MMA8450Q [FREESCALE]

3-Axis, 8-bit/12-bit Digital Accelerometer; 3轴, 8位/ 12位数字加速度
MMA8450Q
型号: MMA8450Q
厂家: Freescale    Freescale
描述:

3-Axis, 8-bit/12-bit Digital Accelerometer
3轴, 8位/ 12位数字加速度

文件: 总57页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MMA8450Q  
Rev 2, 03/2010  
Freescale Semiconductor  
Technical Data  
An Energy Efficient Solution by Freescale  
3-Axis, 8-bit/12-bit  
Digital Accelerometer  
MMA8450Q  
The MMA8450Q is a smart low-power, three-axis, capacitive micromachined  
accelerometer featuring 12 bits of resolution. This accelerometer is packed with  
embedded functions with flexible user programmable options, configurable to  
two interrupt pins. Embedded interrupt functions allow for overall power savings  
relieving the host processor from continuously polling data. The MMA8450Q’s  
Embedded FIFO buffer can be configured to log up to 32 samples of X,Y and  
Z-axis 12-bit (or 8-bit for faster download) data. The FIFO enables a more  
efficient analysis of gestures and user programmable algorithms, ensuring no  
loss of data on a shared I2C bus, and enables system level power saving (up to  
96% of the total power consumption savings) by allowing the applications  
processor to sleep while data is logged. There is access to both low pass  
filtered data as well as high pass filtered data, which minimizes the data  
analysis required for jolt detection and faster transitions. The MMA8450Q has  
user selectable full scales of ±2g/±4g/±8g. The device can be configured to  
generate inertial wake-up interrupt signals from any combination of the  
configurable embedded functions allowing the MMA8450Q to monitor events  
and remain in a low power mode during periods of inactivity. The MMA8450Q  
is available in a 3 x 3 x 1 mm QFN package.  
MMA8450Q: XYZ-AXIS  
ACCELEROMETER  
±2g/±4g/±8g  
Top and Bottom View  
Features  
16 PIN QFN  
CASE 2077-01  
1.71 V to 1.89 V supply voltage  
±2g/±4g/±8g dynamically selectable full-scale  
Output Data Rate (ODR) from 400 Hz to 1.563 Hz  
375 μg/Hz noise at normal mode ODR = 400 Hz  
12-bit digital output  
I2C digital output interface (operates up to 400 kHz Fast Mode)  
Programmable 2 interrupt pins for 8 interrupt sources  
Embedded 4 channels of motion detection  
Top View  
16  
15  
14  
13 GND  
1
2
VDD  
NC  
Freefall or motion detection: 2 channels  
Pulse Detection: 1 channel  
Transient (Jolt) Detection: 1 channel  
MMA8450Q  
GND  
12  
16 Pin QFN  
3mm x 3 mm x 1mm  
INT1  
11  
NC  
SCL  
GND  
3
4
5
Orientation (Portrait/Landscape) detection with hysteresis compensation  
Automatic ODR change for auto-wake and return-to-sleep  
32 sample FIFO  
Self-Test  
10,000g high shock survivability  
RoHS compliant  
10 GND  
9
INT2  
6
7
8
Typical Applications  
Pin Connections  
Static orientation detection (portrait/landscape, up/down, left/right, back/  
front position identification)  
Real-time orientation detection (virtual reality and gaming 3D user position feedback)  
Real-time activity analysis (pedometer step counting, freefall drop detection for HDD, dead-reckoning GPS backup)  
Motion detection for portable product power saving (auto-sleep and auto-wake for cell phone, PDA, GPS, gaming)  
Shock and vibration monitoring (mechatronic compensation, shipping and warranty usage logging)  
User interface (menu scrolling by orientation change, tap detection for button replacement  
ORDERING INFORMATION  
Part Number  
MMA8450QT  
MMA8450QR1  
Temperature Range  
-40°C - +85°C  
Package Drawing  
QFN-16  
Package  
Tray  
-40°C - +85°C  
QFN-16  
Tape and Reel  
This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
Contents  
Application Notes for Reference ...............................................................................................................................................6  
1
Block Diagram and Pin Description ..................................................................................................................................6  
1.1 Block Diagram .............................................................................................................................................................6  
Figure 1. Block Diagram ..............................................................................................................................................6  
1.2 Pin Description ............................................................................................................................................................6  
Figure 2. Direction of the Detectable Accelerations ....................................................................................................6  
Figure 3. Application Diagram .....................................................................................................................................7  
Table 1. Pin Description ..............................................................................................................................................7  
1.3 Soldering Information ..................................................................................................................................................7  
Mechanical and Electrical Specifications .........................................................................................................................8  
2.1 Mechanical Characteristics .........................................................................................................................................8  
Table 2. Mechanical Characteristics ...........................................................................................................................8  
2.2 Electrical Characteristics .............................................................................................................................................9  
Table 3. Electrical Characteristics @ VDD = 1.8 V, T = 25°C unless otherwise noted. .............................................9  
2.3 I2C Interface Characteristic .......................................................................................................................................10  
Table 4. I2C Slave Timing Values .............................................................................................................................10  
Figure 4. I2C Slave Timing Diagram ..........................................................................................................................11  
2.4 Absolute Maximum Ratings .......................................................................................................................................11  
Table 5. Maximum Ratings ........................................................................................................................................11  
Table 6. ESD and Latch-Up Protection Characteristics ............................................................................................11  
Terminology .......................................................................................................................................................................12  
3.1 Sensitivity ..................................................................................................................................................................12  
3.2 Zero-g Offset .............................................................................................................................................................12  
3.3 Self-Test ....................................................................................................................................................................12  
2
3
4
5
Modes of Operation ...........................................................................................................................................................12  
Figure 5. MMA8450Q Mode Transition Diagram .......................................................................................................12  
Table 7. Mode of Operation Description ....................................................................................................................12  
Functionality ......................................................................................................................................................................13  
5.1 Device Calibration .....................................................................................................................................................13  
5.2 8-bit or 12-bit Data .....................................................................................................................................................13  
5.3 Internal FIFO Data Buffer ..........................................................................................................................................13  
5.4 Low Power Mode .......................................................................................................................................................13  
5.5 Auto-Wake/Sleep Mode ............................................................................................................................................14  
5.6 Freefall and Motion Detection ...................................................................................................................................14  
5.6.1  
5.6.2  
Freefall Detection ...........................................................................................................................................14  
Motion Detection ............................................................................................................................................14  
5.7 Transient Detection ...................................................................................................................................................14  
5.8 Orientation Detection .................................................................................................................................................15  
Figure 6. Illustration of Landscape-to-Portrait Transition .........................................................................................15  
Figure 7. Illustration of Portrait-to-Landscape Transition ..........................................................................................15  
Figure 8. Illustration of Z-Tilt Angle Lockout Transition .............................................................................................15  
Figure 9. Landscape/Portrait Orientation ..................................................................................................................16  
5.9 Interrupt Register Configurations ..............................................................................................................................16  
Figure 10. System Interrupt Generation Block Diagram ............................................................................................16  
5.10 Serial I2C Interface ....................................................................................................................................................17  
Table 8. Serial Interface Pin Description ...................................................................................................................17  
5.10.1 I2C Operation .................................................................................................................................................17  
Table 9. I2C Address Selection Table .......................................................................................................................17  
Single Byte Read .........................................................................................................................................................17  
Multiple Byte Read .......................................................................................................................................................18  
Single Byte Write ..........................................................................................................................................................18  
Multiple Byte Write .......................................................................................................................................................18  
Table 10. I2C device Address Sequence ..................................................................................................................18  
Figure 11. I2C Timing Diagram ..................................................................................................................................18  
MMA8450Q  
Sensors  
Freescale Semiconductor  
2
6
Register Descriptions .......................................................................................................................................................19  
Table 11. Register Address Map ...............................................................................................................................19  
6.1 Data Registers ...........................................................................................................................................................21  
0x00, 0x04, 0x0B: STATUS Registers .........................................................................................................................21  
Alias for DR_Status (0x0B) or F_Status (0x10) ...................................................................................................21  
0X00, 0X04, 0X0B STATUS: Data Status Registers (Read Only) ......................................................................21  
Table 12. STATUS Description .................................................................................................................................21  
0x01, 0x02, 0x03: OUT_MSB 8-Bit XYZ Data Registers .............................................................................................22  
0x01 OUT_X_MSB: X_MSB Register (Read Only) .............................................................................................22  
0x02 OUT_Y_MSB: Y_MSB Register (Read Only) .............................................................................................22  
0x03 OUT_Z_MSB: Z_MSB Register (Read Only) .............................................................................................22  
0x05 - 0x0A: OUT_MSB and OUT_LSB 12-Bit XYZ Data Registers ...........................................................................22  
0x05 OUT_X_LSB: X_LSB Register (Read Only) ...............................................................................................22  
0x06 OUT_X_MSB: X_MSB Register (Read Only) .............................................................................................22  
0x07 OUT_Y_LSB: Y_LSB Register (Read Only) ...............................................................................................22  
0x08 OUT_Y_MSB: Y_MSB Register (Read Only) .............................................................................................22  
0x09 OUT_Z_LSB: Z_LSB Register (Read Only) ...............................................................................................22  
0x0A OUT_Z_MSB: Z_MSB Register (Read Only) .............................................................................................22  
0x0C - 0x0E: OUT_X_DELTA, OUT_Y_DELTA, OUT_Z_DELTA AC Data Registers ................................................23  
0x0C OUT_X_DELTA: AC X 8-Bit Data Register (Read Only) ...........................................................................23  
0x0D OUT_Y_DELTA: AC Y 8-Bit Data Register (Read Only) ...........................................................................23  
0x0E OUT_Z_DELTA: AC Z 8-Bit Data Register (Read Only) ............................................................................23  
0x0F: WHO_AM_I Device ID Register .........................................................................................................................23  
0x0F WHO_AM_I: Device ID Register (Read Only) ............................................................................................23  
6.2 32 Sample FIFO ........................................................................................................................................................23  
0x10: F_STATUS FIFO Status Register ......................................................................................................................23  
0x10 F_STATUS: FIFO STATUS Register (Read Only) .....................................................................................23  
Table 13. FIFO Flag Event Description .....................................................................................................................23  
Table 14. FIFO Sample Count Description ...............................................................................................................24  
0x11: F_8DATA 8-Bit FIFO Data .................................................................................................................................24  
0x11 F_8DATA: 8-Bit FIFO Data Register Points to Register 0x01 (Read Only) ................................................24  
0x12: F_12DATA 12-Bit FIFO Data .............................................................................................................................24  
0x12 F_12DATA: 12-Bit FIFO Data Register Points to Register 0x05 (Read Only) ............................................24  
0x13: F_SETUP FIFO Setup Register .........................................................................................................................24  
0x13 F_SETUP: FIFO Setup Register (Read/Write) ...........................................................................................24  
0x14: SYSMOD System Mode Register ......................................................................................................................25  
0x14 SYSMOD: System Mode Register (Read Only) .........................................................................................25  
Table 15. SYSMOD Description ................................................................................................................................25  
Table 16. F_SETUP Description ...............................................................................................................................25  
0x15: INT_SOURCE System Interrupt Status Register ...............................................................................................26  
0x15 INT_SOURCE: System Interrupt Status Register (Read Only) ..................................................................26  
Table 17. INT_SOURCE Description ........................................................................................................................26  
0x16: XYZ_DATA_CFG Sensor Data Configuration Register .....................................................................................27  
0x16 XYZ_DATA_CFG: Sensor Data Configuration Register (Read/Write) .......................................................27  
Table 18. XYZ_DATA_CFG Description ................................................................................................................... 27  
0x17: HP_FILTER_CUTOFF High Pass Filter Register ...............................................................................................27  
0x17 HP_FILTER_CUTOFF: High Pass Filter Register (Read/Write) .................................................................27  
Table 19. HP_FILTER_CUTOFF Setting Options .....................................................................................................27  
6.3 Portrait/ Landscape Embedded Function Registers ..................................................................................................27  
0x18: PL_STATUS Portrait/Landscape Status Register ..............................................................................................27  
0x18 PL_STATUS Register (Read Only) ............................................................................................................27  
0x19: PL_PRE_STATUS Portrait/Landscape Previous Data Status Register .............................................................28  
0x19 PL_PRE_STATUS Register (Read Only) ...................................................................................................28  
0x1A: PL_CFG Portrait/Landscape Configuration Register .........................................................................................28  
0x1A PL_CFG Register (Read/Write) ..................................................................................................................28  
Table 20. PL_CFG Register Description ...................................................................................................................28  
0x1B: PL_COUNT Portrait Landscape Debounce Register .........................................................................................28  
0x1B PL_COUNT Register (Read/Write) ............................................................................................................28  
Table 21. PL_STATUS Register Description ............................................................................................................28  
Table 22. PL_COUNT Relationship with the ODR ....................................................................................................29  
MMA8450Q  
Sensors  
Freescale Semiconductor  
3
0x1C: PL_BF_ZCOMP Back/Front and Z Compensation Register ..............................................................................29  
0x1C: PL_BF_ZCOMP Register (Read/Write) ....................................................................................................29  
Table 23. PL_BF_ZCOMP Description .....................................................................................................................29  
Table 24. Back/Front Orientation Definitions .............................................................................................................29  
0x1D - 0x1F: PL_P_L_THS_REG1, 2, 3 Portrait-to-Landscape Threshold Registers .................................................29  
0x1D PL_P_L_THS_REG1 Register (Read/Write) ..............................................................................................29  
Table 25. PL_P_L_THS_REG1 Description ..............................................................................................................29  
0x1E PL_P_L_THS_REG2 Register (Read/Write) ..............................................................................................29  
Table 26. PL_P_L_THS_REG2 Description ..............................................................................................................29  
0x1F PL_P_L_THS_REG3 Register (Read/Write) ..............................................................................................29  
0x20 - 0x22 PL_L_P_THS_REG1, 2, 3 Landscape-to-Portrait Threshold Registers ...................................................30  
0x20 PL_L_P_THS_REG1 Register (Read/Write) ..............................................................................................30  
Table 27. PL_L_P_THS_REG1 Description ..............................................................................................................30  
0x21 PL_L_P_THS_REG2 Register (Read/Write) ..............................................................................................30  
Table 28. PL_L_P_THS_REG2 Description ..............................................................................................................30  
0x22 PL_L_P_THS_REG3 Register (Read/Write) ..............................................................................................30  
Table 29. PL_L_P_THS_REG3 Description ..............................................................................................................30  
Table 30. Landscape-to-Portrait Trip Angle Thresholds Look-up Table ....................................................................30  
Table 31. PL_P_L_THS_REG3 Description ..............................................................................................................30  
Table 32. Portrait-to-Landscape Trip Angle Thresholds Look-up Table ....................................................................30  
6.4 Freefall & Motion Detection Registers .......................................................................................................................31  
0x23: FF_MT_CFG_1 Freefall and Motion Configuration Register 1 ...........................................................................31  
0x23 FF_MT_CFG_1 Register (Read/Write) .......................................................................................................31  
Table 33. FF_MT_CFG_1 Description ......................................................................................................................31  
0x24 FF_MT_SRC_1 Register (Read Only) ................................................................................................................32  
0x24: FF_MT_SRC_ Freefall and Motion Source Register (0x24) ......................................................................32  
Table 34. FF_MT_SRC_1 Description ......................................................................................................................32  
0x25: FF_MT_THS_1 Freefall and Motion Threshold 1 Register ................................................................................32  
0x25 FF_MT_THS_1 Register (Read/Write) .......................................................................................................32  
Table 35. FF_MT_THS_1 Description .......................................................................................................................32  
Figure 12. DBCNTM Bit Function ..............................................................................................................................33  
0x26: FF_MT_COUNT_1 Freefall Motion Count 1 Register ........................................................................................33  
0x26 FF_MT_COUNT_1 Register (Read/Write) ..................................................................................................33  
Table 36. FF_MT_COUNT_1 Description .................................................................................................................33  
Table 37. FF_MT_COUNT_1 and FF_MT_COUNT_2 Relationship with the ODR ..................................................33  
0x27: FF_MT_CFG_2 Freefall and Motion Configuration 2 Register ...........................................................................34  
0x27 FF_MT_CFG_2 Register (Read/Write) .......................................................................................................34  
0x28: FF_MT_SRC_2 Freefall and Motion Source 2 Register .....................................................................................34  
0x28 FF_MT_SRC_2 Register (Read Only) ........................................................................................................34  
0x29: FF_MT_THS_2 Freefall and Motion Threshold 2 Register ................................................................................34  
0x29 FF_MT_THS_2 Register (Read/Write) .......................................................................................................34  
0x2A: FF_MT_COUNT_2 Freefall and Motion Debounce 2 Register ..........................................................................34  
0x2A FF_MT_COUNT_2 Register (Read/Write) .................................................................................................34  
6.5 Transient Detection Registers ...................................................................................................................................34  
0x2B: TRANSIENT_CFG Transient Configuration Register ........................................................................................34  
0x2B TRANSIENT_ CFG Register (Read/Write) .................................................................................................34  
Table 38. TRANSIENT_ CFG Description ................................................................................................................34  
0x2C: TRANSIENT_SRC Transient Source Register ..................................................................................................34  
0x2C TRANSIENT_SRC Register (Read Only) ..................................................................................................34  
0x2D: TRANSIENT_THS Transient Threshold Register ..............................................................................................35  
0x2D TRANSIENT_THS Register (Read/Write) ..................................................................................................35  
Table 39. TRANSIENT_THS Description ..................................................................................................................35  
0x2E: TRANSIENT_COUNT Transient Debounce Register ........................................................................................35  
0x2E TRANSIENT_COUNT Register (Read/Write) ............................................................................................35  
Table 40. TRANSIENT_COUNT Description ............................................................................................................35  
Table 41. TRANSIENT_COUNT relationship with the ODR .....................................................................................35  
Table 42. TRANSIENT_SRC Description .................................................................................................................35  
6.6  
Tap Detection Registers ...........................................................................................................................................36  
0x2F: PULSE_CFG Pulse Configuration Register .......................................................................................................36  
0x2F PULSE_CFG Register (Read/Write) ..........................................................................................................36  
Table 43. PULSE_CFG Description ..........................................................................................................................36  
MMA8450Q  
Sensors  
Freescale Semiconductor  
4
0x30: PULSE_SRC Pulse Source Register .................................................................................................................36  
0x30 PULSE_SRC Register (Read Only) ............................................................................................................36  
Table 44. TPULSE_SRC Description ........................................................................................................................36  
0x31 - 0x33: PULSE_THSX, Y, Z Pulse Threshold for X, Y & Z Registers ..................................................................37  
0x31 PULSE_THSX Register (Read/Write) .........................................................................................................37  
Table 45. PULSE_THSX Description ........................................................................................................................37  
0x32 PULSE_THSY Register (Read/Write) .........................................................................................................37  
Table 46. PULSE_THSY Description ........................................................................................................................37  
0x33 PULSE_THSZ Register (Read/Write) .........................................................................................................37  
Table 47. PULSE_THSZ Description ........................................................................................................................37  
0x34: PULSE_TMLT Pulse Time Window 1 Register ..................................................................................................37  
0x34 PULSE_TMLT Register (Read/Write) .........................................................................................................37  
Table 48. Time Step for PULSE Time Limit at ODR and Power Mode .....................................................................37  
0x35: PULSE_LTCY Pulse Latency Timer Register ....................................................................................................38  
0x35 PULSE_LTCY Register (Read/Write) .........................................................................................................38  
Table 49. Time Step for PULSE Latency at ODR and Power Mode .........................................................................38  
0x36: PULSE_WIND Second Pulse Time Window Register ........................................................................................38  
0x36 PULSE_WIND Register (Read/Write) .........................................................................................................38  
Table 50. Time Step for PULSE Detection Window at ODR and Power Mode .........................................................38  
6.7 Auto-Sleep Registers ................................................................................................................................................38  
0x37: ASLP_COUNT Auto-Sleep Inactivity Timer Register .........................................................................................38  
0x37 ASLP_COUNT Register (Read/Write) ........................................................................................................38  
Table 51. ASLP_COUNT Description .......................................................................................................................38  
Table 52. ASLP_COUNT Relationship with ODR .....................................................................................................39  
0x38: CTRL_REG1 System Control 1 Register ...........................................................................................................39  
0x38 CTRL_REG1 Register (Read/Write) ...........................................................................................................39  
Table 53. CTRL_REG1 Description ..........................................................................................................................39  
Table 54. Sleep Mode Poll Rate Description .............................................................................................................39  
Table 55. System Output Data Rate Selection ..........................................................................................................39  
Table 56. Full Scale Selection ...................................................................................................................................40  
0x39: CTRL_REG2 System Control 2 Register ...........................................................................................................40  
0x39 CTRL_REG2 Register (Read/Write) ...........................................................................................................40  
Table 57. CTRL_REG2 Description ..........................................................................................................................40  
0x3A: CTRL_REG3 Interrupt Control Register ............................................................................................................40  
0x3A CTRL_REG3 Register (Read/Write) ..........................................................................................................40  
Table 58. CTRL_REG3 Description ..........................................................................................................................41  
0x3C: CTRL_REG5 Register (Read/Write) ..................................................................................................................41  
0x3C CTRL_REG5 Register (Read/Write) ..........................................................................................................41  
Table 59. interrupt Enable Register Description ........................................................................................................41  
0x3C: CTRL_REG5 Interrupt Configuration Register ..................................................................................................42  
0x3C CTRL_REG5 Register (Read/Write) ..........................................................................................................42  
Table 60. Interrupt Configuration Register Description .............................................................................................42  
6.8 User Offset Correction Registers ..............................................................................................................................42  
0x3D: OFF_X Offset Correction X Register .................................................................................................................42  
0x3D OFF_X Register (Read/Write) ....................................................................................................................42  
Table 61. OFF_X Description ....................................................................................................................................42  
0x3E: OFF_Y Offset Correction Y Register .................................................................................................................42  
0x3E OFF_Y Register (Read/Write) ....................................................................................................................42  
Table 62. OFF_Y Description ....................................................................................................................................42  
0x3F: OFF_Z Offset Correction Z Register ..................................................................................................................42  
0x3F OFF_Z Register (Read/Write) ....................................................................................................................42  
Table 63. OFF_Z Description ....................................................................................................................................42  
Appendix A ................................................................................................................................................................................43  
Table 64. MMA8450Q Register Map .........................................................................................................................43  
Table 65. Accelerometer Output Data .......................................................................................................................45  
Appendix B ................................................................................................................................................................................46  
Figure 13. Distribution of Pre Board Mounted Devices Tested in Sockets (1 count = 3.9 mg) .................................46  
Figure 14. Distribution of Post Board Mounted Devices (1 count = 3.9 mg) .............................................................47  
Figure 15. 8g Z-axis TCS ..........................................................................................................................................50  
Figure 16. 8g X-axis TCO (mg/°C) ............................................................................................................................51  
Figure 17. 8g Y-axis TCO (mg/°C) ............................................................................................................................52  
Figure 18. 8g Z-axis TCO (mg/°C) ............................................................................................................................53  
Package Dimensions ............................................................................................................................................................... 54  
MMA8450Q  
Sensors  
Freescale Semiconductor  
5
Application Notes for Reference  
The following is a list of Freescale Application Notes written for the MMA8450Q:  
AN3915, Embedded Orientation Detection Using the MMA8450Q  
AN3916, Offset Calibration of the MMA8450Q  
AN3917, Motion and Freefall Detection Using the MMA8450Q  
AN3918, High Pass Filtered Data and Transient Detection Using the MMA8450Q  
AN3919, MMA8450Q Single/Double and Directional Tap Detection  
AN3920, Using the 32 Sample First In First Out (FIFO) in the MMA8450Q  
AN3921, Low Power Modes and Auto-Wake/Sleep Using the MMA8450Q  
AN3922, Data Manipulation and Basic Settings of the MMA8450Q  
AN3923, MMA8450Q Design Checklist and Board Mounting Guidelines  
1
Block Diagram and Pin Description  
1.1  
Block Diagram  
Internal  
OSC  
Clock  
GEN  
X-axis  
Transducer  
VDD  
VSS  
Embedded  
DSP  
Functions  
SDA  
SCL  
12-bit  
ADC  
Y-axis  
Transducer  
C to V  
Converter  
I2C  
Z-axis  
Transducer  
32 Data Point  
Configurable  
FIFO Buffer  
Freefall  
and Motion  
Detection  
Transient  
Detection  
(i.e., fast motion,  
jolt)  
Enhanced  
Orientation with  
Hysteresis  
Shake Detection  
through  
Tap and  
Double Tap  
Detection  
Motion  
Threshold  
with Watermark  
(2 channels)  
and Z-lockout  
Auto-Wake/Auto-Sleep Configurable with debounce counter and multiple motion interrupts for control  
Active Mode  
Normal  
Mode  
SLEEP Mode  
(Reduced  
Sampling Rate)  
Auto-Wake  
Low Power  
Mode  
Auto-Sleep  
Figure 1. Block Diagram  
1.2  
Pin Description  
Z
1
1
13  
9
X
5
Y
(TOP VIEW)  
(BOTTOM VIEW)  
DIRECTION OF THE  
DETECTABLE ACCLERATIONS  
Figure 2. Direction of the Detectable Accelerations  
MMA8450Q  
Sensors  
Freescale Semiconductor  
6
1.8V  
4.7μF  
16  
15  
14  
GND 13  
1
2
VDD  
NC  
GND  
12  
0.1μF  
INT1  
11  
3
4
5
NC  
1.8V  
SCL 1.8V  
SDA  
MMA8450Q  
GND 10  
SCL  
GND  
INT2  
9
4.7kΩ  
4.7kΩ  
6
7
8
INT1  
INT2  
EN  
SA0  
Figure 3. Application Diagram  
Description  
Table 1. Pin Description  
Pin # Pin Name  
Pin Status  
Input  
1
2
3
4
5
6
VDD  
Power Supply (1.8V only)  
NC/GND Connect to Ground or Non Connection  
NC/GND Connect to Ground or Non Connection  
Input  
Input  
I2C Serial Clock  
SCL  
Open Drain  
Input  
GND  
SDA  
Connect to Ground  
I2C Serial Data  
Open Drain  
I2C Least Significant Bit of the Device Address  
(0: $1C 0: $1D)  
7
8
SA0  
EN  
Input  
Input  
Device Enable  
(1: I2C Bus Enabled; 0: Shutdown Mode)  
9
INT2  
GND  
INT1  
GND  
GND  
VDD  
NC  
Inertial Interrupt 2  
Output  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
10  
11  
12  
13  
14  
15  
16  
Connect to Ground  
Inertial Interrupt 1  
Connect to Ground  
Connect to Ground  
Power Supply (1.8V only)  
Internally not connected  
Internally not connected  
NC  
When using MMA8450Q in applications, it is recommended that pin 1 and pin 14 (the VDD pins) be tied together. Power supply  
decoupling capacitors (100 nF ceramic plus 4.7 µF bulk, or a single 4.7 µF ceramic) should be placed as near as possible to the  
pins 1 and 5 of the device. The SDA and SCL I2C connections are open drain and therefore require a pull-up resistor as shown  
in Figure 3  
Note: The above application diagram presents the recommended configuration for the MMA8450Q. For information on future  
products of this product family please review Freescale application note, AN3923, Design Checklist and Board Mounting  
Guidelines of the MMA8450Q.This application note details the small modifications between the MMA8450Q and the next  
generation products.  
1.3  
Soldering Information  
The QFN package is compliant with the RoHS standard. Please refer to AN3923.  
MMA8450Q  
Sensors  
7
Freescale Semiconductor  
2
Mechanical and Electrical Specifications  
2.1  
Mechanical Characteristics  
Table 2. Mechanical Characteristics @ VDD = 1.8 V, T = 25°C unless otherwise noted.  
Parameter  
Test Conditions  
FS[1:0] set to 01  
FS[1:0] set to 10  
FS[1:0] set to 11  
FS[1:0] set to 01  
FS[1:0] set to 10  
FS[1:0] set to 11  
FS[1:0] set to 01  
FS[1:0] set to 01  
FS[1:0] set to 10  
FS[1:0] set to 11  
FS[1:0] set to 01  
FS[1:0] set to 10  
FS[1:0] set to 11  
Symbol  
Min  
±1.8  
Typ  
±2  
Max  
±2.2  
Unit  
Full Scale Measurement Range  
FS  
±3.6  
±4  
±4.4  
g
±7.2  
±8  
±8.8  
Sensitivity  
0.878  
1.758  
3.515  
0.976  
1.953  
3.906  
±0.05  
1.074  
2.148  
4.296  
So  
mg/digit  
%/°C  
mg  
Sensitivity Change vs. Temperature(1)  
Typical Zero-g Level Offset (2)  
TCSo  
0g-Off  
±40  
±50  
Typical Zero-g Offset Post Board Mount (2), (3)  
0g-OffBM  
TCOff  
NL  
mg  
Typical Zero-g Offset Change vs. Temperature (2)  
±0.5  
±0.25  
±0.5  
±1  
mg/°C  
% FS  
Non Linearity  
FS[1:0] set to 01  
FS[1:0] set to 10  
Best Fit Straight Line  
FS[1:0] set to 11  
Self-test Output Change(4)  
FS[1:0] set to 01, X-axis  
FS[1:0] set to 01, Y-axis  
FS[1:0] set to 01, Z-axis  
Normal Mode ODR = 400 Hz  
-195  
-195  
+945  
375  
Vst  
LSB  
Output Noise  
Noise  
Top  
μg/Hz  
Operating Temperature Range  
-40  
+85  
°C  
1. Before board mount.  
2. See appendix for distribution graphs.  
3. Post board mount offset specification are based on an 8 layer PCB.  
4. Self-test in one direction only. These are approximate values and can change by ±100 counts.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
8
2.2  
Electrical Characteristics  
Table 3. Electrical Characteristics @ VDD = 1.8 V, T = 25°C unless otherwise noted.(1)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
1.8  
27  
Max  
Unit  
Supply Voltage  
VDD  
1.71  
1.89  
V
Low Power Mode  
EN = 1, ODR = 1.563 Hz  
EN = 1, ODR = 12.5 Hz  
EN = 1, ODR = 50 Hz  
EN = 1, ODR = 100 Hz  
EN = 1, ODR = 200 Hz  
EN = 1, ODR = 400 Hz  
EN = 1, ODR = 1.563 Hz  
EN = 1, ODR = 12.5 Hz  
EN = 1, ODR = 50 Hz  
EN = 1, ODR = 100 Hz  
EN = 1, ODR = 200 Hz  
EN = 1, ODR = 400 Hz  
EN = 0  
$39 CTRL_REG2: MOD[0]=1  
27  
27  
I
ddLP  
μA  
42  
72  
120  
42  
Normal Mode  
$39 CTRL_REG2: MOD[0]=0  
42  
42  
Idd  
μA  
72  
132  
225  
<1  
3
Current Consumption in Shutdown Mode  
Supply Current Drain in Standby Mode  
I
ddSdn  
μA  
μA  
EN = 1 and FS[1:0] = 00  
I
ddStby  
VIH  
Digital High Level Input Voltage  
SCL, SDA, SA0, EN  
0.75*VDD  
0.9*VDD  
V
V
V
V
V
Digital Low Level Input Voltage  
SCL, SDA, SA0, EN  
VIL  
VOH  
VOL  
0.3*VDD  
0.1*VDD  
High Level Output Voltage  
INT1, INT2  
I
I
I
O = 500 μA  
O = 500 μA  
O = 500 μA  
Low Level Output Voltage  
INT1, INT2  
Low Level Output Voltage  
SDA  
VOLS  
0.1*VDD  
1.1*ODR  
Output Data Rate  
ODR  
BW  
BT  
0.9*ODR  
ODR  
ODR/2  
1.55  
Hz  
Hz  
ms  
s
Signal Bandwidth  
Boot Time from EN = 1 to Boot Complete  
Turn-on time(1)  
Ton  
3/ODR  
1. Time to obtain valid data from Standby mode to Active mode.  
MMA8450Q  
Sensors  
9
Freescale Semiconductor  
2.3  
I2C Interface Characteristic  
Table 4. I2C Slave Timing Values(1)  
I2C Standard Mode  
I2C Fast Mode  
Min  
Parameter  
Symbol  
Unit  
Min  
Max  
Max  
SCL Clock Frequency  
fSCL  
tBUF  
0
100  
0
400  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
Ns  
μs  
μs  
Ns  
Ns  
Bus Free Time between STOP and START Condition  
Repeated START Hold Time  
Repeated START Setup Time  
STOP Condition Setup Time  
SDA Data Hold Time(2)  
4.7  
4
1.3  
0.6  
0.6  
0.6  
0(3)  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tVD;DAT  
tVD;ACK  
tSU;DAT  
tLOW  
4.7  
4
0(3)  
(4)  
(4)  
SDA Valid Time (5)  
3.45(4)  
3.45(4)  
0.9(4)  
0.9(4)  
SDA Valid Acknowledge Time (6)  
SDA Setup Time  
250  
4.7  
4
100(7)  
1.3  
SCL Clock Low Time  
SCL Clock High Time  
tHIGH  
tr  
0.6  
(8)  
(8)  
SDA and SCL Rise Time  
SDA and SCL Fall Time (3)(5)(8)(9)  
1000  
300  
20 + 0.1Cb  
20 + 0.1Cb  
300  
300  
tf  
Pulse width of spikes on SDA and SCL that must be  
suppressed by input filter  
tSP  
50  
50  
Ns  
1. All values referred to VIH (min) and VIL (max) levels.  
2. tHD;DAT is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.  
3. A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH (min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
4. The maximum tHD;DAT could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode, but must be less than the maximum of tVD;DAT or  
t
VD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the  
clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
5. tVD;DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).  
6. tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).  
7. A Fast-mode I2C device can be used in a Standard-mode I2C system, but the requirement tSU;DAT 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of  
the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode  
I2C specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
8. Cb = total capacitance of one bus line in pF.  
9. The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns.  
This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding  
the maximum specified tf.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
10  
Figure 4. I2C Slave Timing Diagram  
2.4  
Absolute Maximum Ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. Exposure to  
maximum rating conditions for extended periods may affect device reliability.  
Table 5. Maximum Ratings  
Rating  
Maximum Acceleration (all axes, 100 μs)  
Supply Voltage  
Symbol  
gmax  
VDD  
Vin  
Value  
10,000  
Unit  
g
-0.3 to +2  
-0.3 to VDD + 0.3  
1.8  
V
Input voltage on any control pin (SA0, EN, SCL, SDA)  
Drop Test  
V
Ddrop  
TOP  
M
Operating Temperature Range  
Storage Temperature Range  
-40 to +85  
-40 to +125  
°C  
°C  
TSTG  
Table 6. ESD and Latch-Up Protection Characteristics  
Rating  
Human Body Model  
Symbol  
Value  
±2000  
±200  
±500  
±100  
Unit  
HBM  
MM  
CDM  
V
V
Machine Model  
Charge Device Model  
V
Latch-up Current at T = 85°C  
mA  
This device is sensitive to mechanical shock. Improper handling can cause permanent damage of the part or  
cause the part to otherwise fail.  
This is an ESD sensitive, improper handling can cause permanent damage to the part.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
11  
3
Terminology  
Sensitivity  
3.1  
Sensitivity describes the gain of the sensor and can be determined by applying a g acceleration to it, such as the earth's  
gravitational field. The sensitivity of the sensor can be determined by subtracting the -1g acceleration value from the +1g  
acceleration value and dividing by two.  
3.2  
Zero-g Offset  
Zero-g Offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present.  
A sensor in a steady state on a horizontal surface will measure 0g in X-axis and 0g in Y-axis whereas the Z-axis will measure 1g.  
The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 0x00, data expressed as 2's  
complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress  
on the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or  
exposing it to extensive mechanical stress.  
3.3  
Self-Test  
Self-Test checks the transducer functionality without external mechanical stimulus. When Self-Test is activated, an  
electrostatic actuation force is applied to the sensor, simulating a small acceleration. In this case the sensor outputs will exhibit  
a change in their DC levels which are related to the selected full scale through the device sensitivity. When Self-Test is activated,  
the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the  
electrostatic test-force.  
4
Modes of Operation  
VDD = OFF  
EN = VDD & VDD = ON  
OFF  
Mode  
STANDBY  
Mode (00)  
SLEEP  
Mode (10)  
SHUTDOWN  
Mode  
WAKE  
Mode (01)  
EN = GND  
Figure 5. MMA8450Q Mode Transition Diagram  
Table 7. Mode of Operation Description  
I2C Bus State  
Mode  
VDD  
EN  
Function Description  
The device is powered off.  
OFF  
Powered Down  
<1.5 V <VDD+0.3V  
I2C communication ignored  
I2C communication possible  
EN = Low  
All analog & digital blocks are shutdown.  
SHUTDOWN  
ON  
ON  
EN = VDD  
Only POR and digital blocks are enabled.  
Analog subsystem is disabled.  
Standby register set  
STANDBY  
Registers accessible for Read/Write.  
Device configuration done in this mode.  
I2C communication possible  
EN = VDD  
All blocks are enabled (POR, digital, analog).  
ACTIVE  
ON  
Standby register reset  
All register contents are preserved when transitioning from Active to Standby mode. Some registers are reset when  
transitioning from Standby to Active. These are all noted in the device memory map register table. For more detail on how to use  
the Sleep and Wake modes and how to transition between these modes, please refer to the functionality section of this document.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
12  
5
Functionality  
The MMA8450Q is a low-power, digital output 3-axis linear accelerometer packaged in a QFN package. The complete device  
includes a sensing element and an IC interface able to take the information from the sensing element and to provide a signal to  
the external world through an I2C serial interface. There are many embedded features in this accelerometer with a very flexible  
interrupt routing scheme to 2 interrupt pins including:  
8-bit or 12-bit data, high pass filtered data, 8-bit or 12-bit configurable 32 sample FIFO  
Low power and Auto-Wake/ Sleep for conservation of current consumption  
Single and double pulse detection 1 channel  
Motion detection and Freefall 2 channels  
Transient detection based on a high pass filter and settable threshold for detecting the change in acceleration above a  
threshold  
Flexible user configurable portrait landscape detection algorithm addressing many use cases for screen orientation  
All functionality is available in 2g, 4g or 8g dynamic ranges. There are many configuration settings for enabling all the different  
functions. Separate application notes have been provided to help configure the device for each embedded functionality.  
5.1  
Device Calibration  
The IC interface is factory calibrated for sensitivity and zero-g offset for each axis. The trim values are stored in Non Volatile  
Memory (NVM). On power-up, the trim parameters are read from NVM and applied to the circuitry. In normal use, further  
calibration in the end application is not necessary. However, the MMA8450Q allows the user to adjust the zero-g offset for each  
axis after power-up, changing the default offset values. The user offset adjustments are stored in 6 volatile registers. For more  
information on device calibration, refer to Freescale application note, AN3916.  
5.2  
8-bit or 12-bit Data  
The measured acceleration data is stored in the OUTX_MSB, OUTX_LSB, OUTY_MSB, OUTY_LSB, OUTZ_MSB, and  
OUTZ_LSB registers as 2’s complement 12-bit numbers. The most significant 8-bits of each axis are stored in OUT_X (Y,  
Z)_MSB, so applications needing only 8-bit results can use these 3 registers and ignore OUT_X(Y, Z)_LSB.  
When the full-scale is set to 2g, the measurement range is -2g to +1.999g, and each LSB corresponds to 1g/1024 (0.98 mg)  
at 12-bits resolution. When the full-scale is set to 8g, the measurement range is -8g to +7.996g, and each LSB corresponds to  
1g/256 (3.9 mg) at 12-bits resolution. The resolution is reduced by a factor of 16 if only the 8-bit results are used. For more  
information on the data manipulation between data formats and modes, refer to Freescale application note, AN3922. There is a  
device driver available that can be used with the Sensor Toolbox demo board (LFSTBEB8450Q) with this application note.  
5.3  
Internal FIFO Data Buffer  
MMA8450Q contains a 32 sample internal FIFO data buffer minimizing traffic across the I2C bus. The FIFO can also provide  
power savings of the system by allowing the host processor/MCU to go into a sleep mode while the accelerometer independently  
stores the data, up to 32 samples per axis. The FIFO can run at all output data rates. There is the option of accessing the full 12-  
bit data for accessing only the 8-bit data. When access speed is more important than high resolution the 8-bit data flush is a better  
option.  
The FIFO contains three modes (Fill Buffer Mode, Circular Buffer Mode, and Disabled) described in the F_SETUP Register  
0x13. Fill Buffer Mode collects the first 32 samples and asserts the overflow flag when the buffer is full. It does not collect anymore  
data until the buffer is read. This benefits data logging applications where all samples must be collected. The Circular Buffer Mode  
allows the buffer to be filled and then new data replaces the oldest sample in the buffer. The most recent 32 samples will be stored  
in the buffer. This benefits situations where the processor is waiting for an specific interrupt to signal that the data must be flushed  
to analyze the event.  
The MMA8450Q FIFO Buffer also has a configurable watermark, allowing the processor to be interrupted after a configurable  
number of samples has filled in the buffer (1 to 32).  
For details on the configurations for the FIFO Buffer as well as more specific examples and application benefits, refer to  
Freescale application note, AN3920.  
5.4  
Low Power Mode  
The MMA8450Q can be set to a low power mode option to further reduce the current consumption of the device. When the  
Low Power Mode is enabled, the device has access to all the configurable sampling rates and features as is available in the  
Normal power mode. To set the device into Low Power Mode, bit 0 in the System Control Register 2 (0x39) should be set (1) (this  
bit is cleared (0) for Normal Power Mode). Low Power Mode reduces the current consumption by internally sleeping longer and  
averaging the data less. The Low Power Mode is an additional feature that is independent of the sleep feature.The sleep feature  
can also be used to reduce the current consumption by automatically changing to a lower sample rate when no activity is  
detected.  
For more information on how to configure the MMA8450Q in Low Power Mode and the power consumption benefits of Low  
Power Mode and Auto-Wake/Sleep with specific application examples, refer to Freescale application note, AN3921.  
MMA8450Q  
Sensors  
13  
Freescale Semiconductor  
5.5  
Auto-Wake/Sleep Mode  
The MMA8450Q can be configured to transition between sample rates (with their respective current consumption) based on  
five of the interrupt functions of the device. The advantage of using the Auto-Wake/Sleep is that the system can automatically  
transition to a higher sample rate (higher current consumption) when needed but spends the majority of the time in the Sleep  
Mode (lower current) when the device does not require higher sampling rates. Auto-Wake refers to the device being triggered by  
one of the interrupt functions to transition to a higher sample rate. This may also interrupt the processor to transition from a sleep  
mode to a higher power mode.  
Sleep Mode occurs after the accelerometer has not detected an interrupt for longer than the user definable time-out period.  
The device will transition to the specified lower sample rate. It may also alert the processor to go into a lower power mode to save  
on current during this period of inactivity.  
The Interrupts that can wake the device from sleep are the following: Tap Detection, Orientation Detection, Motion/Freefall1,  
Motion/Freefall2, and Transient Detection. The FIFO can be configured to hold the data in the buffer until it is flushed if the FIFO  
Gate bit is set in Register 0x3A but the FIFO cannot wake the device from sleep.  
The interrupts that can keep the device from falling asleep are the same interrupts that can wake the device with the addition  
of the FIFO. If the FIFO interrupt is enabled and data is being accessed continually servicing the interrupt then the device will  
remain in the wake mode. Refer to AN3921, for more detailed information for configuring the Auto-Wake/Sleep and for application  
examples of the power consumption savings.  
5.6  
Freefall and Motion Detection  
MMA8450Q has flexible interrupt architecture for detecting Freefall and Motion with the two Motion/Freefall interrupt functions  
available. With two configurable interrupts for Motion and Freefall, one interrupt can be configured to detect a linear freefall while  
the other can be configured to detect a spin motion. The combination of these two events can be routed to separate interrupts or  
to the same interrupt pin to detect tumble which is the combination of spin with freefall. For details on the advantages of having  
the two embedded functions of Freefall and Motion detection with specific application examples with recommended configuration  
settings, refer to Freescale application note AN3917.  
5.6.1  
Freefall Detection  
The detection of “Freefall” involves the monitoring of the X, Y, and Z axes for the condition where the acceleration magnitude  
is below a user specified threshold for a user definable amount of time. Normally the usable threshold ranges are between  
±0 mg and ±500 mg.  
5.6.2  
Motion Detection  
There are two programmable functions for motion (MFF1 and MFF2). Motion is configured using the high-g mechanism.  
Motion is often used to simply alert the main processor that the device is currently in use. When the acceleration exceeds a set  
threshold the motion interrupt is asserted. A motion can be a fast moving shake or a slow moving tilt. This will depend on the  
threshold and timing values configured for the event. The motion detection function can analyze static acceleration changes or  
faster jolts. For example, to detect that an object is spinning, all three axes would be enabled with a threshold detection of > 2g.  
This condition would need to occur for a minimum of 100 ms to ensure that the event wasn't just noise. The timing value is set  
by a configurable debounce counter. The debounce counter acts like a filter to determine whether the condition exists for  
configurable set of time (i.e., 100 ms or longer).  
5.7  
Transient Detection  
The MMA8450Q has a built in high pass filter. Acceleration data goes through the high pass filter, eliminating the offset (DC)  
and low frequencies. The high pass filter cut-off frequency can be set by the user to four different frequencies which are  
dependent on the Output Data Rate (ODR). A higher cut-off frequency ensures the DC data or slower moving data will be filtered  
out, allowing only the higher frequencies to pass. The embedded Transient Detection function uses the high pass filtered data  
allowing the user to set the threshold and debounce counter.  
Many applications use the accelerometer’s static acceleration readings (i.e., tilt) which measure the change in acceleration  
due to gravity only. These functions benefit from acceleration data being filtered from a low pass filter where high frequency data  
is considered noise. However, there are many functions where the accelerometer must analyze dynamic acceleration. Functions  
such as tap, flick, shake and step counting are based on the analysis of the change in the acceleration. It is simpler to interpret  
these functions dependent on dynamic acceleration data when the static component has been removed. The Transient Detection  
function can be routed to either interrupt pin through bit 5 in CTRL_REG5 Register (0x3C). Registers 0x2B – 0x2E are the  
dedicated Transient Detection configuration registers. For details on the benefits of the embedded Transient Detection function  
along with specific application examples and recommended configuration settings, please refer to Freescale application note,  
AN3918.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
14  
5.8  
Orientation Detection  
The MMA8450Q incorporates an advanced algorithm for orientation detection (ability to detect all 6 orientations including  
portrait/landscape) with a large amount of configuration available to provide extreme flexibility to the system designer. The  
configurability also allows for the function to work differently for various modes of the end system. For example, the MMA8450Q  
Orientation Detection allows up to 10 selectable trip angles for Portrait-to-Landscape, up to10 selectable trip angles for the  
transition for Landscape-to-Portrait, and 4 selectable front/back trip angles. Typically the desired hysteresis angle is ±15° from a  
45° trip reference point, resulting in |30°| and |60°| trip points. The algorithm is robust enough to handle typical process variation  
and uncompensated board mount offset, however, it may result in slight angle variations.  
The MMA8450Q Orientation Detection algorithm confirms the reliability of the function with a configurable Z-lock out angle.  
Based on known functionality of linear accelerometers, it is not possible to rotate the device about the Z-axis to detect change in  
acceleration at slow angular speeds. The angle at which the image no longer detects the orientation change is referred to as the  
“Z-Lock- out angle”. The MMA8450Q Orientation Detection function has eight selectable1g-lockout thresholds; and there are 8  
different settings for the Z-Angle lockout.  
The Orientation Detection function also considers when a device is experiencing acceleration above a set threshold not typical  
of orientation changes (i.e., When a person is jogging or due to acceleration changes from being on a bus or in a car). The screen  
orientation should not interpret this as a change and the screen should lock in the last known valid position. This added feature,  
called the 1g Lockout Threshold, enhances the Orientation Detection function and confirms the reliability of the algorithm for the  
system. The MMA8450Q allows for configuring the 1g Lockout Threshold from 1g up to 1.35g (in increments of 0.05g).  
For further information on the highly configurable embedded Orientation Detection Function, including recommendations for  
configuring the device to support various application use cases, refer to Freescale application note, AN3915.  
Figure 6 and Figure 7 show the definitions of the trip angles going from Landscape-to-Portrait and then also from Portrait-to-  
Landscape.  
PORTRAIT  
PORTRAIT  
90°  
90°  
Landscape-to-Portrait  
Trip Angle = 60°  
Portrait-to-Landscape  
Trip Angle = 60°  
0° Landscape  
0° Landscape  
Figure 6. Illustration of Landscape-to-Portrait Transition  
Figure 7. Illustration of Portrait-to-Landscape Transition  
Figure 8 illustrates the Z-angle lockout region. When lifting the device up from the flat position it will be active for orientation  
detection as low as 25° from flat. This is user configurable. The default angle is 32° but it can be set as low as 25°.  
PORTRAIT  
90°  
NORMAL  
DETECTION  
ZLOCK = 32.142°  
REGION  
LOCKOUT  
REGION  
0° Landscape  
Figure 8. Illustration of Z-Tilt Angle Lockout Transition  
MMA8450Q  
Sensors  
15  
Freescale Semiconductor  
Figure 9 shows the device configuration in the 6 different orientation modes. These orientations are defined as the following:  
PU = Portrait UP, LR = Landscape Right, PD = Portrait Down, LL = Landscape Left, Back and Front.  
Top View  
PU  
Pin 1  
Earth Gravity  
Side View  
LL  
LR  
Xout @ 0g  
Yout @ -1g  
Zout @ 0g  
BACK  
Xout @ 0g  
Yout @ 0g  
Zout @ -1g  
PD  
Xout @ -1g  
Yout @ 0g  
Zout @ 0g  
Xout @ 1g  
Yout @ 0g  
Zout @ 0g  
FRONT  
Xout @ 0g  
Yout @ 0g  
Zout @ 1g  
Xout @ 0g  
Yout @ 1g  
Zout @ 0g  
Figure 9. Landscape/Portrait Orientation  
There are several registers to configure the orientation detection and are described in detail in the register setting section.  
5.9  
Interrupt Register Configurations  
There are eight configurable interrupts in the MMA8450Q. These are Auto-Sleep, Data Ready, Motion/Freefall 1, Motion/  
Freefall 2, Transient, Orientation Detection, Tap Detection and the FIFO events. These eight interrupt sources can be routed to  
one of two interrupt pins. The interrupt source must be enabled and configured. If the event flag is asserted because the event  
condition is detected, the corresponding interrupt pin, INT1 or INT2, will assert.  
Event Flag 0  
Auto-Sleep  
FIFO  
Func_En  
Func_En  
Func_En  
Func_En  
Func_En  
Func_En  
Func_En  
Event Flag 1  
Event Flag 2  
Event Flag 3  
Event Flag 4  
INT1  
INT2  
Transient Detect  
Orientation Detect  
Pulse Detect  
Freefall/Motion  
Data Ready  
INTERRUPT  
CONTROLLER  
Event Flag 5  
Event Flag 6  
Event Flag 7  
8
8
INT_ENABLE  
INT_CFG  
Figure 10. System Interrupt Generation Block Diagram  
MMA8450Q  
Sensors  
Freescale Semiconductor  
16  
5.10  
Serial I2C Interface  
Acceleration data may be accessed through an I2C interface thus making the device particularly suitable for direct interfacing  
with a microcontroller. The MMA8450Q features an interrupt signal which indicates when a new set of measured acceleration  
data is available thus simplifying data synchronization in the digital system that uses the device. The MMA8450Q may also be  
configured to generate other interrupt signals accordingly to the programmable embedded functions of the device for Motion,  
Freefall, Transient, Orientation, and Tap.  
The registers embedded inside MMA8450Q are accessed through an I2C serial interface. To enable the I2C interface, the EN  
pin (pin 8) must be tied high. When EN is tied low, MMA8450Q is put into low power shutdown mode and communications on the  
I2C interface are ignored. The MMA8450Q is always in slave mode. The I2C interface may be used for communications between  
other I2C devices when EN is tied low and the MMA8450Q does not clamp the I2C bus.  
Table 8. Serial Interface Pin Description  
Pin Name  
Pin Description  
Device enable  
(1: I2C mode enabled; 0: Shutdown mode)  
EN  
SCL  
SDA  
SA0  
I2C Serial Clock  
I2C Serial Data  
I2C least significant bit of the device address  
There are two signals associated with the I2C bus; the Serial Clock Line (SCL) and the Serial Data line (SDA). The latter is a  
bidirectional line used for sending and receiving the data to/from the interface. External 4.7 kΩ pull-up resistors connected to  
VDD are expected for SDA and SCL. When the bus is free both the lines are high. The I2C interface is compliant with fast mode  
(400 kHz), and normal mode (100 kHz) I2C standards (Table 4).  
5.10.1  
I2C Operation  
The transaction on the bus is started through a start condition (START) signal. START condition is defined as a HIGH to LOW  
transition on the data line while the SCL line is held HIGH. After START has been transmitted by the Master, the bus is considered  
busy. The next byte of data transmitted after START contains the slave address in the first 7 bits, and the eighth bit tells whether  
the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system  
compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the  
Master. The 9th clock pulse, following the slave address byte (and each subsequent byte) is the acknowledge (ACK). The  
transmitter must release the SDA line during the ACK period. The receiver must then pull the data line low so that it remains  
stable low during the high period of the acknowledge clock period.  
The number of bytes transferred per transfer is unlimited. If a receiver can't receive another complete byte of data until it has  
performed some other function, it can hold the clock line, SCL low to force the transmitter into a wait state. Data transfer only  
continues when the receiver is ready for another byte and releases the data line. This delay action is called clock stretching.  
A LOW to HIGH transition on the SDA line while the SCL line is high is defined as a stop condition (STOP). A data transfer is  
always terminated by a STOP. A Master may also issue a repeated START during a data transfer. The MMA8450Q expects  
repeated STARTs to be used to randomly read from specific registers.  
The MMA8450Q's standard slave address is a choice between the two sequential addresses 0011100 and 0011101. The  
selection is made by the high and low logic level of the SA0 (pin 7) input respectively. The slave addresses are factory  
programmed and alternate addresses are available at customer request. The format is shown in Table 9.  
Table 9. I2C Address Selection Table  
Slave Address (SA0 = 0)  
Slave Address (SA0 = 1)  
Comment  
0011100  
0011101  
Factory Default  
Single Byte Read  
The MMA8450Q has an internal ADC that can sample, convert and return sensor data on request. The transmission of an 8-  
bit command begins on the falling edge of SCL. After the eight clock cycles are used to send the command, note that the data  
returned is sent with the MSB first once the data is received. Figure 11 shows the timing diagram for the accelerometer 8-bit I2C  
read operation. The Master (or MCU) transmits a start condition (ST) to the MMA8450Q, slave address ($1D), with the R/W bit  
set to “0” for a write, and the MMA8450Q sends an acknowledgement. Then the Master (or MCU) transmits the address of the  
register to read and the MMA8450Q sends an acknowledgement. The Master (or MCU) transmits a repeated start condition (SR)  
and then addresses the MMA8450Q ($1D) with the R/W bit set to “1” for a read from the previously selected register. The Slave  
then acknowledges and transmits the data from the requested register. The Master does not acknowledge (NAK) it received the  
transmitted data, but transmits a stop condition to end the data transfer.  
MMA8450Q  
Sensors  
17  
Freescale Semiconductor  
Multiple Byte Read  
When performing a multi-byte read or “burst read”, the MMA8450Q automatically increments the received register address  
commands after a read command is received. Therefore, after following the steps of a single byte read, multiple bytes of data  
can be read from sequential registers after each MMA8450Q acknowledgment (AK) is received until a NACK is received from  
the Master followed by a stop condition (SP) signaling an end of transmission.  
Single Byte Write  
To start a write command, the Master transmits a start condition (ST) to the MMA8450Q, slave address ($1D) with the R/W bit  
set to “0” for a write, the MMA8450Q sends an acknowledgement. Then the Master (MCU) transmits the address of the register  
to write to, and the MMA8450Q sends an acknowledgement. Then the Master (or MCU) transmits the 8-bit data to write to the  
designated register and the MMA8450Q sends an acknowledgement that it has received the data. Since this transmission is  
complete, the Master transmits a stop condition (SP) to the data transfer. The data sent to the MMA8450Q is now stored in the  
appropriate register.  
Multiple Byte Write  
The MMA8450Q automatically increments the received register address commands after a write command is received.  
Therefore, after following the steps of a single byte write, multiple bytes of data can be written to sequential registers after each  
MMA8450Q acknowledgment (ACK) is received.  
Table 10. I2C device Address Sequence  
[6:1]  
Device Address  
[0]  
SA0  
[6:0]  
Device Address  
Command  
R/W  
8-bit Final Value  
Read  
Write  
Read  
Write  
001110  
001110  
001110  
001110  
0
0
1
1
0x1C  
0x1C  
0x1D  
0x1D  
1
0
1
0
0x39  
0x38  
0x3B  
0x3A  
< Single Byte Read >  
Master  
ST Device Address [6:0]  
W
Register Address [7:0]  
SR Device Address [6:0]  
R
R
NAK SP  
AK  
AK  
AK  
AK  
AK  
Data [7:0]  
Data [7:0]  
Slave  
< Multiple Byte Read >  
ST Device Address [6:0]  
W
Register Address [7:0]  
SR Device Address [6:0]  
AK  
Master  
AK  
Slave  
AK  
AK  
NAK SP  
Master  
Slave  
Data [7:0]  
Data [7:0]  
Data [7:0]  
< Single Byte Write >  
ST Device Address [6:0]  
W
Register Address [7:0]  
Register Address [7:0]  
Data [7:0]  
SP  
Master  
AK  
AK  
AK  
AK  
Slave  
< Multiple Byte Write >  
ST Device Address [6:0]  
W
Data [7:0]  
Data [7:0]  
Master  
AK  
AK  
AK  
Slave  
Legend  
ST: Start Condition  
SP: Stop Condition  
AK: Acknowledge  
NAK: No Acknowledge  
R: Read = 1  
W: Write = 0  
SR: Repeated Start Condition  
Figure 11. I2C Timing Diagram  
MMA8450Q  
Sensors  
Freescale Semiconductor  
18  
6
Register Descriptions  
Table 11 is the memory map of the MMA8450Q.The user has access to all addresses from 0x00 to 0x3F.  
Table 11. Register Address Map  
Register  
Address  
Auto-Increment  
Address  
Name  
Type  
Default  
Comment  
Addresses 0x00, 0x04, 0x0B are aliases to the  
STATUS(1)(2)  
OUT_X_MSB(1)(2)  
R
0x00  
0x01  
0x01  
00000000 same register. Data Ready status information or  
FIFO status information.  
[7:0] are 8 MSBs of  
Root pointer to XYZ  
FIFO 8-bit data.  
R
0x02  
0x01  
output  
12-bit real-time sample.  
OUT_Y_MSB(1)(2)  
OUT_Z_MSB(1)(2)  
R
R
0x02  
0x03  
0x03  
output  
output  
[7:0] are 8 MSBs of 12-bit real-time sample  
[7:0] are 8 MSBs of 12-bit real-time sample  
Addresses 0x00, 0x04, 0x0B are aliases to the  
0x00  
STATUS(1)(2)  
R
R
0x04  
0x05  
0x05  
00000000 same register. Data Ready status information or  
FIFO status information.  
[3:0] are 4 LSBs of  
12-bit sample.  
Root pointer to XYZ  
FIFO 12-bit data.  
OUT_X_LSB(1)(2)  
0x06  
0x05  
output  
OUT_X_MSB(1)(2)  
OUT_Y_LSB(1)(2)  
OUT_Y_MSB(1)(2)  
OUT_Z_LSB(1)(2)  
OUT_Z_MSB(1)(2)  
R
R
R
R
R
0x06  
0x07  
0x08  
0x09  
0x0A  
0x07  
0x08  
0x09  
0x0A  
0x04  
output  
output  
output  
output  
output  
[7:0] are 8 MSBs of 12-bit real-time sample  
[3:0] are 4 LSBs of 12-bit real-time sample  
[7:0] are 8 MSBs of 12-bit real-time sample  
[3:0] are 4 LSBs of 12-bit real-time sample  
[7:0] are 8 MSBs of 12-bit real-time sample  
Addresses 0x00, 0x04, 0x0B are aliases to the  
STATUS(1)(2)  
R
0x0B  
0x0C  
00000000 same register. Data Ready status information or  
FIFO status information.  
OUT_X_DELTA(1)(2)  
OUT_Y_DELTA(1)(2)  
OUT_Z_DELTA(1)(2)  
WHO_AM_I(1)  
R
R
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x0D  
0x0E  
0x0B  
0xC6  
0x11  
0x11  
0x12  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
output  
output  
8-bit AC X-axis data  
8-bit AC Y-axis data  
R
output  
8-bit AC Z-axis data  
R
11000110  
00000000  
Output  
NWM Programmable Fixed Device ID No.  
FIFO Status: No FIFO event Detected  
FIFO status and 8-bit samples  
FIFO status and 12-bit samples  
FIFO setup  
F_STATUS(1)(2)  
F_8DATA(1)(2)  
R
R
F_12DATA(1)(2)  
R
Output  
F_SETUP(1)(3)  
R/W  
R
00000000  
Output  
SYSMOD(1)(2)  
Current System Mode  
INT_SOURCE(1)(2)  
XYZ_DATA_CFG(1)(4)  
R
Output  
Interrupt status  
R/W  
R/W  
R
00000000  
00000000  
00000000  
00000000  
Acceleration data event flag configuration  
Cutoff frequency is set to 4Hz @ 400Hz  
Landscape/Portrait orientation status  
Landscape/Portrait previous orientation  
1,3  
HP_FILTER_CUTOFF  
PL_STATUS(1)(2)  
PL_PRE_STATUS(1)(2)  
R
Landscape/Portrait configuration.  
1g Lockout offset is set to default value of 1.15g.  
Debounce counters are clear during invalid  
sequence condition.  
PL_CFG(1)(4)  
R/W  
0x1A  
0x1B  
10000011  
PL_COUNT(1)(3)  
PL_BF_ZCOMP(1)(4)  
PL_P_L_THS_REG1(1)(4)  
R/W  
R/W  
R/W  
0x1B  
0x1C  
0x1D  
0x1C  
0x1D  
0x1E  
00000000  
00000010  
00011010  
Landscape/Portrait debounce counter  
Back-Front Trip threshold is ±75°.  
Z-Lockout angle is 32.14°  
Portrait-to-Landscape Trip Angle is 30°  
MMA8450Q  
Sensors  
19  
Freescale Semiconductor  
Table 11. Register Address Map  
PL_P_L_THS_REG2(1)(4)  
R/W  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
00100010  
11010100  
00101101  
01000001  
10100010  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
Portrait-to-Landscape Trip Angle is 30°  
Portrait-to-Landscape Trip Angle is 30°  
Landscape-to-Portrait Trip Angle is 60°  
Landscape-to-Portrait Trip Angle is 60°  
Landscape-to-Portrait Trip Angle is 60°  
Freefall/Motion1 configuration  
Freefall/Motion1 event source register  
Freefall/Motion1 threshold register  
Freefall/Motion1 debounce counter  
Freefall/Motion2 configuration  
Freefall/Motion2 event source register  
Freefall/Motion2 threshold register  
Freefall/Motion2 debounce counter  
Transient configuration  
PL_P_L_THS_REG3(1)(4)  
R/W  
PL_L_P_THS_REG1(1)(4)  
R/W  
PL_L_P_THS_REG2(1)(4)  
R/W  
PL_L_P_THS_REG3(1)(4)  
R/W  
FF_MT_CFG_1(1)(4)  
R/W  
FF_MT_SRC_1(1)(2)  
R
FF_MT_THS_1(1)(3)  
R/W  
FF_MT_COUNT_1(1)(3)  
R/W  
FF_MT_CFG_2(1)(4)  
R/W  
FF_MT_SRC_2(1)(2)  
R
FF_MT_THS_2(1)(3)  
R/W  
FF_MT_COUNT_2(1)(3)  
R/W  
TRANSIENT_CFG(1)(4)  
R/W  
TRANSIENT_SRC(1)(2)  
R
Transient event status register  
Transient event threshold  
TRANSIENT_THS(1)(3)  
R/W  
TRANSIENT_COUNT(1)(3)  
R/W  
Transient debounce counter  
ELE, Double_XYZ or Single_XYZ  
EA, Double_XYZ or Single_XYZ  
X and Y pulse threshold  
PULSE_CFG(1)(4)  
R/W  
PULSE_SRC(1)(2)  
R
PULSE_THSX(1)(3)  
R/W  
PULSE_THSY(1)(3)  
R/W  
Z pulse threshold  
PULSE_THSZ(1)(3)  
R/W  
Z pulse threshold  
PULSE_TMLT(1)(4)  
R/W  
Time limit for pulse  
PULSE_LTCY(1)(4)  
R/W  
Latency time for 2nd pulse  
PULSE_WIND(1)(4)  
R/W  
Window time for 2nd pulse  
ASLP_COUNT(1)(4)  
R/W  
Counter setting for auto-sleep  
ODR = 400Hz, Standby Mode.  
CTRL_REG1(1)(4)  
R/W  
ST = Disabled, SLPE = Disabled,  
MODS = normal mode.  
CTRL_REG2(1)(4)  
R/W  
0x39  
0x3A  
00000000  
CTRL_REG3(1)(4)  
R/W  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x0F  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
IPOL, PP_OD  
Interrupt enable register  
Interrupt pin (INT1/INT2) map configuration  
X-axis offset adjust  
CTRL_REG4(1)(4)  
R/W  
CTRL_REG5(1)(4)  
R/W  
OFF_X(1)(4)  
R/W  
OFF_Y(1)(4)  
R/W  
Y-axis offset adjust  
OFF_Z(1)(4)  
R/W  
Z-axis offset adjust  
1. Register contents are preserved when transition from “ACTIVE” to “STANDBY” mode occurs.  
2. Register contents are reset when transition from “STANDBY” to “ACTIVE” mode occurs.  
3. Modification of this register’s contents can only occur when device is “STANDBY” mode  
4. Register contents can be modified anytime in “STANDBY” or “ACTIVE” mode. A write to this register will cause a reset of the corresponding  
internal system debounce counter.  
Note: Auto-increment addresses which are not a simple increment are highlighted in bold. The auto-increment addressing is only enabled when  
device registers are read using I2C burst read mode. Therefore the internal storage of the auto-increment address is clear whenever a  
stop-bit is detected.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
20  
6.1  
Data Registers  
The following are the data registers for the MMA8450Q. For more information on data manipulation of the MMA8450Q, refer  
to application note, AN3922.  
0x00, 0x04, 0x0B: STATUS Registers  
.
Alias for DR_Status (0x0B) or F_Status (0x10) (Read Only)  
FDE (FIFO Data Enable Bit 7, Reg 0x16) Setting  
Alias Status  
FDE = 0  
FDE = 1  
0x00 = 0x04 = DR_STATUS (0x0B)  
0x00 = 0x04 = F_STATUS (0x10)  
When FDE bit found in register 0x16 (XYZ_DATA_CFG), bit 7 is cleared (the FIFO is not on) register 0x00, 0x04 and 0x0B  
should all be the same value and reflect the real-time status information of the X, Y and Z sample data. When FDE is set (the  
FIFO is on) Register 0x00, 0x04 and 0x10 will have the same value and 0x0B will reflect the status of the transient data. The  
aliases allow the STATUS register to be read easily before reading the current 8-bit, 12-bit, or FIFO sample data using the register  
address auto-incrementing mechanism.  
0X00, 0X04, 0X0B STATUS: Data Status Registers (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ZYXOW  
ZOW  
YOW  
XOW  
ZYXDR  
ZDR  
YDR  
XDR  
Table 12. STATUS Description  
X, Y, Z-axis Data Overwrite. Default value: 0  
0: No data overwrite has occurred  
ZYXOW  
ZOW  
YOW  
XOW  
ZYXDR  
ZDR  
1: Previous X, Y, or Z data was overwritten by new X, Y, or Z data before it was read  
Z-axis Data Overwrite. Default value: 0  
0: No data overwrite has occurred  
1: Previous Z-axis data was overwritten by new Z-axis data before it was read  
Y-axis Data Overwrite. Default value: 0  
0: No data overwrite has occurred  
1: Previous Y-axis data was overwritten by new Y-axis data before it was read  
X-axis Data Overwrite. Default value: 0  
0: No data overwrite has occurred  
1: Previous X-axis data was overwritten by new X-axis data before it was read  
X, Y, Z-axis new Data Ready. Default value: 0  
0: No new set of data ready  
1: A new set of data is ready  
Z-axis new Data Available. Default value: 0  
0: No new Z-axis data is ready  
1: A new Z-axis data is ready  
Z-axis new Data Available. Default value: 0  
0: No new Y-axis data ready  
YDR  
1: A new Y-axis data is ready  
Z-axis new Data Available. Default value: 0  
0: No new X-axis data ready  
XDR  
1: A new X-axis data is ready  
ZYXOW is set whenever a new acceleration data is produced before completing the retrieval of the previous set. This event  
occurs when the content of at least one acceleration data register (i.e., OUTX, OUTY, OUTZ) has been overwritten. ZYXOW is  
cleared when the high-bytes of the acceleration data (OUTX_MSB, OUTY_MSB, OUTZ_MSB) of all the active channels are read.  
ZOW is set whenever a new acceleration sample related to the Z-axis is generated before the retrieval of the previous sample.  
When this occurs the previous sample is overwritten. ZOW is cleared anytime OUTZ_MSB register is read.  
YOW is set whenever a new acceleration sample related to the Y-axis is generated before the retrieval of the previous sample.  
When this occurs the previous sample is overwritten. YOW is cleared anytime OUTY_MSB register is read.  
XOW is set whenever a new acceleration sample related to the X-axis is generated before the retrieval of the previous sample.  
When this occurs the previous sample is overwritten. XOW is cleared anytime OUTX_MSB register is read.  
ZYXDR signals that a new sample for any of the enabled channels is available. ZYXDR is cleared when the high-bytes of the  
acceleration data (OUTX_MSB, OUTY_MSB, OUTZ_MSB) of all the enabled channels are read.  
ZDR is set whenever a new acceleration sample related to the Z-axis is generated. ZDR is cleared anytime OUTZ_MSB register  
is read. In order to enable the monitoring and assertion of this bit, the ZDR bit requires the Z-axis event detection flag to be  
enabled (bit ZDEFE = 1 inside XYZ_DATA_CFG register).  
MMA8450Q  
Sensors  
21  
Freescale Semiconductor  
YDR is set whenever a new acceleration sample related to the Y-axis is available. YDR is cleared anytime OUTY_MSB register  
is read. In order to enable the monitoring and assertion of this bit, the YDR bit requires the Y-axis event detection flag to be  
enabled (bit YDEFE = 1 inside XYZ_DATA_CFG register).  
XDR is set to 1 whenever a new acceleration sample related to the X-axis is available. XDR is cleared anytime OUTX_MSB  
register is read. In order to enable the monitoring and assertion of this bit, the XDR bit requires the X-axis to event detection flag  
to be enabled (bit XDEFE = 1 inside XYZ_DATA_CFG register).  
The ZDR and ZOW flag generation requires the Z-axis event flag generator to be enabled (ZDEFE = 1) in the XYZ_DATA_CFG  
register.  
The YDR and YOW flag generation requires the Y-axis event flag generator to be enabled (YDEFE = 1) in the XYZ_DATA_CFG  
register.  
The XDR and XOW flag generation requires the X-axis event flag generator to be enabled (XDEFE = 1) in the XYZ_DATA_CFG  
register.  
The ZYXDR and ZYXOW flag generation is requires the Z-axis, Y-axis, X-axis event flag generator to be enabled (ZDEFE = 1,  
YDEFE = 1, XDEFE = 1) in the XYZ_DATA_CFG register.  
0x01, 0x02, 0x03: OUT_MSB 8-Bit XYZ Data Registers  
X, Y and Z-axis data is expressed as 2’s complement numbers. The most significant 8-bits are stored together in  
OUT_X_MSB, OUT_Y_MSB, OUT_Z_MSB so applications needing only 8-bit results can use these registers and can ignore the  
OUT_X_LSB, OUT_Y_LSB, OUT_Z_LSB. The status Register 0x00, OUT_X_MSB, OUT_Y_MSB, OUT_Z_MSB are duplicated  
in the auto-incrementing address range of 0x00 to 0x03 to reduce reading the status followed by 8-bit axis data to a 4 byte  
sequence.  
0x01 OUT_X_MSB: X_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XD11  
XD10  
XD9  
XD8  
XD7  
XD6  
XD5  
XD4  
0x02 OUT_Y_MSB: Y_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
YD11  
YD10  
YD9  
YD8  
YD7  
YD6  
YD5  
YD4  
0x03 OUT_Z_MSB: Z_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ZD11  
ZD10  
ZD9  
ZD8  
ZD7  
ZD6  
ZD5  
ZD4  
0x05 - 0x0A: OUT_MSB and OUT_LSB 12-Bit XYZ Data Registers  
X, Y and Z-axis data is expressed as 2’s complement numbers. The STATUS (0x04), OUT_X_LSB (0x05), OUT_X_MSB  
(0x06), OUT_Y_LSB (0x07), OUT_Y_MSB (0x08), OUT_Z_LSB(0x09), OUT_Z_MSB (0x0A) are stored in auto-incrementing  
address range of 0x04 to 0x0A to reduce reading the status followed by 12-bit axis data to 7 bytes.  
0x05 OUT_X_LSB: X_LSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
XD3  
XD2  
XD1  
XD0  
0x06 OUT_X_MSB: X_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XD11  
XD10  
XD9  
XD8  
XD7  
XD6  
XD5  
XD4  
0x07 OUT_Y_LSB: Y_LSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
YD3  
YD2  
YD1  
YD0  
0x08 OUT_Y_MSB: Y_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
YD11  
YD10  
YD9  
YD8  
YD7  
YD6  
YD5  
YD4  
0x09 OUT_Z_LSB: Z_LSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
ZD3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
ZD2  
ZD1  
ZD0  
0x0A OUT_Z_MSB: Z_MSB Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
ZD7  
Bit 2  
Bit 1  
Bit 0  
ZD11  
ZD10  
ZD9  
ZD8  
ZD6  
ZD5  
ZD4  
MMA8450Q  
Sensors  
Freescale Semiconductor  
22  
The sample data output registers store the current sample data if the FIFO data output register driver is disabled, but if the  
FIFO data output register driver is enabled,12 the sample data output registers point to the head of the FIFO buffer which contains  
the previous 32 X, Y, and Z data samples. This applies for the 8-bit data and the 12-bit data.  
When the FDE bit is set to logic 1, the F_8DATA (0x11) FIFO root data pointer shares the same address location as the  
OUT_X_MSB register (0x01); therefore all 8-bit accesses of the FIFO buffer data must use the I2C address 0x01. The F_12DATA  
(0x12) FIFO root data pointer shares the same address location as the OUT_X_LSB register (0x05); therefore all 12-bit accesses  
of the FIFO buffer data must use the I2C address 0x05. All reads to register addresses 0x02, 0x03, 0x06, 0x07, 0x08, 0x09, and  
0x0A returns a value of 0x00.  
0x0C - 0x0E: OUT_X_DELTA, OUT_Y_DELTA, OUT_Z_DELTA AC Data Registers  
X, Y, and Z-axis 8-bit high pass filtered output data is expressed as 2's complement numbers. The data is obtained from the  
output of the user definable high pass filter. The data cuts out the low frequency data, which is useful in that the offset data is  
removed. The value of the high pass filter cut off frequency is set in Register 0x17.  
Note:The OUT_X_DELTA, OUT_Y_DELTA, OUT_Z_DELTA registers store the high pass filtered “delta data” information regardless of the state  
of the FIFO data output register driver bit. Register 0x0B always reflects the status of the delta data.  
0x0C OUT_X_DELTA: AC X 8-Bit Data Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XD7  
XD6  
XD5  
XD4  
XD3  
XD2  
XD1  
XD0  
0x0D OUT_Y_DELTA: AC Y 8-Bit Data Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
YD7  
YD6  
YD5  
YD4  
YD3  
YD2  
YD1  
YD0  
0x0E OUT_Z_DELTA: AC Z 8-Bit Data Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ZD7  
ZD6  
ZD5  
ZD4  
ZD3  
ZD2  
ZD1  
ZD0  
0x0F: WHO_AM_I Device ID Register  
This register contains the device identifier which for MMA8450Q is set to 0xC6 by default. The value is factory programmed  
by a byte of NVM. A custom alternate value can be set by customer request.  
0x0F WHO_AM_I: Device ID Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
0
0
1
1
0
6.2  
32 Sample FIFO  
The following registers are used to configure the FIFO. The following are the FIFO registers for the MMA8450Q. For more  
information on the FIFO please refer to AN3920.  
0x10: F_STATUS FIFO Status Register  
The FIFO Status Register is used to retrieve information about the FIFO. This register has a flag for the overflow and  
watermark. It also has a counter that can be read to obtain the number of samples stored in the buffer.  
0x10 F_STATUS: FIFO STATUS Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
F_OVF  
F_WMRK_FLAG  
F_CNT5  
F_CNT4  
F_CNT3  
F_CNT2  
F_CNT1  
F_CNT0  
Table 13. FIFO Flag Event Description  
F_OVF  
F_WMRK_FLAG  
Event Description  
0
1
0
No FIFO overflow events detected.  
FIFO event detected; FIFO has overflowed.  
No FIFO watermark events detected.  
1
FIFO event detected; FIFO sample count is greater than watermark value.  
The F_OVF and F_WMRK_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO  
interrupt bit flag in the interrupt source register (INT_SOURCE) by reading the F_STATUS register.  
Therefore the F_OVF bit flag will remain asserted while the FIFO has overflowed and the F_WMRK_FLAG bit flag will remain  
asserted while the F_CNT value is greater than the F_WMRK value.  
MMA8450Q  
Sensors  
23  
Freescale Semiconductor  
Table 14. FIFO Sample Count Description  
FIFO sample counter. Default value 00_0000.  
(00_0001 to 10_0000 indicates 1 to 32 samples stored in FIFO  
F_CNT[5:0]  
F_CNT[5:0] bits indicate the number of acceleration samples currently stored in the FIFO buffer. Count 000000 indicates that the  
FIFO is empty.  
0x11: F_8DATA 8-Bit FIFO Data  
F_8DATA provides access to the previous (up to) 32 samples of X, Y, and Z-axis acceleration data at 8-bit resolution. Use  
F_12DATA to access the same FIFO data at 12-bit resolution. The advantage of F_8DATA access is much faster download of  
the sample data, since it is represented by only 3 bytes per sample (OUT_X_MSB, OUT_Y_MSB, and OUT_Z_MSB).  
All reads to address 0x01 returns the sensor sampled data in the FIFO buffer, 3 bytes per sample (one byte per axis), with the  
oldest samples first, in order OUT_X_MSB, OUT_Y_MSB, and OUT_Z_MSB. When all samples indicated by the FIFO_Status  
register have been read from the FIFO, subsequent reads will return 0x00. Since the FIFO holds a maximum of 32 samples, a  
maximum of 3 x 32 = 96 data bytes of samples can be read.  
The FIFO will not accumulate more sample data during an access to F_8DATA until a STOP or repeated START occurs.  
0x11 F_8DATA: 8-Bit FIFO Data Register Points to Register 0x01 (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XD11  
XD10  
XD9  
XD8  
XD7  
XD6  
XD5  
XD4  
The host application should initially perform a single byte read of the FIFO status byte (address 0x10) to determine the status  
of the FIFO and if it is determined that the FIFO contains data sample(s), the FIFO contents can also be read from register  
address location 0x01 or 0x05.  
0x12: F_12DATA 12-Bit FIFO Data  
F_12DATA provides access to the previous (up to) 32 samples of X, Y, and Z-axis acceleration data, at 12-bit resolution. Use  
F_8DATA to access the same FIFO data at 8-bit resolution. The advantage of F_8DATA access is much faster download of the  
sample data, since it is represented by only 3 bytes per sample (OUT_X_MSB, OUT_Y_MSB, and OUT_Z_MSB).  
When the FDE bit is set to logic 1, the F_12DATA FIFO root data pointer shares the same address location as the  
OUT_X_MSB register (0x05); therefore all 12-bit accesses of the FIFO buffer data must use the I2C register address 0x05. All  
reads to the register address 0x02, 0x03, 0x06, 0x07, 0x08, 0x09, and 0x0A return a value of 0x00.  
All reads from address (0x05) return the sample data, oldest samples first, in order OUT_X_LSB OUT_X_MSB, OUT_Y_LSB,  
OUT_Y_MSB, OUT_Z_LSB, and OUT_Z_MSB. When all samples indicated by the F_Status byte have been read from the FIFO,  
subsequent reads will return 0x00. Since the FIFO holds a maximum of 32 samples, a maximum of 6 x 32 = 192 data bytes can  
be read.  
The FIFO will not accumulate more sample data during an access to F_12DATA until a STOP or repeated START occurs.  
0x12 F_12DATA: 12-Bit FIFO Data Register Points to Register 0x05 (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
XD3  
XD2  
XD1  
XD0  
0x13: F_SETUP FIFO Setup Register  
This setup register is used to configure the options for the FIFO. The FIFO can operate in 3 states which are defined in the  
Mode Bits. The watermark bits are configurable to set the number of samples of data to trigger the watermark event flag. The  
maximum number of samples is 32. For more information on the FIFO configuration refer to AN3920.  
0x13 F_SETUP: FIFO Setup Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
F_MODE1  
F_MODE0  
F_WMRK5  
F_WMRK4  
F_WMRK3  
F_WMRK2  
F_WMRK1  
F_WMRK0  
MMA8450Q  
Sensors  
Freescale Semiconductor  
24  
Table 15. F_SETUP Description  
BITS  
Description  
FIFO buffer overflow mode. Default value 0.  
00: FIFO is disabled.  
01: FIFO contains the most recent samples when overflowed (circular buffer). Oldest sample is discarded to  
be replaced by new sample.  
10: FIFO stops accepting new samples when overflowed.  
F_MODE[1:0](1)(2)(3)  
11: Not Used.  
The FIFO is flushed whenever the FIFO is disabled, during an automatic ODR change (Auto-Wake/Sleep), or  
transitioning from “STANDBY” mode to “ACTIVE” mode.  
Disabling the FIFO (F_MODE = 00) resets the F_OVF, F_WMRK_FLAG, F_CNT to zero.  
A FIFO overflow event (i.e., F_CNT = 32) will assert the F_OVF flag and a FIFO sample count equal to the  
sample count watermark (i.e., F_WMRK) asserts the F_WMRK_FLAG event flag.  
FIFO Event Sample Count Watermark. Default value 00_0000.  
These bits set the number of FIFO samples required to trigger a watermark interrupt. A FIFO watermark event  
flag (F_WMK_FLAG) is raised when FIFO sample count F_CNT[5:0] value is equal to the F_ WMRK[5:0]  
watermark.  
F_WMRK[5:0](2)  
Setting the F_WMRK[5:0] to 00_0000 will disable the FIFO watermark event flag generation.  
1. Bit field can be written in ACTIVE mode.  
2. Bit field can be written in STANDBY mode.  
3. The FIFO mode (F_MODE) cannot be switched between the two operational modes (01and 10) in Active Mode.  
A FIFO sample count exceeding the watermark event does not stop the FIFO from accepting new data. The FIFO update rate  
is dictated by the selected system ODR. In active mode the ODR is set by the DR register in the CTRL_REG1 register and when  
Auto-Sleep is active the ODR is set by the ASLP_RATE field in the CTRL_REG1 register.  
When a byte is read from the FIFO buffer the oldest sample data in the FIFO buffer is returned and also deleted from the front  
of the FIFO buffer, while the FIFO sample count is decremented by one. It is assumed that the host application shall use the I2C  
multi-read transaction to empty the FIFO.  
The FIFO mode can be changed while in the active state. The mode must first be disabled F_MODE = 00 then the Mode can  
be changed.  
0x14: SYSMOD System Mode Register  
The system mode register indicates the current device operating mode. Applications using the Auto-Sleep/Auto-Wake  
mechanism should use this register to synchronize the application with the device operating mode transitions. The system mode  
register also indicates the status of the NVM parity error and FIFO gate error flags.  
0x14 SYSMOD: System Mode Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PERR  
FGERR  
0
0
0
0
SYSMOD1  
SYSMOD0  
Table 16. SYSMOD Description  
NVM Parity Error Flag Bit. Default Value: 0.  
0: No NVM parity error was detected.  
1: NVM parity error detected.  
FIFO Gate Error. Default value: 0.  
0: No FIFO Gate Error detected.  
1: FIFO Gate Error was detected.  
System Mode. Default value: 00.  
00: Standby mode  
PERR  
FGERR  
SYSMOD  
01: Wake mode  
10: Sleep mode  
The FIFO Gate is set in Register 0x3A for the device configured for Auto-Wake/Sleep mode to allow the buffer to preserve the  
data without automatically flushing. If the FIFO buffer is not emptied before the arrival of the next sample, then the FGERR bit in  
register 0x14 is asserted. The FGERR remains asserted as long as the FIFO buffer remains un-emptied. Emptying the FIFO  
buffer clears the FGERR bit.  
MMA8450Q  
Sensors  
25  
Freescale Semiconductor  
0x15: INT_SOURCE System Interrupt Status Register  
In the interrupt source register the status of the various embedded features can be determined.The bits that are set (logic ‘1’)  
indicate which function has asserted an interrupt and conversely the bits that are cleared (logic ‘0’) indicate which function has  
not asserted or has de-asserted an interrupt. The interrupts are rising edge sensitive. The bits are set by a low to high transition  
and are cleared by reading the appropriate interrupt source register.  
0x15 INT_SOURCE: System Interrupt Status Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SRC_ASLP  
SRC_FIFO  
SRC_TRANS  
SRC_LNDPRT  
SRC_PULSE SRC_FF_MT_1 SRC_FF_MT_2  
SRC_DRDY  
Table 17. INT_SOURCE Description  
INT_SOURCE  
Description  
Auto-Sleep/Wake interrupt status bit  
Logic ‘1’ indicates that an interrupt event that can cause a “Wake-to-Sleep” or “Sleep-to-Wake” system mode transition  
has occurred.  
Logic ‘0’ indicates that no “Wake-to-Sleep” or “Sleep-to-Wake” system mode transition interrupt event has occurred.  
SRC_ASLP  
“Wake-to-Sleep” transition occurs when no interrupt occurs for a time period that exceeds the user specified limit  
(ASLP_COUNT). This causes the system to transition to a user specified low ODR setting.  
“Sleep-to-Wake” transition occurs when the user specified interrupt event has woken the system; thus causing the  
system to transition to a user specified high ODR setting.  
Reading the SYSMOD register clears the SRC_ASLP bit.  
FIFO interrupt status bit  
Logic ‘1’ indicates that a FIFO interrupt event such as an overflow event or watermark has occurred. Logic ‘0’ indicates  
that no FIFO interrupt event has occurred.  
SRC_FIFO  
FIFO interrupt event generators: FIFO Overflow, or (Watermark: F_CNT = F_WMRK) and the interrupt has been  
enabled.  
This bit is cleared by reading the F_STATUS register.  
Transient interrupt status bit  
Logic ‘1’ indicates that an acceleration transient value greater than user specified threshold has occurred. Logic ‘0’  
indicates that no transient event has occurred.  
SRC_TRANS  
SRC_LNDPRT  
SRC_PULSE  
This bit is asserted whenever EAbit in the TRANS_SRC is asserted and the interrupt has been enabled.  
This bit is cleared by reading the TRANS_SRC register.  
Landscape/Portrait Orientation interrupt status bit  
Logic ‘1’ indicates that an interrupt was generated due to a change in the device orientation status. Logic ‘0’ indicates  
that no change in orientation status was detected.  
This bit is asserted whenever NEWLPbit in the PL_STATUS is asserted and the interrupt has been enabled.  
This bit is cleared by reading the PL_STATUS register.  
Pulse interrupt status bit  
Logic ‘1’ indicates that an interrupt was generated due to single and/or double pulse event. Logic ‘0’ indicates that no  
pulse event was detected.  
This bit is asserted whenever “EA” bit in the PULSE_SRC is asserted and the interrupt has been enabled.  
This bit is cleared by reading the PULSE_SRC register.  
Freefall/Motion1 interrupt status bit  
Logic ‘1’ indicates that the Freefall/Motion1 function interrupt is active.  
Logic ‘0’ indicates that no Freefall or Motion event was detected.  
SRC_FF_MT_1  
SRC_FF_MT_2  
This bit is asserted whenever “EA” bit in the FF_MT_SRC_1 register is asserted and the FF_MT interrupt has been  
enabled.  
This bit is cleared by reading the FF_MT_SRC_1 register.  
Freefall/Motion2 interrupt status bit  
Logic ‘1’ indicates that the Freefall/Motion2 function interrupt is active.  
Logic ‘0’ indicates that no Freefall or Motion event was detected.  
This bit is asserted whenever “EA” bit in the FF_MT_SRC_2 register is asserted and the FF_MT interrupt has been  
enabled.  
This bit is cleared by reading the FF_MT_SRC_2 register.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
26  
Table 17. INT_SOURCE Description  
Data Ready interrupt bit status  
Logic ‘1’ indicates that the X,Y,Z data ready interrupt is active indicating the presence of new data and/or data overrun.  
Otherwise if it is a logic ‘0’ the X,Y,Z interrupt is not active.  
SRC_DRDY  
This bit is asserted when the ZYXOW and/or ZYXDR is set and the interrupt has been enabled.  
This bit is cleared by reading the STATUS and X, Y, or Z register.  
0x16: XYZ_DATA_CFG Sensor Data Configuration Register  
The XYZ_DATA_CFG register configures the 3-axis acceleration data and event flag generator based on the ODR.  
0x16 XYZ_DATA_CFG: Sensor Data Configuration Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FDE  
0
0
0
0
ZDEFE  
YDEFE  
XDEFE  
Table 18. XYZ_DATA_CFG Description  
FIFO Data Output Register Driver Enable. Default value: 0.  
0: The sample data output registers store the current X, Y, & Z sample data;  
FDE  
1: The sample data output registers point to the previously stored X, Y, & Z samples data in the FIFO buffer.  
Data Event Flag Enable on new Z-axis data. Default value: 0  
ZDEFE  
YDEFE  
XDEFE  
0: Event detection disabled; 1: Raise event flag on new Z-axis data  
Data Event Flag Enable on new Y-axis data. Default value: 0  
0: Event detection disabled; 1: Raise event flag on new Y-axis data  
Data Event Flag Enable on new X-axis data. Default value: 0  
0: Event detection disabled; 1: Raise event flag on new X-axis data  
0x17: HP_FILTER_CUTOFF High Pass Filter Register  
This register sets the high-pass filter cut-off frequency for the detection of instantaneous acceleration. The output of this filter  
is indicated by the OUT_X_DELTA, OUT_Y_DELTA, and OUT_Z_DELTA registers. The filter cut-off options change based on the  
data rate selected as shown in Table 19. For details of implementation on the high pass filter, refer to Freescale application note  
AN3918.  
0x17 HP_FILTER_CUTOFF: High Pass Filter Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
SEL1  
SEL0  
Table 19. HP_FILTER_CUTOFF Setting Options  
Fc (Hz) @  
ODR = 400 Hz  
Fc (Hz) @  
ODR = 200 Hz  
Fc (Hz) @  
ODR = 100 Hz  
Fc (Hz) @  
ODR = 50 Hz  
Fc (Hz) @  
ODR = 12.5 Hz  
Fc (Hz) @  
ODR = 1.563 Hz  
SEL1  
SEL0  
0
0
1
1
0
1
0
1
4
2
2
1
1
0.5  
0.125  
0.01  
0.007  
0.004  
0.002  
0.5  
0.25  
0.063  
1
0.5  
0.25  
0.25  
0.125  
0.125  
0.031  
0.5  
0.062  
0.016  
6.3  
Portrait/ Landscape Embedded Function Registers  
For more details on the meaning of the different user configurable settings and for example code refer to Freescale application  
note AN3915.  
0x18: PL_STATUS Portrait/Landscape Status Register  
This status register can be read to get updated information on any change in orientation by reading Bit 7, or on the specifics  
of the orientation by reading Bit0 to Bit 4. For further understanding of Portrait Up, Portrait Down, Landscape Left, Landscape  
Right, Back and Front please refer to Figure 9  
0x18 PL_STATUS Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NEWLP  
LO  
LAPO[2]  
LAPO[1]  
LAPO[0]  
BAFRO[1]  
BAFRO[0]  
MMA8450Q  
Sensors  
Freescale Semiconductor  
27  
Table 20. PL_STATUS Register Description  
Landscape-Portrait status change flag. Default value: 0.  
NEWLP  
0: No change, 1: BAFRO and/or LAPO and/or Z-tilt lockout value has changed  
Z-Tilt Angle Lockout. Default value: 0.  
LO  
0: Lockout condition has not been detected.  
1: Z-Tilt lockout trip angle has been exceeded. Lockout has been detected.  
Back or Front orientation. Default value: 00  
00: Undefined. This is the default power up state.  
01: Front: Device is in the front facing orientation.  
10: Back: Device is in the back facing orientation.  
Landscape/Portrait orientation. Default value: 000  
000: Undefined. This is the default power up state.  
001: Portrait Up  
BAFRO[1:0]  
LAPO[2:0](1)  
010: Portrait Down  
011: Landscape Right  
100: Landscape Left  
1. The default power up state is BAFRO (Undefined), LAPO (Undefined), and no Lockout for orientation function.  
NEWLP is set to 1 whenever a change in LO, BAFRO, or LAPO occurs. NEWLP bit is cleared anytime PL_STATUS register is  
read.  
0x19: PL_PRE_STATUS Portrait/Landscape Previous Data Status Register  
This register provides the previous orientation data from the previous reading. These register definitions are the same as what  
has been described in Register 0x18.  
0x19 PL_PRE_STATUS Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LO  
-—  
LAPO[2]  
LAPO[1]  
LAPO[0]  
BAFRO[1]  
BAFRO[0]  
0x1A: PL_CFG Portrait/Landscape Configuration Register  
This register configures the behavior of the debounce counters and also sets the Landscape/Portrait 1g lockout mechanism  
threshold offset.  
0x1A PL_CFG Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DBCNTM  
PL_EN  
GOFF[2]  
GOFF[1]  
GOFF[0]  
Table 21. PL_CFG Register Description  
Debounce counter mode selection. Default value: 1  
DBCNTM  
PL_EN  
0: Decrements debounce whenever condition of interest is no longer valid.  
1: Clears counter whenever condition of interest is no longer valid.  
Portrait-Landscape Detection Enable. Default value: 0  
0: Portrait-Landscape Detection is Disabled.  
1: Portrait-Landscape Detection is Enabled.  
1g lockout threshold offset expressed in steps of 50mg. Default value: 011 = 1.15g.  
The offset specified by the GOFF is added or subtracted from 1g to achieve the optimal 1g lockout threshold.  
If GOFF = 011, then the resulting 1g lockout threshold is ±(1g + 150mg).  
000: No offset.  
GOFF  
0x1B: PL_COUNT Portrait Landscape Debounce Register  
This register sets the debounce counter for the orientation state transition. The minimum debounce latency is determined by  
the data rate set by the selected system ODR and PL_COUNT registers. Any change to the ODR or device mode transitioning  
from ACTIVE to STANDBY or vice versa resets the internal landscape/portrait internal debounce counters.  
0x1B PL_COUNT Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DBNCE[7]  
DBNCE[6]  
DBNCE[5]  
DBNCE[4]  
DBNCE[3]  
DBNCE [2]  
DBNCE [1]  
DBNCE [0]  
The debounce counter scales with the ODR, like many of the debounce counters in the other functional blocks. Table 22 shows  
the relationship between the ODR, the step per count and the duration.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
28  
Table 22. PL_COUNT Relationship with the ODR  
Output Data Rate (Hz)  
Step  
2.5 ms  
5 ms  
Duration Range  
2.5 ms – 0.637s  
5 ms – 1.275s  
10 ms – 2.55s  
20 ms – 5.1s  
400  
200  
100  
50  
10 ms  
20 ms  
80 ms  
640 ms  
12.5  
1.56  
80 ms – 20.4s  
640 ms – 163s  
0x1C: PL_BF_ZCOMP Back/Front and Z Compensation Register  
The Z-Tilt angle compensation bits allow the user to adjust the Z-lockout region from 25° up to 50°. The default Z-lockout angle  
is set to the default value of 32° upon power up. The Back to Front trip angle is set by default to ±75° but this angle also can be  
adjusted from a range of 65° to 80° with 5° step increments.  
0x1C: PL_BF_ZCOMP Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BKFR[1]  
BKFR[0]  
ZLOCK[2]  
ZLOCK[1]  
ZLOCK[0]  
Table 23. PL_BF_ZCOMP Description  
Z-Lock Angle Threshold. Range is from 25° to 50°. Step size is 3.6°.  
Default value: 010 32.1°. Maximum value: 111 50°.  
Back Front Trip Angle Threshold. Default: 10 ±75°. Step size is 5°.  
Range: ±(65° to 80°).  
ZLOCK  
BKFR  
Table 24. Back/Front Orientation Definitions  
BKFR  
00  
Back Front Transition  
Front Back Transition  
Z > 100° and Z < 260°  
Z > 105° and Z < 255°  
Z > 110° and Z < 250°  
Z > 115° and Z < 245°  
Z < 80° or Z > 280°  
Z < 75° or Z > 285°  
Z < 70° or Z > 290°  
Z < 65° or Z > 295°  
01  
10  
11  
0x1D - 0x1F: PL_P_L_THS_REG1, 2, 3 Portrait-to-Landscape Threshold Registers  
The following registers represent the Portrait-to-Landscape trip threshold registers. These registers are used to set the trip  
angle for the image transition from the Portrait orientation to the Landscape orientation. The angle can be selected from Table 28  
and the corresponding values for that angle should be written into the three PL_P_L_THS Registers.  
0x1D PL_P_L_THS_REG1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P_L_THS[7]  
P_L_THS[6]  
P_L_THS[5]  
P_L_THS[4]  
P_L_THS[3]  
P_L_THS[2]  
P_L_THS[1]  
P_L_THS[0]  
Table 25. PL_P_L_THS_REG1 Description  
P_L_THS  
Portrait-to-Landscape Threshold Register 1. Default value: 30° 0001_1010.  
0x1E PL_P_L_THS_REG2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P_L_THS[7]  
P_L_THS[6]  
P_L_THS[5]  
P_L_THS[4]  
P_L_THS[3]  
P_L_THS[2]  
P_L_THS[1]  
P_L_THS[0]  
Table 26. PL_P_L_THS_REG2 Description  
P_L_THS  
Portrait-to-Landscape Threshold Register 2. Default value: 30° 0010_0010.  
0x1F PL_P_L_THS_REG3 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P_L_THS[7]  
P_L_THS[6]  
P_L_THS[5]  
P_L_THS[4]  
P_L_THS[3]  
P_L_THS[2]  
P_L_THS[1]  
P_L_THS[0]  
MMA8450Q  
Sensors  
Freescale Semiconductor  
29  
Table 27. PL_P_L_THS_REG3 Description  
P_L_THS  
Portrait-to-Landscape Threshold Register 3. Default value: 30°1101_0100.  
Table 28. Portrait-to-Landscape Trip Angle Thresholds Look-up Table  
Portrait-to-Landscape  
PL_P_L_THS_REG1  
PL_P_L_THS_REG2  
PL_P_L_THS_REG3  
Trip Angle  
15  
0x17  
0x18  
0x18  
0x1A  
0x1B  
0x1D  
0x20  
0x23  
0x27  
0x2D  
0x75  
0x14  
0xF3  
0xA2  
0x1A  
0x92  
0x00  
0x31  
0x71  
0x41  
0x77  
0x23  
0x59  
0x77  
0x1A  
0x33  
0x00  
0xD9  
0xBA  
0xA2  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0x20 - 0x22 PL_L_P_THS_REG1, 2, 3 Landscape-to-Portrait Threshold Registers  
The following registers represent the Landscape-to-Portrait trip threshold registers. These registers are used to set the trip  
angle for the image transition from the Landscape orientation to the Portrait orientation. The angle can be selected from Table 32  
and the corresponding values for that angle should be written into the three PL_L_P_THS Registers.  
0x20 PL_L_P_THS_REG1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
L_P_THS[7]  
L_P_THS[6]  
L_P_THS[5]  
L_P_THS[4]  
L_P_THS[3]  
L_P_THS[2]  
L_P_THS[1]  
L_P_THS[0]  
Table 29. PL_L_P_THS_REG1 Description  
L_P_THS  
Landscape-to-Portrait Threshold Register 1. Default value: 60° 0010_1101.  
0x21 PL_L_P_THS_REG2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
L_P_THS[7]  
L_P_THS[6]  
L_P_THS[5]  
L_P_THS[4]  
L_P_THS[3]  
L_P_THS[2]  
L_P_THS[1]  
L_P_THS[0]  
Table 30. PL_L_P_THS_REG2 Description  
L_P_THS  
Landscape-to-Portrait Threshold Register 2. Default value: 60° 0100_0001.  
0x22 PL_L_P_THS_REG3 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
L_P_THS[7]  
L_P_THS[6]  
L_P_THS[5]  
L_P_THS[4]  
L_P_THS[3]  
L_P_THS[2]  
L_P_THS[1]  
L_P_THS[0]  
Table 31. PL_L_P_THS_REG3 Description  
L_P_THS  
Landscape-to-Portrait Threshold Register 3. Default value: 60° 1010_0010.  
Table 32. Landscape-to-Portrait Trip Angle Thresholds Look-up Table  
Landscape-to-Portrait  
PL_L_P_THS_REG1  
PL_L_P_THS_REG2  
PL_L_P_THS_REG3  
Trip Angle  
30  
0x1A  
0x1B  
0x1D  
0x20  
0x23  
0x22  
0xA2  
0x92  
0x00  
0x31  
0xD4  
0x77  
0x33  
0x00  
0xD9  
35  
40  
45  
50  
MMA8450Q  
Sensors  
Freescale Semiconductor  
30  
Table 32. Landscape-to-Portrait Trip Angle Thresholds Look-up Table  
55  
60  
65  
70  
75  
0x27  
0x2D  
0x35  
0x42  
0x57  
0x71  
0x41  
0x91  
0x31  
0x71  
0xBA  
0xA2  
0x8F  
0x81  
0x77  
6.4  
Freefall & Motion Detection Registers  
For details on how to configure the device for Freefall and/or Motion detection and for sample code, refer to application note  
AN3917.  
Note: There are two Freefall and Motion Detection Functions. The registers from 0x27 - 0x2A have the same descriptions as  
registers 0x23 - 0x26.  
0x23: FF_MT_CFG_1 Freefall and Motion Configuration Register 1  
0x23 FF_MT_CFG_1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ELE  
OAE  
ZHEFE  
ZLEFE  
YHEFE  
YLEFE  
XHEFE  
XLEFE  
Table 33. FF_MT_CFG_1 Description  
Event Latch Enable: Event flag is latched into FF_MT_SRC_1 register. Reading of the FF_MT_SRC_1 register clears the EA  
event flag. Default value: 0  
ELE  
0: Event flag latch disabled; 1: Event flag latch enabled  
Logical Or/And combination of events flags. Default value: 0  
0: Logical AND combination of events flags; 1: Logical OR combination of events flags  
Event flag enable on Z High event. Default value: 0  
OAE  
ZHEFE  
ZLEFE  
YHEFE  
YLEFE  
XHEFE  
XLEFE  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on Z Low event. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on Y High event. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on Y Low event. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on X High event. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on X Low event. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
OAE bit allows the selection between Motion (logical OR combination of X, Y, Z-axis event flags) and Freefall (logical AND  
combination of X, Y, Z-axis event flags) detection.  
ELE denotes whether the enabled event flag will be latched in the FF_MT_SRC_1 register or the event flag status in the  
FF_MT_SRC_1 will indicate the real-time status of the event. If ELE bit is set to a logic 1, then the event active “EA” flag is cleared  
by reading the FF_MT_SRC_1 source register.  
ZHEFE, YHEFE, XHEFE enables the detection of a high g event when the measured acceleration data on X, Y, or Z-axis is  
higher than the threshold set in FF_MT_THS_1 register.  
ZLEFE, YLEFE, XLEFE enables the detection of a low g event when the measured acceleration data on X, Y, or Z-axis is lower  
than the threshold set in FF_MT_THS_1 register.  
FF_MT_THS_1 is the threshold register used by the Freefall/Motion function to detect Freefall or Motion events. The unsigned  
7-bit FF_MT_THS_1 threshold register holds the threshold for the low g event detection where the magnitude of the X and Y and  
Z acceleration values are lower than the threshold value. Conversely the FF_MT_THS_1 also holds the threshold for the high g  
event detection where the magnitude of the X, or Y, or Z-axis acceleration values is higher than the threshold value.  
MMA8450Q  
Sensors  
31  
Freescale Semiconductor  
0x24 FF_MT_SRC_1 Register  
0x24: FF_MT_SRC_ Freefall and Motion Source Register (0x24) (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EA  
ZHE  
ZLE  
YHE  
YLE  
XHE  
XLE  
Table 34. FF_MT_SRC_1 Description  
Event Active Flag. Default value: 0  
EA  
0: No event flag has been asserted; 1: one or more event flags have been asserted.  
Z High Event Flag. Default value: 0  
ZHE  
ZLE  
YHE  
YLE  
XHE  
XLE  
0: No Z High event detected, 1: Z High event has been detected  
Z Low Event Flag. Default value: 0  
0: No Z Low event detected, 1: Z Low event has been detected  
Y High Event Flag. Default value: 0  
0: No Y High event detected, 1: Y High event has been detected  
Y Low Event Flag. Default value: 0  
0: No Y Low event detected, 1: Y Low event has been detected  
X High Event Flag. Default value: 0  
0: No X High event detected, 1: X High event has been detected  
X Low Event Flag. Default value: 0  
0: No X Low event detected, 1: X Low event has been detected  
This register keeps track of the acceleration event which is triggering (or has triggered, in case of ELE bit in FF_MT_CFG_1  
register being set to 1) the event flag. In particular EA is set to a logic 1 when the logical combination of acceleration events flags  
specified in FF_MT_CFG_1 register is true. This bit is used in combination with the values in INT_EN_FF_MT_1 and  
INT_CFG_FF_MT_1 register to generate the Freefall/Motion interrupts.  
An X,Y, or Z high or an X,Y, and Z high event is true when the acceleration value of the X or Y or Z axes is higher than the  
preset threshold value defined in the FF_MT_THS_1 register.  
Conversely X,Y, or Z high or an X,Y, and Z low event is true when the acceleration value of the X and Y and Z axes are lower  
than the preset threshold value defined in the FF_MT_THS_1 register.  
When the ELE bit is set, only the EA bit is latched. The other bits are not latched. To see the events that have been detected,  
the register must be read immediately. The EA bit will remain high until the source register is read.  
0x25: FF_MT_THS_1 Freefall and Motion Threshold 1 Register  
0x25 FF_MT_THS_1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DBCNTM  
THS6  
THS5  
THS4  
THS3  
THS2  
THS1  
THS0  
Table 35. FF_MT_THS_1 Description  
Debounce counter mode selection. Default value: 0.  
DBCNTM  
THS[6:0]  
0: increments or decrements debounce, 1: increments or clears counter.  
Freefall /Motion Threshold: default value: 000 0000  
The minimum threshold resolution is dependent on the selected acceleration g range and the threshold register has a range  
of 0 to 127.  
Therefore:  
If the selected acceleration g range is 8g mode (FS = 11), the minimum threshold resolution is 0.063g/LSB. The maximum  
value is 8g.  
If the selected acceleration g range is 4g mode (FS = 10), the minimum threshold resolution is 0.0315g/LSB. The  
maximum value is 4g.  
If the selected acceleration g range is 2g mode (FS = 01), the minimum threshold resolution is 0.01575g/LSB. The  
maximum value is 2g.  
When DBCNTM bit is a logic ‘1’, the debounce counter is cleared to 0 whenever the event of interest is no longer true (Figure  
12 part b) while if the DBCNTM bit is set a logic ‘0’ the debounce counter is decremented by 1 whenever the event of interest is  
no longer true (Figure 12 part c) until the debounce counter reaches 0 or the event of interest becomes active.  
Decrementing of the debounce counter acts as a median filter enabling the system to filter out irregular spurious events which  
might impede the detection of the event.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
32  
Low g Event on  
all 3-axis  
(Freefall)  
Count Threshold  
(a)  
FF_MT  
Counter  
Value  
EA FF  
Low g Event on  
all 3-axis  
(Freefall)  
DBCNTM = 1  
(b)  
Count Threshold  
FF_MT  
Counter  
Value  
EA FF  
Low g Event on  
all 3-axis  
(Freefall)  
DBCNTM = 0  
(c)  
Count Threshold  
FF_MT  
Counter  
Value  
EA FF  
Figure 12. DBCNTM Bit Function  
0x26: FF_MT_COUNT_1 Freefall Motion Count 1 Register  
This register sets the number of debounce sample counts for the event trigger.  
0x26 FF_MT_COUNT_1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 36. FF_MT_COUNT_1 Description  
D[7-0]  
Count value. Default value: 0000_0000  
D7 - D0 define the number of debounce sample counts for the event trigger. When the debounce counter exceeds the  
FF_MT_COUNT_1 value, a Freefall/Motion event flag is set. The time step used for the debounce sample count depends on the  
ODR chosen (Table 37).  
Table 37. FF_MT_COUNT_1 and FF_MT_COUNT_2 Relationship with the ODR  
Output Data Rate (Hz)  
Step  
2.5 ms  
5 ms  
Duration Range  
2.5 ms – 0.63s  
5 ms – 1.275s  
10 ms – 2.55s  
20 ms – 5.1s  
400  
200  
100  
50  
10 ms  
20 ms  
80 ms  
640 ms  
12.5  
1.56  
80 ms – 20.4s  
640 ms – 163s  
An ODR of 100 Hz and a FF_MT_COUNT_1 value of 15 would result in a debounce response time of 150 ms.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
33  
0x27: FF_MT_CFG_2 Freefall and Motion Configuration 2 Register  
These registers all have the same descriptions as above for Registers 0x23 - 0x26.  
0x27 FF_MT_CFG_2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ELE  
OAE  
ZHEFE  
ZLEFE  
YHEFE  
YLEFE  
XHEFE  
XLEFE  
0x28: FF_MT_SRC_2 Freefall and Motion Source 2 Register  
0x28 FF_MT_SRC_2 Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EA  
ZHE  
ZLE  
YHE  
YLE  
XHE  
XLE  
0x29: FF_MT_THS_2 Freefall and Motion Threshold 2 Register  
0x29 FF_MT_THS_2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DBCNTM  
THS6  
THS5  
THS4  
THS3  
THS2  
THS1  
THS0  
0x2A: FF_MT_COUNT_2 Freefall and Motion Debounce 2 Register  
0x2A FF_MT_COUNT_2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
6.5  
Transient Detection Registers  
For more information on the uses of the transient function and sample code, refer to application note AN3918.  
0x2B: TRANSIENT_CFG Transient Configuration Register  
The transient detection mechanism can be configured to raise an interrupt when the magnitude of the high pass filtered data  
is greater than a user definable threshold. The TRANSIENT_CFG register is used to enable the transient interrupt generation  
mechanism for each of the 3 axes (X, Y, Z) of acceleration.  
0x2B TRANSIENT_ CFG Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ELE  
ZTEFE  
YTEFE  
XTEFE  
Table 38. TRANSIENT_ CFG Description  
Transient event flag is latched into the TRANSIENT_SRC register. Reading of the TRANSIENT_SRC register clears the event  
flag. Default value: 0  
ELE  
0: event flag latch disabled; 1: Event flag latch enabled  
Event flag enable on Z-axis. Default value: 0  
ZTEFE  
YTEFE  
XTEFE  
0: Event detection disabled; 1: Event detection Enabled  
Event flag enable on Y-axis. Default value: 0  
0: Event detection disabled; 1: Event detection Enabled  
Event flag enable on X-axis. Default value: 0  
0: Event detection disabled; 1: Event detection Enabled  
0x2C: TRANSIENT_SRC Transient Source Register  
The transient source register is read to determine the source of an interrupt. When the ELE bit is set in Register0x2B the “EA”  
event Active bit in the source register is latched. The other bits in the source register are not latched. The source register must  
be read immediately following the interrupt to determine the axes the event occurred on.  
0x2C TRANSIENT_SRC Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EA  
ZTRANSE  
YTRANSE  
XTRANSE  
MMA8450Q  
Sensors  
Freescale Semiconductor  
34  
Table 39. TRANSIENT_SRC Description  
Event Active Flag. Default value: 0  
EA  
0: No event flag asserted; 1: one or more event flag has been asserted.  
Z transient event. Default value: 0  
ZTRANSE  
YTRANSE  
XTRANSE  
0: No Z event detected, 1: Z event detected  
Y transient event. Default value: 0  
0: No Y event detected, 1: Y event detected  
X transient event. Default value: 0  
0: No X event detected, 1: X event detected  
0x2D: TRANSIENT_THS Transient Threshold Register  
The TRANSIENT_THS register sets the threshold limit for the high pass filtered acceleration. The value in the  
TRANSIENT_THS register corresponds to a g value which is compared against the values of OUT_X_DELTA, OUT_Y_DELTA,  
and OUT_Z_DELTA. If the acceleration exceeds the threshold limit an event flag is raised and an interrupt is generated if  
interrupts are enabled.  
0x2D TRANSIENT_THS Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DBCNTM  
THS6  
THS5  
THS4  
THS3  
THS2  
THS1  
THS0  
Table 40. TRANSIENT_THS Description  
DBCNTM  
THS[6:0]  
Debounce counter mode selection. Default value: 0 0: increments or decrements debounce; 1: increments or clears counter  
Transient Threshold: default value: 000_0000  
The minimum threshold resolution is dependent on the selected acceleration g range and the threshold register has a range  
of 0 to 127.  
Therefore:  
If the selected acceleration g range is 8g mode (FS = 11), the minimum threshold resolution is 0.063g/LSB. The maximum  
is 8g.  
If the selected acceleration g range is 4g mode (FS = 10), the minimum threshold resolution is 0.0315g/LSB. The  
maximum is 4g.  
If the selected acceleration g range is 2g mode (FS = 01), the minimum threshold resolution is 0.01575g/LSB. The  
maximum is 2g.  
The DBCNTM bit behaves in the same manner described previously for the Motion/Freefall 1.  
0x2E: TRANSIENT_COUNT Transient Debounce Register  
The TRANSIENT_COUNT sets the minimum number of debounce counts continuously matching the condition where the  
unsigned value of OUT_X_DELTA or OUT_Y_DELTA or OUT_Z_DELTA register is greater than the user specified value of  
TRANSIENT_THS.  
0x2E TRANSIENT_COUNT Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 41. TRANSIENT_COUNT Description  
D[7-0]  
Count value. Default value: 0000_0000  
The time step for the Transient detection debounce counter is set by the value of the system ODR.  
Table 42. TRANSIENT_COUNT relationship with the ODR  
Output Data Rate (Hz)  
Step  
2.5 ms  
5 ms  
Duration Range  
2.5 ms – 0.637s  
5 ms – 1.275s  
10 ms – 2.55s  
20 ms – 5.1s  
400  
200  
100  
50  
10 ms  
20 ms  
80 ms  
640 ms  
12.5  
1.56  
80 ms – 20.4s  
640 ms – 163s  
An ODR of 100 Hz and a TRANSIENT_COUNT value of 15 would result in a debounce response time of 150 ms.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
35  
6.6  
Tap Detection Registers  
For more details of how to configure the tap detection and sample code please refer to Freescale application note, AN3919.  
The tap detection registers are referred to as “Pulse”.  
0x2F: PULSE_CFG Pulse Configuration Register  
This register configures the event flag for the tap detection for enabling/disabling the detection of a single and double pulse  
on each of the axes.  
0x2F PULSE_CFG Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DPA  
ELE  
ZDPEFE  
ZSPEFE  
YDPEFE  
YSPEFE  
XDPEFE  
XSPEFE  
Table 43. PULSE_CFG Description  
Double Pulse Abort.  
0: Double Pulse detection is not aborted if the start of a pulse is detected during the time period specified by the PULSE_LTCY  
register.  
DPA  
1: Setting the DPA bit momentarily suspends the double tap detection if the start of a pulse is detected during the time period  
specified by the PULSE_LTCY register and the pulse ends before the end of the time period specified by the PULSE_LTCY  
register.  
Pulse event flags are latched into the PULSE_SRC register. Reading of the PULSE_SRC register clears the event flag.  
Default value: 0  
ELE  
0: Event flag latch disabled; 1: Event flag latch enabled  
Event flag enable on double pulse event on Z-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
ZDPEFE  
ZSPEFE  
YDPEFE  
YSPEFE  
XDPEFE  
XSPEFE  
Event flag enable on single pulse event on Z-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on double pulse event on Y-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on single pulse event on Y-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on double pulse event on X-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
Event flag enable on single pulse event on X-axis. Default value: 0  
0: Event detection disabled; 1: Event detection enabled  
0x30: PULSE_SRC Pulse Source Register  
This register indicates a double or single pulse event has occurred. The corresponding axis and event must be enabled in  
Register 0x2F for the event to be seen in the source register.  
0x30 PULSE_SRC Register (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EA  
ZDPE  
ZSPE  
YDPE  
YSPE  
XDPE  
XSPE  
Table 44. TPULSE_SRC Description  
Event Active Flag. Default value: 0  
EA  
0: no event flag has been asserted; 1: one or more events have been asserted  
Double pulse on Z-axis event. Default value: 0  
0: no event detected; 1: Double Z event detected  
Single pulse on Z-axis event. Default value: 0  
0: no event detected; 1: Single Z event detected  
Double pulse on Y-axis event. Default value: 0  
0: no event detected; 1: Double Y event detected  
Single pulse on Y-axis event. Default value: 0  
0: no event detected; 1: Single Y event detected  
Double pulse on X-axis event. Default value: 0  
0: no event detected; 1: Double X event detected  
Single pulse on X-axis event. Default value: 0  
0: no event detected; 1: Single X event detected  
ZDPE  
ZSPE  
YDPE  
YSPE  
XDPE  
XSPE  
MMA8450Q  
Sensors  
Freescale Semiconductor  
36  
0x31 - 0x33: PULSE_THSX, Y, Z Pulse Threshold for X, Y & Z Registers  
The pulse threshold can be set separately for the X, Y and Z axes. The threshold values range from 0 to 31 counts with steps  
of 0.258g/LSB at a fixed 8g acceleration range, thus the minimum resolution is always fixed at 0.258g/LSB irrespective of the  
selected g range.  
The PULSE_THSX, PULSE_THSY and PULSE_THSZ registers define the threshold which is used by the system to start the  
pulse detection procedure. The threshold value is expressed over 5-bits as an unsigned number.  
0x31 PULSE_THSX Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
THSX4  
THSX3  
THSX2  
THSX1  
THSX0  
Table 45. PULSE_THSX Description  
THSX4, THSX0  
Pulse Threshold on X-axis. Default value: 0_0000  
0x32 PULSE_THSY Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
THSY4  
THSY3  
THSY2  
THSY1  
THSY0  
Table 46. PULSE_THSY Description  
THSY4, THSY0  
Pulse Threshold on Y-axis. Default value: 0_0000  
0x33 PULSE_THSZ Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
THSZ4  
THSZ3  
THSZ2  
THSZ1  
THSZ0  
Table 47. PULSE_THSZ Description  
THSZ4, THSZ0  
Pulse Threshold on Z-axis. Default value: 0_0000  
0x34: PULSE_TMLT Pulse Time Window 1 Register  
0x34 PULSE_TMLT Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Tmlt7  
Tmlt6  
Tmlt5  
Tmlt4  
Tmlt3  
Tmlt2  
Tmlt1  
Tmlt0  
The bits Tmlt7 through Tmlt0 define the maximum time interval that can elapse between the start of the acceleration on the  
selected axis exceeding the specified threshold and the end when the acceleration on the selected axis must go below the  
specified threshold to be considered a valid pulse.  
The minimum time step for the pulse time limit is defined in Table 48. Maximum time for a given ODR is the minimum time step  
at the given power mode multiplied by 255. The time steps available are dependent on whether the device is in Normal Power  
mode or in Low Power mode. Notice in the table below that the time step is twice as long in Low Power mode.  
Table 48. Time Step for PULSE Time Limit at ODR and Power Mode  
Output Data Rate (Hz)  
Step at Normal Mode  
Step at Low Power Mode  
400  
200  
100  
50  
0.625 ms  
1.25 ms  
2.5 ms  
5 ms  
1.25 ms  
2.5 ms  
5.0 ms  
10 ms  
10 ms  
10 ms  
12.5  
1.56  
5 ms  
5 ms  
Therefore an ODR setting of 400 Hz with normal power mode would result in a maximum pulse time limit of (0.625 ms * 255)  
159 ms.  
MMA8450Q  
Sensors  
37  
Freescale Semiconductor  
0x35: PULSE_LTCY Pulse Latency Timer Register  
0x35 PULSE_LTCY Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Ltcy7  
Ltcy6  
Ltcy5  
Ltcy4  
Ltcy3  
Ltcy2  
Ltcy1  
Ltcy0  
The bits Ltcy7 through Ltcy0 define the time interval that starts after the first pulse detection. During this time interval, all pulses  
are ignored. Note: This timer must be set for single pulse and for double pulse.  
The minimum time step for the pulse latency is defined in Table 49. The maximum time is the time step at the ODR and Power  
Mode multiplied by 255. Notice that the time step is twice the duration if the device is operating in Low Power mode, as shown  
below.  
Table 49. Time Step for PULSE Latency at ODR and Power Mode  
Output Data Rate (Hz)  
Step at Normal Mode  
1.25 ms  
Step at Low Power Mode  
400  
200  
100  
50  
2.5 ms  
5.0 ms  
20 ms  
20 ms  
20 ms  
20 ms  
2.5 ms  
5.0 ms  
10 ms  
12.5  
1.56  
10 ms  
10 ms  
0x36: PULSE_WIND Second Pulse Time Window Register  
0x36 PULSE_WIND Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Wind0  
Wind7  
Wind6  
Wind5  
Wind4  
Wind3  
Wind2  
Wind1  
The bits Wind7 through Wind0 define the maximum interval of time that can elapse after the end of the latency interval in which  
the start of the second pulse event must be detected provided the device has been configured for double pulse detection. The  
detected second pulse width must be shorter than the time limit constraints specified by the PULSE_TMLT register, but the end  
of the double pulse need not finish within the time specified by the PULSE_WIND register.  
The minimum time step for the pulse window is defined in Table 50. The maximum time is the time step at the ODR and Power  
Mode multiplied by 255.  
Table 50. Time Step for PULSE Detection Window at ODR and Power Mode  
Output Data Rate (Hz)  
Step at Normal Mode  
1.25 ms  
Step at Low Power Mode  
400  
200  
100  
50  
2.5 ms  
5.0 ms  
20 ms  
20 ms  
20 ms  
20 ms  
2.5 ms  
5.0 ms  
10 ms  
12.5  
1.56  
10 ms  
10 ms  
6.7  
Auto-Sleep Registers  
For additional information on how to configure the device for the Auto-Sleep/Wake feature, refer to AN3921.  
0x37: ASLP_COUNT Auto-Sleep Inactivity Timer Register  
The ASLP_COUNT register sets the minimum time period of inactivity required to change current ODR value from the value  
specified in the DR[2:0] to ASLP_RATE (Reg 0x38) value provided the SLPE bit is set to a logic ‘1’ in the CTRL_REG2 register.  
0x37 ASLP_COUNT Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 51. ASLP_COUNT Description  
D[7-0]  
Duration value. Default value: 0000 0000  
MMA8450Q  
Sensors  
Freescale Semiconductor  
38  
D7-D0 defines the minimum duration time to change current ODR value from DR to ASLP_RATE. Time step and maximum  
value depend on the ODR chosen (see Table 52).  
Table 52. ASLP_COUNT Relationship with ODR  
Output Data Rate (ODR)  
Duration  
0 to 81s  
Step  
400  
200  
100  
50  
320 ms  
320 ms  
320 ms  
320 ms  
320 ms  
640 ms  
0 to 81s  
0 to 81s  
0 to 81s  
12.5  
1.56  
0 to 81s  
0 to 325.125s  
In order to wake the device, the desired function or functions must be enabled and set to “Wake From Sleep”. All enabled  
functions will still function in sleep mode at the sleep ODR. Only the functions that have been selected for “Wake From Sleep”  
will wake the device.  
MMA8450Q has 6 functions that can be used to keep the sensor from falling asleep namely, Transient, Orientation, Tap,  
Motion/FF1 and Motion/FF2 and the FIFO. One or more of these functions can be enabled. In order to wake the device, functions  
are provided namely, Transient, Orientation, Tap, and the two Motion/Freefall. Note that the FIFO does not wake the device. The  
Auto-Wake/Sleep interrupt does not affect the wake/sleep, nor does the data ready interrupt. The FIFO gate (bit 7) in Register  
0x3A, when set, will hold the last data in the FIFO before transitioning to a different ODR. After the buffer is flushed, it will accept  
new sample data at the current ODR. See Register 0x3A for the wake from sleep bits.  
If the Auto-Sleep bit is disabled, then the device can only toggle between Standby and Wake Mode by writing to the FS0 and  
FS1 bits in Register 0x38 Ctrl Reg1. If Auto-Sleep interrupt is enabled, transitioning from Active mode to Auto-Sleep mode and  
vice versa generates an interrupt.  
0x38: CTRL_REG1 System Control 1 Register  
0x38 CTRL_REG1 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ASLP_RATE1  
ASLP_RATE0  
0
DR2  
DR1  
DR0  
FS1  
FS0  
Table 53. CTRL_REG1 Description  
This register configures the Auto-Wake sample frequency when the device is in Sleep Mode.  
See Table 54 for more information.  
ASLP_RATE [1:0]  
DR[2:0]  
Data rate selection. Default value: 000  
Full Scale selection. Default value: 00  
FS[1:0]  
(00: Standby mode; 01: active mode ±2g; 10: active mode ±4g; 11: active mode ±8g)  
Table 54. Sleep Mode Poll Rate Description  
ASLP_RATE1  
ASLP_RATE0  
Frequency (Hz)  
0
0
1
1
0
1
0
1
50  
25  
12.5  
1.56  
It is important to note that when the device is in Auto-Sleep mode, the system ODR and the data rate for all the system  
functional blocks are overwritten by the data rate set by the ASLP_RATE field in Register 0x38.  
DR[2:0] bits select the output data rate (ODR) for acceleration samples. The default value is 000 for a data rate of 400 Hz.  
Table 55. System Output Data Rate Selection  
DR2  
DR1  
DR0  
Output Data Rate (ODR)  
Time Between Data Samples  
0
0
0
0
0
1
400 Hz  
200 Hz  
2.5 ms  
5 ms  
MMA8450Q  
Sensors  
Freescale Semiconductor  
39  
Table 55. System Output Data Rate Selection  
0
0
1
1
1
1
0
0
0
1
0
1
100 Hz  
50 Hz  
10 ms  
20 ms  
80 ms  
640 ms  
12.5 Hz  
1.563 Hz  
FS[1:0] bits select between standby mode and active mode. The default value is 00 for standby mode.  
Table 56. Full Scale Selection  
FS1  
0
FS0  
0
Mode  
Standby  
Active  
g Range  
0
1
±2g  
1
0
Active  
±4g  
1
1
Active  
±8g  
0x39: CTRL_REG2 System Control 2 Register  
0x39 CTRL_REG2 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
SLPE  
Bit 0  
ST  
BOOT  
0
0
0
0
MODS  
Table 57. CTRL_REG2 Description  
Self-Test Enable. Default value: 0  
ST  
0: Self-Test disabled; 1: Self-Test enabled  
Reboot device content (Software Reset). Default value: 0  
0: device reboot disabled; 1: device reboot enabled.  
Auto-Sleep enable. Default value: 0  
BOOT  
SLPE(1)  
MODS  
0: Auto-Sleep is not enabled;  
1: Auto-Sleep is enabled.  
Low power mode / Normal mode selection. Default value: 0  
0: normal mode; 1: low power mode.  
1. When SLPE = 1, the transitioning between sleep mode and wake mode results in a FIFO flush and a reset of internal functional block counters. All functional block  
status information are preserve except otherwise stated. See Table 58 for more information about the FIFO_GATE bit in CTRL_REG3 register.  
ST bit activates the Self-Test function. When ST is set to one, an output change will occur to the device outputs (refer to Table 2  
and Table 3) thus allowing host application to check the functionality of the entire signal chain.  
BOOT bit is used to activate the software reset. The Boot mechanism can be enabled in STANDBY and ACTIVE mode.  
When the Boot bit is enabled the Boot mechanism resets all functional block registers and loads the respective internal  
registers with default NVM values.  
The system will automatically transition to standby mode if not already in standby mode before the software reset (re-BOOT  
process) can occur.  
Note: The I2C communication system is reset to avoid accidental corrupted data access.  
0x3A: CTRL_REG3 Interrupt Control Register  
0x3A CTRL_REG3 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FIFO_GATE  
WAKE_TRANS WAKE_LNDPRT WAKE_PULSE WAKE_FF_MT_1 WAKE_FF_MT_2  
IPOL  
PP_OD  
MMA8450Q  
Sensors  
Freescale Semiconductor  
40  
Table 58. CTRL_REG3 Description  
0: FIFO gate is bypassed. FIFO is flushed upon the system mode transitioning from wake-to-sleep mode or from sleep-to-  
wake mode.  
1: The FIFO input buffer is blocked when transitioning from “wake-to-sleep” mode or from “sleep-to-wake” mode until the  
FIFO is flushed. Although the system transitions from “wake-to-sleep” or from “sleep-to-wake” the contents of the FIFO  
buffer are preserved, new data samples are ignored until the FIFO is emptied by the host application.  
If the FIFO_GATE bit is set to logic 1 and the FIFO buffer is not emptied before the arrival of the next sample, then the  
FGERR bit in the SYS_MOD register (0x14) will be asserted. The FGERR bit remains asserted as long as the FIFO buffer  
remains un-emptied.  
FIFO_GATE  
Emptying the FIFO buffer clears the FGERR bit in the SYS_MOD register.  
0: Transient function is bypassed in sleep mode  
WAKE_TRANS  
WAKE_LNDPRT  
WAKE_PULSE  
WAKE_FF_MT_1  
WAKE_FF_MT_2  
IPOL  
1: Transient function interrupt can wake up system  
0: Orientation function is bypassed in sleep mode  
1: Orientation function interrupt can wake up system  
0: Pulse function is bypassed in sleep mode  
1: Pulse function interrupt can wake up system  
0: Freefall/Motion1 function is bypassed in sleep mode  
1: Freefall/Motion1 function interrupt can wake up  
0: Freefall/Motion2 function is bypassed in sleep mode  
1: Freefall/Motion2 function interrupt can wake up system  
Interrupt polarity active high, or active low. Default value 0.  
0: active low; 1: active high  
Push-pull/Open Drain selection on interrupt pad. Default value 0.  
0: push-pull; 1: open drain  
PP_OD  
IPOL bit selects the polarity of the interrupt signal. When IPOL is ‘0’ any interrupt event will signalled with a logical 0.  
PP_OD bit configures the interrupt pin to Push-Pull or in Open Drain mode. The open drain configuration can be used for  
connecting multiple interrupt signals on the same interrupt line.  
0x3C: CTRL_REG5 Register (Read/Write)  
0x3C CTRL_REG5 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT_EN_ASLP  
INT_EN_FIFO  
INT_EN_TRANS  
INT_EN_LNDPRT  
INT_EN_PULSE  
INT_EN_FF_MT_1 INT_EN_FF_MT_2 INT_EN_DRDY  
Table 59. interrupt Enable Register Description  
Interrupt Enable  
Description  
Interrupt Enable. Default value: 0  
INT_EN_ASLP  
INT_EN_FIFO  
INT_EN_TRANS  
0: Auto-Sleep/Wake interrupt disabled; 1: Auto-Sleep/Wake interrupt enabled.  
Interrupt Enable. Default value: 0  
0: FIFO interrupt disabled; 1: FIFO interrupt enabled.  
Interrupt Enable. Default value: 0  
0: Transient interrupt disabled; 1: Transient interrupt enabled.  
Interrupt Enable. Default value: 0  
INT_EN_LNDPRT  
0: Orientation (Landscape/Portrait) interrupt disabled.  
1: Orientation (Landscape/Portrait) interrupt enabled.  
Interrupt Enable. Default value: 0  
INT_EN_PULSE  
INT_EN_FF_MT_1  
INT_EN_FF_MT_2  
INT_EN_DRDY  
0: Pulse Detection interrupt disabled; 1: Pulse Detection interrupt enabled  
Interrupt Enable. Default value: 0  
0: Freefall/Motion1 interrupt disabled; 1: Freefall/Motion1 interrupt enabled  
Interrupt Enable. Default value: 0  
0: Freefall/Motion2 interrupt disabled; 1: Freefall/Motion2 interrupt enabled  
Interrupt Enable. Default value: 0  
0: Data Ready interrupt disabled; 1: Data Ready interrupt enabled  
MMA8450Q  
41  
Sensors  
Freescale Semiconductor  
The corresponding functional block interrupt enable bit allows the functional block to route its event detection flags to the  
system’s interrupt controller. The interrupt controller routes the enabled functional block interrupt to the INT1 or INT2 pin.  
0x3C: CTRL_REG5 Interrupt Configuration Register  
0x3C CTRL_REG5 Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT_CFG_ASLP  
INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1INT_CFG_FF_MT_2 INT_CFG_DRDY  
Table 60. Interrupt Configuration Register Description  
Interrupt Configuration  
Description  
INT1/INT2 Configuration. Default value: 0  
INT_CFG_ASLP  
INT_CFG_FIFO  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
INT_CFG_TRANS  
INT_CFG_LNDPRT  
INT_CFG_PULSE  
INT_CFG_FF_MT_1  
INT_CFG_FF_MT_2  
INT_CFG_DRDY  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
INT1/INT2 Configuration. Default value: 0  
0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin  
The system’s interrupt controller shown in Figure 10 uses the corresponding bit field in the CTRL_REG5 register to determine  
the routing table for the INT1 and INT2 interrupt pins. If the bit value is logic ‘0’ the functional block’s interrupt is routed to INT2,  
and if the bit value is logic ‘1’ then the interrupt is routed to INT1. One or more functions can assert an interrupt pin; therefore a  
host application responding to an interrupt should read the INT_SOURCE (0x15) register to determine the appropriate sources  
of the interrupt.  
6.8  
User Offset Correction Registers  
For more information on how to calibrate the 0g Offset refer to AN3916 Offset Calibration Using the MMA8450Q. The 2’s  
complement offset correction registers values are used to realign the zero g position of the X, Y, and Z-axis after device board  
mount. The resolution of the offset registers is 3.906 mg per LSB. The 2’s complement 8-bit value would result in an offset  
compensation range ±0.5g.  
0x3D: OFF_X Offset Correction X Register  
0x3D OFF_X Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 61. OFF_X Description  
D7-D0  
X -axis offset trim LSB value. Default value: 0000_0000.  
0x3E: OFF_Y Offset Correction Y Register  
0x3E OFF_Y Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 62. OFF_Y Description  
D7-D0  
Y-axis offset trim LSB value. Default value: 0000_0000.  
0x3F: OFF_Z Offset Correction Z Register  
0x3F OFF_Z Register (Read/Write)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 63. OFF_Z Description  
D7-D0  
Z-axis offset trim LSB value. Default value: 0000_0000.  
MMA8450Q  
Sensors  
Freescale Semiconductor  
42  
Appendix A  
Table 64. MMA8450Q Register Map  
Reg  
Name  
Definition  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
STATUS  
OUT_X_MSB  
OUT_Y_MSB  
OUT_Z_MSB  
STATUS  
Data Status R  
8-bit X Data R  
ZYXOW  
XD11  
YD11  
ZD11  
ZYXOW  
0
ZOW  
YOW  
XOW  
ZYXDR  
XD7  
ZDR  
XD6  
YDR  
XD5  
XDR  
XD4  
XD10  
XD9  
XD8  
8-bit Y Data R  
YD10  
YD9  
YD8  
YD7  
YD6  
YD5  
YD4  
8-bit Z Data R  
ZD10  
ZD9  
ZD8  
ZD7  
ZD6  
ZD5  
ZD4  
Data Status R  
ZOW  
YOW  
XOW  
ZYXDR  
XD3  
ZDR  
YDR  
XDR  
OUT_X_LSB  
OUT_X_MSB  
OUT_Y_LSB  
OUT_Y_MSB  
OUT_Z_LSB  
OUT_Z_MSB  
STATUS  
12-bit X Data R  
0
0
0
XD2  
XD1  
XD0  
12-bit X Data R  
XD11  
0
XD10  
XD9  
XD8  
XD7  
XD6  
XD5  
XD4  
12-bit Y Data R  
0
0
0
YD3  
YD2  
YD1  
YD0  
12-bit Y Data R  
YD11  
0
YD10  
YD9  
YD8  
YD7  
YD6  
YD5  
YD4  
12-bit Z Data R  
0
0
0
ZD3  
ZD2  
ZD1  
ZD0  
12-bit Z Data R  
ZD11  
ZYXOW  
XD7  
ZD10  
ZD9  
ZD8  
ZD7  
ZD6  
ZD5  
ZD4  
Data Status R  
ZOW  
YOW  
XOW  
ZYXDR  
XD3  
ZDR  
YDR  
XDR  
OUT_X_DELTA  
OUT_Y_DELTA  
OUT_Z_DELTA  
WHO_AM_I  
8-bit Transient X Data R  
8-bit Transient Y Data R  
8-bit Transient Z Data R  
ID Register R  
XD6  
XD5  
XD4  
XD2  
XD1  
XD0  
YD7  
YD6  
YD5  
YD4  
YD3  
YD2  
YD1  
YD0  
ZD7  
ZD6  
ZD5  
ZD4  
ZD3  
ZD2  
ZD1  
ZD0  
F_STATUS  
FIFO Status R  
F_OVF  
XD11  
0
F_WMRK_FLAG  
F_CNT5  
F_CNT4  
F_CNT3  
XD7  
F_CNT2  
XD6  
F_CNT1  
XD5  
F_CNT0  
XD4  
F_8DATA  
8-bit FIFO Data R  
12-bit FIFO Data R  
FIFO Setup R/W  
System Mode R  
Interrupt Status R  
Data Config. R/W  
HP Filter Setting R/W  
PL Status R  
XD10  
0
XD9  
XD8  
F_12DATA  
0
0
XD3  
XD2  
XD1  
XD0  
F_SETUP  
F_MODE1  
PERR  
SRC_ASLP  
FDE  
F_MODE0  
FGERR  
SRC_FIFO  
0
F_WMRK5  
F_WMRK4  
F_WMRK3  
0
F_WMRK2  
0
F_WMRK1  
SYSMOD1  
SRC_FF_MT_2  
YDEFE  
SEL1  
F_WMRK0  
SYSMOD0  
SRC_DRDY  
XDEFE  
SEL0  
SYSMOD  
0
0
INT_SOURCE  
XYZ_DATA_CFG  
HP_FILTER_CUTOFF  
PL_STATUS  
PL_PRE_STATUS  
PL_CFG  
SRC_TRANS  
SRC_LNDPRT  
SRC_PULSE  
SRC_FF_MT_1  
ZDEFE  
0
0
0
0
0
0
0
0
NEWLP  
-
LO  
-
LAPO[2]  
LAPO[2]  
-
LAPO[1]  
LAPO[1]  
-
LAPO[0]  
LAPO[0]  
GOFF[2]  
DBNCE [2]  
BAFRO[1]  
BAFRO[1]  
GOFF[1]  
DBNCE [1]  
BAFRO[0]  
BAFRO[0]  
GOFF[0]  
DBNCE [0]  
Previous PL Status R  
PL Configuration R/W  
PL Debounce R/W  
LO  
-
DBCNTM  
DBNCE[7]  
PL_EN  
DBNCE[6]  
-
PL_COUNT  
DBNCE[5]  
DBNCE[4]  
DBNCE[3]  
PL Back/Front and Z  
Compensation R/W  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
PL_BF_ZCOMP  
PL_P_L_THS_REG1  
PL_P_L_THS_REG2  
PL_P_L_THS_REG3  
PL_L_P_THS_REG1  
PL_L_P_THS_REG2  
PL_L_P_THS_REG3  
FF_MT_CFG_1  
BKFR[1]  
P_L_THS[7]  
P_L_THS[7]  
P_L_THS[7]  
L_P_THS[7]  
L_P_THS[7]  
L_P_THS[7]  
ELE  
BKFR[0]  
P_L_THS[6]  
P_L_THS[6]  
P_L_THS[6]  
L_P_THS[6]  
L_P_THS[6]  
L_P_THS[6]  
OAE  
-
-
-
ZLOCK[2]  
P_L_THS[2]  
P_L_THS[2]  
P_L_THS[2]  
L_P_THS[2]  
L_P_THS[2]  
L_P_THS[2]  
YLEFE  
ZLOCK[1]  
P_L_THS[1]  
P_L_THS[1]  
P_L_THS[1]  
L_P_THS[1]  
L_P_THS[1]  
L_P_THS[1]  
XHEFE  
ZLOCK[0]  
P_L_THS[0]  
P_L_THS[0]  
P_L_THS[0]  
L_P_THS[0]  
L_P_THS[0]  
L_P_THS[0]  
XLEFE  
Portrait-to-Landscape  
Threshold Setting 1 R/W  
P_L_THS[5]  
P_L_THS[5]  
P_L_THS[5]  
L_P_THS[5]  
L_P_THS[5]  
L_P_THS[5]  
ZHEFE  
P_L_THS[4]  
P_L_THS[4]  
P_L_THS[4]  
L_P_THS[4]  
L_P_THS[4]  
L_P_THS[4]  
ZLEFE  
P_L_THS[3]  
P_L_THS[3]  
P_L_THS[3]  
L_P_THS[3]  
L_P_THS[3]  
L_P_THS[3]  
YHEFE  
Portrait-to-Landscape  
Threshold Setting 2 R/W  
Portrait-to-Landscape  
Threshold Setting 3 R/W  
Landscape-to-Portrait  
Threshold Setting 1 R/W  
Landscape-to-Portrait  
Threshold Setting21 R/W  
Landscape-to-Portrait  
Threshold Setting 3 R/W  
FF/Motion Config.  
1 R/W  
24  
25  
26  
27  
28  
FF_MT_SRC_1  
FF_MT_THS_1  
FF_MT_COUNT_1  
FF_MT_CFG_2  
FF_MT_SRC_2  
FF/Motion Source 1 R  
FF/Motion Threshold 1 R/W  
FF/Motion Debounce 1 R/W  
FF/Motion Config. 2 R/W  
FF/Motion Source 2 R  
DBCNTM  
D7  
EA  
THS6  
D6  
ZHE  
THS5  
D5  
ZLE  
THS4  
D4  
YHE  
THS3  
D3  
YLE  
THS2  
D2  
XHE  
THS1  
D1  
XLE  
THS0  
D0  
ELE  
OAE  
EA  
ZHEFE  
ZHE  
ZLEFE  
ZLE  
YHEFE  
YHE  
YLEFE  
YLE  
XHEFE  
XHE  
XLEFE  
XLE  
MMA8450Q  
Sensors  
43  
Freescale Semiconductor  
Table 64. MMA8450Q Register Map  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
FF_MT_THS_2  
FF_MT_COUNT_2  
TRANSIENT_CFG  
TRANSIENT_SRC  
TRANSIENT_THS  
TRANSIENT_COUNT  
PULSE_CFG  
FF/Motion Threshold 2 R/W  
FF/Motion Debounce 2 R/W  
Transient Config. R/W  
Transient Source R  
DBCNTM  
THS6  
THS5  
D5  
THS4  
D4  
THS3  
D3  
THS2  
D2  
THS1  
D1  
THS0  
D0  
D7  
D6  
ELE  
ZTEFE  
ZTRANSE  
THS2  
D2  
YTEFE  
YTRANSE  
THS1  
D1  
XTEFE  
XTRANSE  
THS0  
D0  
EA  
Transient Threshold R/W  
Transient Debounce R/W  
Pulse Config. R/W  
DBCNTM  
THS6  
THS5  
D5  
THS4  
D4  
THS3  
D3  
D7  
D6  
DPA  
ELE  
ZDPEFE  
ZDPE  
0
ZSPEFE  
ZSPE  
THSX4  
THSY4  
THSZ4  
Tmlt4  
Ltcy4  
Wind4  
D4  
YDPEFE  
YDPE  
THSX3  
THSY3  
THSZ3  
Tmlt3  
Ltcy3  
Wind3  
D3  
YSPEFE  
YSPE  
THSX2  
THSY2  
THSZ2  
Tmlt2  
Ltcy2  
Wind2  
D2  
XDPEFE  
XDPE  
THSX1  
THSY1  
THSZ1  
Tmlt1  
Ltcy1  
XSPEFE  
XSPE  
THSX0  
THSY0  
THSZ0  
Tmlt0  
PULSE_SRC  
Pulse Source R  
EA  
PULSE_THSX  
PULSE_THSY  
PULSE_THSZ  
Pulse X Threshold R/W  
Pulse Y Threshold R/W  
Pulse Z Threshold R/W  
Pulse First Timer R/W  
Pulse Latency R/W  
0
0
0
0
0
0
0
0
PULSE_TMLT  
Tmlt7  
Ltcy7  
Wind7  
D7  
Tmlt6  
Ltcy6  
Tmlt5  
Ltcy5  
Wind5  
D5  
PULSE_LTCY  
Ltcy0  
PULSE_WIND  
ASLP_COUNT  
CTRL_REG1  
Pulse 2nd Window R/W  
Auto-Sleep Counter R/W  
Control Reg 1 R/W  
Wind6  
D6  
Wind1  
D1  
Wind0  
D0  
ASLP_RATE1  
ST  
ASLP_RATE0  
RST  
0
DR2  
DR1  
DR0  
FS1  
FS0  
CTRL_REG2  
Control Reg 2 R/W  
0
0
0
0
SLPE  
MODS  
Control Reg3 R/W (Wake  
Interrupts from Sleep)  
3A  
3B  
3C  
CTRL_REG3  
CTRL_REG4  
CTRL_REG5  
FIFO_GATE  
WAKE_TRANS WAKE_LNDPRT  
WAKE_PULSE  
WAKE_FF_MT_1  
INT_EN_PULSE  
WAKE_FF_MT_2  
IPOL  
PP_OD  
Control Reg4 R/W (Interrupt  
Enable Map)  
INT_EN_ASLP  
INT_EN_FIFO INT_EN_TRANS INT_EN_LNDPRT  
INT_EN_FF_MT_1 INT_EN_FF_MT_2  
INT_EN_DRDY  
Control reg5 R/W  
(Interrupt Configuration)  
INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1 INT_CFG_FF_MT_2 INT_CFG_DRDY  
3D  
3E  
3F  
OFF_X  
OFF_Y  
OFF_Z  
X 8-bit offset  
Y 8-bit offset  
Z 8-bit offset  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
MMA8450Q  
Sensors  
Freescale Semiconductor  
44  
Table 65. Accelerometer Output Data  
12-bit Data  
0111 1111 1111  
0111 1111 1110  
Range ±2g  
1.999g  
1.998g  
Range ±4g  
+3.998g  
+3.996g  
Range ±8g  
+7.996g  
+7.992g  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
0.001g  
0.000g  
-0.001g  
+0.002g  
0.000g  
-0.002g  
+0.004g  
0.000g  
-0.004g  
1000 0000 0001  
1000 0000 0000  
8- bit Data  
0111 1111  
0111 1110  
-1.999g  
-2.000g  
Range ±2g  
1.984g  
1.968g  
-3.998g  
-4.000g  
Range ±4g  
+3.968g  
+3.936g  
-7.996g  
-8.000g  
Range ±8g  
+7.936g  
+7.872g  
0000 0001  
0000 0000  
1111 1111  
+0.016g  
0.000g  
-0.016g  
+0.032g  
0.000g  
-0.032g  
+0.064g  
0.000g  
-0.064g  
1000 0001  
1000 0000  
-1.984g  
-2.000g  
-3.968g  
-4.000g  
-7.936g  
-8.000g  
MMA8450Q  
Sensors  
Freescale Semiconductor  
45  
Appendix B  
Figure 13. Distribution of Pre Board Mounted Devices Tested in Sockets (1 count = 3.9 mg)  
MMA8450Q  
Sensors  
Freescale Semiconductor  
46  
Figure 14. Distribution of Post Board Mounted Devices (1 count = 3.9 mg)  
MMA8450Q  
Sensors  
Freescale Semiconductor  
47  
Figure 15. 8g X-axis TCS  
MMA8450Q  
Sensors  
Freescale Semiconductor  
48  
Figure 16. 8g Y-axis TCS  
MMA8450Q  
Sensors  
49  
Freescale Semiconductor  
Figure 17. 8g Z-axis TCS  
MMA8450Q  
Sensors  
Freescale Semiconductor  
50  
Figure 18. 8g X-axis TCO (mg/°C)  
MMA8450Q  
Sensors  
51  
Freescale Semiconductor  
Figure 19. 8g Y-axis TCO (mg/°C)  
MMA8450Q  
Sensors  
Freescale Semiconductor  
52  
Figure 20. 8g Z-axis TCO (mg/°C)  
MMA8450Q  
Sensors  
53  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
CASE 2077-01  
ISSUE O  
16-LEAD QFN  
MMA8450Q  
Sensors  
Freescale Semiconductor  
54  
PACKAGE DIMENSIONS  
CASE 2077-01  
ISSUE O  
16-LEAD Q  
MMA8450Q  
Sensors  
55  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
CASE 2077-01  
ISSUE O  
16-LEAD Q  
MMA8450Q  
Sensors  
Freescale Semiconductor  
56  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 010 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2010. All rights reserved.  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http:/www.freescale.com or contact your Freescale sales representative.  
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.  
MMA8450Q  
Rev. 2  
03/2010  

相关型号:

MMA8450QR1

3-Axis, 8-bit/12-bit Digital Accelerometer
FREESCALE

MMA8450QT

3-Axis, 8-bit/12-bit Digital Accelerometer
FREESCALE

MMA8450Q_12

3-Axis, 8-bit/12-bit Digital Accelerometer
FREESCALE

MMA8451

3-Axis, 12-bit/8-bit Digital Accelerometer
FREESCALE

MMA8451Q

3-Axis, 14-bit/8-bit Digital Accelerometer
FREESCALE

MMA8451QR1

3-Axis, 14-bit/8-bit Digital Accelerometer
FREESCALE

MMA8451QT

3-Axis, 14-bit/8-bit Digital Accelerometer
FREESCALE

MMA8452

3-Axis, 12-bit/8-bit Digital Accelerometer
FREESCALE

MMA8452Q

3-Axis, 12-bit/8-bit Digital Accelerometer
FREESCALE

MMA8452QR1

MMA8452QR1
FREESCALE

MMA8452QT

3-Axis, 12-bit/8-bit Digital Accelerometer
FREESCALE

MMA8453

3-Axis, 12-bit/8-bit Digital Accelerometer
FREESCALE