power down.  
DDE DDEH  
If V  
/V  
is powered down first, then all pads are loaded through the drain diodes to V  
/V  
. This presents a heavy  
DDE DDEH  
DDE DDEH  
load that pulls the pad down to a diode above V . Current injected by external devices connected to the pads must meet the  
SS  
current injection specification. There is no limit to how long after V  
/V  
powers down before V must power down.  
DDE DDEH DD  
There are no limits on the fall times for the power supplies.  
5.6.3  
Power sequencing and POR dependent on VDDA  
During power up or down, V  
can lag other supplies (of magnitude greater than V  
/2) within 1 V to prevent any  
DDA  
DDEH  
forward-biasing of device diodes that causes leakage current and/or POR. If the voltage difference between V  
is more than 1 V, the following will result:  
and V  
DDEH  
DDA  
Triggers POR (ADC monitors on V  
segment which powers the RESET pin) if the leakage current path created,  
DDEH1  
when V  
level.  
is sufficiently low, causes sufficient voltage drop on V  
node monitored crosses low-voltage detect  
DDA  
DDEH1  
If V  
out of reset.  
is between 0–2 V, powering all the other segments (especially V  
) will not be sufficient to get the part  
DDEH1  
DDA  
Each V  
will have a leakage current to V  
of a magnitude of ((V  
– V – 1 V(diode drop)/200 KOhms)  
DDA  
DDEH  
DDA  
DDEH  
up to (V  
/2 = V  
+ 1 V).  
DDEH  
DDA  
PXR40 Microcontroller Data Sheet, Rev. 1  
60  
Freescale Semiconductor  
Electrical characteristics  
Each V has the same behavior; however, the leakage will be small even though there is no current limiting resistor  
DD  
since V = 1.32 V max.  
DD  
5.7  
DC electrical specifications  
Table 11. DC electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
1a  
2
Core Supply Voltage (External Regulation)  
Core Supply Voltage (Internal Regulation)3  
I/O Supply Voltage (fast I/O pads)  
I/O Supply Voltage (medium I/O pads)  
3.3 V I/O Buffer Voltage  
VDD  
VDD  
1.14  
1.08  
3.0  
1.321,2  
V
V
V
V
V
V
V
1.32  
VDDE  
3.61,4  
5.251,5  
3.61,4  
5.251,5  
1.2  
3
VDDEH  
VDD33  
VDDA  
3.0  
4
3.0  
5
Analog Supply Voltage  
4.75  
0.956  
6a  
SRAM Standby Voltage  
VSTBY_LOW  
Keep-out Range: 1.2V–2V  
6b  
SRAM Standby Voltage  
VSTBY_HIGH  
2
6
V
Keep-out Range: 1.2V–2V  
7
8
9
Voltage Regulator Control Input Voltage7  
Clock Synthesizer Operating Voltage9  
VDDREG  
VDDSYN  
VIH_F  
2.78  
3.0  
5.51,5  
3.61,4  
V
V
V
Fast I/O Input High Voltage  
Hysteresis enabled  
V
DDE + 0.3  
0.65 × VDDE  
0.55 × VDDE  
Hysteresis disabled  
10  
11  
12  
Fast I/O Input Low Voltage  
Hysteresis enabled  
VIL_F  
VIH_S  
VIL_S  
VSS – 0.3  
V
V
V
0.35 × VDDE  
0.40 × VDDE  
Hysteresis disabled  
Medium I/O Input High Voltage  
Hysteresis enabled  
VDDEH + 0.3  
0.65 × VDDEH  
0.55 × VDDEH  
Hysteresis disabled  
Medium I/O Input Low Voltage  
Hysteresis enabled  
VSS – 0.3  
0.35 × VDDEH  
0.40 × VDDEH  
Hysteresis disabled  
13  
14  
15  
16  
17  
18  
19  
20  
Fast I/O Input Hysteresis  
VHYS_F  
VHYS_S  
VINDC  
VOH_F  
VOH_S  
VOL_F  
VOL_S  
CL  
0.1 × VDDE  
0.1 × VDDEH  
VSSA – 0.1  
0.8 × VDDE  
0.8 × VDDEH  
V
V
V
V
V
V
V
Medium I/O Input Hysteresis  
Analog Input Voltage  
VDDA + 0.1  
Fast I/O Output High Voltage10  
Medium I/O Output High Voltage11  
Fast I/O Output Low Voltage10  
Medium I/O Output Low Voltage11  
0.2 × VDDE  
0.2 × VDDEH  
Load Capacitance (Fast I/O)12  
DSC(PCR[8:9]) = 0b00  
DSC(PCR[8:9]) = 0b01  
DSC(PCR[8:9]) = 0b10  
DSC(PCR[8:9]) = 0b11  
10  
20  
30  
50  
pF  
pF  
pF  
pF  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
61  
Electrical characteristics  
Spec  
Table 11. DC electrical specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
21  
22  
24  
Input Capacitance (Digital Pins)  
CIN  
7
pF  
pF  
Input Capacitance (Analog Pins)  
CIN_A  
10  
Operating Current 1.2 V Supplies @ fsys = 264 MHz  
V
DD @1.32 V  
IDD  
IDDSTBY  
IDDSTBY6  
1.014  
0.10  
0.15  
A
mA  
mA  
VSTBY13 @1.2 V and 85oC  
VSTBY @6.0 V and 85oC  
25  
26  
27  
Operating Current 3.3 V Supplies @ fsys = 264 MHz  
note15  
716  
mA  
mA  
15  
VDD33  
VDDSYN  
IDD33  
IDDSYN  
Operating Current 5.0 V Supplies @ fsys = 264 MHz  
VDDA  
IDDA  
IREF  
IREG  
5017  
1.0  
22  
mA  
mA  
mA  
Analog Reference Supply Current (Transient)  
VDDREG  
Operating Current VDDE/VDDEH18 Supplies  
VDDE2  
IDD2  
IDD1  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDDEH1  
VDDEH3  
VDDEH4  
VDDEH5  
VDDEH6  
VDDEH7  
note18  
28  
29  
Fast I/O Weak Pull Up/Down Current19  
3.0 V–3.6 V  
IACT_F  
IACT_S  
42  
158  
A  
Medium I/O Weak Pull Up/Down Current20  
3.0 V–3.6 V  
4.5 V–5.5 V  
15  
35  
95  
200  
A  
A  
30  
31  
32  
I/O Input Leakage Current21  
IINACT_D  
IIC  
–2.5  
–1.0  
–250  
2.5  
1.0  
A  
mA  
nA  
DC Injection Current (per pin)  
Analog Input Current, Channel Off22, AN[0:7], AN38,  
IINACT_A  
250  
AN39  
Analog Input Current, Channel Off, all other analog  
inputs AN[x]  
–150  
150  
nA  
33  
34  
35  
36  
37  
38  
39  
40  
VSS Differential Voltage  
VSS – VSSA  
VRL  
VRL – VSSA  
VRH  
–100  
VSSA  
100  
VSSA + 100  
100  
mV  
mV  
mV  
mV  
V
Analog Reference Low Voltage  
VRL Differential Voltage  
–100  
Analog Reference High Voltage  
VREF Differential Voltage  
VDDA – 100  
4.75  
VDDA  
5.25  
VRH – VRL  
VSSSYN – VSS  
TA (TL to TH)  
VSSSYN to VSS Differential Voltage  
Operating Temperature Range—Ambient (Packaged)  
Slew rate on power supply pins  
–100  
100  
mV  
C  
–40.0  
125.0  
25  
V/ms  
PXR40 Microcontroller Data Sheet, Rev. 1  
62  
Freescale Semiconductor  
Electrical characteristics  
Table 11. DC electrical specifications (continued)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
41  
42  
43  
44  
Weak Pull-Up/Down Resistance23, 200 K Option  
Weak Pull-Up/Down Resistance23, 100 K Option  
Weak Pull-Up/Down Resistance23, 5 K Option  
RPUPD200K  
RPUPD100K  
RPUPD5K  
130  
65  
280  
140  
7.5  
k  
k  
k  
%
1.4  
Pull-Up/Down Resistance Matching Ratios24  
(100K/200K)  
RPUPDMTCH  
–2.5  
+2.5  
1
2
3
4
5
6
7
8
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.  
Assumed with DC load.  
5.3 V for 10 hours cumulative time, 3.3 V +10% for time remaining.  
6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.  
VSTBY below 0.95 V the RAM will not retain states, but will be operational. VSTBY can be 0 V when bypass standby mode.  
Regulator is functional with derated performance, with supply voltage down to 4.0 V for system with VDDREG = 4.5 V (min).  
2.7 V minimum operating voltage allowed during vehicle crank for system with VDDREG = 3.0 V (min). Normal operating voltage  
should be either VDDREG = 3.0 V (min) or 4.5 V (min) depending on the user regulation voltage system selected.  
9
Required to be supplied when 3.3 V regulator is disabled. See Section 5.5 PMC/POR/LVI electrical specifications.  
10  
I
= {16,32,47,77} mA and IOL_F = {24,48,71,115} mA for {00,01,10,11} drive mode with VDDE = 3.0 V. This spec is for  
OH_F  
characterization only.  
11  
I
= {11.6} mA and IOL_S = {17.7} mA for {medium} I/O with VDDE = 4.5 V;  
OH_S  
IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDE = 3.0 V. These specs are for characterization only.  
12 Applies to D_CLKOUT, external bus pins, and Nexus pins.  
13  
V
current specified at 1.0 V at a junction temperature of 85 oC. VSTBY current is 700 µA maximum at a junction temperature  
STBY  
of 150 oC.  
14 Preliminary. Specification pending typical and/or high-use Runidd pattern simulation as well as final silicon characterization.  
900 mA based on transistor count estimate at Worst Case (wcs) process and temperature condition.  
15 Power requirements for the VDD33 supply depend on the frequency of operation and load of all I/O pins, and the voltages on  
the I/O segments. See Section 5.7.2 I/O pad VDD33 current specifications, for information on both fast (F, FS) and medium (MH)  
pads. Also refer to Table 13 for values to calculate power dissipation for specific operation.  
16 This value is a target that is subject to change.  
17 This value allows a 5 V reference to supply ADC + REF.  
18 Power requirements for each I/O segment depend on the frequency of operation and load of the I/O pins on a particular I/O  
segment, and the voltage of the I/O segment. See Section 5.7.1 I/O pad current specifications, for information on I/O pad  
power. Also refer to Table 12 for values to calculate power dissipation for specific operation. The total power consumption of  
an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
19 Absolute value of current, measured at VIL and VIH.  
20 Absolute value of current, measured at VIL and VIH.  
21 Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types F and MH.  
22 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each  
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types AE and AE/up-down. See Section 4 Signal  
properties and muxing.  
23 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics  
24 Pull-up and pull-down resistances are both enabled and settings are equal.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
63  
Electrical characteristics  
5.7.1  
I/O pad current specifications  
The power consumption of an I/O segment is dependent on the usage of the pins on a particular segment. The power  
consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from  
Table 12 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency,  
and load parameters that fall outside the values given in Table 12.  
The AC timing of these pads are described in the Section 5.11.2 Pad AC specifications.  
1
Table 12. V  
/V  
I/O Pad Average DC Current  
DDE DDEH  
Frequency  
(MHz)  
Load2  
(pF)  
Voltage  
(V)  
Drive/Slew  
Rate Select  
Spec  
Pad Type  
Symbol  
Current (mA)  
1
2
Medium  
IDRV_MH  
50  
20  
50  
50  
50  
200  
10  
20  
30  
50  
50  
50  
50  
50  
200  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
00  
01  
10  
11  
11  
10  
01  
00  
00  
16.0  
6.3  
3
3.0  
2.0  
66  
1.1  
4
2.4  
5
Fast  
IDRV_FC  
6.5  
6
66  
3.6  
9.4  
7
66  
3.6  
10.8  
33.3  
12.0  
6.2  
8
66  
3.6  
9
Fast w/ Slew  
Control  
IDRV_FSR  
66  
3.6  
10  
11  
12  
13  
50  
3.6  
33.33  
20  
3.6  
4.0  
3.6  
2.4  
20  
3.6  
8.9  
1
2
These are average IDDE numbers for worst case PVT from simulation. Currents apply to output pins only.  
All loads are lumped.  
5.7.2  
I/O pad VDD33 current specifications  
The power consumption of the VDD33 supply is dependent on the usage of the pins on all I/O segments. The power consumption  
is the sum of all input and output pin VDD33 currents for all I/O segments. The VDD33 current draw on fast speed pads can be  
calculated from Table 13 dependent on the voltage, frequency, and load on all F type pins. The VDD33 current draw on medium  
pads can be calculated from Table 13 dependent on voltage and independent on the frequency and load on all MH type pins.  
Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in  
Table 13.  
The AC timing of these pads are described in the Section 5.11.2 Pad AC specifications.  
PXR40 Microcontroller Data Sheet, Rev. 1  
64  
Freescale Semiconductor  
Electrical characteristics  
1
Table 13. V  
Pad Average DC Current  
DD33  
Frequency  
(MHz)  
Load2  
(pF)  
VDD33  
(V)  
VDDE  
(V)  
Drive/Slew  
Rate Select  
Spec  
Pad Type  
Symbol  
Current (mA)  
1
2
Medium  
Fast  
I33_MH  
I33_FC  
66  
10  
20  
30  
50  
50  
50  
50  
50  
200  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
5.5  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
00  
01  
10  
11  
11  
10  
00  
00  
00  
0.0007  
0.92  
1.14  
1.50  
2.19  
0.74  
0.52  
0.19  
0.19  
0.19  
3
66  
4
66  
5
66  
6
Fast w/ Slew  
Control  
I33_FSR  
66  
7
50  
8
33.33  
20  
9
10  
20  
1
2
These are average IDDE for worst case PVT from simulation. Currents apply to output pins only for the fast pads and to input  
pins only for the medium pads.  
All loads are lumped.  
5.7.3  
LVDS pad specifications  
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol, which is an enhanced feature of the DSPI  
module.  
Table 14. DSPI LVDS pad specification  
Min.  
Value  
Typ.  
Value  
Max.  
Value  
#
Characteristic  
Symbol  
Condition  
Data Rate  
Unit  
1
2
Data Frequency  
fLVDSCLK  
50  
MHz  
mV  
Driver Specs  
Differential output voltage  
VOD  
SRC=0b00 or 0b11  
SRC=0b01  
SRC=0b10  
150  
90  
400  
320  
480  
1.39  
160  
1.06  
3
Common mode voltage (LVDS),  
VOS  
VOS  
1.2  
V
4
5
6
7
8
Rise/Fall time  
TR/TF  
TPLH  
2
4
ns  
ns  
ns  
ns  
ns  
Propagation delay (Low to High)  
Propagation delay (High to Low)  
Delay (H/L), sync Mode  
TPHL  
4
tPDSYNC  
TDZ  
4
Delay, Z to Normal (High/Low)  
500  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
65  
Electrical characteristics  
Table 14. DSPI LVDS pad specification (continued)  
9
Diff Skew Itphla-tplhbI or  
Itplhb-tphlaI  
TSKEW  
0.5  
ns  
Termination  
10 Trans. Line (differential Zo)  
11 Temperature  
95  
100  
105  
150  
ohms  
–40  
C  
5.8  
Oscillator and FMPLL electrical characteristics  
1
Table 15. FMPLL Electrical Specifications  
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
PLL Reference Frequency Range2 (Normal Mode)  
Crystal Reference (PLLCFG2 = 0b0)  
Crystal Reference (PLLCFG2 = 0b1)  
External Reference (PLLCFG2 = 0b0)  
External Reference (PLLCFG2 = 0b1)  
MHz  
fref_crystal  
fref_crystal  
fref_ext  
8
16  
8
20  
403  
20  
fref_ext  
16  
40  
2
3
4
5
6
7
8
Loss of Reference Frequency4  
Self Clocked Mode Frequency5  
PLL Lock Time6  
fLOR  
fSCM  
tLPLL  
tDC  
100  
4
1000  
16  
kHz  
MHz  
s  
< 400  
60  
Duty Cycle of Reference 7  
Frequency un-LOCK Range  
Frequency LOCK Range  
40  
%
fUL  
–4.0  
–2.0  
–5  
4.0  
2.0  
5
% fsys  
% fsys  
%fclkout  
fLCK  
CJitter  
D_CLKOUT Period Jitter8, 9 Measured at fSYS Max  
Cycle-to-cycle Jitter  
10,11  
9
Peak-to-Peak Frequency Modulation Range Limit  
Cmod  
0
4
%fsys  
(fsys Max must not be exceeded)  
10  
11  
12  
13  
FM Depth Tolerance12  
Cmod_err  
fVCO  
–0.25  
192  
0.400  
4
0.25  
600  
1
%fsys  
MHz  
MHz  
MHz  
VCO Frequency  
Modulation Rate Limits13  
Predivider output frequency range14  
fmod  
fprediv  
10  
1
2
All values given are initial design targets and subject to change.  
Crystal and External reference frequency limits depend on device relying on PLL to lock prior to release of reset, default  
PREDIV/EPREDIV, MFD/EMFD default settings, and VCO frequency range. Absolute minimum loop frequency is 4 MHz.  
3
4
5
Upper tolerance of less than 1% is allowed on 40MHz crystal.  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR. This  
frequency is measured at D_CLKOUT. A default RFD value of (0x05) is used in SCM mode, and the programmed MFD and  
RFD values have no effect  
PXR40 Microcontroller Data Sheet, Rev. 1  
66  
Freescale Semiconductor  
Electrical characteristics  
6
This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal  
startup time.  
7
8
For Flexray operation, duty cycle requirements are higher.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter  
percentage for a given interval. D_CLKOUT divider set to divide-by-2.  
9
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter + Cmod  
.
10 Modulation depth selected must not result in fpll value greater than the fpll maximum specified value.  
11 Maximum and minimum variation from programmed modulation depth is pending characterization. Depth settings available in  
control register are: 2%, 3%, and 4% peak-to-peak.  
12 Depth tolerance is the programmed modulation depth ±0.25% of Fsys. Violating the VCO min/max range may prevent the  
system from exiting reset.  
13 Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz  
will result in reduced calibration accuracy.  
14 Violating this range will cause the VCO max/min range to be violated with the default MFD settings out of reset.  
1
Table 16. Oscillator electrical specifications  
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
Crystal Mode Differential Amplitude2  
V
crystal_diff_amp  
V
| Vextal – Vxtal | > 0.4 V  
1
(Min differential voltage between EXTAL and XTAL)  
2
3
4
Crystal Mode: Internal Differential Amplifier Noise  
Rejection  
Vcrystal_diff_amp_nr  
VIHEXT  
((VDD33/2) + 0.4 V)  
| Vextal – Vxtal | < 0.2 V  
V
V
V
EXTAL Input High Voltage  
Bypass mode, External Reference  
EXTAL Input Low Voltage  
VILEXT  
(VDD33/2) – 0.4 V  
Bypass mode, External Reference  
5
6
7
8
9
XTAL Current3  
IXTAL  
CS_XTAL  
CS_EXTAL  
CL  
1
3
1.5  
mA  
pF  
pF  
pF  
pF  
Total On-chip stray capacitance on XTAL  
Total On-chip stray capacitance on EXTAL  
Crystal manufacturer’s recommended capacitive load  
Discrete load capacitance to be connected to EXTAL  
1.5  
See crystal spec  
See crystal spec  
CL_EXTAL  
(2 × CL – CS_EXTAL  
– CPCB_EXTAL )  
4
10  
Discrete load capacitance to be connected to XTAL  
CL_XTAL  
(2 × CL – CS_XTAL  
– CPCB_XTAL )  
pF  
4
1
2
All values given are initial design targets and subject to change.  
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode.  
In that case, Vextal – Vxtal 400 mV criterion has to be met for oscillator’s comparator to produce output clock.  
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
3
4
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
67  
Electrical characteristics  
5.9  
eQADC electrical characteristics  
Table 17. eQADC Conversion Specifications (Operating)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
ADC Clock (ADCLK) Frequency  
fADCLK  
CC  
2
16  
MHz  
Conversion Cycles  
ADCLK cycles  
Single Ended Conversion Cycles 12 bit resolution  
Single Ended Conversion Cycles 10 bit resolution  
Single Ended Conversion Cycles 8 bit resolution  
Note: Differential conversion (min) is one clock  
cycle less than the single-ended  
2 + 14  
2 + 12  
2 + 10  
128 + 14  
128 + 12  
128 + 10  
conversion values listed here.  
3
4
Stop Mode Recovery Time1  
TSR  
10  
1.25  
–44  
–84  
–34  
–34  
04  
s  
mV  
Resolution2  
5
INL: 8 MHz ADC Clock3  
INL8  
44  
LSB5  
6
INL: 16 MHz ADC Clock3  
INL16  
DNL8  
DNL16  
OFFNC  
OFFWC  
GAINNC  
GAINWC  
IINJ  
84  
LSB  
7
DNL: 8 MHz ADC Clock3  
34  
LSB  
8
DNL: 16 MHz ADC Clock3  
34  
LSB  
9
Offset Error without Calibration  
Offset Error with Calibration  
1004  
44  
LSB  
10  
11  
12  
13  
14  
15  
16  
17  
–44  
–1204  
–44,6  
–3  
LSB  
Full Scale Gain Error without Calibration  
Full Scale Gain Error with Calibration  
Non-Disruptive Input Injection Current 7, 8, 9, 10  
Incremental Error due to injection current11, 12  
TUE value at 8 MHz 13, 14 (with calibration)  
TUE value at 16 MHz 13, 14 (with calibration)  
04  
LSB  
44,6  
LSB  
3
m  
EINJ  
–44  
–44,6  
–8  
44  
Counts  
Counts  
Counts  
TUE8  
TUE16  
44,6  
8
Maximum differential voltage15  
(DANx+ - DANx-) or (DANx- - DANx+)  
PREGAIN set to 1X setting  
DIFFmax  
DIFFmax2  
DIFFmax4  
(VRH – VRL)/2  
(VRH – VRL)/4  
(VRH - VRL)/8  
V
V
V
PREGAIN set to 2X setting  
PREGAIN set to 4X setting  
18  
Differential input Common mode voltage15  
(DANx- + DANx+)/2  
DIFFcmv  
(VRH – VRL)/2  
– 5%  
(VRH – VRL)/2  
+ 5%  
V
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that  
the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.  
2
3
At VRH – VRL = 5.12 V, one count = 1.25 mV without using pregain.  
INL and DNL are tested from VRL + 50 LSB to VRH – 50 LSB. The eQADC is guaranteed to be monotonic at 10 bit accuracy  
(12 bit resolution selected).  
4
New design target. Actual specification will change following characterization. Margin for manufacturing has not been fully  
included.  
5
6
7
At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
The value is valid at 8 MHz, it is ±8 counts at 16 Mhz.  
Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs greater than  
VRH and $000 for values less than VRL. Other channels are not affected by non-disruptive conditions.  
PXR40 Microcontroller Data Sheet, Rev. 1  
68  
Freescale Semiconductor  
Electrical characteristics  
8
9
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do  
not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = –0.3 V, then use the larger of the calculated values.  
10 Condition applies to two adjacent pins at injection limits.  
11 Performance expected with production silicon.  
12 All channels have same 10 k< Rs < 100 kChannel under test has Rs = 10 k, IINJ=IINJMAX,IINJMIN  
.
13 The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.  
14 TUE does not apply to differential conversions.  
15 Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the  
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode  
voltage of the differential signal violates the Differential Input common mode voltage specification.  
5.9.1  
ADC internal resource measurements  
Table 18. Power Management Control (PMC) specification  
Spec  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
PMC Normal Mode  
1
2
3
4
5
6
7
Bandgap 0.62 V  
ADC0 channel 145  
VADC145  
VADC146  
VADC147  
VADC180  
VADC181  
VADC182  
VADC183  
0.62  
1.22  
V
V
V
V
V
V
V
Bandgap 1.2 V  
ADC0 channel 146  
Vreg1p2 Feedback  
ADC0 channel 147  
VDD / 2.045  
VDD / 1.774  
Vreg3p3 / 5.460  
Vreg3p3 / 4.758  
LVD 1.2 V  
ADC0 channel 180  
Vreg3p3 Feedback  
ADC0 channel 181  
LVD 3.3 V  
ADC0 channel 182  
LVD 5.0 V  
ADC0 channel 183  
— LDO mode  
— SMPS mode  
VDDREG / 4.758  
VDDREG/7.032  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
69  
Electrical characteristics  
Table 19. Standby RAM regulator electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Normal Mode  
1
Standby Regulator Output  
ADC1 channel 194  
VADC194  
1.2  
V
2
Standby Source Bias  
150 mV to 360 mV (30mV Increment @  
VADC195  
150  
360  
mV  
vref_sel)  
ADC1 channel 195  
Default Value 150 mV (@vref_sel = 1 1 1)  
3
Standby Brownout Reference  
ADC1 channel 195  
VADC195  
500  
850  
mV  
Table 20. ADC band gap reference / LVI electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
1
4.75 LVD (from VDDA  
)
VADC196  
4.75  
V
ADC1 channel 196  
2
ADC Bandgap  
VADC45  
1.171  
1.220  
1.269  
V
ADC0 channel 45  
ADC1 channel 45  
Table 21. Temperature sensor electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
1
1
Slope  
VSADC128  
5.8  
mV/ C  
–40 C to 100 C ±1.0 C  
100 C to 150 C ±1.6 C  
ADC0 channel 128  
ADC1 channel 128  
2
Accuracy  
C  
–40 C to 150 C  
ADC0 channel 128  
ADC1 channel 128  
±10.0  
1
Slope is the measured voltage change per °C.  
PXR40 Microcontroller Data Sheet, Rev. 1  
70  
Freescale Semiconductor  
Electrical characteristics  
5.10 C90 flash memory electrical characteristics  
Table 22. Flash program and erase specifications  
Initial  
Spec  
Characteristic  
Symbol  
Min  
Typ1  
Max3  
Unit  
Max2  
1
2
3
4
5
6
Double Word (64 bits) Program Time4  
Page Program Time4,5  
tdwprogram  
tpprogram  
38  
45  
500  
500  
s  
s  
160  
16 KB Block Pre-program and Erase Time  
64 KB Block Pre-program and Erase Time  
128 KB Block Pre-program and Erase Time  
256 KB Block Pre-program and Erase Time  
t16kpperase  
t64kpperase  
t128kpperase  
t256kpperase  
270  
800  
1500  
3000  
1000  
1800  
2600  
5200  
5000  
5000  
7500  
15000  
ms  
ms  
ms  
ms  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 oC.  
Initial factory condition: 100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system frequency.  
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized  
but not guaranteed.  
4
5
Program times are actual hardware programming times and do not include software overhead.  
Page size is 128 bits (4 words).  
Table 23. Flash EEPROM module life  
Spec  
Characteristic  
Symbol  
Min  
Typical1  
Unit  
1
Number of program/erase cycles per block for 16 KB and 64  
KB blocks over the operating temperature range (TJ)  
P/E  
100,000  
cycles  
2
3
Number of program/erase cycles per block for 128 KB and 256  
KB blocks over the operating temperature range (TJ)  
P/E  
1,000  
100,000  
cycles  
years  
Minimum Data Retention at 85 °C ambient temperature2  
Blocks with 0–1,000 P/E cycles  
Retention  
20  
10  
5
Blocks with 1,001–10,000 P/E cycles  
Blocks with 10,001–100,000 P/E cycles  
1
Typical endurance is evaluated at 25 °C. Product qualification is performed to the minimum specification. For additional  
information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance  
for Nonvolatile Memory.  
2
Ambient temperature averaged over duration of application, not to exceed product operating temperature range.  
Table 24 shows the Platform Flash Configuration Register 1 (PFCPR1) settings versus frequency of operation. Refer to the  
device reference manual for definitions of these bit fields.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
71  
Electrical characteristics  
1
Table 24. PFCPR1 settings vs. frequency of operation  
Maximum Frequency2  
(MHz)  
Clock  
Spec  
APC =  
RWSC  
WWSC DPFEN3 IPFEN3  
PFLIM4  
BFEN5  
Mode  
Core  
fsys  
Platform  
fplatf  
1
2
3
Enhanced 264 MHz6  
132 MHz6  
100 MHz  
132 MHz  
0b011  
0b01  
0b01  
0b01  
0b11  
0b0  
0b1  
0b0  
0b1  
0b00  
0b01  
0b1x  
0b0  
0b1  
Enhanced/ 200 MHz  
Full  
0b010  
0b100  
0b0  
0b1  
0b0  
0b1  
0b00  
0b01  
0b1x  
0b0  
0b1  
Legacy  
132 MHz  
0b0  
0b1  
0b0  
0b1  
0b00  
0b01  
0b1x  
0b0  
0b1  
Default setting after reset: 0b111  
0b00  
0b00  
0b00  
0b0  
1
2
3
4
5
6
Illegal combinations exist. Use entries from the same row in this table.  
This is the nominal maximum frequency of operation: platform runs at fsys/2 in Enhanced Mode .  
For maximum flash performance, set to 0b1.  
For maximum flash performance, set to 0b10.  
For maximum flash performance, set to 0b1.  
This is the nominal maximum frequency of operation in Enhanced Mode. Max speed is the maximum speed  
allowed including frequency modulation (FM). 270 MHz parts allow for 264 MHz system core clock(fsys) + 2% FM  
and 132 Mhz platform clock (fplatf)+ 2% FM.  
PXR40 Microcontroller Data Sheet, Rev. 1  
72  
Freescale Semiconductor  
Electrical characteristics  
5.11 AC specifications  
5.11.1 Clocking  
Figure 8 shows the operating frequency domains of various blocks on PXR40.  
PLLCFG[0:1]  
CORE  
fsys  
SYSDIV  
X  
2  
PLATFORM /  
BLOCKS /  
FLASH  
fplatf  
EXTAL  
PLL  
IPG DIV SEL  
fperiph  
SIU_SYSDIV[SYSCLKDIV[0:1]]  
X = 2, 4, 8, or 16  
fetpu  
eTPU /  
NDEDI  
ETPU DIV SEL  
SIU_SYSDIV[BYPASS]  
X = 1  
febi_cal  
EBI  
CAL BUS  
SIU_SYSDIV[IPCLKDIV[0:1]]  
DIV  
SIU_ECCR[EBDF[0:1]]  
Note: tcycsys = 1 / fsys  
tcyc = 1 / fplatf  
D_CLKOUT  
2 = divide-by-2  
X = divide-by-X, depending on SIU_SYSDIV[BYPASS]  
(D_CLKOUT is not available  
on all packages and cannot  
be programmed for faster  
than fsys/2.)  
and SIU_SYSDIV[SYSCLKDIV].  
Figure 8. PXR40 block operating frequency domain diagram  
Table 25 shows the operating frequencies of various blocks depending on the device’s clocking mode configuration settings (see  
Table 26 and Table 27 for descriptions of bit settings).  
1, 2  
Table 25. PXR40 operating frequencies  
f
f
etpu  
platf  
(platform and all blocks (eTPU, eTPU RAM,  
SIU_ECCR  
f
4,5  
ebi_cal  
sys  
Mode  
f
Unit  
[EBDF[0:1]]3  
(core)  
except eTPU)  
and NDEDI)  
Enhanced  
Full  
01  
11  
264  
264  
132  
132  
132  
132  
66  
33  
MHz  
MHz  
MHz  
01  
11  
200  
200  
100  
100  
200  
200  
50  
25  
Legacy  
01  
11  
132  
132  
132  
132  
132  
132  
66  
33  
1
The values in the table are specified at:  
VDD = 1.02 V to 1.32 V  
VDDE = 3.0 V to 3.6 V  
VDDEH = 4.5 V to 5.5 V  
VDD33 and VDDSYN = 3.0 V to 3.6 V  
TA = TL to TH.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
73  
Electrical characteristics  
2
Up to the maximum frequency rating of the device (refer to Table 39). The fsys speed is the nominal maximum frequency.  
270 Mhz parts allow for 264 Mhz system clock + 2% FM.  
3
See the PXR40 Reference Manual for full description as not all bit combinations are valid.  
4
EBI/Calibration bus is not available in all packages.  
5
The EBI/Calibration Bus operating frequency, febi_cal , depends on clock divider settings of block’s max allowed  
frequency of operation. Normally febi_cal = fplatf /2, but can be limited to < fplatf /2 in Full Mode.  
Table 26. IPCLKDIV settings  
SIU_SYSDIV  
Mode  
Description  
[IPCLKDIV[0:1]]  
00  
Enhanced  
CPU frequency is doubled (Max 264Mhz). Platform,  
peripheral, and eTPU clocks are 1/2 of CPU frequency  
01  
Full  
CPU and eTPU frequency is doubled (Max 200Mhz).  
Platform and peripheral clocks are 1/2 of CPU frequency.  
10  
11  
Reserved  
Legacy  
CPU, eTPU, platform, and peripheral’s clocks all run at  
same speed (Max 132Mhz).  
Table 27. SYSCLKDIV settings  
SIU_SYSDIV  
Description  
[SYSCLKDIV[0:1]]  
00  
01  
10  
11  
Divide by 2.  
Divide by 4.  
Divide by 8.  
Divide by 16.  
5.11.2 Pad AC specifications  
1
Table 28. Pad AC specifications (v  
= 5.0 V, V  
= 3.3 V)  
DDE  
ddeh  
Out Delay2,4  
H/H L (ns)  
Rise/Fall3,4  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
SRC/DSC  
L
1
2
3
4
5
6
Medium5  
00  
152/165  
205/220  
28/34  
70/74  
96/96  
12/15  
28/31  
5.3/5.9  
22/22  
50  
200  
50  
01  
11  
52/59  
200  
50  
12/12  
32/32  
200  
PXR40 Microcontroller Data Sheet, Rev. 1  
74  
Freescale Semiconductor  
Electrical characteristics  
= 3.3 V) (continued)  
1
Table 28. Pad AC specifications (v  
= 5.0 V, V  
DDE  
ddeh  
Out Delay2,4  
H/H L (ns)  
Rise/Fall3,4  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
SRC/DSC  
L
7
Fast6  
00  
01  
10  
11  
00  
10  
20  
8
2.5  
1.2  
9
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
50  
Fast with Slew Rate  
40/40  
50/50  
13/13  
19/19  
8/8  
16/16  
21/21  
5/5  
50  
200  
50  
01  
10  
11  
8/8  
200  
50  
2.4/2.4  
5/5  
12/12  
5/5  
200  
50  
1.1/1/1  
2.6  
8/8  
2.6  
50  
Pull Up/Down (3.6 V max)  
Pull Up/Down (5.25 V max)  
7500  
6000  
5000/5000  
50  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.  
2
3
4
5
6
This parameter is supplied for reference and is not guaranteed by design and not tested.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
1
Table 29. Derated pad AC specifications (V  
= 3.3 V)  
DDEH  
Out Delay2,3  
H/H L (ns)  
Rise/Fall4,3  
Load Drive  
(pF)  
Spec  
Pad  
SRC/DSC  
L
(ns)  
1
2
3
4
5
6
Medium5  
00  
200/210  
270/285  
37/45  
86/86  
120/120  
15.5/19  
38/43  
50  
200  
50  
01  
11  
69/82  
200  
50  
18/17  
7.6/8.5  
30/34  
46/49  
200  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
75  
Electrical characteristics  
VDDEn / 2  
VDDEHn / 2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 9. Pad output delay  
PXR40 Microcontroller Data Sheet, Rev. 1  
76  
Freescale Semiconductor  
Electrical characteristics  
5.12 AC timing  
5.12.1 Generic timing diagrams  
The generic timing diagrams in Figure 10 and Figure 11 apply to all I/O pins with pad types F and MH. See 4, Signal properties  
and muxing, for the pad type for each pin.  
D_CLKOUT  
VDDE / 2  
A
B
I/O Outputs  
VDDEn / 2  
VDDEHn / 2  
A – Maximum Output Delay Time  
Figure 10. Generic output delay/hold timing  
B – Minimum Output Hold Time  
D_CLKOUT  
VDDE / 2  
B
A
I/O Inputs  
VDDEn / 2  
VDDEHn / 2  
A – Minimum Input Setup Time  
B – Minimum Input Hold Time  
Figure 11. Generic input setup/hold timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
77  
Electrical characteristics  
5.12.2 Reset and configuration pin timing  
1
Table 30. Reset and configuration pin timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
2
1
2
3
4
RESET Pulse Width  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tcyc  
2
RESET Glitch Detect Pulse Width  
tcyc  
2
PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid  
PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid  
10  
0
tcyc  
2
tcyc  
1
2
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.08 V to 1.32 V, TA = TL to TH.  
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
WKPCFG  
4
Figure 12. Reset and configuration pin timing  
5.12.3 IEEE 1149.1 interface timing  
1
Table 31. JTAG pin AC electrical characteristics  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
TCK Cycle Time  
tJCYC  
tJDC  
tTCKRISE  
TMSS, tTDIS  
tTMSH, TDIH  
tTDOV  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
TCK Clock Pulse Width (Measured at VDDE / 2)  
TCK Rise and Fall Times (40%–70%)  
TMS, TDI Data Setup Time  
t
10  
TMS, TDI Data Hold Time  
t
25  
TCK Low to TDO Data Valid  
PXR40 Microcontroller Data Sheet, Rev. 1  
78  
Freescale Semiconductor  
Electrical characteristics  
1
Table 31. JTAG pin AC electrical characteristics (continued)  
Spec  
Characteristic  
TCK Low to TDO Data Invalid  
Symbol  
Min  
Max  
Unit  
7
tTDOI  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
0
20  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
TCK Low to TDO High Impedance  
9
JCOMP Assertion Time  
100  
40  
10  
11  
12  
13  
14  
15  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
TCK Falling Edge to Output Valid out of High Impedance  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
TCK Rising Edge to Boundary Scan Input Invalid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
50  
50  
1
JTAG timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and  
CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG boundary scan only. See Table 32 for functional  
specifications.  
TCK  
2
3
2
3
1
Figure 13. JTAG test clock input timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
79  
Electrical characteristics  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 14. JTAG Test Access Port (TAP) timing  
TCK  
10  
JCOMP  
9
Figure 15. JTAG JCOMP timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
80  
Freescale Semiconductor  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 16. JTAG boundary scan timing  
5.12.4 Nexus timing  
1
Table 32. Nexus debug port timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
3
1
2
3
4
5
6
7
8
9
MCKO Cycle Time  
tMCYC  
tMDC  
22  
40  
8
tCYC  
%
MCKO Duty Cycle  
60  
0.2  
0.2  
0.2  
MCKO Low to MDO Data Valid4  
MCKO Low to MSEO Data Valid4  
MCKO Low to EVTO Data Valid4  
EVTI Pulse Width  
tMDOV  
tMSEOV  
tEVTOV  
tEVTIPW  
tEVTOPW  
tTCYC  
–0.1  
–0.1  
–0.1  
4.0  
1
tMCYC  
tMCYC  
tMCYC  
3
tTCYC  
tMCYC  
EVTO Pulse Width  
TCK Cycle Time  
45  
tCYC  
3
TCK Duty Cycle  
tTDC  
40  
60  
%
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
81  
Electrical characteristics  
Spec  
1
Table 32. Nexus debug port timing (continued)  
Characteristic  
Symbol  
tNTDIS, NTMSS  
TNTDIH, NTMSH  
tNTDOV  
Min  
Max  
Unit  
10 TDI, TMS Data Setup Time  
11 TDI, TMS Data Hold Time  
12 TCK Low to TDO Data Valid  
13 RDY Valid to MCKO6  
t
8
5
10  
ns  
ns  
ns  
t
0
1
2
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified  
at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with  
DSC = 0b10.  
The Nexus AUX port runs up to 82 MHz (pending characterization). Set NPC_PCR[MKCO_DIV] to correct division depending  
on the system frequency, not to exceed maximum Nexus AUX port frequency.  
3
4
5
6
See Notes on tcyc on Figure 13 and Table 25 in Section Section 5.11.1 Clocking.  
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Lower frequency is required to be fully compliant to standard.  
The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.  
1
2
MCKO  
3
4
5
MDO  
Output Data Valid  
7
MSEO  
EVTO  
6
EVTI  
Figure 17. Nexus timings  
PXR40 Microcontroller Data Sheet, Rev. 1  
82  
Freescale Semiconductor  
Electrical characteristics  
8
9
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Figure 18. Nexus TCK, TDI, TMS, TDO timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
83  
Electrical characteristics  
5.12.5 External Bus Interface (EBI) timing  
1
Table 33. Bus operation timing  
66 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
1
2
3
4
5
D_CLKOUT Period  
tC  
15.2  
45%  
ns Signals are measured at 50% VDDE.  
D_CLKOUT Duty Cycle  
D_CLKOUT Rise Time  
D_CLKOUT Fall Time  
tCDC  
tCRT  
tCFT  
tCOH  
55%  
tC  
ns  
ns  
4
4
D_CLKOUT Posedge to Output  
Signal Invalid or High Z (Hold Time)  
1.0/1.5  
ns Hold time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0: 1.0 ns  
D_ADD[9:30]  
D_BDIP  
EBTS = 1: 1.5 ns  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
D_RD_WR  
D_TA  
D_TS  
D_WE[0:3]/D_BE[0:3]  
6
D_CLKOUT Posedge to Output  
Signal Valid (Output Delay)  
tCOV  
7.0/7.5  
ns Output valid time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0: 7.0 ns  
D_ADD[9:30]  
D_BDIP  
EBTS = 1: 7.5 ns  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
D_RD_WR  
D_TA  
D_TS  
D_WE[0:3]/D_BE[0:3]  
PXR40 Microcontroller Data Sheet, Rev. 1  
84  
Freescale Semiconductor  
Electrical characteristics  
1
Table 33. Bus operation timing (continued)  
66 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
7
Input Signal Valid to D_CLKOUT  
Posedge (Setup Time)  
tCIS  
5.0/4.5  
ns Input setup time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0; 5.0ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
EBTS = 1; 4.5ns  
D_TS  
8
D_CLKOUT Posedge to Input  
Signal Invalid (Hold Time)  
tCIH  
1.0  
ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
D_TS  
9
D_ALE Pulse Width  
tAPW  
tAAI  
6.5  
ns The timing is for Asynchronous  
external memory system.  
10 D_ALE Negated to Address Invalid  
2.0/1.0 5  
ns The timing is for Asynchronous  
external memory system.  
ALE is measured at 50% of VDDE.  
1
2
3
EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and  
CL = 30 pF with DSC = 0b10.  
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).  
270 MHz parts allow for 264 MHz system clock + 2% FM.  
Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus frequency.  
The maximum external bus frequency is 66 MHz.  
4
5
Refer to Fast pad timing in Table 28 and Table 29.  
ALE hold time spec is temperature dependant. 1.0 ns spec applies for temperature range -40 to 0 C. 2.0 ns spec applies to  
temperatures > 0 C. This spec has no dependency on SIU_ECCR[EBTS] bit.  
VOH_F  
VDDE / 2  
VOL_F  
D_CLKOUT  
2
3
2
4
1
Figure 19. D_CLKOUT timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
85  
Electrical characteristics  
VDDE / 2  
D_CLKOUT  
6
5
5
Output  
Bus  
VDDE / 2  
6
5
5
Output  
Signal  
VDDE / 2  
6
Output  
Signal  
VDDE / 2  
Figure 20. Synchronous output timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
86  
Freescale Semiconductor  
Electrical characteristics  
D_CLKOUT  
VDDE / 2  
7
8
Input  
Bus  
VDDE / 2  
7
8
Input  
Signal  
VDDE / 2  
Figure 21. Synchronous input timing  
ipg_clk  
D_CLKOUT  
D_ALE  
D_TS  
D_ADD/D_DAT  
DATA  
ADDR  
9
10  
Figure 22. ALE signal timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
87  
Electrical characteristics  
5.12.6 External interrupt timing (IRQ pin)  
1
Table 34. External interrupt timing  
Spec  
Characteristic  
IRQ Pulse Width Low  
Symbol  
Min  
Max  
Unit  
2
1
2
3
tIPWL  
tIPWH  
tICYC  
3
3
6
tcyc  
2
IRQ Pulse Width High  
tcyc  
IRQ Edge to Edge Time3  
tcyc  
2
1
IRQ timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL  
to TH.  
2
3
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
2
1
3
Figure 23. External interrupt timing  
5.12.7 eTPU timing  
1
Table 35. eTPU timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
2
1
2
eTPU Input Channel Pulse Width  
eTPU Output Channel Pulse Width  
tICPW  
4
tcyc  
tOCPW  
13  
tcyc  
2
1
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,  
and CL = 200 pF with SRC = 0b00.  
2
3
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.  
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
PXR40 Microcontroller Data Sheet, Rev. 1  
88  
Freescale Semiconductor  
Electrical characteristics  
eTPU Input  
and TCRCLK  
1
2
eTPU  
Output  
Figure 24. eTPU timing  
5.12.8 eMIOS timing  
1
Table 36. eMIOS timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
2
1
2
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
tMIPW  
4
tcyc  
2
tMOPW  
13  
tcyc  
1
eMIOS timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,  
and CL = 50 pF with SRC = 0b00.  
2
3
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.  
This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
89  
Electrical characteristics  
eMIOS Input  
1
2
eMIOS  
Output  
Figure 25. eMIOS timing  
5.12.9 DSPI timing  
1 2  
Table 37. DSPI timing  
Peripheral Bus Freq: 132 MHz  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
1
DSPI Cycle Time3, 4  
Master (MTFE = 0)  
Slave (MTFE = 0)  
Master (MTFE = 1)  
Slave (MTFE = 1)  
tSCK  
tSYS * 2  
tSYS*32768*7  
ns  
2
3
PCS to SCK Delay5  
tCSC  
tASC  
12  
ns  
ns  
After SCK Delay6  
Master mode  
Slave mode  
tSYS * 2  
tSYS *3 –  
constraints 7  
4
5
SCK Duty Cycle  
tSDC  
tA  
0.33 * tSCK  
0.66 * tSCK  
25  
ns  
ns  
Slave Access Time  
(SS active to SOUT valid)  
6
Slave SOUT Disable Time  
tDIS  
25  
ns  
(SS inactive to SOUT High-Z or invalid)  
7
8
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
tSYS * 2  
tSYS * 2  
tSYS * 7  
tSYS * 7  
ns  
ns  
PXR40 Microcontroller Data Sheet, Rev. 1  
90  
Freescale Semiconductor  
Electrical characteristics  
1 2  
Table 37. DSPI timing (continued)  
Peripheral Bus Freq: 132 MHz  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
9
Data Setup Time for Inputs  
Master (MTFE = 0)  
tSUI  
20  
4
6
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)8  
Master (MTFE = 1, CPHA = 1)  
20  
10  
11  
12  
Data Hold Time for Inputs  
Master (MTFE = 0)  
tHI  
tSUO  
tHO  
–3  
7
12  
–3  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)8  
Master (MTFE = 1, CPHA = 1)  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
5
25  
13  
5
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Data Hold Time for Outputs  
Master (MTFE = 0)  
–5  
2.5  
3
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–5  
1
2
DSPI timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, and TA = TL to TH  
Speed is the nominal maximum frequency of platform clock (fplatf). Max speed is the maximum speed allowed including  
frequency modulation (FM). 270 MHz parts allow for 264 Mhz for system core clock (fsys) + 2% FM.  
3
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated  
based on two devices communicating over a DSPI link.  
4
5
6
7
8
The actual minimum SCK cycle time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].  
The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].  
For example, external master should start SCK clock not earlier than 3 system clock periods after assertion SS  
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.  
The DSPI in this device can be configured to serialize data to an external device that implements the Microsecond Bus protocol.  
DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) for data and clock signals to improve high  
speed operation.  
1, 2  
Table 38. DSPI LVDS timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
LVDS Clock to Data/Chip Select Outputs  
tLVDSDATA  
–0.25 ×  
tSCYC  
+0.25 ×  
tSCYC  
ns  
1
These are typical values that are estimated from simulation.  
See DSPI LVDS Pad related data in Table 14.  
2
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
91  
Electrical characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 26. DSPI classic SPI timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 27. DSPI classic SPI timing — Master, CPHA = 1  
PXR40 Microcontroller Data Sheet, Rev. 1  
92  
Freescale Semiconductor  
Electrical characteristics  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
First Data  
Data  
Last Data  
Figure 28. DSPI classic SPI timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 29. DSPI classic SPI timing — Slave, CPHA = 1  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
93  
Electrical characteristics  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Figure 30. DSPI modified transfer format timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 31. DSPI modified transfer format timing — Master, CPHA = 1  
PXR40 Microcontroller Data Sheet, Rev. 1  
94  
Freescale Semiconductor  
Electrical characteristics  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 32. DSPI modified transfer format timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 33. DSPI modified transfer format timing — Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 34. DSPI PCS strobe (PCSS) timing  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
95  
Ordering information  
6
Ordering information  
6.1  
Orderable parts  
Figure 35 and Table 39 describe and list the orderable part numbers for the PXR40.  
M PX  
R
40 30 V VU 264 R  
Qualification status  
Brand  
Family  
Class  
Flash memory size  
Temperature range  
Package identifier  
Operating frequency  
Tape and reel indicator  
Qualification status  
Family  
Flash Memory Size  
D = Display Graphics  
N = Connectivity/Network  
R = Performance/Real Time Control  
S = Safety  
30 = 3 MB  
40 = 4 MB  
P = Pre-qualification (engineering samples)  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Temperature range  
Package identifier  
VU = 416 PBGA  
Operating frequency  
Tape and reel status  
V = –40 °C to 105 °C  
(ambient)  
1 = 150 MHz  
2 = 180 MHz  
R = Tape and reel  
(blank) = Trays  
Note: Not all options are available on all devices. See Table 39 for more information.  
Figure 35. PXR40 orderable part number description  
Table 39. PXR40 orderable part number summary  
Speed  
(MHz)  
Part number  
Flash/SRAM  
Package  
MPXR4030VVU264  
MPXR4040VVU264  
3 MB / 192 KB  
4 MB / 256 KB  
416 PBGA (27 mm x 27 mm)  
416 PBGA (27 mm x 27 mm)  
264  
264  
PXR40 Microcontroller Data Sheet, Rev. 1  
96  
Freescale Semiconductor  
Package information  
7
Package information  
7.1  
416-pin package  
The package drawings of the 416-pin TEPBGA package are shown in Figure 36 and Figure 37.  
Figure 36. 416 TEPBGA package (1 of 2)  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
97  
Package information  
Figure 37. 416 TEPBGA package (2 of 2)  
PXR40 Microcontroller Data Sheet, Rev. 1  
98  
Freescale Semiconductor  
Product documentation  
8
Product documentation  
This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these  
types are available at: http://www.freescale.com.  
The following documents are required for a complete description of the device and are necessary to design properly with the  
parts:  
PXR40 Microprocessor Reference Manual (document number PXR40RM).  
9
Revision history  
Table 40 describes the changes made to this document between revisions.  
Table 40. Revision history  
Revision  
Date  
Description of Changes  
1
September 2011 Initial release: Technical Data  
PXR40 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
99  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Semiconductor was negligent regarding the design or manufacture of the part.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2011. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: PXR40  
Rev. 1  
09/2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY