MPC5200CVR466B [FREESCALE]

Technical Data; 技术参数
MPC5200CVR466B
型号: MPC5200CVR466B
厂家: Freescale    Freescale
描述:

Technical Data
技术参数

外围集成电路 时钟
文件: 总72页 (文件大小:983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MPC5200BDS  
Rev. 3, 10/2008  
MPC5200B Data Sheet  
TEPBGA–272  
27 mm x 27 mm  
Key features are shown below.  
• MPC603e series e300 core  
– Superscalar architecture  
– Full duplex SPI mode  
– IrDA mode from 2400 bps to 4 Mbps  
• Fast Ethernet Controller (FEC)  
– Supports 100Mbps IEEE 802.3 MII, 10 Mbps IEEE  
802.3 MII, 10 Mbps 7-wire interface  
• Universal Serial Bus Controller (USB)  
– USB Revision 1.1 Host  
o
– 760 MIPS at 400 MHz (-40 to +85 C)  
– 16 K-byte Instruction cache, 16 K-byte Data cache  
– Double precision FPU  
– Instruction and Data MMU  
– Standard and Critical interrupt capability  
• SDRAM / DDR Memory Interface  
– up to 133-MHz operation  
– Open Host Controller Interface (OHCI)  
– Integrated USB Hub, with two ports.  
• Two Inter-Integrated Circuit Interfaces (I C)  
2
– SDRAM and DDR SDRAM support  
– 256-MByte addressing range per CS, two CS available  
– 32-bit data bus  
• Serial Peripheral Interface (SPI)  
• Dual CAN 2.0 A/B Controller (MSCAN)  
– Implementation of version 2.0A/B CAN protocol  
– Standard and extended data frames  
• J1850 Byte Data Link Controller (BDLC)  
• J1850 Class B data communication network interface  
compatible and ISO compatible for low speed (<125 kbps)  
serial data communications in automotive applications.  
• Supports 4X mode, 41.6 kbps  
– Built-in initialization and refresh  
• Flexible multi-function External Bus Interface  
– Supports interfacing to ROM/Flash/SRAM memories or  
other memory mapped devices  
– 8 programmable Chip Selects  
– Non multiplexed data access using 8/16/32 bit databus  
with up to 26-bit address  
• In-frame response (IFR) types 0, 1, 2, and 3 supported  
• Systems level features  
– Short or Long Burst capable  
– Multiplexed data access using 8/16/32 bit databus with  
up to 25-bit address  
• Peripheral Component Interconnect (PCI) Controller  
Version 2.2 PCI compatibility  
– Interrupt Controller supports four external interrupt  
request lines and 47 internal interrupt sources  
– GPIO/Timer functions  
Up to 56 total GPIO pins that support a variety of  
interrupt/WakeUp capabilities.  
Eight GPIO pins with timer capability supporting input  
capture, output compare, and pulse width modulation  
(PWM) functions  
– PCI initiator and target operation  
– 32-bit PCI Address/Data bus  
– 33- and 66-MHz operation  
– PCI arbitration function  
ATA Controller  
– Real-time Clock with one-second resolution  
– Systems Protection (watch dog timer, bus monitor)  
– Individual control of functional block clock sources  
– Power management: Nap, Doze, Sleep, Deep Sleep  
modes  
Version 4 ATA compatible external interface—IDE Disk  
Drive connectivity  
• BestComm DMA subsystem  
– Intelligent virtual DMA Controller  
– Dedicated DMA channels to control peripheral  
reception and transmission  
– Support of WakeUp from low power modes by different  
sources (GPIO, RTC, CAN)  
– Local memory (SRAM 16 kBytes)  
• 6 Programmable Serial Controllers (PSC)  
– UART or RS232 interface  
• Test/Debug features  
– JTAG (IEEE 1149.1 test access port)  
– Common On-chip Processor (COP) debug port  
• On-board PLL and clock generation  
– CODEC interface for Soft Modem, Master/Slave  
2
CODEC Mode, I S and AC97  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
Electrical and Thermal Characteristics. . . . . . . . . . . . . . . . . . .4  
1.3.14 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
1.3.15 J1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
1.3.16 PSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
1.3.17 GPIOs and Timers . . . . . . . . . . . . . . . . . . . . . . 54  
1.3.18 IEEE 1149.1 (JTAG) AC Specifications . . . . . . 56  
Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
2.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
2.2 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 58  
2.3 Pinout Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
System Design Information . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.1 Power Up/Down Sequencing. . . . . . . . . . . . . . . . . . . . 64  
3.1.1 Power Up Sequence. . . . . . . . . . . . . . . . . . . . . 65  
3.1.2 Power Down Sequence . . . . . . . . . . . . . . . . . . 65  
3.2 System and CPU Core AVDD Power Supply Filtering. 65  
3.3 Pull-up/Pull-down Resistor Requirements . . . . . . . . . . 65  
3.3.1 Pull-down Resistor Requirements for TEST pins65  
3.3.2 Pull-up Requirements for the PCI Control Lines66  
3.3.3 Pull-up/Pull-down Requirements for MEM_MDQS  
Pins (SDRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 66  
1.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .4  
1.1.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . .4  
1.1.2 Recommended Operating Conditions . . . . . . . . .4  
1.1.3 DC Electrical Specifications. . . . . . . . . . . . . . . . .5  
1.1.4 Electrostatic Discharge . . . . . . . . . . . . . . . . . . . .7  
1.1.5 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . .7  
1.1.6 Thermal Characteristics. . . . . . . . . . . . . . . . . . . .9  
1.2 Oscillator and PLL Electrical Characteristics . . . . . . . .10  
1.2.1 System Oscillator Electrical Characteristics . . .11  
1.2.2 RTC Oscillator Electrical Characteristics. . . . . .11  
1.2.3 System PLL Electrical Characteristics. . . . . . . .11  
1.2.4 e300 Core PLL Electrical Characteristics . . . . .11  
1.3 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .12  
1.3.1 AC Test Timing Conditions: . . . . . . . . . . . . . . . .12  
1.3.2 AC Operating Frequency Data. . . . . . . . . . . . . .13  
1.3.3 Clock AC Specifications. . . . . . . . . . . . . . . . . . .13  
1.3.4 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.3.5 External Interrupts . . . . . . . . . . . . . . . . . . . . . . .15  
1.3.6 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1.3.7 PCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
1.3.8 Local Plus Bus. . . . . . . . . . . . . . . . . . . . . . . . . .23  
1.3.9 ATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
1.3.10 Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
1.3.11 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
1.3.12 SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
1.3.13 MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
2
3
3.3.4 .Pull-up/Pull-down Requirements for MEM_MDQS  
Pins (DDR 16-bit Mode). . . . . . . . . . . . . . . . . . 66  
3.4 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.4.1 JTAG_TRST . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.4.2 e300 COP/BDM Interface . . . . . . . . . . . . . . . . 67  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4
5
MPC5200B Data Sheet, Rev. 3  
2
Freescale Semiconductor  
Figure 1 shows a simplified MPC5200B block diagram.  
SDRAM/DDR  
Systems Interface Unit (SIU)  
Real-Time Clock  
System Functions  
Interrupt Controller  
SDRAM/DDR  
Memory Controller  
603  
e300 Core  
GPIO/Timers  
Local Plus Controller  
JTAG / COP  
Local  
Bus  
Interface  
BestComm  
DMA  
SRAM  
PCI Bus Controller  
ATA Host Controller  
16-Kbyte  
Reset / Clock  
Generation  
CommBus  
I2C  
2x  
J1850  
SPI  
USB  
2x  
MSCAN  
2x  
Ethernet  
PSC  
6x  
Figure 1. Simplified Block Diagram—MPC5200B  
1
Electrical and Thermal Characteristics  
DC Electrical Characteristics  
1.1  
1.1.1  
Absolute Maximum Ratings  
The tables in this section describe the MPC5200B DC Electrical characteristics. Table 1 gives the absolute maximum ratings.  
(1)  
Table 1. Absolute Maximum Ratings  
Characteristic  
Sym  
Min  
Max  
Unit  
SpecID  
Supply voltage - e300 core and peripheral logic  
Supply voltage - I/O buffers  
VDD_CORE  
–0.3  
–0.3  
1.8  
3.6  
V
V
D1.1  
D1.2  
VDD_IO,  
VDD_MEM_IO  
Supply voltage - System APLL  
Supply voltage - e300 APLL  
Input voltage (VDD_IO)  
SYS_PLL_AVDD  
–0.3  
–0.3  
–0.3  
2.1  
2.1  
V
V
V
V
D1.3  
D1.4  
D1.5  
D1.6  
CORE_PLL_AVDD  
Vin  
Vin  
VDD_IO + 0.3  
Input voltage (VDD_MEM_IO)  
–0.3 VDD_MEM_IO  
+ 0.3  
Input voltage overshoot  
Input voltage undershoot  
Storage temperature range  
Vinos  
Vinus  
Tstg  
1.0  
1.0  
V
V
D1.7  
D1.8  
D1.9  
–55  
150  
oC  
1
Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed.  
Stresses beyond those listed may affect device reliability or cause permanent damage.  
1.1.2  
Recommended Operating Conditions  
Table 2 gives the recommended operating conditions.  
Table 2. Recommended Operating Conditions  
Characteristic  
Sym  
Min(1)  
Max(1)  
Unit  
SpecID  
Supply voltage - e300 core and peripheral  
logic  
VDD_CORE  
1.42  
1.58  
V
D2.1  
Supply voltage - standard I/O buffers  
Supply voltage - memory I/O buffers (SDR)  
Supply voltage - memory I/O buffers (DDR)  
Supply voltage - System APLL  
VDD_IO  
3.0  
3.0  
3.6  
3.6  
V
V
V
V
V
D2.2  
D2.3  
D2.4  
D2.5  
D2.6  
VDD_MEM_IOSDR  
VDD_MEM_IODDR  
SYS_PLL_AVDD  
CORE_PLL_AVDD  
2.42  
1.42  
1.42  
2.63  
1.58  
1.58  
Supply voltage - e300 APLL  
MPC5200B Data Sheet, Rev. 3  
4
Freescale Semiconductor  
Table 2. Recommended Operating Conditions (continued)  
Characteristic  
Sym  
Min(1)  
Max(1)  
Unit  
SpecID  
Input voltage - standard I/O buffers  
Vin  
VinSDR  
VinDDR  
TA  
0
0
VDD_IO  
VDD_MEM_IOSDR  
VDD_MEM_IODDR  
+85  
V
V
D2.7  
D2.8  
Input voltage - memory I/O buffers (SDR)  
Input voltage - memory I/O buffers (DDR)  
Ambient operating temperature range(2)  
Die junction operating temperature range  
0
V
D2.9  
-40  
-40  
oC  
oC  
D2.10  
D2.12  
Tj  
+115  
1
These are recommended and tested operating conditions. Proper device operation outside these conditions is not  
guaranteed.  
2
Maximum e300 core operating frequency is 400 MHz  
1.1.3  
DC Electrical Specifications  
Table 3 gives the DC Electrical characteristics for the MPC5200B at recommended operating conditions (see Table 2).  
Table 3. DC Electrical Specifications  
Characteristic  
Condition  
Sym  
Min  
Max  
Unit  
SpecID  
Input high voltage  
Input type = TTL  
VIH  
2.0  
V
D3.1  
VDD_IO/VDD_MEM_IOSDR  
Input high voltage  
Input high voltage  
Input high voltage  
Input type = TTL  
VDD_MEM_IODDR  
VIH  
VIH  
VIH  
1.7  
2.0  
2.0  
V
V
V
D3.2  
D3.3  
D3.4  
Input type = PCI  
VDD_IO  
Input type = SCHMITT  
VDD_IO  
Input high voltage  
Input high voltage  
Input low voltage  
SYS_XTAL_IN  
RTC_XTAL_IN  
CVIH  
CVIH  
VIL  
2.0  
2.0  
V
V
V
D3.5  
D3.6  
D3.7  
Input type = TTL  
0.8  
VDD_IO/VDD_MEM_IOSDR  
Input low voltage  
Input low voltage  
Input low voltage  
Input type = TTL  
VDD_MEM_IODDR  
VIL  
VIL  
VIL  
0.7  
0.8  
0.8  
V
V
V
D3.8  
D3.9  
Input type = PCI  
VDD_IO  
Input type = SCHMITT  
VDD_IO  
D3.10  
Input low voltage  
Input low voltage  
SYS_XTAL_IN  
RTC_XTAL_IN  
Vin = 0 or  
CVIL  
CVIL  
IIN  
0.8  
0.8  
+2  
V
V
D3.11  
D3.12  
D3.13  
Input leakage current  
μA  
VDD_IO/VDD_IO_MEMSDR  
(1)  
(depending on input type  
)
Input leakage current  
SYS_XTAL_IN  
IIN  
+10  
μA  
D3.14  
Vin = 0 or VDD_IO  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
5
Table 3. DC Electrical Specifications (continued)  
Characteristic  
Condition  
Sym  
Min  
Max  
Unit  
SpecID  
Input leakage current  
RTC_XTAL_IN  
IIN  
+10  
μA  
D3.15  
Vin = 0 or VDD_IO  
Input current, pullup resistor  
PULLUP  
VDD_IO  
Vin = 0  
IINpu  
IINpu  
IINpd  
40  
41  
36  
109  
111  
106  
μA  
μA  
μA  
D3.16  
D3.17  
D3.18  
Input current, pullup resistor  
- memory I/O buffers  
PULLUP_MEM  
VDD_IO_MEMSDR  
Vin = 0  
Input current, pulldown  
resistor  
PULLDOWN  
VDD_IO  
Vin = VDD_IO  
Output high voltage  
Output high voltage  
Output low voltage  
Output low voltage  
IOH is driver dependent(2)  
VDD_IO, VDD_IO_MEMSDR  
VOH  
VOHDDR  
VOL  
2.4  
1.7  
V
V
D3.19  
D3.20  
D3.21  
D3.22  
D3.23  
D3.24  
IOH is driver dependent(2)  
VDD_IO_MEMDDR  
IOL is driver dependent(2)  
VDD_IO, VDD_IO_MEMSDR  
0.4  
0.4  
1.0  
15  
V
IOL is driver dependent(2)  
VDD_IO_MEMDDR  
VOLDDR  
ICS  
V
DC Injection Current Per  
Pin(3)  
-1.0  
mA  
pF  
Capacitance  
Vin = 0V, f = 1 MHz  
Cin  
1
Leakage current is measured with output drivers disabled and pull-up/pull-downs inactive.  
2
See Table 4 for the typical drive capability of a specific signal pin based on the type of output driver associated with that  
pin as listed in Table 52.  
3
All injection current is transferred to VDD_IO/VDD_IO_MEM. An external load is required to dissipate this current to  
maintain the power supply within the specified voltage range. Total injection current for all digital input-only and all digital  
input/output pins must not exceed 10 mA. Exceeding this limit can cause disruption of normal operation.  
Table 4. Drive Capability of MPC5200B Output Pins  
Driver Type  
Supply Voltage  
IOH  
IOL  
Unit SpecID  
DRV4  
DRV8  
VDD_IO = 3.3V  
VDD_IO = 3.3V  
4
8
4
8
mA  
mA  
mA  
mA  
mA  
mA  
D3.25  
D3.26  
D3.27  
D3.28  
D3.29  
D3.30  
DRV8_OD  
DRV16_MEM  
DRV16_MEM  
PCI  
VDD_IO = 3.3V  
-
8
VDD_IO_MEM = 3.3V  
VDD_IO_MEM = 2.5V  
VDD_IO = 3.3V  
16  
16  
16  
16  
16  
16  
MPC5200B Data Sheet, Rev. 3  
6
Freescale Semiconductor  
1.1.4  
Electrostatic Discharge  
CAUTION  
This device contains circuitry that protects against damage due to high-static voltage or  
electrical fields. However, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages. Operational  
reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND  
or V ). Table 7 gives package thermal characteristics for this device.  
CC  
Table 5. ESD and Latch-Up Protection Characteristics  
Sym  
Rating  
Min  
Max  
Unit  
SpecID  
VHBM Human Body Model (HBM)—JEDEC JESD22-A114-B  
VMM Machine Model (MM)—JEDEC JESD22-A115  
2000  
200  
V
V
V
D4.1  
D4.2  
D4.3  
D4.4  
VCDM Charge Device Model (CDM)—JEDEC JESD22-C101  
500  
ILAT  
Latch-up Current at TA=85oC  
positive  
negative  
+100  
-100  
mA  
mA  
ILAT  
Latch-up Current at TA=27oC  
positive  
negative  
D4.5  
+200  
-200  
1.1.5  
Power Dissipation  
Power dissipation of the MPC5200B is caused by 3 different components: the dissipation of the internal or core digital logic  
(supplied by VDD_CORE), the dissipation of the analog circuitry (supplied by SYS_PLL_AVDD and CORE_PLL_AVDD)  
and the dissipation of the IO logic (supplied by VDD_IO_MEM and VDD_IO). Table 6 details typical measured core and  
analog power dissipation figures for a range of operating modes. However, the dissipation due to the switching of the IO pins  
can not be given in general, but must be calculated by the user for each application case using the following formula:  
2
P
= P  
+
N × C × VDD_IO × f  
Eqn. 1  
IO  
IOint  
M
where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the IO voltage swing, f  
is the switching frequency and PIOint is the power consumed by the unloaded IO stage. The total power consumption of the  
MPC5200B processor must not exceed the value, which would cause the maximum junction temperature to be exceeded.  
Ptotal = Pcore + Panalog + PIO  
Eqn. 2  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Table 6. Power Dissipation  
Core Power Supply (VDD_CORE)  
SYS_XTAL/XLB/PCI/IPB/CORE (MHz)  
SpecID  
Mode  
33/66/33/33/264  
33/132/66/132/396  
Typ  
Unit  
Notes  
Typ  
(1),(2)  
(1),(3)  
(1),(4)  
(1),(5)  
(1),(6)  
Operational  
Doze  
727.5  
1080  
600  
mW  
mW  
mW  
mW  
mW  
D5.1  
D5.2  
D5.3  
D5.4  
D5.5  
Nap  
225  
Sleep  
225  
Deep-Sleep  
52.5  
52.5  
PLL Power Supplies (SYS_PLL_AVDD, CORE_PLL_AVDD)  
Mode  
Typ  
Unit  
Notes  
(7)  
Typical  
2
mW  
D5.6  
D5.7  
Unloaded I/O Power Supplies (VDD_IO, VDD_MEM_IO8)  
Mode  
Typ  
Unit  
Notes  
(9)  
Typical  
33  
mW  
1
2
Typical core power is measured at VDD_CORE = 1.5 V, Tj = 25 C  
Operational power is measured while running an entirely cache-resident program with floating-point multiplication  
instructions in parallel with a continuous PCI transaction via BestComm.  
3
4
5
6
Doze power is measured with the e300 core in Doze mode, the system oscillator, System PLL and Core PLL are  
active, all other system modules are inactive  
Nap power is measured with the e300 core in Nap mode, the system oscillator, System PLL and Core PLL are  
active, all other system modules are inactive  
Sleep power is measured with the e300 core in Sleep mode, the system oscillator, System PLL and Core PLL are  
active, all other system modules are inactive  
Deep-Sleep power is measured with the e300 core in Sleep mode, the system oscillator, System PLL, Core  
PLL and all other system modules are inactive  
7
8
Typical PLL power is measured at SYS_PLL_AVDD = CORE_PLL_AVDD = 1.5 V, Tj = 25 C  
IO power figures given in the table represent the worst case scenario. For the VDD_MEM_IO rail connected to  
2.5V the IO power is expected to be lower and bounded by the worst case with VDD_MEM_IO connected to 3.3V.  
9
Unloaded typical I/O power is measured in Deep-Sleep mode at VDD_IO = VDD_MEM_IOSDR= 3.3 V, Tj = 25 C  
MPC5200B Data Sheet, Rev. 3  
8
Freescale Semiconductor  
1.1.6  
Thermal Characteristics  
Table 7. Thermal Resistance Data  
Rating  
Board Layers  
Single layer board  
Sym  
Value  
Unit  
Notes  
SpecID  
(1),(2)  
Junction to Ambient  
Natural Convection  
RθJA  
30  
°C/W  
D6.1  
(1s)  
(1),(3)  
(1),(3)  
(1),(3)  
Junction to Ambient  
Natural Convection  
Four layer board (2s2p)  
RθJMA  
RθJMA  
RθJMA  
22  
24  
19  
°C/W  
°C/W  
°C/W  
D6.2  
D6.3  
D6.4  
Junction to Ambient (@200 Single layer board  
ft/min) (1s)  
Junction to Ambient (@200 Four layer board  
ft/min)  
(2s2p)  
(4)  
(5)  
(6)  
Junction to Board  
Junction to Case  
Junction to Package Top  
RθJB  
RθJC  
ΨJT  
14  
8
°C/W  
°C/W  
°C/W  
D6.5  
D6.6  
D6.7  
Natural Convection  
2
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
1.1.6.1  
Heat Dissipation  
An estimation of the chip-junction temperature, T , can be obtained from the following equation:  
J
T
= T +(R  
× P )  
Eqn. 3  
J
A
θJA  
D
where:  
T
= ambient temperature for the package (ºC)  
A
R
= junction to ambient thermal resistance (ºC/W)  
θJA  
P
= power dissipation in package (W)  
D
The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board, and the value  
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which  
value is correct depends on the power dissipated by other components on the board. The value obtained on a single layer board  
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated.  
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case  
to ambient thermal resistance:  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
9
R
= R  
+R  
θCA  
Eqn. 4  
θJA  
θJC  
where:  
R
R
R
= junction to ambient thermal resistance (ºC/W)  
= junction to case thermal resistance (ºC/W)  
= case to ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
θJC  
ambient thermal resistance, R  
. For instance, the user can change the air flow around the device, add a heat sink, change the  
θCA  
mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the  
device. This description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the  
case to the heat sink to ambient. For most packages, a better model is required.  
A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal  
resistance. The junction to case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from  
the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is  
conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics (CFD)  
thermal model.  
To determine the junction temperature of the device in the application after prototypes are available, the Thermal  
Characterization Parameter (Ψ ) can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T
= T +(Ψ × P )  
Eqn. 5  
J
T
JT  
D
where:  
T
= thermocouple temperature on top of package (ºC)  
= thermal characterization parameter (ºC/W)  
T
Ψ
JT  
P
= power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned, so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending  
from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling  
effects of the thermocouple wire.  
1.2  
Oscillator and PLL Electrical Characteristics  
The MPC5200B System requires a system-level clock input SYS_XTAL. This clock input may be driven directly from an  
external oscillator or with a crystal using the internal oscillator.  
There is a separate oscillator for the independent Real-Time Clock (RTC) system.  
The MPC5200B clock generation uses two phase locked loop (PLL) blocks.  
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The  
system clock frequency is determined by the external reference frequency and the settings of the SYS_PLL  
configuration.  
The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency  
is determined by the system clock frequency and the settings of the CORE_PLL configuration.  
MPC5200B Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
1.2.1  
System Oscillator Electrical Characteristics  
Table 8. System Oscillator Electrical Characteristics  
Characteristic  
Sym  
Notes  
Min  
Typical  
Max  
Unit  
SpecID  
SYS_XTAL frequency  
Oscillator start-up time  
fsys_xtal  
tup_osc  
15.6  
33.3  
35.0  
10  
MHz  
ms  
O1.1  
O1.2  
1.2.2  
1.2.3  
RTC Oscillator Electrical Characteristics  
Table 9. RTC Oscillator Electrical Characteristics  
Characteristic  
Sym  
Notes  
Min  
Typical  
Max  
Unit  
SpecID  
RTC_XTAL frequency  
frtc_xtal  
32.768  
kHz  
O2.1  
System PLL Electrical Characteristics  
Table 10. System PLL Specifications  
Characteristic  
Sym  
Notes  
Min  
Typical  
Max  
Unit  
SpecID  
(1)  
SYS_XTAL frequency  
SYS_XTAL cycle time  
fsys_xtal  
tsys_xtal  
tjitter  
15.6  
66.6  
33.3  
30.0  
35.0  
28.5  
150  
800  
100  
MHz  
ns  
O3.1  
O3.2  
O3.3  
O3.4  
O3.5  
(1)  
(2)  
SYS_XTAL clock input jitter  
System VCO frequency  
System PLL relock time  
ps  
fVCOsys  
tlock  
(1)  
250  
533  
MHz  
μs  
(3)  
1
The SYS_XTAL frequency and PLL Configuration bits must be chosen such that the resulting system frequency, CPU  
(core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating  
frequencies.  
2
3
This represents total input jitter - short term and long term combined - and is guaranteed by design. Two different  
types of jitter can exist on the input to CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected.  
Systemic jitter is passed into and through the PLL to the internal clock circuitry.  
Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required  
for the PLL lock after a stable VDD and CORE_SYSCLKare reached during the power-on reset sequence. This  
specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.  
1.2.4  
e300 Core PLL Electrical Characteristics  
The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled  
core PLL.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Table 11. e300 PLL Specifications  
Characteristic  
Sym  
Notes  
Min  
Typical  
Max  
Unit  
SpecID  
(1)  
e300 frequency  
e300 cycle time  
fcore  
tcore  
50  
2.85  
400  
25  
550  
40.0  
1200  
367  
MHz  
ns  
O4.1  
O4.2  
O4.3  
O4.4  
O4.5  
O4.6  
O4.7  
(1)  
(1)  
e300 VCO frequency  
e300 input clock frequency  
e300 input clock cycle time  
e300 input clock jitter  
e300 PLL relock time  
fVCOcore  
fXLB_CLK  
tXLB_CLK  
tjitter  
MHz  
MHz  
ns  
2.73  
50.0  
150  
(2)  
(3)  
ps  
tlock  
100  
μs  
1
2
3
The XLB_CLK frequency and e300 PLL Configuration bits must be chosen such that the resulting system  
frequencies, CPU (core) frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or  
minimum operating frequencies in Table 12.  
This represents total input jitter - short term and long term combined - and is guaranteed by design. Two different  
types of jitter can exist on the input to CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected.  
Systemic jitter is passed into and through the PLL to the internal clock circuitry.  
Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required  
for the PLL lock after a stable VDD and CORE_SYSCLK are reached during the power-on reset sequence. This  
specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.  
1.3  
AC Electrical Characteristics  
Hyperlinks to the indicated timing specification sections are provided below.  
AC Operating Frequency Data  
USB  
Clock AC Specifications  
Resets  
SPI  
MSCAN  
2
External Interrupts  
SDRAM  
I C  
J1850  
PCI  
PSC  
Local Plus Bus  
ATA  
GPIOs and Timers  
IEEE 1149.1 (JTAG) AC Specifications  
Ethernet  
1.3.1  
AC Test Timing Conditions:  
Unless otherwise noted, all test conditions are as follows:  
o
TA = -40 to 85 C  
o
Tj = -40 to 115 C  
VDD_CORE = 1.42 to 1.58 V  
VDD_IO = 3.0 to 3.6 V  
MPC5200B Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
Input conditions:  
All Inputs: tr, tf <= 1 ns  
Output Loading:  
All Outputs: 50 pF  
1.3.2  
AC Operating Frequency Data  
Table 12 provides the operating frequency information for the MPC5200B.  
Table 12. Clock Frequencies  
Min  
Max  
Units  
SpecID  
1
2
3
4
5
6
e300 Processor Core  
SDRAM Clock  
400  
133  
133  
133  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
A1.1  
A1.2  
A1.3  
A1.4  
A1.5  
A1.6  
XL Bus Clock  
IP Bus Clock  
PCI / Local Plus Bus Clock  
PLL Input Range  
15.6  
35  
1.3.3  
Clock AC Specifications  
tCYCLE  
tDUTY  
tDUTY  
tFALL  
tRISE  
CVIH  
CVIL  
VM  
VM  
VM  
SYSCLK  
Figure 2. Timing Diagram—SYS_XTAL_IN  
Table 13. SYS_XTAL_IN Timing  
Description  
Sym  
Min  
Max  
Units SpecID  
tCYCLE  
tRISE  
tFALL  
tDUTY  
CVIH  
CVIL  
SYS_XTAL_IN cycle time.(1)  
SYS_XTAL_IN rise time.  
SYS_XTAL_IN fall time.  
28.6  
64.1  
5.0  
5.0  
60.0  
ns  
ns  
ns  
%
V
A2.1  
A2.2  
A2.3  
A2.4  
A2.5  
A2.6  
SYS_XTAL_IN duty cycle (measured at VM).(2)  
40.0  
2.0  
SYS_XTAL_IN input voltage high  
SYS_XTAL_IN input voltage low  
0.8  
V
1
CAUTION—The SYS_XTAL_IN frequency and system PLL_CFG[0-6] settings must be chosen such that the resulting  
system frequencies do not exceed their respective maximum or minimum operating frequencies. See the MPC5200B  
User Manual.  
2
SYS_XTAL_IN duty cycle is measured at VM.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
1.3.4  
Resets  
The MPC5200B has three reset pins:  
PORRESET - Power on Reset  
HRESET - Hard Reset  
SRESET - Software Reset  
These signals are asynchronous I/O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires  
the same input characteristics as other MPC5200B inputs, as specified in the DC Electrical Specifications section. Table 14  
specifies the pulse widths of the Reset inputs.  
Table 14. Reset Pulse Width  
Max Pulse  
Width  
Name  
Description  
Min Pulse Width  
Reference Clock  
SpecID  
PORRESET  
HRESET  
Power On Reset  
Hardware Reset  
Software Reset  
t
VDD_stable+tup_osc+tlock  
SYS_XTAL_IN  
SYS_XTAL_IN  
SYS_XTAL_IN  
A3.1  
A3.2  
A3.3  
4 clock cycles  
SRESET  
4 clock cycles  
For PORRESET the value of the minimum pulse width reflects the power on sequence. If PORRESET is asserted afterwards  
its minimum pulse width equals the minimum given for HRESET related to the same reference clock.  
The t  
describes the time which is needed to get all power supplies stable.  
VDD_stable  
For t  
For t  
refer to the Oscillator/PLL section of this specification for further details.  
lock,  
refer to the Oscillator/PLL section of this specification for further details.  
up_osc,  
Following the deassertion of PORRESET, HRESET and SRESET remain low for 4096 reference clock cycles.  
The deassertion of HRESET for at least the minimum pulse width forces the internal resets to be active for an additional 4096  
clock cycles.  
NOTE  
As long as VDD is not stable the HRESET output is not stable.  
Table 15. Reset Rise/Fall Timing  
Description  
Min  
Max  
Unit  
SpecID  
PORRESET fall time  
PORRESET rise time  
HRESET fall time  
HRESET rise time  
SRESET fall time  
SRESET rise time  
1
1
1
1
1
1
ms  
ms  
ms  
ms  
ms  
ms  
A3.4  
A3.5  
A3.6  
A3.7  
A3.8  
A3.9  
NOTE  
Make sure that the PORRESET does not carry any glitches. The MPC5200B has no filter  
to prevent them from getting into the chip. HRESET and SRESET must have a monotonous  
rise time. The assertion of HRESET becomes active at Power on Reset without any  
SYS_XTAL clock.  
MPC5200B Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
For additional information, see the MPC5200B User Manual.  
1.3.4.1  
Reset Configuration Word  
During reset (HRESET and PORRESET) the Reset Configuration Word is latched in the related Reset Configuration Word  
Register with each rising edge of the SYS_XTAL signal. If both resets (HRESET and PORRESET) are inactive (high), the  
contents of this register are locked immediately with the SYS_XTAL clock (see Figure 3).  
4096 clocks  
SYS_XTAL  
PORRESET  
HRESET  
RST_CFG_WRD  
sample sample sample sample  
sample sample sample sample  
sample  
sample  
LOCK  
Figure 3. Reset Configuration Word Locking  
NOTE  
Beware of changing the values on the pins of the reset configuration word after the  
deassertion of PORRESET. This may cause problems because it may change the internal  
clock ratios and so extend the PLL locking process.  
1.3.5  
External Interrupts  
The MPC5200B provides three different kinds of external interrupts:  
Four IRQ interrupts  
Eight GPIO interrupts with simple interrupt capability (not available in power-down mode)  
Eight WakeUp interrupts (special GPIO pins)  
The propagation of these three kinds of interrupts to the core is shown in the following graphic:  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
IRQ0  
cint  
int  
CORE_CINT  
CORE_INT  
Encoder  
8
8
8 GPIOs  
8 GPIOs  
IRQ1  
GPIO Std  
GPIO WakeUp  
e300 Core  
Grouper  
Encoder  
IRQ2  
PIs  
Main Interrupt  
Controller  
IRQ3  
Notes:  
1. PIs = Programmable Inputs  
2. Grouper and Encoder functions imply programmability in software  
Figure 4. External Interrupt Scheme  
Due to synchronization, prioritization, and mapping of external interrupt sources, the propagation of external interrupts to the  
core processor is delayed by several IP_CLK clock cycles. The following table specifies the interrupt latencies in IP_CLK  
cycles. The IP_CLK frequency is programmable in the Clock Distribution Module (see Table 16).  
Table 16. External Interrupt Latencies  
Interrupt Type  
Pin Name  
Clock Cycles  
Reference Clock  
Core Interrupt  
SpecID  
Interrupt Requests  
IRQ0  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
critical (cint)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
A4.1  
A4.2  
IRQ0  
IRQ1  
A4.3  
IRQ2  
A4.4  
IRQ3  
A4.5  
Standard GPIO Interrupts  
GPIO_PSC3_4  
GPIO_PSC3_5  
GPIO_PSC3_8  
GPIO_USB_9  
GPIO_ETHI_4  
GPIO_ETHI_5  
GPIO_ETHI_6  
GPIO_ETHI_7  
GPIO_PSC1_4  
GPIO_PSC2_4  
GPIO_PSC3_9  
GPIO_ETHI_8  
GPIO_IRDA_0  
DGP_IN0  
A4.6  
A4.7  
A4.8  
A4.9  
A4.10  
A4.11  
A4.12  
A4.13  
A4.15  
A4.16  
A4.17  
A4.18  
A4.19  
A4.20  
A4.21  
GPIO WakeUp Interrupts  
DGP_IN1  
NOTES:  
1) The frequency of IP_CLK depends on register settings in Clock Distribution Module. See the MPC5200B User Manual.  
MPC5200B Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
2) The interrupt latency descriptions in the table above are related to non competitive, non masked but enabled external interrupt  
sources. Take care of interrupt prioritization which may increase the latencies.  
Because all external interrupt signals are synchronized into the internal processor bus clock domain, each of these signals has  
to exceed a minimum pulse width of more than one IP_CLK cycle.  
Table 17. Minimum Pulse Width for External Interrupts to be Recognized  
Name  
Min Pulse Width  
Max Pulse Width  
Reference Clock SpecID  
IP_CLK A4.22  
All external interrupts (IRQs, GPIOs)  
> 1 clock cycle  
NOTES:  
1) The frequency of the IP_CLK depends on the register settings in Clock Distribution Module. See the MPC5200B User Manual  
for further information.  
2) If the same interrupt occurs a second time while its interrupt service routine has not cleared the former one, the second  
interrupt is not recognized at all.  
Besides synchronization, prioritization, and mapping the latency of an external interrupt to the start of its associated interrupt  
service routine also depends on the following conditions: To get a minimum interrupt service response time, it is recommended  
to enable the instruction cache and set up the maximum core clock, XL bus, and IP bus frequencies (depending on board design  
and programming). In addition, it is advisable to execute an interrupt handler, which has been implemented in assembly code.  
1.3.6  
SDRAM  
1.3.6.1  
Memory Interface Timing-Standard SDRAM Read Command  
Table 18. Standard SDRAM Memory Read Timing  
Sym  
Description  
Min  
Max  
Units SpecID  
tmem_clk  
tvalid  
MEM_CLK period  
7.5  
ns  
ns  
A5.1  
A5.2  
Control Signals, Address and MBA Valid after  
rising edge of MEM_CLK  
tmem_clk*0.5+0.4  
thold  
Control Signals, Address and MBA Hold after  
rising edge of MEM_CLK  
tmem_clk*0.5  
ns  
A5.3  
DMvalid  
DMhold  
DQM valid after rising edge of MEM_CLK  
DQM hold after rising edge of MEM_CLK  
MDQ setup to rising edge of MEM_CLK  
MDQ hold after rising edge of MEM_CLK  
tmem_clk*0.25+0.4  
ns  
ns  
ns  
ns  
A5.4  
A5.5  
A5.6  
A5.7  
tmem_clk*0.25-0.7  
0.3  
datasetup  
datahold  
0.2  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
MEM_CLK  
tvalid  
thold  
Active  
DMvalid  
Control Signals  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
DMhold  
DQM (Data Mask)  
datasetup  
datahold  
MDQ (Data)  
tvalid  
thold  
Row  
Column  
MA (Address)  
tvalid  
thold  
MBA (Bank Selects)  
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 5. Timing Diagram—Standard SDRAM Memory Read Timing  
1.3.6.2  
Memory Interface Timing-Standard SDRAM Write Command  
In Standard SDRAM, all signals are activated on the MEM_CLK from the Memory Controller and captured on the MEM_CLK  
clock at the memory device.  
Table 19. Standard SDRAM Write Timing  
Sym  
Description  
Min  
Max  
Units SpecID  
tmem_clk  
tvalid  
MEM_CLK period  
7.5  
ns  
ns  
A5.8  
A5.9  
Control Signals, Address and MBA Valid  
after rising edge of MEM_CLK  
tmem_clk*0.5+0.4  
thold  
Control Signals, Address and MBA Hold after  
rising edge of MEM_CLK  
tmem_clk*0.5  
ns  
A5.10  
DMvalid  
DMhold  
datavalid  
datahold  
DQM valid after rising edge of MEM_CLK  
DQM hold after rising edge of Mem_clk  
MDQ valid after rising edge of MEM_CLK  
MDQ hold after rising edge of MEM_CLK  
tmem_clk*0.25+0.4  
ns  
ns  
ns  
ns  
A5.11  
A5.12  
A5.13  
A5.14  
tmem_clk*0.25-0.7  
tmem_clk*0.75+0.4  
tmem_clk*0.75-0.7  
MPC5200B Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
MEM_CLK  
tvalid  
thold  
Active  
NOP WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
Control Signals  
DMhold  
DMvalid  
DQM (Data Mask)  
datavalid  
datahold  
MDQ (Data)  
tvalid  
thold  
Row  
Column  
MA (Address)  
tvalid  
thold  
MBA (Bank Selects)  
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 6. Timing Diagram—Standard SDRAM Memory Write Timing  
1.3.6.3  
Memory Interface Timing-DDR SDRAM Read Command  
The SDRAM Memory Controller uses a 1/4 period delayed MDQS strobe to capture the MDQ data. The 1/4 period delay value  
is calculated automatically by hardware.  
Table 20. DDR SDRAM Memory Read Timing  
Sym  
Description  
Min  
Max  
Units SpecID  
tmem_clk  
tvalid  
MEM_CLK period  
7.5  
ns  
ns  
A5.15  
A5.16  
Control Signals, Address and MBA  
valid after rising edge of MEM_CLK  
tmem_clk*0.5+0.4  
thold  
Control Signals, Address and MBA  
hold after rising edge of MEM_CLK  
tmem_clk*0.5  
ns  
A5.17  
datasetup  
datahold  
Setup time relative to MDQS  
Hold time relative to MDQS  
0.4  
ns  
ns  
A5.18  
A5.19  
2.6  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
MEM_CLK  
MEM_CLK  
tvalid  
thold  
NOP  
Active  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Control Signals  
MDQS (Data Strobe)  
tdata_valid_min  
tdata_valid_max  
MDQ (Data)  
Sample  
position  
A
tdata_sample_min  
tdata_sample_max  
Read Data  
Sample Window  
MDQS (Data Strobe)  
MDQ (Data)  
tdata_valid_min  
tdata_valid_max  
Sample  
position  
0.5 * tMEM_CLK  
B
tdata_sample_min  
tdata_sample_max  
Read Data  
Sample Window  
tvalid  
thold  
MA (Address)  
Row  
Column  
tvalid  
thold  
MBA (Bank Selects)  
Sample position A: data are sampled on the expected edge of MEM_CLK, the MDQS signal indicate the valid data  
Sample position B: data are sampled on a later edge of MEM_CLK, SDRAM controller is waiting for the vaild MDQS signal  
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 7. Timing Diagram—DDR SDRAM Memory Read Timing  
MPC5200B Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
1.3.6.4  
Memory Interface Timing-DDR SDRAM Write Command  
Table 21. DDR SDRAM Memory Write Timing  
Sym  
tmem_clk  
tDQSS  
Description  
Min  
Max  
Units SpecID  
MEM_CLK period  
7.5  
ns  
ns  
A5.20  
A5.21  
Delay from write command to first  
rising edge of MDQS  
tmem_clk+0.4  
datavalid  
datahold  
MDQ valid before rising edge of  
MDQS  
1.0  
1.0  
ns  
ns  
A5.22  
A5.23  
MDQ valid after rising edge of  
MDQS  
MEM_CLK  
MEM_CLK  
Write  
Write  
Write  
Write  
Control Signals  
datavalid  
datahold  
MDQS (Data Strobe)  
MDQ (Data)  
tDQSS  
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1, and CLK_EN  
Figure 8. DDR SDRAM Memory Write Timing  
1.3.7  
PCI  
The PCI interface on the MPC5200B is designed to PCI Version 2.2 and supports 33-MHz and 66-MHz PCI operations. See the  
PCI Local Bus Specification; the component section specifies the electrical and timing parameters for PCI components with the  
intent that components connect directly together whether on the planar or an expansion board, without any external buffers or  
other “glue logic.” Parameters apply at the package pins, not at expansion board edge connectors.  
The MPC5200B is always the source of the PCI CLK. The clock waveform must be delivered to each 33-MHz or 66-MHz PCI  
component in the system. Figure 9 shows the clock waveform and required measurement points for 3.3 V signaling  
environments. Table 22 summarizes the clock specifications.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
tcyc  
thigh  
tlow  
0.6Vcc  
0.5Vcc  
0.4Vcc  
0.4Vcc, p-to-p  
(minimum)  
PCI CLK  
0.3Vcc  
0.2Vcc  
Figure 9. PCI CLK Waveform  
Table 22. PCI CLK Specifications  
66 MHz  
33 MHz  
Sym  
Description  
Units Notes  
SpecID  
Min  
Max  
Min  
Max  
(1),(3)  
tcyc  
thigh  
tlow  
PCI CLK Cycle Time  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Slew Rate  
15  
6
30  
30  
11  
11  
1
ns  
ns  
A6.1  
A6.2  
A6.3  
A6.4  
6
ns  
(2)  
1.5  
4
4
V/ns  
ps  
PCI Clock Jitter  
(peak to peak)  
200  
200  
NOTES:  
1. In general, all 66-MHz PCI components must work with any clock frequency up to 66 MHz. CLK requirements vary depending  
upon whether the clock frequency is above 33 MHz.  
2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum  
peak-to-peak portion of the clock waveform as shown in Figure 9.  
3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system jitter.  
Table 23. PCI Timing Parameters  
66 MHz  
33 MHz  
Sym  
Description  
Units  
Notes  
SpecID  
Min  
Max  
Min  
Max  
(1),(2),(3)  
tval  
CLK to Signal Valid Delay - bused  
signals  
2
2
2
6
2
2
2
11  
ns  
ns  
A6.5  
A6.6  
(1),(2),(3)  
tval(ptp) CLK to Signal Valid Delay - point  
to point  
6
12  
28  
(1)  
(1)  
ton  
toff  
tsu  
Float to Active Delay  
Active to Float Delay  
ns  
ns  
ns  
A6.7  
A6.8  
A6.9  
14  
(3),(4)  
Input Setup Time to CLK - bused  
signals  
3
5
0
7
10,12  
0
(3),(4)  
(4)  
tsu(ptp) Input Setup Time to CLK - point  
to point  
ns  
ns  
A6.10  
A6.11  
th  
Input Hold Time from CLK  
NOTES:  
1. See the timing measurement conditions in the PCI Local Bus Specification. It is important that all driven signal transitions drive  
to their Voh or Vol level within one Tcyc.  
MPC5200B Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
2. Minimum times are measured at the package pin with the load circuit, and maximum times are measured with the load circuit  
as shown in the PCI Local Bus Specification.  
3. REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT# and REQ# have  
a setup of 5 ns at 66 MHz. All other signals are bused.  
4. See the timing measurement conditions in the PCI Local Bus Specification.  
For Measurement and Test Conditions, see the PCI Local Bus Specification.  
1.3.8  
Local Plus Bus  
The Local Plus Bus is the external bus interface of the MPC5200B. A maximum of eight configurable chip selects (CS) are  
provided. There are two main modes of operation: non-MUXed (Legacy and Burst) and MUXED. The reference clock is the  
PCI CLK. The maximum bus frequency is 66 MHz.  
Definition of Acronyms and Terms:  
WS = Wait State  
DC = Dead Cycle  
LB = Long Burst  
DS = Data Size in Bytes  
tPCIck = PCI clock period  
tIPBIck = IPBI clock period  
tPCIck  
PCI CLK  
IPBI CLK  
tIPBIck  
Figure 10. Timing Diagram—IPBI and PCI clock (example ratio: 4:1)  
1.3.8.1  
Non-MUXed Mode  
Table 24. Non-MUXed Mode Timing  
Sym  
Description  
Min  
Max  
Units Notes SpecID  
tCSA  
tCSN  
t1  
PCI CLK to CS assertion  
PCI CLK to CS negation  
4.6  
2.9  
10.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.1  
A7.2  
A7.3  
A7.4  
A7.5  
A7.6  
A7.7  
A7.8  
A7.9  
A7.10  
A7.11  
7.0  
(1)  
(2)  
CS pulse width  
(2+WS)*tPCIck  
tIPBIck  
tIPBIck  
-
(2+WS)*tPCIck  
t2  
ADDR valid before CS assertion  
ADDR hold after CS negation  
OE assertion before CS assertion  
OE negation before CS negation  
RW valid before CS assertion  
RW hold after CS negation  
tPCIck  
t3  
-
t4  
4.8  
t5  
-
2.7  
t6  
tPCIck  
tIPBIck  
tIPBIck  
tIPBIck  
-
-
-
-
t7  
t8  
DATA output valid before CS assertion  
DATA output hold after CS negation  
t9  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
23  
Table 24. Non-MUXed Mode Timing (continued)  
Sym  
Description  
Min  
Max  
Units Notes SpecID  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
DATA input setup before CS negation  
DATA input hold after CS negation  
ACK assertion after CS assertion  
ACK negation after CS negation  
TS assertion before CS assertion  
TS pulse width  
8.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.12  
A7.13  
A7.14  
A7.15  
A7.16  
A7.17  
A7.18  
A7.19  
A7.20  
A7.21  
(6)  
(3)  
(3)  
(4)  
(4)  
(5)  
(5)  
(1)  
(1)  
0
(DC+1)*tPCIck  
tPCIck  
-
tPCIck  
6.9  
tPCIck  
-
-
-
tPCIck  
tIPBIck  
tIPBIck  
-
TSIZ valid before CS assertion  
TSIZ hold after CS negation  
ACK change before PCI clock  
ACK change after PCI clock  
-
2.0  
4.4  
-
NOTES:  
1. ACK can shorten the CS pulse width.  
Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from 0 -  
65535.  
2. In Large Flash and MOST Graphics mode the shared PCI/ATA pins, used as address lines, are released at the same moment  
as the CS. This can cause the address to change before CS is deasserted.  
3. ACK is input and can be used to shorten the CS pulse width.  
4. Only available in Large Flash and MOST Graphics mode.  
5. Only available in MOST Graphics mode.  
6. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration  
happens the bus can be driven within 4 IPB clocks by an other modules.  
MPC5200B Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
PCI CLK  
t1  
CS[x]  
ADDR  
t2  
t3  
t5  
t4  
OE  
R/W  
t6  
t7  
t8  
t9  
DATA (wr)  
t10  
t19  
t11  
DATA (rd)  
ACK  
t12  
t13  
t18  
t14  
t15  
TS  
t17  
TSIZ[1:2]  
t16  
Figure 11. Timing Diagram—Non-MUXed Mode  
1.3.8.2  
Burst Mode  
Table 25. Burst Mode Timing  
Sym  
Description  
Min  
Max  
Units Notes SpecID  
tCSA  
tCSN  
t1  
PCI CLK to CS assertion  
PCI CLK to CS negation  
CS pulse width  
4.6  
2.9  
10.6  
7.0  
ns  
ns  
ns  
A7.22  
A7.23  
A7.24  
(1+WS+4LB*2*(32/DS))* (1+WS+4LB*2*(32/DS))  
(1),(2)  
tPCIck  
tIPBIck  
-0.7  
-
*tPCIck  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
ADDR valid before CS assertion  
ADDR hold after CS negation  
OE assertion before CS assertion  
OE negation before CS negation  
RW valid before CS assertion  
RW hold after CS negation  
tPCIck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.25  
A7.26  
A7.27  
A7.28  
A7.29  
A7.30  
A7.31  
-
4.8  
2.7  
-
-
tPCIck  
tPCIck  
3.6  
-
DATA setup before rising edge of  
PCI clock  
-
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
25  
Table 25. Burst Mode Timing (continued)  
Sym  
Description  
Min  
Max  
Units Notes SpecID  
t9  
DATA hold after rising edge of PCI  
clock  
0
-
ns  
A7.32  
(4)  
t10  
t11  
t12  
t13  
t14  
t15  
DATA hold after CS negation  
ACK assertion after CS assertion  
ACK negation before CS negation  
ACK pulse width  
0
(DC+1)*tPCIck  
ns  
ns  
ns  
ns  
ns  
ns  
A7.33  
A7.34  
A7.35  
A7.36  
A7.37  
A7.38  
-
(WS+1)*tPCIck  
(3)  
-
7.0  
(2),(3)  
4LB*2*(32/DS)*tPCIck  
4LB*2*(32/DS)*tPCIck  
CS assertion after TS assertion  
TS pulse width  
-
2.5  
tPCIck  
tPCIck  
NOTES:  
1. Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from 0 -  
65535.  
2. Example:  
Long Burst is used, this means the CS related BERx and SLB bits of the Chip Select Burst Control Register are set and a burst  
on the internal XLB is executed. => LB = 1  
Data bus width is 8 bit. => DS = 8  
=> 41*2*(32/8) = 32 => ACK is asserted for 32 PCI cycles to transfer one cache line.  
Wait State is set to 10. => WS = 10  
1+10+32 = 43 => CS is asserted for 43 PCI cycles.  
3. ACK is output and indicates the burst.  
4. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration  
happens the bus can be driven within 4 IPB clocks by an other modules.  
PCI CLK  
t1  
CS[x]  
t2  
t3  
ADDR  
OE  
t5  
t4  
t6  
t7  
R/W  
t8  
t9  
t10  
DATA (rd)  
t11  
t12  
ACK  
TS  
t13  
t14  
t15  
Figure 12. Timing Diagram—Burst Mode  
MPC5200B Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
1.3.8.3  
MUXed Mode  
Table 26. MUXed Mode Timing  
Sym  
Description  
Min  
Max  
Units Notes SpecID  
tCSA  
tCSN  
tALEA  
t1  
PCI CLK to CS assertion  
PCI CLK to CS negation  
PCI CLK to ALE assertion  
4.6  
2.9  
-
10.6  
7.0  
3.6  
5.7  
ns  
ns  
ns  
ns  
A7.39  
A7.40  
A7.41  
A7.42  
ALE assertion before Address, Bank,  
TSIZ assertion  
-
t2  
CS assertion before Address, Bank,  
TSIZ negation  
-
-1.2  
ns  
A7.43  
t3  
t4  
CS assertion before Data wr valid  
Data wr hold after CS negation  
Data rd setup before CS negation  
Data rd hold after CS negation  
ALE pulse width  
-
-1.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.44  
A7.45  
A7.46  
A7.47  
A7.48  
A7.49  
A7.50  
A7.51  
A7.52  
A7.53  
A7.54  
A7.55  
A7.56  
A7.57  
A7.58  
A7.59  
A7.60  
tIPBIck  
-
t5  
8.5  
-
(DC+1)*tPCIck  
tPCIck  
(1),(3)  
t6  
0
-
t7  
tTSA  
t8  
CS assertion after TS assertion  
TS pulse width  
-
6.9  
-
tPCIck  
t9  
CS pulse width  
(2+WS)*tPCIck (2+WS)*tPCIck  
tOEA  
tOEN  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
OE assertion before CS assertion  
OE negation before CS negation  
RW assertion before ALE assertion  
RW negation after CS negation  
ACK assertion after CS assertion  
ACK negation after CS negation  
ALE negation to CS assertion  
ACK change before PCI clock  
ACK change after PCI clock  
-
4.7  
5.9  
-
tIPBIck  
-
-
tPCIck  
-
(2)  
(2)  
tIPBIck  
-
-
-
-
tPCIck  
tPCIck  
2.0  
(2)  
(2)  
4.4  
NOTES:  
1. ACK can shorten the CS pulse width.  
Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from 0 -  
65535.  
2. ACK is input and can be used to shorten the CS pulse width.  
3. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration  
happens the bus can be driven within 4 IPB clocks by an other modules.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
PCI CLK  
t2  
t4  
t1  
AD[31,27] (wr)  
AD[30:28] (wr)  
Data  
Data  
TSIZ[0:2] bits  
AD[26:25] (wr)  
AD[24:0] (wr)  
Data  
Data  
Bank[0:1] bits  
Address[7:31]  
t3  
t5  
t6  
Data  
AD[31:0] (rd)  
t7  
t14  
ALE  
TS  
Address latch  
t8  
t9  
CSx  
OE  
t10  
t11  
R/W  
ACK  
t16  
t12  
t13  
t15  
Address tenure  
Data tenure  
Figure 13. Timing Diagram—MUXed Mode  
1.3.9  
ATA  
The MPC5200B ATA Controller is completely software programmable. It can be programmed to operate with ATA protocols  
using their respective timing, as described in the ANSI ATA-4 specification. The ATA interface is completely asynchronous in  
nature. Signal relationships are based on specific fixed timing in terms of timing units (nanoseconds).  
ATA data setup and hold times, with respect to Read/Write strobes, are software programmable inside the ATA Controller. Data  
setup and hold times are implemented using counters. The counters count the number of ATA clock cycles needed to meet the  
ANSI ATA-4 timing specifications. For details, see the ANSI ATA-4 specification and how to program an ATA Controller and  
ATA drive for different ATA protocols and their respective timing. See the MPC5200B User Manual.  
The MPC5200B ATA Host Controller design makes data available coincidentally with the active edge of the WRITE strobe in  
PIO and Multiword DMA modes.  
Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample setup-time beyond that  
required by the ATA-4 specification.  
Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold-time beyond that  
required by the ATA-4 specification.  
MPC5200B Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host Controller timing registers.  
This puts constraints on the ATA protocols and their respective timing modes in which the ATA Controller can communicate  
with the drive.  
Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a sufficient frequency to provide adequate  
data transfer rates. Adequate data transfer rates are a function of the following:  
The MPC5200B operating frequency (IP bus clock frequency)  
Internal MPC5200B bus latencies  
Other system load dependent variables  
The ATA clock is the same frequency as the IP bus clock in MPC5200B. See the MPC5200B User Manual.  
NOTE  
All output timing numbers are specified for nominal 50 pF loads.  
Table 27. PIO Mode Timing Specifications  
Min/Max Mode 0 Mode 1 Mode 2 Mode 3 Mode 4  
Sym  
PIO Timing Parameter  
SpecID  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
t0  
Cycle Time  
min  
min  
600  
70  
383  
50  
240  
30  
180  
30  
120  
25  
A8.1  
A8.2  
A8.3  
t1 Address valid to DIOR/DIOW setup  
t2  
DIOR/DIOW pulse width 16-bit  
8-bit  
min  
min  
165  
290  
125  
290  
100  
290  
80  
80  
70  
70  
t2i  
t3  
t4  
t5  
t6  
t9  
DIOR/DIOW recovery time  
DIOW data setup  
DIOW data hold  
min  
min  
min  
min  
min  
min  
60  
30  
50  
5
45  
20  
35  
5
30  
15  
20  
5
70  
30  
10  
20  
5
25  
20  
10  
20  
5
A8.4  
A8.5  
A8.6  
A8.7  
A8.8  
A8.9  
DIOR data setup  
DIOR data hold  
DIOR/DIOW to address  
valid hold  
20  
15  
10  
10  
10  
tA  
tB  
IORDY setup  
max  
max  
35  
35  
35  
35  
35  
A8.10  
A8.11  
IORDY pulse width  
1250  
1250  
1250  
1250  
1250  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
CS[0]/CS[3]/DA[2:0]  
DIOR/DIOW  
t2  
t9  
t1  
t0  
t3  
t4  
WDATA  
RDATA  
t5  
t6  
tA  
tB  
IORDY  
Figure 14. PIO Mode Timing  
Table 28. Multiword DMA Timing Specifications  
Multiword DMA Timing Parameters Min/Max Mode 0(ns) Mode 1(ns)  
Sym  
Mode 2(ns) SpecID  
t0  
tC  
tD  
tE  
Cycle Time  
min  
max  
min  
max  
min  
min  
min  
min  
min  
min  
min  
max  
max  
480  
150  
80  
60  
30  
5
120  
70  
50  
20  
5
A8.12  
A8.13  
A8.14  
A8.15  
A8.16  
A8.17  
A8.18  
A8.19  
A8.20  
A8.21  
A8.22  
A8.23  
A8.24  
DMACK to DMARQ delay  
DIOR/DIOW pulse width (16-bit)  
DIOR data access  
215  
150  
100  
5
tG  
tF  
DIOR/DIOW data setup  
DIOR data hold  
tH  
tI  
DIOW data hold  
20  
15  
0
10  
0
DMACK to DIOR/DIOW setup  
DIOR/DIOW to DMACK hold  
DIOR negated pulse width  
DIOW negated pulse width  
DIOR to DMARQ delay  
DIOW to DMARQ delay  
0
tJ  
20  
5
5
tKr  
tKw  
tLr  
tLw  
50  
50  
50  
40  
40  
25  
25  
35  
35  
215  
120  
40  
MPC5200B Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
t0  
DMARQ  
(Drive)  
tL  
tC  
DMACK  
(Host)  
tJ  
tI  
tD  
tK  
DIOR  
DIOW  
(Host)  
tE  
RDATA  
(Drive)  
tF  
WDATA  
(Host)  
tG  
tH  
Figure 15. Multiword DMA Timing  
NOTE  
The direction of signal assertion is towards the top of the page, and the direction of negation  
is towards the bottom of the page, irrespective of the electrical properties of the signal.  
Table 29. Ultra DMA Timing Specification  
MODE 0  
(ns)  
MODE 1  
(ns)  
MODE 2  
(ns)  
Sym  
Comment  
SpecID  
Min Max Min Max Min Max  
tCYC  
114  
75  
55  
Cycle time allowing for asymmetry and clock  
variations from STROBE edge to STROBE edge  
A8.26  
A8.27  
t 2CYC  
235  
156  
117  
Two-cycle time allowing for clock variations, from  
rising edge to next rising edge or from falling edge to  
next falling edge of STROBE.  
tDS  
t DH  
15  
5
10  
5
7
5
Data setup time at recipient.  
Data hold time at recipient.  
A8.28  
A8.29  
A8.30  
tDVS  
tDVH  
t FS  
70  
6
48  
6
34  
6
Data valid setup time at sender, to STROBE edge.  
Data valid hold time at sender, from STROBE edge. A8.31  
0
230  
0
200  
0
170 First STROBE time for drive to first negate DSTROBE A8.32  
from STOP during a data-in burst.  
tLI  
tMLI  
tUI  
0
20  
0
150  
0
20  
0
150  
0
20  
0
150  
Limited Interlock time.  
Interlock time with minimum.  
Unlimited interlock time.  
A8.33  
A8.34  
A8.35  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Table 29. Ultra DMA Timing Specification (continued)  
MODE 0  
(ns)  
MODE 1  
(ns)  
MODE 2  
(ns)  
Sym  
Comment  
SpecID  
Min Max Min Max Min Max  
t AZ  
10  
10  
10  
Maximum time allowed for output drivers to release  
from being asserted or negated  
A8.36  
tZAH  
t ZAD  
tENV  
20  
0
70  
20  
0
70  
20  
0
70  
Minimum delay time required for output drivers to  
assert or negate from released state  
A8.37  
A8.38  
A8.39  
20  
20  
20  
Envelope time—from DMACK to STOP and  
HDMARDY during data out burst initiation.  
tSR  
50  
30  
20  
STROBE to DMARDY time, if DMARDY is negated  
before this long after STROBE edge, the recipient  
receives no more than one additional data word.  
A8.40  
tRFS  
tRP  
75  
60  
50  
Ready-to-Final STROBE time—no STROBE edges A8.41  
are sent this long after negation of DMARDY.  
160  
125  
100  
Ready-to-Pause time—the time recipient waits to  
initiate pause after negating DMARDY.  
A8.42  
tIORDYZ  
tZIORDY  
t ACK  
0
20  
0
20  
0
20  
Pull-up time before allowing IORDY to be released.  
Minimum time drive waits before driving IORDY  
A8.43  
A8.44  
20  
20  
20  
Setup and hold times for DMACK, before assertion or A8.45  
negation.  
tSS  
50  
50  
50  
Time from STROBE edge to negation of DMARQ or A8.46  
assertion of STOP, when sender terminates a burst.  
NOTES:  
1 tUI, tMLI, tLI indicate sender-to-recipient or recipient-to-sender interlocks. That is, one agent (sender or recipient) is waiting for  
the other agent to respond with a signal before proceeding.  
• tUI is an unlimited interlock that has no maximum time value.  
• tMLI is a limited time-out that has a defined minimum.  
• tLI is a limited time-out that has a defined maximum.  
2 All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the sender shall  
stop generating STROBE edges tRFS after negation of DMARDY. STROBE and DMARDY timing measurements are taken at  
the connector of the sender. Even though the sender stops generating STROBE edges, the receiver may receive additional  
STROBE edges due to propagation delays. All timing measurement switching points (low to high and high to low) are taken at  
1.5 V.  
MPC5200B Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
DMARQ  
(device)  
tUI  
DMACK  
(device)  
tACK  
tENV  
tFS  
tZAD  
STOP  
(host)  
tACK  
tENV  
tFS  
HDMARDY  
(host)  
tZAD  
tZIORDY  
DSTROBE  
(device)  
tDVS  
tDVH  
tAZ  
DD(0:15)  
tACK  
DA0, DA1, DA2,  
CS[0:1]1  
Figure 16. Timing Diagram—Initiating an Ultra DMA Data In Burst  
t2CYC  
tCYC  
tCYC  
t2CYC  
DSTROBE  
at device  
tDVH  
tDVS  
tDVH  
tDVS  
tDVH  
DD(0:15)  
at device  
DSTROBE  
at host  
tDH  
tDS  
tDH  
tDS  
tDH  
DD(0:15)  
at host  
Figure 17. Timing Diagram—Sustained Ultra DMA Data In Burst  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
33  
DMARQ  
(device)  
DMARQ  
(host)  
tRP  
STOP  
(host)  
tSR  
HDMARDY  
(host)  
tRFS  
DSTROBE  
(device)  
DD[0:15]  
(device)  
Figure 18. Timing Diagram—Host Pausing an Ultra DMA Data In Burst  
DMARQ  
(device)  
DMACK  
(host)  
tLI  
tLI  
tMLI  
tACK  
STOP  
(host)  
tLI  
tACK  
HDMARDY  
(host)  
tSS  
tIORDYZ  
DSTROBE  
(device)  
tZAH  
tDVS  
t AZ  
tDVH  
CRC  
DD[0:15]  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 19. Timing Diagram—Drive Terminating Ultra DMA Data In Burst  
MPC5200B Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
DMARQ  
(device)  
tLI  
tMLI  
DMACK  
(host)  
tRP  
tZAH  
tACK  
STOP  
(host)  
tACK  
HDMARDY  
(host)  
tMLI  
tRFS  
tLI  
tIORDYZ  
DSTROBE  
(device)  
tDVS  
tDVH  
CRC  
DD[0:15]  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 20. Timing Diagram—Host Terminating Ultra DMA Data In Burst  
DMARQ  
(device)  
tUI  
DMACK  
(host)  
tENV  
tACK  
STOP  
(host)  
tLI  
tUI  
tZIORDY  
DDMARDY  
(host)  
tACK  
HSTROBE  
(device)  
tDVS  
tDVH  
DD[0:15]  
(host)  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 21. Timing Diagram—Initiating an Ultra DMA Data Out Burst  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
35  
t2CYC  
tCYC  
tCYC  
t2CYC  
HSTROBE  
(host)  
tDVS  
tDVS  
tDVH  
tDVH  
tDVH  
DD[0:15]  
(host)  
HSTROBE  
(device)  
tDS  
tDS  
tDH  
tDH  
tDH  
DD[0:15]  
(device)  
Figure 22. Timing Diagram—Sustained Ultra DMA Data Out Burst  
tRP  
DMARQ  
(device)  
DMACK  
(host)  
STOP  
(host)  
tSR  
DDMARDY  
(device)  
tRFS  
HSTROBE  
DD[0:15]  
(host)  
Figure 23. Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst  
MPC5200B Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
DMARQ  
(device)  
tLI  
tMLI  
DMACK  
(host)  
tSS  
tACK  
tLI  
STOP  
(host)  
tLI  
tIORDYZ  
DDMARDY  
(device)  
tACK  
HSTROBE  
(host)  
tDVS  
tDVH  
DD[0:15]  
(host)  
CRC  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 24. Timing Diagram—Host Terminating Ultra DMA Data Out Burst  
DMARQ  
(device)  
DMACK  
(host)  
tLI  
tMLI  
tACK  
STOP  
(host)  
tRP  
tIORDYZ  
DDMARDY  
(device)  
tRFS  
tLI  
tMLI  
tACK  
HSTROBE  
(host)  
tDVS  
t DVH  
DD[0:15]  
(host)  
CRC  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 25. Timing Diagram—Drive Terminating Ultra DMA Data Out Burst  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
Table 30. Timing Specification ata_isolation  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
ata_isolation setup time  
ata_isolation hold time  
7
-
-
IP Bus cycles  
IP Bus cycles  
A8.48  
A8.49  
19  
DIOR  
ATA_ISOLATION  
1
2
Figure 26. Timing Diagram-ATA-ISOLATION  
1.3.10 Ethernet  
AC Test Timing Conditions:  
Output Loading  
All Outputs: 25 pF  
Table 31. MII Rx Signal Timing  
Sym  
Description  
Min  
Max  
Unit  
SpecID  
t1  
t2  
t3  
t4  
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
RX_CLK pulse width high  
10  
10  
ns  
ns  
A9.1  
A9.2  
A9.3  
A9.4  
35%  
35%  
65%  
65%  
RX_CLK Period(1)  
RX_CLK Period(1)  
RX_CLK pulse width low  
1
RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification.  
t3  
RX_CLK (Input)  
t4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
t1  
Figure 27. Ethernet Timing Diagram—MII Rx Signal  
t2  
MPC5200B Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
Table 32. MII Tx Signal Timing  
Sym  
Description  
Min  
Max  
Unit  
SpecID  
t5  
TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER  
invalid  
5
ns  
A9.5  
t6  
t7  
t8  
TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER valid  
TX_CLK pulse width high  
25  
ns  
A9.6  
A9.7  
A9.8  
35%  
35%  
65%  
65%  
TX_CLK Period(1)  
TX_CLK Period(1)  
TX_CLK pulse width low  
1
The TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide  
a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See  
the IEEE 802.3 Specification.  
t7  
TX_CLK (Input)  
t5  
t8  
TXD[3:0] (Outputs)  
TX_EN  
TX_ER  
t6  
Figure 28. Ethernet Timing Diagram—MII Tx Signal  
Table 33. MII Async Signal Timing  
Sym  
Description  
Min  
Max  
Unit  
SpecID  
t9  
CRS, COL minimum pulse width  
1.5  
TX_CLK Period  
A9.9  
CRS, COL  
t9  
Figure 29. Ethernet Timing Diagram—MII Async  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
39  
Table 34. MII Serial Management Channel Signal Timing  
Sym  
Description  
Min  
Max  
Unit  
SpecID  
t10  
t11  
t12  
t13  
t14  
t15  
MDC falling edge to MDIO output delay  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high(1)  
0
25  
ns  
ns  
ns  
ns  
ns  
ns  
A9.10  
A9.11  
A9.12  
A9.13  
A9.14  
A9.15  
10  
10  
160  
160  
400  
MDC pulse width low(1)  
MDC period(2)  
1
2
MDC is generated by MPC5200B with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control  
register is changed during operation. See the MPC5200B User Manual.  
The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII  
characteristic) by programming the FEC MII_SPEED control register. See the MPC5200B User Manual.  
t13  
t14  
MDC (Output)  
t15  
t10  
MDIO (Output)  
MDIO (Input)  
t11  
t12  
Figure 30. Ethernet Timing Diagram—MII Serial Management  
1.3.11 USB  
Table 35. Timing Specifications—USB Output Line  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
3
USB Bit width(1)  
Transceiver enable time  
Signal falling time  
83.3  
83.3  
667  
667  
7.9  
7.9  
ns  
ns  
ns  
ns  
A10.1  
A10.2  
A10.3  
A10.4  
4
Signal rising time  
1
Defined in the USB config register, (12 Mbit/s or 1.5 Mbit/s mode).  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
2
USB_OE  
4
3
3
USB_TXN  
USB_TXP  
1
1
4
Figure 31. Timing Diagram—USB Output Line  
1.3.12 SPI  
Table 36. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
Cycle time  
Clock high or low time  
Slave select to clock delay  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
Input Data setup time  
4
2
1024  
512  
IP-Bus Cycle(1) A11.1  
IP-Bus Cycle(1) A11.2  
3
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
A11.3  
A11.4  
A11.5  
A11.6  
A11.7  
A11.8  
4
20.0  
20.0  
5
6
20.0  
20.0  
15.0  
1
7
Input Data hold time  
8
Slave disable lag time  
9
Sequential transfer delay  
Clock falling time  
IP-Bus Cycle(1) A11.9  
10  
7.9  
7.9  
ns  
ns  
A11.10  
A11.11  
11  
Clock rising time  
1
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
1
11  
10  
10  
11  
SCK  
(CLKPOL=0)  
Output  
2
2
SCK  
(CLKPOL=1)  
Output  
9
8
3
SS  
Output  
5
4
MOSI  
Output  
6
6
MISO  
Input  
7
7
Figure 32. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)  
Table 37. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
3
4
5
6
7
8
9
Cycle time  
Clock high or low time  
4
2
1024  
512  
IP-Bus Cycle(1)  
A11.12  
A11.13  
A11.14  
A11.15  
A11.16  
A11.17  
A11.18  
A11.19  
A11.20  
IP-Bus Cycle(1)  
Slave select to clock delay  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
Input Data setup time  
15.0  
ns  
50.0  
50.0  
ns  
ns  
50.0  
0.0  
15.0  
1
ns  
Input Data hold time  
ns  
ns  
Slave disable lag time  
Sequential Transfer delay  
IP-Bus Cycle(1)  
1
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
9
8
3
SS  
Input  
6
7
MOSI  
Input  
4
5
MISO  
Output  
Figure 33. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)  
Table 38. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
Cycle time  
4
2
1024  
512  
IP-Bus Cycle(1) A11.21  
IP-Bus Cycle(1) A11.22  
Clock high or low time  
Slave select to clock delay  
Output data valid  
3
15.0  
ns  
ns  
ns  
ns  
ns  
A11.23  
A11.24  
A11.25  
A11.26  
A11.27  
4
20.0  
5
Input Data setup time  
Input Data hold time  
Slave disable lag time  
Sequential Transfer delay  
Clock falling time  
20.0  
20.0  
15.0  
1
6
7
8
IP-Bus Cycle(1) A11.28  
9
7.9  
7.9  
ns  
ns  
A11.29  
A11.30  
10  
Clock rising time  
1
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
1
10  
9
9
SCK  
(CLKPOL=0)  
Output  
2
2
10  
SCK  
(CLKPOL=1)  
Output  
8
7
3
4
SS  
Output  
MOSI  
Output  
5
MISO  
Input  
6
Figure 34. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)  
Table 39. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
3
4
5
6
7
8
Cycle time  
4
2
1024  
512  
IP-Bus Cycle(1) A11.31  
IP-Bus Cycle(1) A11.32  
Clock high or low time  
Slave select to clock delay  
Output data valid  
15.0  
ns  
ns  
ns  
ns  
ns  
A11.33  
A11.34  
A11.35  
A11.36  
A11.37  
50.0  
Input Data setup time  
Input Data hold time  
Slave disable lag time  
Sequential Transfer delay  
50.0  
0.0  
15.0  
1
IP-Bus Cycle(1) A11.38  
1
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
8
7
3
SS  
Input  
5
6
MOSI  
Input  
4
MISO  
Output  
Figure 35. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)  
1.3.13 MSCAN  
2
The CAN functions are available as RX and TX pins at normal IO pads (I C1+GPTimer or PSC2). There is no filter for the  
WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured.  
1.3.14 I2C  
2
Table 40. I C Input Timing Specifications—SCL and SDA  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1
2
4
6
7
8
Start condition hold time  
Clock low time  
2
8
IP-Bus Cycle(1) A13.1  
IP-Bus Cycle(1) A13.2  
Data hold time  
0.0  
4
ns  
IP-Bus Cycle(1) A13.4  
ns A13.5  
A13.3  
Clock high time  
Data setup time  
0.0  
2
Start condition setup time (for repeated start condition  
only)  
IP-Bus Cycle(1) A13.6  
9
Stop condition setup time  
2
IP-Bus Cycle(1) A13.7  
1
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
2
Table 41. I C Output Timing Specifications—SCL and SDA  
Sym  
Description  
Min  
Max  
Units  
SpecID  
1(1)  
2(1)  
3(2)  
4(1)  
5(1)  
6(1)  
7(1)  
8(1)  
Start condition hold time  
Clock low time  
6
10  
7
IP-Bus Cycle(3) A13.8  
IP-Bus Cycle(3) A13.9  
SCL/SDA rise time  
Data hold time  
7.9  
ns  
IP-Bus Cycle(3) A13.11  
ns A13.12  
A13.10  
SCL/SDA fall time  
Clock high time  
10  
2
7.9  
IP-Bus Cycle(3) A13.13  
IP-Bus Cycle(3) A13.14  
IP-Bus Cycle(3) A13.15  
Data setup time  
Start condition setup time (for repeated start condition  
only)  
20  
9(1)  
Stop condition setup time  
10  
IP-Bus Cycle(3) A13.16  
1
Programming IFDR with the maximum frequency (IFDR=0x20) results in the minimum output timings listed. The  
I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed in IFDR.  
2
3
Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL  
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values  
Inter Peripheral Clock is defined in the MPC5200B User Manual.  
NOTE  
Output timing is specified at a nominal 50 pF load.  
2
6
5
SCL  
SDA  
3
1
7
8
4
9
2
Figure 36. Timing Diagram—I C Input/Output  
1.3.15 J1850  
See the MPC5200B User Manual.  
MPC5200B Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
1.3.16 PSC  
2
1.3.16.1 Codec Mode (8,16,24 and 32-bit)/I S Mode  
2
Table 42. Timing Specifications—8,16, 24, and 32-bit CODEC / I S Master Mode  
Sym  
Description  
Min  
Typ  
Max  
Units SpecID  
1
2
3
4
5
6
7
8
Bit Clock cycle time, programmed in CCS register  
Clock duty cycle  
40.0  
50  
ns  
A15.1  
A15.2  
A15.3  
A15.4  
A15.5  
A15.6  
A15.7  
A15.8  
(1)  
%
Bit Clock fall time  
7.9  
7.9  
8.4  
8.4  
9.3  
ns  
ns  
ns  
ns  
ns  
ns  
Bit Clock rise time  
FrameSync valid after clock edge  
FrameSync invalid after clock edge  
Output Data valid after clock edge  
Input Data setup time  
6.0  
1
Bit Clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
1
BitClk  
(CLKPOL=0)  
Output  
3
2
2
4
BitClk  
(CLKPOL=1)  
Output  
4
3
5
FrameSync  
(SyncPol = 1)  
Output  
6
FrameSync  
(SyncPol = 0)  
Output  
7
TxD  
Output  
8
RxD  
Input  
2
Figure 37. Timing Diagram — 8,16, 24, and 32-bit CODEC / I S Master Mode  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
2
Table 43. Timing Specifications — 8,16, 24, and 32-bit CODEC / I S Slave Mode  
Sym  
Description  
Min  
Typ  
Max  
Units SpecID  
1
2
3
4
5
6
Bit Clock cycle time  
Clock duty cycle  
40.0  
50  
ns  
A15.9  
A15.10  
A15.11  
A15.12  
A15.13  
A15.14  
(1)  
%
FrameSync setup time  
Output Data valid after clock edge  
Input Data setup time  
Input Data hold time  
1.0  
ns  
ns  
ns  
ns  
14.0  
1.0  
1.0  
1
Bit Clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
1
BitClk  
(CLKPOL=0)  
Input  
2
2
BitClk  
(CLKPOL=1)  
Input  
3
FrameSync  
(SyncPol = 1)  
Input  
FrameSync  
(SyncPol = 0)  
Input  
4
TxD  
Output  
5
RxD  
Input  
6
2
Figure 38. Timing Diagram — 8,16, 24, and 32-bit CODEC / I S Slave Mode  
MPC5200B Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
1.3.16.2 AC97 Mode  
Table 44. Timing Specifications — AC97 Mode  
Sym  
Description  
Min  
Typ  
Max  
Units SpecID  
1
Bit Clock cycle time  
81.4  
40.7  
40.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.15  
A15.16  
A15.17  
A15.18  
A15.19  
A15.20  
A15.21  
2
3
4
5
6
7
Clock pulse high time  
Clock pulse low time  
FrameSync valid after rising clock edge  
Output Data valid after rising clock edge  
Input Data setup time  
13.0  
14.0  
1.0  
1.0  
Input Data hold time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
1
BitClk  
(CLKPOL=0)  
Input  
3
2
4
5
FrameSync  
(SyncPol = 1)  
Output  
Sdata_out  
Output  
6
7
Sdata_in  
Input  
Figure 39. Timing Diagram — AC97 Mode  
1.3.16.3 IrDA Mode  
Table 45. Timing Specifications — IrDA Transmit Line  
Sym  
Description  
Min  
Max  
Units SpecID  
1
2
3
4
Pulse high time, defined in the IrDA protocol definition  
Pulse low time, defined in the IrDA protocol definition  
Transmitter rising time  
0.125  
0.125  
10000  
10000  
7.9  
μs  
μs  
ns  
ns  
A15.22  
A15.23  
A15.24  
A15.25  
Transmitter falling time  
7.9  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
49  
3
IrDA_TX  
4
(SIR / FIR / MIR)  
1
2
Figure 40. Timing Diagram — IrDA Transmit Line  
1.3.16.4 SPI Mode  
Table 46. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)  
Sym  
Description  
Min  
Max  
Units SpecID  
1
2
3
4
5
6
7
8
9
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay, programable in the PSC CCS register  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
30.0  
15.0  
30.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.26  
A15.27  
A15.28  
A15.29  
A15.30  
A15.31  
A15.32  
A15.33  
A15.34  
8.9  
8.9  
Input Data setup time  
6.0  
1.0  
Input Data hold time  
Slave disable lag time  
8.9  
Sequential Transfer delay, programable in the PSC CTUR / CTLR  
register  
15.0  
10  
11  
Clock falling time  
Clock rising time  
7.9  
7.9  
ns  
ns  
A15.35  
A15.36  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
1
11  
10  
10  
11  
SCK  
(CLKPOL=0)  
Output  
2
2
SCK  
(CLKPOL=1)  
Output  
9
8
3
SS  
Output  
5
4
MOSI  
Output  
6
6
MISO  
Input  
7
7
Figure 41. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)  
Table 47. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)  
Sym  
Description  
Min  
Max  
Units SpecID  
1
2
3
4
5
6
7
8
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay  
30.0  
15.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.37  
A15.38  
A15.39  
A15.40  
A15.41  
A15.42  
A15.43  
A15.44  
A15.45  
Input Data setup time  
Input Data hold time  
Output data valid after SS  
14.0  
14.0  
Output data valid after SCK  
Slave disable lag time  
0.0  
30.0  
9
Minimum Sequential Transfer delay = 2 * IP Bus clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
9
8
3
SS  
Input  
5
4
MOSI  
Input  
7
6
MISO  
Output  
Figure 42. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)  
Table 48. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)  
Sym  
Description  
Min  
Max  
Units SpecID  
1
2
3
4
5
6
7
8
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay, programable in the PSC CCS register  
Output data valid  
30.0  
15.0  
30.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.46  
A15.47  
A15.48  
A15.49  
A15.50  
A15.51  
A15.52  
A15.53  
8.9  
Input Data setup time  
6.0  
Input Data hold time  
1.0  
Slave disable lag time  
8.9  
Sequential Transfer delay, programable in the PSC CTUR / CTLR  
register  
15.0  
9
Clock falling time  
Clock rising time  
7.9  
7.9  
ns  
ns  
A15.54  
A15.55  
10  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
1
10  
9
9
SCK  
(CLKPOL=0)  
Output  
2
2
10  
SCK  
(CLKPOL=1)  
Output  
8
7
3
4
SS  
Output  
MOSI  
Output  
5
MISO  
Input  
6
Figure 43. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)  
Table 49. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)  
Sym  
Description  
Min  
Max  
Units SpecID  
1
2
3
4
5
6
7
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay  
30.0  
15.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.56  
A15.57  
A15.58  
A15.59  
A15.60  
A15.61  
A15.62  
A15.63  
Output data valid  
14.0  
Input Data setup time  
2.0  
Input Data hold time  
1.0  
Slave disable lag time  
0.0  
8
Minimum Sequential Transfer delay = 2 * IP-Bus clock cycle time  
30.0  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
53  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
8
7
3
SS  
Input  
5
6
MOSI  
Input  
4
MISO  
Output  
Figure 44. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)  
1.3.17 GPIOs and Timers  
1.3.17.1 General and Asynchronous Signals  
The MPC5200B contains several sets if I/Os that do not require special setup, hold, or valid requirements. Most of these are  
asynchronous to the system clock. The following numbers are provided for test and validation purposes only, and they assume  
a 133 MHz internal bus frequency.  
Figure 45 shows the GPIO Timing Diagram. Table 50 gives the timing specifications.  
Table 50. Asynchronous Signals  
Sym  
Description  
Min  
Max  
Units  
SpecID  
tCK  
tIS  
Clock Period  
Input Setup  
Input Hold  
7.52  
12  
1
ns  
ns  
ns  
ns  
ns  
A16.1  
A16.2  
A16.3  
A16.4  
A16.5  
tIH  
tDV  
tDH  
Output Valid  
Output Hold  
1
15.33  
MPC5200B Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
t
CK  
t
DH  
t
DV  
Output  
Input  
valid  
valid  
t
IH  
t
IS  
Figure 45. Timing Diagram—Asynchronous Signals  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
55  
1.3.18 IEEE 1149.1 (JTAG) AC Specifications  
Table 51. JTAG Timing Specification  
Sym  
Characteristic  
Min  
Max  
Unit  
SpecID  
1
TCK frequency of operation.  
TCK cycle time.  
0
40  
1.08  
0
25  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A17.1  
A17.2  
A17.3  
A17.4  
A17.5  
A17.6  
A17.7  
A17.8  
A17.9  
A17.10  
A17.11  
A17.12  
A17.13  
A17.14  
2
TCK clock pulse width measured at 1.5V.  
TCK rise and fall times.  
TRST setup time to tck falling edge(1)  
3
4
.
10  
5
30  
30  
15  
15  
5
TRST assert time.  
6
Input data setup time(2)  
Input data hold time(2)  
TCK to output data valid(3)  
.
5
7
.
15  
0
8
.
9
TCK to output high impedance(3)  
TMS, TDI data setup time.  
TMS, TDI data hold time.  
TCK to TDO data valid.  
.
0
10  
11  
12  
13  
5
1
0
TCK to TDO high impedance.  
0
1
2
3
TRST is an asynchronous signal. The setup time is for test purposes only.  
Non-test, other than TDI and TMS, signal input timing with respect to TCK.  
Non-test, other than TDO, signal output timing with respect to TCK.  
1
2
2
VM  
VM  
VM  
TCK  
3
3
VM = Midpoint Voltage  
Numbers shown reference Table 51.  
Figure 46. Timing Diagram—JTAG Clock Input  
TCK  
4
TRST  
5
Numbers shown reference Table 51.  
Figure 47. Timing Diagram—JTAG TRST  
MPC5200B Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
TCK  
6
7
INPUT DATA VALID  
DATA INPUTS  
8
OUTPUT DATA VALID  
DATA OUTPUTS  
9
DATA OUTPUTS  
Numbers shown reference Table 51.  
Figure 48. Timing Diagram—JTAG Boundary Scan  
TCK  
10  
11  
INPUT DATA VALID  
TDI, TMS  
TDO  
12  
13  
OUTPUT DATA VALID  
TDO  
Numbers shown reference Table 51.  
Figure 49. Timing Diagram—Test Access Port  
2
Package Description  
2.1  
Package Parameters  
The MPC5200B uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the following list:  
Package outline: 27 mm x 27 mm  
Interconnects: 2  
Pitch: 1.27 mm  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
57  
2.2  
Mechanical Dimensions  
Figure 50 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200B, 272 TE-PBGA  
package.  
PIN A1  
INDEX  
D
C
4X  
0.2  
A
272X  
A
0.2  
A
0.35  
E
E2  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSION IS MEASURED AT THE MAXIMUM  
SOLDER BALL DIAMETER PARALLEL TO  
PRIMARY DATUM A.  
4. PRIMARY DATUM A AND THE SEATING PLANE  
ARE DEFINED BY THE SPHERICAL CROWNS OF  
THE SOLDER BALLS.  
M
A
B C  
D2  
0.2  
B
TOP VIEW  
MILLIMETERS  
DIM  
A
A1  
A2  
A3  
b
MIN  
2.05  
0.50  
0.50  
1.05  
0.60  
27.00 BSC  
24.13 REF  
23.30 24.70  
MAX  
2.65  
0.70  
0.70  
1.25  
0.90  
(D1)  
19X e  
Y
W
V
U
T
R
P
N
M
L
D
19X e  
D1  
D2  
E
E1  
E2  
e
27.00 BSC  
24.13 REF  
23.30  
24.70  
1.27 BSC  
(E1)  
K
J
H
G
F
A1  
A2  
4X  
e
/2  
A3  
E
D
C
B
A
A
SIDE VIEW  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
3
b
272X  
M
A
A
B C  
0.3  
BOTTOM VIEW  
M
0.15  
CASE 1135A–01  
ISSUE B  
Figure 50. Mechanical Dimensions and Pinout Assignments for the MPC5200B, 272 TE-PBGA  
MPC5200B Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
2.3  
Pinout Listings  
See details in the MPC5200B User Manual.  
Table 52. MPC5200B Pinout Listing  
Output Driver  
Type  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
SDRAM  
MEM_CAS  
MEM_CLK_EN  
MEM_CS  
CAS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
CLK_EN  
MEM_DQM[3:0]  
MEM_MA[12:0]  
MEM_MBA[1:0]  
MEM_MDQS[3:0]  
MEM_MDQ[31:0]  
MEM_CLK  
DQM  
MA  
MBA  
MDQS  
MDQ  
MEM_CLK  
MEM_RAS  
RAS  
MEM_WE  
PCI  
EXT_AD[31:0]  
PCI_CBE_0  
PCI_CBE_1  
PCI_CBE_2  
PCI_CBE_3  
PCI_CLOCK  
PCI_DEVSEL  
PCI_FRAME  
PCI_GNT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
TTL  
TTL  
PCI  
PCI  
PCI  
TTL  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
DRV8  
DRV8  
PCI  
PCI_IDSEL  
PCI_IRDY  
PCI_PAR  
PCI  
PCI_PERR  
PCI_REQ  
PCI  
DRV8  
PCI  
PCI_RESET  
PCI_SERR  
PCI_STOP  
PCI  
PCI  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
59  
Table 52. MPC5200B Pinout Listing (continued)  
Output Driver  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
Type  
PCI_TRDY  
I/O  
VDD_IO  
PCI  
PCI  
Local Plus  
LP_ACK  
LP_ALE  
LP_OE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PULLUP  
LP_RW  
LP_TS  
LP_CS0  
LP_CS1  
LP_CS2  
LP_CS3  
LP_CS4  
LP_CS5  
ATA  
ATA_DACK  
ATA_DRQ  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PULLDOWN  
PULLDOWN  
PULLUP  
ATA_INTRQ  
ATA_IOCHRDY  
ATA_IOR  
ATA_IOW  
ATA_ISOLATION  
Ethernet  
ETH_0  
ETH_1  
ETH_2  
TX, TX_EN  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
RTS, TXD[0]  
USB_TXP, RTX,  
TXD[1]  
ETH_3  
ETH_4  
ETH_5  
ETH_6  
ETH_7  
USB_PRTPWR,  
TXD[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
TTL  
USB_SPEED,  
TXD[3]  
USB_SUPEND,  
TX_ER  
USB_OE, RTS,  
MDC  
TXN, MDIO  
MPC5200B Data Sheet, Rev. 3  
60  
Freescale Semiconductor  
Table 52. MPC5200B Pinout Listing (continued)  
Output Driver  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
Type  
ETH_8  
ETH_9  
RX_DV  
CD, RX_CLK  
CTS, COL  
TX_CLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
Schmitt  
TTL  
ETH_10  
ETH_11  
ETH_12  
ETH_13  
Schmitt  
TTL  
RXD[0]  
USB_RXD, CTS,  
RXD[1]  
TTL  
ETH_14  
ETH_15  
ETH_16  
ETH_17  
USB_RXP,  
UART_RX, RXD[2]  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
USB_RXN, RX,  
RXD[3]  
USB_OVRCNT,  
CTS, RX_ER  
CD, CRS  
VDD_IO  
IRDA  
PSC6_0  
PSC6_1  
PSC6_2  
PSC6_3  
IRDA_RX, RxD  
Frame, CTS  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
IRDA_TX, TxD  
TTL  
IR_USB_CLK,BitC  
lk, RTS  
Schmitt  
USB  
USB_0  
USB_1  
USB_2  
USB_3  
USB_4  
USB_5  
USB_6  
USB_7  
USB_8  
USB_9  
USB_OE  
USB_TXN  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
USB_TXP  
USB_RXD  
USB_RXP  
USB_RXN  
USB_PRTPWR  
USB_SPEED  
USB_SUPEND  
USB_OVRCNT  
I2C  
I2C_0  
I2C_1  
I2C_2  
SCL  
SDA  
SCL  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
Schmitt  
Schmitt  
Schmitt  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
61  
Table 52. MPC5200B Pinout Listing (continued)  
Output Driver  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
Type  
I2C_3  
SDA  
I/O  
VDD_IO  
PSC  
DRV4  
Schmitt  
PSC1_0  
PSC1_1  
TxD, Sdata_out,  
MOSI, TX  
I/O  
I/O  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
RxD, Sdata_in,  
MISO, TX  
VDD_IO  
PSC1_2  
PSC1_3  
PSC1_4  
PSC2_0  
Mclk, Sync, RTS  
BitClk, SCK, CTS  
Frame, SS, CD  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
Schmitt  
TTL  
TxD, Sdata_out,  
MOSI, TX  
TTL  
PSC2_1  
RxD, Sdata_in,  
MISO, TX  
I/O  
VDD_IO  
DRV4  
TTL  
PSC2_2  
PSC2_3  
PSC2_4  
PSC3_0  
Mclk, Sync, RTS  
BitClk, SCK, CTS  
Frame, SS, CD  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
Schmitt  
TTL  
USB_OE, TxDS,  
TX  
TTL  
PSC3_1  
PSC3_2  
PSC3_3  
USB_TXN, RxD,  
RX  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
Schmitt  
TTL  
USB_TXP, BitClk,  
RTS  
USB_RXD, Frame,  
SS, CTS  
PSC3_4  
PSC3_5  
PSC3_6  
USB_RXP, CD  
USB_RXN  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_PRTPWR,  
Mclk, MOSI  
PSC3_7  
PSC3_8  
PSC3_9  
USB_SPEED.  
MISO  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_SUPEND,  
SS  
USB_OVRCNT,  
SCK  
GPIO/TIMER  
GPIO_WKUP_6  
GPIO_WKUP_7  
TIMER_0  
MEM_CS1  
I/O  
I/O  
I/O  
VDD_MEM_IO DRV16_MEM  
TTL  
TTL  
TTL  
PULLUP_MEM  
VDD_IO  
VDD_IO  
DRV8  
DRV4  
MPC5200B Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
Table 52. MPC5200B Pinout Listing (continued)  
Output Driver  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
Type  
TIMER_1  
TIMER_2  
TIMER_3  
TIMER_4  
TIMER_5  
TIMER_6  
TIMER_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
MOSI  
MISO  
SS  
SCK  
Clock  
SYS_XTAL_IN  
SYS_XTAL_OUT  
RTC_XTAL_IN  
Input  
Output  
Input  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
RTC_XTAL_OUT  
Output  
Misc  
PORRESET  
HRESET  
SRESET  
IRQ0  
Input  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV8_OD1  
DRV8_OD1  
DRV4  
Schmitt  
Schmitt  
Schmitt  
TTL  
IRQ1  
DRV4  
TTL  
IRQ2  
DRV4  
TTL  
IRQ3  
DRV4  
TTL  
Test/Configuration  
SYS_PLL_TPA  
TEST_MODE_0  
TEST_MODE_1  
TEST_SEL_0  
TEST_SEL_1  
JTAG_TCK  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV8  
DRV4  
DRV4  
DRV8  
DRV4  
DRV4  
TTL  
TTL  
Input  
Input  
I/O  
TTL  
TTL  
PULLUP  
I/O  
TTL  
TCK  
TDI  
Input  
Input  
I/O  
Schmitt  
TTL  
PULLUP  
PULLUP  
JTAG_TDI  
JTAG_TDO  
TDO  
TMS  
TRST  
TTL  
JTAG_TMS  
Input  
Input  
TTL  
PULLUP  
PULLUP  
JTAG_TRST  
TTL  
Power and Ground  
VDD_IO  
-
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
Table 52. MPC5200B Pinout Listing (continued)  
Output Driver  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Power Supply  
Type  
VDD_MEM_IO  
VDD_CORE  
-
-
-
-
-
VSS_IO/CORE  
SYS_PLL_AVDD  
CORE_PLL_AVDD  
1
All “open drain” outputs of the MPC5200B are actually regular three-state output drivers with the output data tied low  
and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to  
the MPC5200B I/O power rail if the external signal is driven above the MPC5200B I/O power rail voltage.  
3
System Design Information  
3.1  
Power Up/Down Sequencing  
Figure 51 shows situations in sequencing the I/O VDD (VDD_IO), Memory VDD (VDD_IO_MEM), PLL VDD  
(PLL_AVDD), and Core VDD (VDD_CORE).  
VDD_IO,  
VDD_IO_MEM (SDR)  
3.3V  
2.5V  
VDD_IO_MEM (DDR)  
1
VDD_CORE,  
PLL_AVDD  
1.5V  
2
0
Time  
Note: VDD_CORE should not exceed VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4 V at any time, including  
power-up.  
Note: It is recommended that VDD_CORE/PLL_AVDD should track VDD_IO/VDD_IO_MEM up to 0.9 V then separate  
for completion of ramps.  
Note: Input voltage must not be greater than the supply voltage (VDD_IO) VDD_IO_MEM, VDD_CORE, or PLL_AVDD)  
by more than 0.5 V at any time, including during power-up.  
Note: Use 1 microsecond or slower rise time for all supplies.  
Figure 51. Supply Voltage Sequencing  
MPC5200B Data Sheet, Rev. 3  
64  
Freescale Semiconductor  
The relationship between VDD_IO_MEM and VDD_IO is non-critical during power-up and power-down sequences.  
VDD_IO_MEM (2.5 V or 3.3 V) and VDD_IO are specified relative to VDD_CORE.  
3.1.1  
Power Up Sequence  
If VDD_IO/VDD_IO_MEM are powered up with the VDD_CORE at 0V, the sense circuits in the I/O pads cause all pad output  
drivers connected to the VDD_IO/VDD_IO_MEM to be in a high-impedance state. There is no limit to how long after  
VDD_IO/VDD_IO_MEM powers up before VDD_CORE must power up. VDD_CORE should not lead the VDD_IO,  
VDD_IO_MEM or PLL_AVDD by more than 0.4 V during power ramp up or there will be high current in the internal ESD  
protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal  
ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
Use one microsecond or slower rise time for all supplies.  
VDD_CORE/PLL_AVDD and VDD_IO/VDD_IO_MEM should track up to 0.9 V and then separate for the completion of  
ramps with VDD_IO/VDD_IO_MEM going to the higher external voltages. One way to accomplish this is to use a low drop-out  
voltage regulator.  
3.1.2  
Power Down Sequence  
If VDD_CORE/PLL_AVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high  
impedance state. There is no limit on how long after VDD_CORE and PLL_AVDD power down before VDD_IO or  
VDD_IO_MEM must power down. VDD_CORE should not lag VDD_IO, VDD_IO_MEM, or PLL_AVDD going low by more  
than 0.5V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements  
for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop VDD_CORE/PLL_AVDD to 0V.  
2. Drop VDD_IO/VDD_IO_MEM supplies.  
3.2  
System and CPU Core AVDD Power Supply Filtering  
Each of the independent PLL power supplies require filtering external to the device. The following drawing is a  
recommendation for the required filter circuit.  
< 1 W  
10 W  
Power  
Supply  
source  
AVDD device pin  
10 mF  
200-400 pF  
Figure 52. Power Supply Filtering  
3.3  
Pull-up/Pull-down Resistor Requirements  
The MPC5200B requires external pull-up or pull-down resistors on certain pins.  
3.3.1  
Pull-down Resistor Requirements for TEST pins  
The MPC5200B requires pull-down resistors on the test pins TEST_MODE_0, TEST_MODE_1, TEST_SEL_1.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
65  
3.3.2  
Pull-up Requirements for the PCI Control Lines  
If the PCI interface is NOT used (and internally disabled) the PCI control pins must be terminated as indicated by the PCI Local  
Bus specification. This is also required for MOST/Graphics and Large Flash Mode.  
PCI control signals always require pull-up resistors on the motherboard (not the expansion board) to ensure that they contain  
stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL,  
PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.  
3.3.3  
Pull-up/Pull-down Requirements for MEM_MDQS Pins (SDRAM)  
The MEM_MDQS[3:0] signals are not used with SDR memories and require pull-up or pull-down resistors in SDRAM mode.  
3.3.4  
.Pull-up/Pull-down Requirements for MEM_MDQS Pins (DDR 16-bit  
Mode)  
The MEM_MDQS[1:0] signals are not used in DDR 16-bit mode and require pull-down resistors.  
3.4  
JTAG  
The MPC5200B provides the user an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides a Common  
On-Chip Processor (COP) Interface, which shares the IEEE 1149.1 JTAG port. The COP Interface provides access to the  
MPC5200B's embedded Freescale (formerly Motorola) MPC603e e300 processor. This interface provides a means for  
executing test routines and for performing software development and debug functions.  
3.4.1  
JTAG_TRST  
Boundary scan testing is enabled through the JTAG interface signals. The JTAG_TRST signal is optional in the IEEE 1149.1  
specification but is provided on all processors that implement the PowerPC architecture. To obtain a reliable power-on reset  
performance, the JTAG_TRST signal must be asserted during power-on reset.  
3.4.1.1  
JTAG_TRST and PORRESET  
The JTAG interface can control the direction of the MPC5200B I/O pads via the boundary scan chain. The JTAG module must  
be reset before the MPC5200B comes out of power-on reset; do this by asserting JTAG_TRST before PORRESET is released.  
For more details refer to the Reset and JTAG Timing Specification.  
PORRESET  
Required assertion of JTAG_TRST  
Optional assertion of JTAG_TRST  
JTAG_TRST  
Figure 53. PORRESET vs. JTAG_TRST  
3.4.1.2  
Connecting JTAG_TRST  
The wiring of the JTAG_TRST depends on the existence of a board-related debug interface. (see below)  
MPC5200B Data Sheet, Rev. 3  
66  
Freescale Semiconductor  
Normally this interface is implemented, using a COP (common on-chip processor) connector. The COP allows a remote  
computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations  
of the MPC5200B.  
3.4.2  
e300 COP/BDM Interface  
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.  
3.4.2.1  
Boards Interfacing the JTAG Port via a COP Connector  
The MPC5200B functional pin interface and internal logic provides access to the embedded e300 processor core through the  
Freescale (formerly Motorola) standard COP/BDM interface. Table 53 gives the COP/BDM interface signals. The pin order  
shown reflects only the COP/BDM connector order.  
Table 53. COP/BDM Interface Signals  
BDM  
Pin #  
MPC5200B  
I/O Pin  
BDM  
Connector  
Internal  
Pull Up/Down  
External  
Pull Up/Down  
I/O1  
16  
15  
14  
13  
12  
11  
10  
9
TEST_SEL_0  
GND  
ckstp_out  
KEY  
I
O
O
O
O
I
HRESET  
hreset  
GND  
sreset  
N/C  
10k Pull-Up  
SRESET  
10k Pull-Up  
JTAG_TMS  
tms  
100k Pull-Up  
10k Pull-Up  
8
N/C  
7
JTAG_TCK  
tck  
100k Pull-Up  
10k Pull-Up  
6
VDD2  
halted3  
trst  
5
100k Pull-Up  
100k Pull-Up  
10k Pull-Up  
10k Pull-Up  
4
JTAG_TRST  
JTAG_TDI  
O
O
O
I
3
tdi  
2
qack4  
1
JTAG_TDO  
tdo  
1
With respect to the emulator tool’s perspective, Input is really an output from the embedded e300 core and  
output is really an input to the core.  
2
3
4
From the board under test, power sense for chip power.  
HALTED is not available from e300 core.  
Input to the e300 core to enable/disable soft-stop condition during breakpoints. MPC5200B  
internally ties CORE_QACK to GND in its normal/functional mode (always asserted).  
For a board with a COP (common on-chip processor) connector, which accesses the JTAG interface and which needs to reset  
the JTAG module, simply wiring JTAG_TRST and PORRESET is not recommended.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
To reset the MPC5200B via the COP connector, the HRESET pin of the COP should be connected to the HRESET pin of the  
MPC5200B. The circuitry shown in Figure 54 allows the COP to assert HRESET or JTAG_TRST separately, while any other  
board sources can drive PORRESET.  
PORRESET  
PORRESET  
COP Header  
MPC5200B  
HRESET  
10Kohm  
HRESET  
SRESET  
VDD  
13  
11  
16  
VDD  
10Kohm  
10Kohm  
SRESET  
VDD  
COP Connector  
Physical Pinout  
TRST  
TMS  
4
JTAG_TRST  
1
3
2
4
Key 14  
10Kohm  
10Kohm  
VDD  
9
JTAG_TMS  
5
6
12  
7
8
TCK  
VDD  
VDD  
7
9
10  
12  
K
6(2)  
JTAG_TCK  
11  
13  
15  
10Kohm  
TDI  
3
VDD  
Key  
JTAG_TDI  
16  
CKSTP_OUT  
TDO  
TEST_SEL_0  
JTAG_TDO  
15  
1
halted  
NC  
5(3)  
2(4)  
qack  
NC  
NC  
NC  
10  
8
Figure 54. COP Connector Diagram  
3.4.2.2  
Boards Without COP Connector  
If the JTAG interface is not used, JTAG_TRST should be tied to PORRESET, so that it is asserted when the system reset signal  
(PORRESET) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 55 shows the connection  
of the JTAG interface without COP connector.  
MPC5200B Data Sheet, Rev. 3  
68  
Freescale Semiconductor  
PORRESET  
PORRESET  
HRESET  
MPC5200B  
10Kohm  
10Kohm  
HRESET  
SRESET  
VDD  
VDD  
SRESET  
JTAG_TRST  
10Kohm  
10Kohm  
VDD  
JTAG_TMS  
VDD  
JTAG_TCK  
10Kohm  
VDD  
JTAG_TDI  
TEST_SEL_0  
JTAG_TDO  
Figure 55. JTAG_TRST Wiring for Boards without COP Connector  
4
Ordering Information  
Table 54. Ordering Information  
Part Number1  
Speed Ambient Temp  
Qualification2  
Packaging3  
MPC5200VR400B  
MPC5200CVR466B  
SPC5200VVR266B  
SPC5200CBV400B  
SPC5200CVR400B  
400  
400  
266  
400  
400  
0C to 70C  
-40C to 85C  
-40C to 105C  
-40C to 85C  
-40C to 85C  
Commercial  
Industrial  
RoHS & pb-free  
RoHS & pb-free  
RoHS & pb-free  
Standard  
Automotive – AEC  
Automotive – AEC  
Automotive – AEC  
RoHS & pb-free  
1
2
Shipped in trays. Add “R2” suffix for Tape & Reel.  
Commercial Qualified to <250PPM level. Industrial/Automotive Qualified to AEC-Q100.  
Automotive has Zero Defect flow.  
3
Standard is halide-free with pb solder balls.  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
69  
5
Document Revision History  
Table 55 provides a revision history for this hardware specification.  
Table 55. Document Revision History  
Rev. No.  
Differences  
1
2
Clock Frequencies table: 466 MHz was changed to 400 MHz for the e300 Processor Core  
Added description for PCI CLK Slew Rate for PCI CLK Specifications table.  
Added description for minimum rates in the DDR SDRAM Memory Write Timing table.  
Added one item to table “DDR SDRAM Memory Read Timing.”  
3
MPC5200B Data Sheet, Rev. 3  
70  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY BLANK  
MPC5200B Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5200BDS  
Rev. 3  
10/2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY