MRF6V14300HR3_10 [FREESCALE]

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs; 射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET
MRF6V14300HR3_10
型号: MRF6V14300HR3_10
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总10页 (文件大小:643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V14300H  
Rev. 3, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MRF6V14300HR3  
MRF6V14300HSR3  
RF Power transistors designed for applications operating at frequencies  
between 1200 and 1400 MHz, 1% to 12% duty cycle. These devices are  
suitable for use in pulsed applications.  
Typical Pulsed Performance: VDD = 50 Volts, IDQ = 150 mA, Pout =  
330 Watts Peak (39.6 W Avg.), f = 1400 MHz, Pulse Width = 300 μsec,  
Duty Cycle = 12%  
Power Gain — 18 dB  
1400 MHz, 330 W, 50 V  
PULSED  
LATERAL N--CHANNEL  
RF POWER MOSFETs  
Drain Efficiency — 60.5%  
Capable of Handling 5:1 VSWR, @ 50 Vdc, 1400 MHz, 330 Watts Peak  
Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
CASE 465--06, STYLE 1  
NI--780  
RoHS Compliant  
In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.  
MRF6V14300HR3  
CASE 465A--06, STYLE 1  
NI--780S  
MRF6V14300HSR3  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +100  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 65°C, 330 W Pulsed, 300 μsec Pulse Width, 12% Duty Cycle  
Z
θ
0.13  
°C/W  
JC  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2008, 2010. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
1C (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
I
100  
10  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 100 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
50  
2.5  
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 662 μAdc)  
V
V
0.9  
1.5  
1.6  
2.4  
2.4  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.63 Adc)  
V
0.26  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
0.6  
350  
330  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 330 W Peak (39.6 W Avg.), f = 1400 MHz,  
DD  
DQ  
out  
Pulsed, 300 μsec Pulse Width, 12% Duty Cycle  
Power Gain  
G
16.5  
18  
19.5  
dB  
%
ps  
D
(2)  
(2)  
Drain Efficiency  
η
59  
60.5  
Input Return Loss  
IRL  
-- 1 2  
-- 9  
dB  
Pulsed RF Performance (In Freescale Application Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 330 W Peak  
DD  
DQ  
out  
(39.6 W Avg.), f1 = 1200 MHz, f2 = 1300 MHz and f3 = 1400 MHz, Pulsed, 300 μsec Pulse Width, 12% Duty Cycle, t = 50 ns  
r
Relative Insertion Phase  
Gain Flatness  
|∆Φ|  
10  
0.5  
0.3  
-- 2 0  
-- 6 5  
°
G
dB  
F
Pulse Amplitude Droop  
Harmonic 2nd and 3rd  
Spurious Response  
D
rp  
dB  
H2 & H3  
dBc  
dBc  
Load Mismatch Stability  
(VSWR = 3:1 at all Phase Angles)  
VSWR--S  
VSWR--T  
All Spurs Below --60 dBc  
Load Mismatch Tolerance  
No Degradation in Output Power  
(VSWR = 5:1 at all Phase Angles)  
1. Part internally matched both on input and output.  
100 × Pout  
VDD × Ipeak  
2. Drain efficiency is calculated by:  
where: I  
= (I  
-- I ) / Duty Cycle (%) + I  
DQ  
.
DQ  
peak  
AVG  
ηD  
=
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
2
V
SUPPLY  
+
+
C3  
C5  
C6  
C7  
C4  
R1  
V
BIAS  
Z23  
+
RF  
OUTPUT  
C9 C8  
Z22  
Z13  
Z14 Z15 Z16 Z17 Z18 Z19 Z20  
Z21  
RF  
INPUT  
C2  
Z1  
Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11  
Z12  
C1  
DUT  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
0.205x 0.080Microstrip  
0.721x 0.022Microstrip  
0.080x 0.104Microstrip  
0.128x 0.022Microstrip  
0.062x 0.134Microstrip  
0.440x 0.022Microstrip  
0.262x 0.496Microstrip  
0.030x 0.138Microstrip  
0.256x 0.028Microstrip  
0.058x 0.254Microstrip  
0.344x 0.087Microstrip  
0.110x 0.087Microstrip  
Z13  
0.110x 0.866Microstrip  
0.630x 0.866Microstrip  
0.307x 0.470Microstrip  
0.045x 0.221Microstrip  
0.171x 0.136Microstrip  
0.120x 0.430Microstrip  
0.964x 0.136Microstrip  
0.177x 0.078Microstrip  
0.215x 0.078Microstrip  
1.577x 0.070Microstrip  
1.459x 0.070Microstrip  
Z14  
Z15  
Z16  
Z17  
Z18  
Z19  
Z20  
Z21  
Z22  
Z23  
PCB  
Z9  
Z10  
Z11  
Z12  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
Figure 1. MRF6V14300HR3(HSR3) Test Circuit Schematic  
Table 5. MRF6V14300HR3(HSR3) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
ATC100B430JT500XT  
ATC100B180JT500XT  
ATC100B330JT500XT  
ATC100B270JT500XT  
2225X7R225KT3AB  
Manufacturer  
ATC  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
R1  
43 pF Chip Capacitor  
18 pF Chip Capacitor  
ATC  
33 pF Chip Capacitor  
ATC  
27 pF Chip Capacitor  
ATC  
2.2 μF, 100 V Chip Capacitor  
470 μF, 63 V Electrolytic Capacitor  
330 pF, 63 V Electrolytic Capacitor  
0.1 μF, 35 V Chip Capacitor  
10 μF, 35 V Tantalum Capacitor  
10 , 1/4 W Chip Resistor  
ATC  
EMVY630GTR471MMH0S  
EMVY630GTR331MMH0S  
CDR33BX104AKYS  
Multicomp  
Multicomp  
Kemet  
Kemet  
Vishay  
T491D106K035AT  
CRCW120610R0FKEA  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
3
C9  
C3  
C4  
C6  
C5  
R1  
C8  
C7  
C2  
C1  
MRF6V14300  
Rev. 1  
Figure 2. MRF6V14300HR3(HSR3) Test Circuit Component Layout  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
160  
140  
120  
C
oss  
C
iss  
100  
80  
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
P
= 300 W  
out  
V
GS  
10  
1
P
= 270 W  
out  
P
= 330 W  
60  
out  
C
rss  
40  
V
= 50 Vdc, I = 150 mA  
DQ  
DD  
20  
0
f = 1200 MHz, Pulse Width = 300 μsec  
0.1  
0
10  
V
20  
30  
40  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DUTY CYCLE (%)  
DS  
Figure 3. Capacitance versus Drain--Source Voltage  
Figure 4. Safe Operating Area  
24  
65  
59  
58  
57  
56  
55  
54  
53  
52  
Ideal  
P3dB = 55.30 dBm (339 W)  
P1dB = 54.77 dBm (300 W)  
22  
20  
55  
45  
35  
25  
Actual  
G
ps  
η
D
51  
50  
49  
48  
47  
18  
16  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 μsec, Duty Cycle = 12%  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 μsec, Duty Cycle = 12%  
DD  
DD  
50  
100  
400  
27  
29  
31  
33  
35  
37  
39  
P
, OUTPUT POWER (WATTS) PULSED  
P , INPUT POWER (dBm) PULSED  
in  
out  
Figure 5. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 6. Pulsed Output Power versus  
Input Power  
22  
21  
20  
19  
18  
17  
22  
I
= 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 μsec  
21  
20  
19  
18  
17  
16  
15  
I
= 600 mA  
DQ  
Duty Cycle = 12%  
300 mA  
150 mA  
450 mA  
45 V  
50 V  
40 V  
35 V  
V
= 50 Vdc, f = 1400 MHz  
DD  
Pulse Width = 300 μsec, Duty Cycle = 12%  
V
= 30 V  
DD  
50  
100  
400  
50  
100  
, OUTPUT POWER (WATTS) PULSED  
400  
P
, OUTPUT POWER (WATTS) PULSED  
P
out  
out  
Figure 8. Pulsed Power Gain versus  
Output Power  
Figure 7. Pulsed Power Gain versus  
Output Power  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
400  
300  
200  
100  
0
24  
70  
58  
-- 3 0 _C  
T
= --30_C  
C
25_C  
55_C  
25_C  
22  
85_C  
G
ps  
85_C  
T
= --30_C  
C
25_C  
85_C  
20  
18  
16  
46  
34  
η
D
55_C  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
DD  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 μsec, Duty Cycle = 12%  
DD  
Pulse Width = 300 μsec, Duty Cycle = 12%  
22  
0
1
2
3
4
5
6
50  
100  
400  
P , INPUT POWER (WATTS) PULSED  
in  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 9. Pulsed Output Power versus  
Input Power  
Figure 10. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
19  
63  
18  
17  
16  
15  
14  
13  
12  
11  
G
62  
61  
60  
59  
0
ps  
η
D
-- 5  
IRL  
-- 1 0  
-- 1 5  
V
= 50 Vdc, I = 150 mA, P = 330 W Peak (39.6 W Avg.)  
DQ out  
DD  
-- 2 0  
-- 2 5  
10  
9
Pulse Width = 300 μsec, Duty Cycle = 12%  
1200 1225 1250 1275 1300 1325  
1350 1375 1400  
f, FREQUENCY (MHz)  
Figure 11. Broadband Performance @ Pout = 330 Watts Peak  
8
10  
7
10  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 330 W Peak, Pulse Width = 300 μsec,  
DD  
out  
Duty Cycle = 12%, and η = 60.5%.  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 12. MTTF versus Junction Temperature  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
6
Z = 10 Ω  
o
f = 1400 MHz  
f = 1400 MHz  
Z
load  
Z
source  
f = 1200 MHz  
f = 1200 MHz  
V
= 50 Vdc, I = 150 mA, P = 330 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1200  
1300  
1400  
2.70 -- j4.10  
4.93 -- j2.66  
7.01 -- j2.87  
2.97 -- j2.66  
2.85 -- j2.40  
3.17 -- j1.78  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 13. Series Equivalent Source and Load Impedance  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
B
G
2X  
Q
1
2
M
M
M
bbb  
T
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M--1994.  
3
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
K
B
(FLANGE)  
D
INCHES  
DIM MIN MAX  
A
B
C
D
MILLIMETERS  
M
M
M
bbb  
T
A
B
MIN  
33.91  
9.65  
MAX  
34.16  
9.91  
1.335  
0.380  
0.125  
0.495  
0.035  
0.003  
1.345  
0.390  
0.170  
0.505  
0.045  
0.006  
3.18  
4.32  
(LID)  
R
(INSULATOR)  
M
N
12.57  
0.89  
0.08  
12.83  
1.14  
0.15  
E
M
M
M
M
M
M
M
M
bbb  
T
A
B
ccc  
aaa  
T
T
A
A
B
F
G
1.100 BSC  
27.94 BSC  
(INSULATOR)  
S
(LID)  
H
K
M
N
0.057  
0.170  
0.774  
0.772  
.118  
0.067  
0.210  
0.786  
0.788  
.138  
1.45  
4.32  
19.66  
19.60  
3.00  
1.70  
5.33  
19.96  
20.00  
3.51  
M
M
M
M
B
ccc  
T
A
B
H
Q
R
S
0.365  
0.365  
0.375  
0.375  
9.27  
9.27  
9.53  
9.52  
C
aaa  
bbb  
ccc  
0.005 REF  
0.010 REF  
0.015 REF  
0.127 REF  
0.254 REF  
0.381 REF  
F
SEATING  
PLANE  
E
A
T
CASE 465--06  
ISSUE G  
STYLE 1:  
PIN 1. DRAIN  
A
(FLANGE)  
2. GATE  
3. SOURCE  
NI--780  
MRF6V14300HR3  
4X U  
(FLANGE)  
4X Z  
(LID)  
B
1
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M--1994.  
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
2X K  
2
B
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
(FLANGE)  
D
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
M
M
bbb  
T
A
B
MIN  
20.45  
9.65  
3.18  
12.57  
0.89  
0.08  
1.45  
4.32  
19.61  
19.61  
9.27  
9.27  
-- -- --  
MAX  
20.70  
9.91  
4.32  
12.83  
1.14  
0.15  
1.70  
5.33  
20.02  
20.02  
9.53  
9.52  
1 . 0 2  
0 . 7 6  
A
B
0.805  
0.380  
0.125  
0.495  
0.035  
0.003  
0.057  
0.170  
0.774  
0.772  
0.365  
0.365  
-- -- --  
0.815  
0.390  
0.170  
0.505  
0.045  
0.006  
0.067  
0.210  
0.786  
0.788  
0.375  
0.375  
0 . 0 4 0  
0 . 0 3 0  
C
D
E
F
H
K
M
N
(LID)  
N
(LID)  
R
S
M
M
M
ccc  
T
A
B
M
M
M
M
ccc  
aaa  
T
T
A
A
B
(INSULATOR)  
(INSULATOR)  
M
M
M
M
M
M
B
bbb  
T
A
B
R
S
H
U
Z
-- -- --  
-- -- --  
C
aaa  
bbb  
ccc  
0.005 REF  
0.010 REF  
0.015 REF  
0.127 REF  
0.254 REF  
0.381 REF  
3
F
SEATING  
PLANE  
E
A
STYLE 1:  
T
PIN 1. DRAIN  
A
2. GATE  
5. SOURCE  
(FLANGE)  
CASE 465A--06  
ISSUE H  
NI--780S  
MRF6V14300HSR3  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
8
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Sept. 2008  
Oct. 2008  
Initial Release of Data Sheet  
Added footnote to describe the formula used to calculate values for Min and Typ Drain Efficiency in the  
Functional Test table, p. 2  
Updated Fig. 4, Safe Operating Area, to show additional curves for 270 W and 300 W output power, p. 5  
Added Fig. 12, MTTF versus Junction Temperature, p. 6  
2
3
Nov. 2008  
Apr. 2010  
Changed “multiply by” symbol to “divide by” symbol in the Functional Test Drain Efficiency formula  
footnote, p. 2  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Reporting of pulsed thermal data now shown using the Z  
symbol, p. 1  
JC  
θ
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 9  
MRF6V14300HR3 MRF6V14300HSR3  
RF Device Data  
Freescale Semiconductor  
9
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008, 2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6V14300H  
Rev. 3, 4/2010  

相关型号:

MRF6V14300HR5

Pulse Lateral N-Channel RF Power MOSFET, 1400 MHz, 330 W, 50 V
NXP

MRF6V14300HSR3

RF Power Field Effect Transistors
FREESCALE

MRF6V14300HSR5

Pulse Lateral N-Channel RF Power MOSFET, 1400 MHz, 330 W, 50 V
NXP

MRF6V2010N

RF Power Field Effect Transistor
FREESCALE

MRF6V2010NB

RF Power Field Effect Transistor
FREESCALE

MRF6V2010NBR1

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V2010NBR5

UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270AA, PLASTIC, ROHS COMPLIANT, CASE 1337-03, 2 PIN
NXP

MRF6V2010NR1

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V2010NR1

UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270AA, ROHS COMPLIANT, PLASTIC, TO-270, CASE 1265-09, 2 PIN
ROCHESTER

MRF6V2010NR1_08

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V2010N_10

RF Power Field Effect Transistors
FREESCALE

MRF6V2150N

N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE