MRF6S9160HR3_08 [FREESCALE]

RF Power Field Effect Transistors; 射频功率场效应晶体管
MRF6S9160HR3_08
型号: MRF6S9160HR3_08
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistors
射频功率场效应晶体管

晶体 晶体管 功率场效应晶体管 射频
文件: 总12页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6S9160H  
Rev. 2, 8/2008  
Freescale Semiconductor  
Technical Data  
MRF6S9160HR3/HSR3 replaced by MRFE6S9160HR3/HSR3. Refer to Device  
Migration PCN12895 for more details.  
RF Power Field Effect Transistors  
MRF6S9160HR3  
MRF6S9160HSR3  
N-Channel Enhancement-Mode Lateral MOSFETs  
Designed for N-CDMA, GSM and GSM EDGE base station applications  
with frequencies from 865 to 960 MHz. Suitable for multicarrier amplifier  
applications.  
Typical Single-Carrier N-CDMA Performance @ 880 MHz: VDD = 28 Volts,  
I
DQ = 1200 mA, Pout = 35 Watts Avg., IS-95 CDMA (Pilot, Sync, Paging,  
Traffic Codes 8 Through 13) Channel Bandwidth = 1.2288 MHz. PAR =  
9.8 dB @ 0.01% Probability on CCDF.  
880 MHz, 35 W AVG., 28 V  
SINGLE N-CDMA  
LATERAL N-CHANNEL  
RF POWER MOSFETs  
Power Gain — 20.9 dB  
Drain Efficiency — 30.5%  
ACPR @ 750 kHz Offset — -46.8 dBc in 30 kHz Bandwidth  
GSM EDGE Application  
Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 1200 mA,  
P
out = 76 Watts Avg., Full Frequency Band (865-895 MHz)  
Power Gain — 20 dB  
Drain Efficiency — 45%  
Spectral Regrowth @ 400 kHz Offset = -66 dBc  
Spectral Regrowth @ 600 kHz Offset = -75 dBc  
EVM — 2% rms  
CASE 465-06, STYLE 1  
NI-780  
GSM Application  
MRF6S9160HR3  
Typical GSM Performance: VDD = 28 Volts, IDQ = 1200 mA, Pout  
160 Watts, Full Frequency Band (921-960 MHz)  
Power Gain — 20 dB  
=
Drain Efficiency — 58%  
Capable of Handling 10:1 VSWR, @ 28 Vdc, 880 MHz, 160 Watts CW  
Output Power  
Features  
CASE 465A-06, STYLE 1  
NI-780S  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 32 VDD Operation  
Integrated ESD Protection  
MRF6S9160HSR3  
RoHS Compliant  
In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +68  
-0.5, +12  
- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain-Source Voltage  
Gate-Source Voltage  
Storage Temperature Range  
Case Operating Temperature  
V
DSS  
V
GS  
T
stg  
T
°C  
C
(1,2)  
Operating Junction Temperature  
T
225  
°C  
J
Table 2. Thermal Characteristics  
Characteristic  
(2,3)  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 81°C, 160 W CW  
Case Temperature 73°C, 35 W CW  
R
θ
JC  
°C/W  
0.31  
0.33  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
© Freescale Semiconductor, Inc., 2005-2006, 2008. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
1A (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 68 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 28 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
1
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 525 μAdc)  
V
V
1
2
2
3
3
4
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 1200 mAdc, Measured in Functional Test)  
DD  
D
Drain-Source On-Voltage  
(V = 10 Vdc, I = 3.6 Adc)  
V
0.1  
0.2  
0.3  
GS  
D
(1)  
Dynamic Characteristics  
Output Capacitance  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
80.2  
2.2  
pF  
pF  
oss  
GS  
Reverse Transfer Capacitance  
C
rss  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 1200 mA, P = 35 W Avg. N-CDMA,  
out  
DD  
DQ  
f = 880 MHz, Single-Carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ 750 kHz  
Offset. PAR = 9.8 dB @ 0.01% Probability on CCDF  
Power Gain  
G
20  
29  
20.9  
30.5  
-46.8  
-17  
23  
dB  
%
ps  
Drain Efficiency  
η
D
Adjacent Channel Power Ratio  
Input Return Loss  
ACPR  
IRL  
-45  
-9  
dBc  
dB  
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V = 28 Vdc, I = 1200 mA,  
DD  
DQ  
P
= 76 W Avg., 865 MHz<Frequency<895 MHz  
out  
Power Gain  
G
20  
dB  
%
ps  
Drain Efficiency  
η
45  
2
D
Error Vector Magnitude  
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
EVM  
SR1  
SR2  
% rms  
dBc  
dBc  
-66  
-75  
Typical CW Performances (In Freescale GSM Test Fixture, 50 ohm system) V = 28 Vdc, I = 1200 mA, P = 160 W,  
DD  
DQ  
out  
921 MHz<Frequency<960 MHz  
Power Gain  
G
20  
58  
dB  
%
ps  
Drain Efficiency  
η
D
Input Return Loss  
IRL  
-12  
160  
dB  
W
P
@ 1 dB Compression Point, CW  
P1dB  
out  
(f = 940 MHz)  
1. Part is internally matched on input.  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
2
B2  
V
V
SUPPLY  
B1  
BIAS  
R2  
+
+
C21  
C22  
C24  
C23  
C20  
R1  
L2  
C16 C17 C18  
C19  
RF  
OUTPUT  
C7  
C8  
C9  
L1  
Z9  
Z10  
Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18  
Z19  
RF  
INPUT  
C5  
C6  
C2  
Z1  
Z2  
Z3 Z4  
Z5  
Z6 Z7  
Z8  
C10  
C11 C12  
C15  
C13 C14  
C1  
DUT  
C3  
C4  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z9  
Z10  
0.426x 0.080Microstrip  
0.813x 0.080Microstrip  
0.471x 0.080Microstrip  
0.319x 0.220Microstrip  
0.171x 0.220Microstrip  
0.200x 0.425x 0.630Taper  
0.742x 0.630Microstrip  
0.233x 0.630Microstrip  
0.128x 0.630Microstrip  
0.134x 0.630Microstrip  
Z11  
Z12  
Z13  
Z14  
Z15  
Z16  
Z17  
Z18  
Z19  
0.066x 0.630Microstrip  
0.630x 0.425x 0.220Taper  
0.120x 0.220Microstrip  
0.292x 0.220Microstrip  
0.023x 0.220Microstrip  
0.030x 0.220Microstrip  
0.846x 0.080Microstrip  
0.440x 0.080Microstrip  
0.434x 0.080Microstrip  
PCB Arlon CuClad 250GX-0300-55-22, 0.030, ε = 2.55  
r
Figure 1. MRF6S9160HR3(SR3) Test Circuit Schematic  
Table 5. MRF6S9160HR3(SR3) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
Fair Rite  
B1, B2  
C1, C2, C19  
C3, C11  
C4  
Ferrite Beads, Small  
2743019447  
47 pF Chip Capacitors  
ATC100B470JT500XT  
27291SL  
ATC  
0.8-8.0 pF Variable Capacitors, Gigatrim  
2.7 pF Chip Capacitor  
Johanson  
ATC  
ATC100B2R7JT500XT  
ATC100B150JT500XT  
ATC100B120JT500XT  
ATC100B4R3JT500XT  
ATC100B8R2JT500XT  
ATC100B3R9JT500XT  
27271SL  
C5, C6  
C7, C8  
C9, C10  
C12  
15 pF Chip Capacitors  
ATC  
12 pF Chip Capacitors  
ATC  
4.3 pF Chip Capacitors  
ATC  
8.2 pF Chip Capacitor  
ATC  
C13, C14  
C15  
3.9 pF Chip Capacitors  
ATC  
0.6-4.5 pF Variable Capacitor, Gigatrim  
22 pF Chip Capacitor  
Johanson  
ATC  
C16  
ATC100B220JT500XT  
T491C105K0J0AT  
C17  
1 μF, 50 V Tantalum Capacitor  
20K pF Chip Capacitor  
Kemit  
Kemit  
ATC  
C18  
CDR35BP203AKYS  
ATC100B181JT500XT  
GRM55DR61H106KA88B  
EKME630ELL471MK25S  
0603HC  
C20  
180 pF Chip Capacitor  
C21, C22, C23  
10 μF, 50 V Chip Capacitors  
470 μF, 63 V Electrolytic Capacitor  
10 nH Inductors  
Murata  
C24  
L1, L2  
R1  
United Chemi-Con  
Coilcraft  
180 Ω, 1/4 W Chip Resistor  
10 Ω, 1/4 W Chip Resistor  
CRCW12061800FKEA  
CRCW120610R0FKEA  
Vishay  
R2  
Vishay  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
3
C24  
C16  
B1  
B2  
900 MHz  
Rev. 2  
C18  
C19  
C22 C23  
C21  
C20  
R2  
C17  
R1  
L1  
L2  
C7 C9  
C5  
C6  
C14  
C1  
C2  
C15  
C13  
C4  
C3  
C12  
C11  
C8  
C10  
Figure 2. MRF6S9160HR3(SR3) Test Circuit Component Layout  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
20.9  
32  
30  
28  
26  
24  
η
D
20.6  
20.3  
20  
G
ps  
19.7  
19.4  
19.1  
18.8  
18.5  
18.2  
17.9  
V
= 28 Vdc, P = 35 W (Avg.)  
DD out  
= 1200 mA, N−CDMA IS−95 (Pilot, Sync,  
I
DQ  
−40  
−45  
−50  
−5  
Paging, Traffic Codes 8 Through 13)  
−8  
−11  
ACPR  
ALT1  
−55  
−60  
−65  
−14  
−17  
IRL  
−20  
840  
850  
860  
870  
880  
890  
900  
910  
920  
f, FREQUENCY (MHz)  
Figure 3. Single-Carrier N-CDMA Broadband Performance  
@ Pout = 35 Watts Avg.  
20.3  
44  
η
20  
19.7  
19.4  
19.1  
18.8  
18.5  
18.2  
17.9  
17.6  
17.3  
D
42  
40  
38  
36  
G
ps  
V
= 28 Vdc, P = 70 W (Avg.)  
out  
= 1200 mA, N−CDMA IS−95 (Pilot, Sync,  
DD  
I
DQ  
−30  
−36  
−42  
−3  
−6  
−9  
Paging, Traffic Codes 8 Through 13)  
ACPR  
IRL  
−48  
−54  
−60  
−12  
−15  
ALT1  
−18  
840  
850  
860  
870  
880  
890  
900  
910  
920  
f, FREQUENCY (MHz)  
Figure 4. Single-Carrier N-CDMA Broadband Performance  
@ Pout = 70 Watts Avg.  
23  
−10  
V
= 28 Vdc, f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements, 100 kHz Tone Spacing  
DD  
22  
21  
20  
19  
18  
17  
I
= 1800 mA  
−20  
−30  
−40  
−50  
1500 mA  
DQ  
I
= 600 mA  
1200 mA  
900 mA  
DQ  
900 mA  
1500 mA  
1800 mA  
600 mA  
1200 mA  
−60  
−70  
V
= 28 Vdc, f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements, 100 kHz Tone Spacing  
16  
15  
DD  
1
10  
100  
400  
1
10  
P , OUTPUT POWER (WATTS) PEP  
out  
100  
400  
P
, OUTPUT POWER (WATTS) PEP  
out  
Figure 5. Two-Tone Power Gain versus  
Output Power  
Figure 6. Third Order Intermodulation Distortion  
versus Output Power  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
V
= 28 Vdc, I = 1200 mA  
DQ  
V
= 28 Vdc, P = 70 W (Avg.)  
out  
= 1200 mA, Two−Tone Measurements  
DD  
DD  
f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
I
DQ  
(f1 + f2)/2 = Center Frequency of 880 MHz  
3rd Order  
3rd Order  
5th Order  
7th Order  
5th Order  
7th Order  
1
10  
100  
400  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) PEP  
out  
TWO−TONE SPACING (MHz)  
Figure 7. Intermodulation Distortion Products  
versus Output Power  
Figure 8. Intermodulation Distortion Products  
versus Tone Spacing  
Ideal  
61  
59  
P6dB = 54.7 dBm (294.78 W)  
P3dB = 53.98 dBm (249.98 W)  
P1dB = 53.02 dBm (200.36 W)  
57  
55  
53  
51  
49  
47  
Actual  
V
= 28 Vdc, I = 1200 mA  
DQ  
DD  
Pulsed CW, 8 μsec(on), 1 msec(off)  
f = 880 MHz  
26  
28  
30  
32  
34  
36  
38  
40  
P , INPUT POWER (dBm)  
in  
Figure 9. Pulsed CW Output Power versus  
Input Power  
60  
−20  
V
= 28 Vdc, I = 1200 mA  
DQ  
T = −30_C  
DD  
C
25_C  
f = 880 MHz, N−CDMA IS−95  
(Pilot, Sync, Paging, Traffic Codes  
8 Through 13)  
50  
40  
30  
20  
−30  
−40  
−50  
−60  
85_C  
25_C  
−30_C  
85_C  
ACPR  
−30_C  
G
ps  
η
D
85_C  
10  
0
−70  
−80  
25_C  
ALT1  
1
10  
100  
300  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 10. Single-Carrier N-CDMA ACPR, ALT1, Power Gain  
and Drain Efficiency versus Output Power  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS  
23  
21  
20  
19  
18  
17  
16  
70  
60  
−30_C  
85_C  
22  
21  
20  
19  
18  
G
ps  
T = −30_C  
C
50  
40  
30  
20  
10  
0
25_C  
85_C  
η
D
32 V  
28 V  
V
= 24 V  
V
I
= 28 Vdc  
= 1200 mA  
DD  
DD  
17  
16  
I = 1200 mA  
DQ  
f = 880 MHz  
DQ  
f = 880 MHz  
0
50  
100  
150  
200  
250  
300  
1
10  
, OUTPUT POWER (WATTS) CW  
100  
300  
P
P , OUTPUT POWER (WATTS) CW  
out  
out  
Figure 11. Power Gain and Drain Efficiency  
versus CW Output Power  
Figure 12. Power Gain versus Output Power  
8
10  
7
10  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 28 Vdc, P = 35 W Avg., and η = 30.5%.  
DD  
out  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 13. MTTF versus Junction Temperature  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
7
N-CDMA TEST SIGNAL  
100  
10  
−10  
−20  
−30  
1.2288 MHz  
Channel BW  
.
.
.
.
.
.
.
. .  
..  
. .  
... .. . .  
.. ..  
.
.. . .. ..  
.
. .  
.
.
. .  
. . . .  
.
.
.
.
. .  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
−40  
−50  
−60  
−70  
−80  
.
.
.
.
.
.
.
.
.
.
.
.
−ALT1 in 30 kHz  
Integrated BW  
+ALT1 in 30 kHz  
Integrated BW  
.
.
.
0.1  
0.01  
.
.
.
..  
.
.
.
.
.
.
IS−95 CDMA (Pilot, Sync, Paging, Traffic Codes 8  
Through 13) 1.2288 MHz Channel Bandwidth  
Carriers. ACPR Measured in 30 kHz Bandwidth @  
750 kHz Offset. ALT1 Measured in 30 kHz  
Bandwidth @ 1.98 MHz Offset. PAR = 9.8 dB @  
0.01% Probability on CCDF.  
..  
.
.
. .  
.
.
. .  
. ..  
. . .  
.
. .  
.
.
.
..  
.. ..  
. . .  
. .  
... .  
. .  
.
.
.
. ..  
. ..  
.
.
.
.
..  
.
...  
.
.
.
.
.
.
..  
.
.
.
.
.
.
.
.
.
..  
. .  
. .  
.
.
..  
.
.
.
.
.
..  
.
.
.
.
.
.
..  
.
.
. .  
..  
.
.
.
.
.
.
.
.
.
..  
.
.
.
..  
.
.
.
.
.
..  
.
.
..  
..  
.
.
.
...  
..  
.
.
.
.
..  
.
.
.
.
.
. .  
.
..  
..  
..  
.
.. .  
.
.
.
..  
.
.
..  
.
..  
0.001  
...  
.
..  
.. .  
.
..  
.
−ACPR in 30 kHz +ACPR in 30 kHz  
Integrated BW Integrated BW  
.
.
. .  
. .  
.
..  
..  
.
. .  
.
.
.
.....  
. ..  
.
.
. . .  
..  
. .  
.
.
.
. ..  
. .  
. ..  
.
. .  
. .  
.. .  
..  
.
.
...  
.
.
..  
.
.
.
.
. .  
.
..  
....  
.
.
.
.
.
.
.
.
.
.
.
.
..  
−90 .  
. .  
.
0.0001  
0
2
4
6
8
10  
−100  
PEAK−TO−AVERAGE (dB)  
−110  
−3.6 −2.9 −2.2 −1.5 −0.7  
Figure 14. Single-Carrier CCDF N-CDMA  
0
0.7 1.5  
2.2 2.9 3.6  
f, FREQUENCY (MHz)  
Figure 15. Single-Carrier N-CDMA Spectrum  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
8
f = 910 MHz  
f = 850 MHz  
Z
load  
Z = 2 Ω  
o
f = 910 MHz  
Z
source  
f = 850 MHz  
V
= 28 Vdc, I = 1200 mA, P = 35 W Avg.  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
Ω
Ω
850  
865  
880  
895  
910  
0.61 - j1.27  
0.66 - j1.15  
0.64 - j1.05  
0.55 - j0.90  
0.48 - j0.74  
1.20 + j0.03  
1.26 + j0.15  
1.31 + j0.22  
1.32 + j0.28  
1.26 + j0.32  
Z
Z
=
=
Test circuit impedance as measured from  
gate to ground.  
source  
load  
Test circuit impedance as measured  
from drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 16. Series Equivalent Source and Load Impedance  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
9
PACKAGE DIMENSIONS  
B
G
2X  
Q
1
M
M
M
B
bbb  
T A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M−1994.  
3
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
K
B
2
(FLANGE)  
D
INCHES  
DIM MIN MAX  
1.345 33.91  
MILLIMETERS  
M
M
M
bbb  
T A  
B
MIN  
MAX  
34.16  
9.91  
A
B
1.335  
0.380  
0.125  
0.495  
0.035  
0.003  
0.390  
0.170  
9.65  
3.18  
C
4.32  
(LID)  
R
(INSULATOR)  
M
N
D
0.505 12.57  
12.83  
1.14  
0.15  
E
0.045  
0.006  
0.89  
0.08  
M
M
M
M
M
M
M
bbb  
T A  
B
ccc  
T A  
T A  
B
F
G
1.100 BSC  
27.94 BSC  
(INSULATOR)  
S
(LID)  
H
0.057  
0.170  
0.774  
0.772  
.118  
0.067  
0.210  
0.786 19.66  
0.788 19.60  
.138  
0.375  
0.375  
1.45  
4.32  
1.70  
5.33  
19.96  
20.00  
3.51  
K
M
M
M
M
M
B
aaa  
B
ccc  
T A  
M
H
N
Q
3.00  
9.27  
9.27  
R
0.365  
0.365  
9.53  
9.52  
C
S
aaa  
bbb  
ccc  
0.005 REF  
0.010 REF  
0.015 REF  
0.127 REF  
0.254 REF  
0.381 REF  
F
SEATING  
PLANE  
E
A
T
STYLE 1:  
A
CASE 465-06  
ISSUE G  
PIN 1. DRAIN  
2. GATE  
3. SOURCE  
(FLANGE)  
NI-780  
MRF6S9160HR3  
4X U  
(FLANGE)  
4X Z  
(LID)  
B
1
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M−1994.  
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
2X K  
2
B
(FLANGE)  
D
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
M
M
bbb  
T A  
B
MIN  
20.45  
9.65  
3.18  
12.57  
0.89  
0.08  
1.45  
4.32  
19.61  
19.61  
9.27  
9.27  
−−−  
MAX  
20.70  
9.91  
4.32  
12.83  
1.14  
0.15  
1.70  
5.33  
20.02  
20.02  
9.53  
9.52  
1.02  
0.76  
A
B
0.805  
0.380  
0.125  
0.495  
0.035  
0.003  
0.057  
0.170  
0.774  
0.772  
0.365  
0.365  
−−− 0.040  
−−− 0.030  
0.005 REF  
0.010 REF  
0.015 REF  
0.815  
0.390  
0.170  
0.505  
0.045  
0.006  
0.067  
0.210  
0.786  
0.788  
0.375  
0.375  
(LID)  
C
N
(LID)  
R
D
M
M
M
ccc  
T A  
B
M
M
M
M
E
ccc  
T A  
T A  
B
F
(INSULATOR)  
S
H
(INSULATOR)  
M
K
M
M
M
M
M
B
aaa  
B
bbb  
T A  
M
N
H
R
S
C
U
3
Z
−−−  
F
aaa  
bbb  
ccc  
0.127 REF  
0.254 REF  
0.381 REF  
SEATING  
PLANE  
E
A
T
CASE 465A-06  
ISSUE H  
A
STYLE 1:  
(FLANGE)  
PIN 1. DRAIN  
2. GATE  
5. SOURCE  
NI-780S  
MRF6S9160HSR3  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
10  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
2
Aug. 2008  
Listed replacement part and Device Migration notification reference number, p. 1  
Removed Lower Thermal Resistance and Low Gold Plating bullets from Features section as functionality  
is standard, p. 1  
Removed Total Device Dissipation from Max Ratings table as data was redundant (information already  
provided in Thermal Characteristics table), p. 1  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Corrected V to V in the RF test condition voltage callout for V  
, On Characteristics table, p. 2  
GS(Q)  
DS  
DD  
Removed Forward Transconductance from On Characteristics table as it no longer provided usable  
information, p. 2  
Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 3  
Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part  
numbers, p. 3  
Adjusted scale for Fig. 8, Intermodulation Distortion Products versus Tone Spacing, to show wider  
dynamic range, p. 6  
Removed lower voltage tests from Fig. 12, Power Gain versus Output Power, due to fixed tuned fixture  
limitations, p. 7  
2
Replaced Fig. 13, MTTF versus Junction Temperature with updated graph. Removed Amps and listed  
operating characteristics and location of MTTF calculator for device, p. 7  
Added Product Documentation and Revision History, p. 11  
MRF6S9160HR3 MRF6S9160HSR3  
RF Device Data  
Freescale Semiconductor  
11  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2005-2006, 2008. All rights reserved.  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6S9160H  
Rev. 2, 8/2008  

相关型号:

MRF6S9160HSR3

RF Power Field Effect Transistors (N-Channel Enhancement-Mode Lateral MOSFETs)
FREESCALE

MRF6V10010NR4

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6V10250HSR3

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6V12250HR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12250HR3

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, CASE 465-06, NI-780, 2 PIN
NXP

MRF6V12250HR5

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, NI-780, CASE 465-06, 2 PIN
NXP

MRF6V12250HSR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12250HSR5

Pulsed Lateral N-Channel RF Power MOSFET, 960-1215 MHz, 275 W, 50 V
NXP

MRF6V12500GSR5

RF Power Field-Effect Transistor, 1-Element, L Band, Silicon, N-Channel, Metal-oxide Semiconductor FET
NXP

MRF6V12500H

RF Power Field Effect Transistors
FREESCALE

MRF6V12500HR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V12500HR3_10

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE