MK53DN512CLQ10 [FREESCALE]

K53 Sub-Family; K53次家庭
MK53DN512CLQ10
型号: MK53DN512CLQ10
厂家: Freescale    Freescale
描述:

K53 Sub-Family
K53次家庭

文件: 总85页 (文件大小:1961K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K53P144M100SF2V2  
Rev. 1, 6/2012  
Freescale Semiconductor  
Data Sheet: Advance Information  
K53P144M100SF2V2  
K53 Sub-Family  
Supports the following:  
MK53DN512CLQ10,  
MK53DN512CMD10,  
MK53DX256CLQ10,  
MK53DX256CMD10  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
– Hardware random-number generator  
– Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
– 128-bit unique identification (ID) number per chip  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 85°C  
Performance  
– Up to 100 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Human-machine interface  
– Segment LCD controller supporting up to 40  
frontplanes and 8 backplanes, or 44 frontplanes and  
4 backplanes, depending on the package size  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Memories and memory interfaces  
– Up to 512 KB program flash memory on non-  
FlexMemory devices  
– Up to 256 KB program flash memory on  
FlexMemory devices  
– Up to 256 KB FlexNVM on FlexMemory devices  
– 4 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
Analog modules  
– Two 16-bit SAR ADCs  
– Programmable gain amplifier (PGA) (up to x64)  
integrated into each ADC  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– Two 12-bit DACs  
– Two operational amplifiers  
– Two transimpedance amplifiers  
– Three analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
Timers  
System peripherals  
– Programmable delay block  
– Eight-channel motor control/general purpose/PWM  
timer  
– Two 2-channel quadrature decoder/general purpose  
timers  
– Multiple low-power modes to provide power  
optimization based on application requirements  
– Memory protection unit with multi-master  
protection  
– 16-channel DMA controller, supporting up to 63  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
– IEEE 1588 timers  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
This document contains information on a new product. Specifications and  
information herein are subject to change without notice.  
© 2012 Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Communication interfaces  
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability  
– USB full-/low-speed On-the-Go controller with on-chip transceiver  
– Three SPI modules  
– Two I2C modules  
– Six UART modules  
– Secure Digital host controller (SDHC)  
– I2S module  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
2
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Table of Contents  
1 Ordering parts...........................................................................5  
5.4.2  
Thermal attributes...............................................22  
1.1 Determining valid orderable parts......................................5  
2 Part identification......................................................................5  
2.1 Description.........................................................................5  
2.2 Format...............................................................................5  
2.3 Fields.................................................................................5  
2.4 Example............................................................................6  
3 Terminology and guidelines......................................................6  
3.1 Definition: Operating requirement......................................6  
3.2 Definition: Operating behavior...........................................7  
3.3 Definition: Attribute............................................................7  
3.4 Definition: Rating...............................................................8  
3.5 Result of exceeding a rating..............................................8  
3.6 Relationship between ratings and operating  
6 Peripheral operating requirements and behaviors....................23  
6.1 Core modules....................................................................23  
6.1.1  
6.1.2  
Debug trace timing specifications.......................23  
JTAG electricals..................................................24  
6.2 System modules................................................................27  
6.3 Clock modules...................................................................27  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................27  
Oscillator electrical specifications.......................29  
32 kHz Oscillator Electrical Characteristics........32  
6.4 Memories and memory interfaces.....................................32  
6.4.1  
6.4.2  
6.4.3  
Flash electrical specifications.............................32  
EzPort Switching Specifications.........................37  
Flexbus Switching Specifications........................38  
requirements......................................................................8  
3.7 Guidelines for ratings and operating requirements............9  
3.8 Definition: Typical value.....................................................9  
3.9 Typical value conditions....................................................10  
4 Ratings......................................................................................11  
4.1 Thermal handling ratings...................................................11  
4.2 Moisture handling ratings..................................................11  
4.3 ESD handling ratings.........................................................11  
4.4 Voltage and current operating ratings...............................11  
5 General.....................................................................................12  
5.1 AC electrical characteristics..............................................12  
5.2 Nonswitching electrical specifications...............................12  
6.5 Security and integrity modules..........................................41  
6.6 Analog...............................................................................41  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
6.6.5  
ADC electrical specifications..............................41  
CMP and 6-bit DAC electrical specifications......49  
12-bit DAC electrical characteristics...................52  
Op-amp electrical specifications.........................55  
Transimpedance amplifier electrical  
specifications — full range..................................56  
Transimpedance amplifier electrical  
6.6.6  
6.6.7  
specifications — limited range............................57  
Voltage reference electrical specifications..........58  
6.7 Timers................................................................................59  
6.8 Communication interfaces.................................................59  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
Voltage and current operating requirements......13  
LVD and POR operating requirements...............14  
Voltage and current operating behaviors............14  
Power mode transition operating behaviors.......15  
Power consumption operating behaviors............16  
EMC radiated emissions operating behaviors....19  
Designing with radiated emissions in mind.........20  
Capacitance attributes........................................20  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
Ethernet switching specifications........................59  
USB electrical specifications...............................61  
USB DCD electrical specifications......................61  
USB VREG electrical specifications...................62  
DSPI switching specifications (limited voltage  
range).................................................................62  
DSPI switching specifications (full voltage  
6.8.6  
5.3 Switching specifications.....................................................20  
range).................................................................64  
I2C switching specifications................................66  
UART switching specifications............................66  
SDHC specifications...........................................66  
5.3.1  
5.3.2  
Device clock specifications.................................20  
General switching specifications.........................21  
6.8.7  
6.8.8  
6.8.9  
5.4 Thermal specifications.......................................................22  
5.4.1 Thermal operating requirements.........................22  
6.8.10 I2S/SAI Switching Specifications........................67  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
3
Preliminary  
General Business Information  
6.9 Human-machine interfaces (HMI)......................................73  
7.1 Obtaining package dimensions.........................................76  
8 Pinout........................................................................................76  
8.1 K53 Signal Multiplexing and Pin Assignments..................76  
8.2 K53 Pinouts.......................................................................82  
6.9.1  
6.9.2  
TSI electrical specifications................................73  
LCD electrical characteristics.............................74  
7 Dimensions...............................................................................75  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
4
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to http://www.freescale.com and perform a part number  
search for the following device numbers: PK53 and MK53.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K53  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
5
Preliminary  
General Business Information  
Terminology and guidelines  
Field  
Description  
Values  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• MB = 81 MAPBGA (8 mm x 8 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• ML = 104 MAPBGA (8 mm x 8 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
• MJ = 256 MAPBGA (17 mm x 17 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK53DN512ZVMD10  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
6
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Terminology and guidelines  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
7
Preliminary  
General Business Information  
Terminology and guidelines  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
8
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Terminology and guidelines  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
9
Preliminary  
General Business Information  
Terminology and guidelines  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
10  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Ratings  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage  
–0.3  
3.8  
V
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
11  
Preliminary  
General Business Information  
General  
Symbol  
IDD  
VDIO  
Description  
Min.  
Max.  
185  
Unit  
mA  
V
Digital supply current  
Digital input voltage (except RESET, EXTAL, and XTAL)  
–0.3  
5.5  
Analog1, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all port pins)  
Analog supply voltage  
VAIO  
–0.3  
VDD + 0.3  
25  
V
ID  
–25  
mA  
V
VDDA  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
VUSB_DP  
VUSB_DM  
VREGIN  
VBAT  
USB_DP input voltage  
V
USB_DM input voltage  
–0.3  
3.63  
V
USB regulator input  
–0.3  
6.0  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
12  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
General  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
0.06 × VDD  
-5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
3
mA  
Analog2, EXTAL, and XTAL pin DC injection current —  
single pin  
IICAIO  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection  
to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at  
the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current  
limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN  
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting  
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC  
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is  
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
13  
Preliminary  
General Business Information  
General  
5.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
VHYSH  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
VHYSL  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
14  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
General  
Notes  
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA  
VDD – 0.5  
VDD – 0.5  
V
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
100  
mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range except TRI0_DM, TRI0_DP, TRI1_DM,  
TRI1_DP  
1
IIN  
Input leakage current (per pin) at 25°C except  
TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP  
0.025  
5
μA  
nA  
1
1
IILKG_A  
Input leakage current (per pin) for TRI0_DM, TRI0_DP,  
TRI1_DM, TRI1_DP  
IOZ  
RPU  
RPD  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
20  
20  
1
μA  
kΩ  
kΩ  
50  
50  
2
3
Internal pulldown resistors  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 100 MHz  
• Bus clock = 50 MHz  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
15  
Preliminary  
General Business Information  
General  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
112  
74  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
73  
5.9  
5.8  
4.2  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
32  
34  
TBD  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
46  
TBD  
mA  
• @ 1.8V  
• @ 3.0V  
• @ 25°C  
• @ 125°C  
48  
TBD  
TBD  
mA  
mA  
TBD  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
20  
9
mA  
mA  
mA  
2
5
6
IDD_WAIT Wait mode reduced frequency current at 3.0 V —  
all peripheral clocks disabled  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.12  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
16  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
1.71  
mA  
7
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks disabled  
0.77  
mA  
8
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
mA  
mA  
mA  
0.74  
2.45  
6.61  
TBD  
TBD  
TBD  
• @ 70°C  
• @ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
83  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
425  
1280  
• @ 105°C  
IDD_LLS Low leakage stop mode current at 3.0 V  
9
9
4.58  
30.6  
137  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
3.0  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
18.6  
84.9  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
2.2  
9.3  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
41.4  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
2.1  
7.6  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
33.5  
• @ 105°C  
IDD_VBAT Average current with RTC and 32kHz disabled at  
3.0 V  
• @ –40 to 25°C  
• @ 70°C  
0.19  
0.49  
2.2  
0.22  
0.64  
3.2  
μA  
μA  
μA  
• @ 105°C  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
17  
Preliminary  
General Business Information  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when CPU is not accessing RTC  
registers  
10  
• @ 1.8V  
• @ –40 to 25°C  
• @ 70°C  
0.57  
0.90  
2.4  
0.67  
1.2  
μA  
μA  
μA  
• @ 105°C  
• @ 3.0V  
3.5  
• @ –40 to 25°C  
• @ 70°C  
0.67  
1.0  
0.94  
1.4  
μA  
μA  
μA  
• @ 105°C  
2.7  
3.9  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.  
All peripheral clocks disabled.  
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.  
6. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled. Code executing from flash.  
7. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
enabled but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled.  
9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.  
10. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater  
than 50 MHz frequencies.  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
18  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
General  
Figure 2. Run mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors for 144LQFP  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
23  
27  
28  
14  
K
dBμV  
dBμV  
dBμV  
dBμV  
1 , 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
19  
Preliminary  
General Business Information  
General  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to http://www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
100  
MHz  
MHz  
fSYS_USB  
System and core clock when Full Speed USB in  
operation  
20  
fENET  
System and core clock when ethernet in operation  
MHz  
• 10 Mbps  
• 100 Mbps  
5
50  
50  
25  
25  
50  
fBUS  
FB_CLK  
fFLASH  
Bus clock  
MHz  
MHz  
MHz  
MHz  
FlexBus clock  
Flash clock  
LPTMR clock  
fLPTMR  
VLPR mode1  
fSYS  
System and core clock  
4
MHz  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
20  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
General  
Notes  
Table 9. Device clock specifications (continued)  
Symbol  
fBUS  
Description  
Bus clock  
Min.  
Max.  
4
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
4
1
fERCLK  
External reference clock  
LPTMR clock  
16  
25  
16  
8
fLPTMR_pin  
fLPTMR_ERCLK LPTMR external reference clock  
fFlexCAN_ERCLK FlexCAN external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CMT, IEEE 1588 timer, and I2C signals.  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
ns  
ns  
3
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew disabled  
4
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
21  
Preliminary  
General Business Information  
General  
Table 10. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
12  
6
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
36  
24  
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75pF load  
5. 15pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
85  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
°C  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
144 LQFP  
144  
MAPBGA  
Unit  
Notes  
Single-layer  
(1s)  
RθJA  
Thermal  
resistance,  
junction to  
45  
48  
°C/W  
1
ambient (natural  
convection)  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
22  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
144 LQFP  
144  
MAPBGA  
Unit  
Notes  
Four-layer  
(2s2p)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
36  
29  
38  
25  
16  
°C/W  
1
Single-layer  
(1s)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
36  
30  
24  
°C/W  
°C/W  
°C/W  
1
1
2
Four-layer  
(2s2p)  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Thermal  
resistance,  
junction to  
board  
RθJC  
Thermal  
resistance,  
junction to case  
9
2
9
2
°C/W  
°C/W  
3
4
ΨJT  
Thermal  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2.  
3.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
23  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.1.1 Debug trace timing specifications  
Table 12. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
3
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
2
ns  
Figure 3. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 4. Trace data specifications  
6.1.2 JTAG electricals  
Table 13. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
TCLK cycle period  
1/J1  
ns  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
24  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 13. JTAG limited voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J3  
TCLK clock pulse width  
• Boundary Scan  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 14. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
J8  
25  
J9  
J10  
J11  
J12  
1.4  
22.1  
22.1  
TCLK low to TDO high-Z  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
25  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 14. JTAG full voltage range electricals (continued)  
Symbol  
J13  
Description  
Min.  
100  
8
Max.  
Unit  
ns  
TRST assert time  
J14  
TRST setup time (negation) to TCLK high  
ns  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 5. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 6. Boundary scan (JTAG) timing  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
26  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 7. Test Access Port timing  
TCLK  
TRST  
J14  
J13  
Figure 8. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
27  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.3.1 MCG specifications  
Table 15. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.3  
3
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
TBD  
fintf_ft  
fintf_t  
floc_low  
floc_high  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
28  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 15. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Jcyc_fll  
FLL period jitter  
ps  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
6
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
7
7
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
8
8
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
%
%
s
150 × 10-6  
+ 1075(1/  
tpll_lock  
9
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
29  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 16. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
30  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 16. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
5
Peak-to-peak amplitude of oscillation (oscillator  
0.6  
V
Vpp  
mode) — low-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 17. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
31  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.3.3 32 kHz Oscillator Electrical Characteristics  
This section describes the module electrical characteristics.  
6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 18. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
Parasitical capacitance of EXTAL32 and XTAL32  
Peak-to-peak amplitude of oscillation  
100  
5
MΩ  
pF  
V
Cpara  
7
1
0.6  
Vpp  
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
6.3.3.2 32kHz oscillator frequency specifications  
Table 19. 32kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
fec_extal32  
vec_extal32  
Oscillator crystal  
Crystal start-up time  
1
2
Externally provided input clock frequency  
Externally provided input clock amplitude  
kHz  
mV  
VBAT  
700  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
6.4 Memories and memory interfaces  
6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
32  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 20. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk256k Erase Block high-voltage time for 256 KB  
13  
113  
904  
ms  
ms  
1
1
104  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 21. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 256 KB program/data flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
1.7  
ms  
trd1sec2k Read 1s Section execution time (flash sector)  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 256 KB program/data flash  
30  
tpgm4  
145  
2
2
tersblk256k  
tersscr  
122  
14  
985  
114  
ms  
ms  
Erase Flash Sector execution time  
Program Section execution time  
• 512 B flash  
tpgmsec512  
tpgmsec1k  
tpgmsec2k  
2.4  
4.7  
9.3  
ms  
ms  
ms  
• 1 KB flash  
• 2 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
μs  
ms  
μs  
trdonce  
1
tpgmonce Program Once execution time  
65  
250  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
2000  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
33  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 21. Flash command timing specifications (continued)  
Symbol Description  
Program Partition for EEPROM execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
tpgmpart64k  
tpgmpart256k  
• 64 KB FlexNVM  
• 256 KB FlexNVM  
138  
145  
ms  
ms  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
tsetram256k  
70  
0.8  
1.3  
4.5  
μs  
ms  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 256 KB EEPROM backup  
1.2  
1.9  
5.5  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b32k  
teewr8b64k  
teewr8b128k  
teewr8b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
385  
475  
1800  
2000  
2400  
3200  
μs  
μs  
μs  
μs  
650  
1000  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
teewr16b128k  
teewr16b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
385  
475  
1800  
2000  
2400  
3200  
μs  
μs  
μs  
μs  
650  
1000  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
teewr32b128k  
teewr32b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
630  
810  
2050  
2250  
2675  
3500  
μs  
μs  
μs  
μs  
1200  
1900  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
34  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.4.1.3 Flash high voltage current behaviors  
Table 22. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
2.5  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 23. NVM reliability specifications  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
2
3
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
10 K  
100  
50 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
Write endurance  
5
50  
years  
years  
20  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree32k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio =  
32,768  
80 M  
400 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
35  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
The bytes not assigned to data flash via the FlexNVM partition code are used by the flash  
memory module to obtain an effective endurance increase for the EEPROM data. The  
built-in EEPROM record management system raises the number of program/erase cycles  
that can be attained prior to device wear-out by cycling the EEPROM data through a  
larger EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycd  
EEESPLIT × EEESIZE  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;  
entered with the Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program  
Partition command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycd — data flash cycling endurance (the following graph assumes 10,000  
cycles)  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
36  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Figure 9. EEPROM backup writes to FlexRAM  
6.4.2 EzPort Switching Specifications  
Table 24. EzPort switching specifications  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
1.71  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
16  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
37  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
EZP_CK  
EP3  
EP4  
EP2  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EP5  
EP6  
EZP_D (input)  
Figure 10. EzPort Timing Diagram  
6.4.3 Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 25. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.5  
ns  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
38  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 26. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
Notes  
Operating voltage  
V
Frequency of operation  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
Clock period  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
0
13.5  
ns  
1
1
2
2
ns  
13.7  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
39  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 11. FlexBus read timing diagram  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
40  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB2  
FB3  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 12. FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
41  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and  
ADCx_DM3.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are  
not direct device pins. Accuracy specifications for these pins are defined in Table 29 and  
Table 30.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD-VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Delta to VSS (VSS-VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
Reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
VADIN  
CADIN  
Input voltage  
VREFL  
8
VREFH  
10  
V
Input capacitance  
• 16 bit modes  
pF  
• 8/10/12 bit modes  
4
5
RADIN  
RAS  
Input resistance  
2
5
kΩ  
kΩ  
Analog source  
resistance  
13/12 bit modes  
fADCK < 4MHz  
3
5
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13 bit modes  
clock frequency  
4
4
5
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
Ksps  
ADC conversion 16 bit modes  
clock frequency  
ADC conversion ≤ 13 bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Continuous conversions  
enabled, subsequent  
conversion time  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
42  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
Crate  
ADC conversion 16 bit modes  
rate  
5
No ADC hardware averaging  
37.037  
461.467  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the  
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS  
/
CAS time constant should be kept to <1ns.  
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/  
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 13. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA_ADC Supply current  
0.215  
1.7  
mA  
3
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
43  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
2.4  
Symbol Description  
Min.  
1.2  
3.0  
2.4  
4.4  
Max.  
3.9  
Unit  
Notes  
ADC  
asynchronous  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
4.0  
7.3  
clock source  
fADACK  
5.2  
6.1  
6.2  
9.5  
Sample Time  
See Reference Manual chapter for sample times  
LSB4  
LSB4  
TUE  
DNL  
Total unadjusted  
error  
• 12 bit modes  
• <12 bit modes  
4
6.8  
2.1  
5
5
1.4  
Differential non-  
linearity  
• 12 bit modes  
0.7  
-1.1 to +1.9  
-0.3 to 0.5  
• <12 bit modes  
• 12 bit modes  
0.2  
1.0  
LSB4  
INL  
EFS  
Integral non-  
linearity  
-2.7 to +1.9  
-0.7 to +0.5  
5
• <12 bit modes  
• 12 bit modes  
• <12 bit modes  
0.5  
-4  
LSB4  
LSB4  
Full-scale error  
-5.4  
-1.8  
VADIN =  
VDDA  
-1.4  
5
EQ  
Quantization  
error  
• 16 bit modes  
• ≤13 bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16 bit differential mode  
6
of bits  
• Avg=32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg=4  
16 bit single-ended mode  
• Avg=32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg=4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16 bit differential mode  
• Avg=32  
7
7
–94  
-85  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
SFDR  
Spurious free  
dynamic range  
16 bit differential mode  
• Avg=32  
82  
78  
95  
90  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
44  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IIn  
leakage  
current  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
=
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 105°C  
25°C  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock  
speed.  
1 LSB = (VREFH - VREFL)/2N  
4.  
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.  
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
45  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 29. 16-bit ADC with PGA operating conditions  
Typ.1  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREF_OU VREF_OU VREF_OU  
V
2, 3  
T
T
T
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
V
Input Common  
Mode range  
IN+ to IN-4  
RPGAD  
Differential input Gain = 1, 2, 4, 8  
128  
64  
kΩ  
impedance  
Gain = 16, 32  
Gain = 64  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
5
6
ADC sampling  
time  
1.25  
µs  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
46  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 29. 16-bit ADC with PGA operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤ 13 bit modes  
18.484  
450  
Ksps  
7
rate  
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
16 bit modes  
37.037  
250  
Ksps  
8
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREF_OUT)  
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other  
than the output of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedance of the driven input is RPGAD/2  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1  
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1  
6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled  
(ADC_PGA[PGACHPb] =0)  
Table 30. 16-bit ADC with PGA characteristics  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
IDDA_PGA Supply current  
Low power  
420  
644  
μA  
2
(ADC_PGA[PGALPb]=0)  
IDC_PGA  
Input DC current  
A
3
Gain =1, VREFPGA=1.2V,  
VCM=0.5V  
1.54  
0.57  
μA  
μA  
Gain =64, VREFPGA=1.2V,  
VCM=0.1V  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
47  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
1
Symbol  
Description  
Conditions  
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
Min.  
0.95  
1.9  
Max.  
1.05  
2.1  
Unit  
Notes  
Gain4  
G
R
AS < 100Ω  
2
3.8  
4
4.2  
7.6  
8
8.4  
15.2  
30.0  
58.8  
16  
31.6  
63.3  
16.6  
33.2  
67.8  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ratio  
Gain=1  
-84  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
CMRR  
Common mode  
rejection ratio  
• Gain=1  
-84  
-85  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
VOFS  
TGSW  
dG/dT  
Input offset  
voltage  
0.2  
mV  
µs  
Output offset =  
VOFS*(Gain+1)  
Gain switching  
settling time  
10  
5
Gain drift over full  
temperature range  
• Gain=1  
• Gain=64  
6
31  
10  
42  
ppm/°C  
ppm/°C  
%/V  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
0.07  
0.21  
0.31  
VDDA from 1.71  
to 3.6V  
0.14  
%/V  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
VPP,DIFF Maximum  
differential input  
V
6
signal swing  
where VX = VREFPGA × 0.583  
SNR  
Signal-to-noise  
ratio  
• Gain=1  
80  
52  
90  
66  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
48  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
100  
95  
Symbol  
Description  
Conditions  
• Gain=1  
Min.  
85  
Max.  
Unit  
dB  
Notes  
THD  
Total harmonic  
distortion  
16-bit  
differential  
mode,  
• Gain=64  
49  
dB  
Average=32,  
fin=100Hz  
SFDR  
ENOB  
Spurious free  
dynamic range  
• Gain=1  
85  
53  
105  
88  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=100Hz  
• Gain=64  
Effective number  
of bits  
• Gain=1, Average=4  
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
11.6  
8.0  
13.4  
13.6  
9.6  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
16-bit  
differential  
mode,fin=100Hz  
7.2  
6.3  
9.6  
12.8  
11.0  
7.9  
14.5  
14.3  
13.8  
13.1  
12.5  
11.5  
10.6  
7.3  
6.8  
6.8  
7.5  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. This current is a PGA module adder, in addition to ADC conversion currents.  
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function of input common mode voltage (VCM) and the PGA gain.  
Gain = 2PGAG  
4.  
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 31. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
49  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 31. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
VAIO  
Description  
Min.  
Typ.  
Max.  
Unit  
Analog input offset voltage  
20  
mV  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
50  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
51  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 32. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
−40  
Max.  
3.6  
3.6  
105  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
V
1
2
°C  
pF  
mA  
CL  
Output load capacitance  
Output load current  
IL  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
52  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 33. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
TBD  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DACH Supply current — high-speed mode  
TBD  
μA  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
100  
15  
0.7  
200  
μs  
μs  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
30  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
100  
VDACR  
8
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA > = 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
0.05  
0.12  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
5. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV  
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set  
to 0x800, Temp range from -40C to 105C  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
53  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Figure 18. Typical INL error vs. digital code  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
54  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Figure 19. Offset at half scale vs. temperature  
6.6.4 Op-amp electrical specifications  
Table 34. Op-amp electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Operating voltage  
ISUPPLY  
ISUPPLY  
VOS  
Supply current (IOUT=0mA, CL=0), low-power mode  
Supply current (IOUT=0mA, CL=0), high-speed mode  
Input offset voltage  
TBD  
TBD  
3
TBD  
TBD  
10  
μA  
μA  
mV  
μV/C  
pA  
αVOS  
Input offset voltage temperature coefficient  
10  
IOS  
Typical input offset current across the following temp  
range (0–50°C)  
500  
IOS  
Typical input offset current across the following temp  
range (-40–105°C)  
4
nA  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
55  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 34. Op-amp electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IBIAS  
Typical input bias current across the following temp  
range (0–50°C)  
500  
pA  
IBIAS  
Typical input bias current across the following temp  
range (-40–105°C)  
4
nA  
VCML  
VCMH  
RIN  
Input common mode voltage low  
Input common mode voltage high  
Input resistance  
0
V
V
VDD  
500  
MΩ  
pF  
171  
50  
CIN  
Input capacitance  
|XIN|  
CMRR  
PSRR  
SR  
AC input impedance (fIN=100kHz)  
Input common mode rejection ratio  
Power supply rejection ratio  
MΩ  
dB  
60  
60  
0.1  
1.5  
0.15  
1
dB  
Slew rate (ΔVIN=500mV), low-power mode  
Slew rate (ΔVIN=500mV), high-speed mode  
Unity gain bandwidth, low-power mode  
Unity gain bandwidth, high-speed mode  
DC open-loop voltage gain  
V/μs  
V/μs  
MHz  
MHz  
dB  
SR  
4
GBW  
GBW  
AV  
80  
90  
100  
1500  
CL(max) Load capacitance driving capability  
pF  
ROUT  
VOUT  
IOUT  
GM  
Output resistance @ 100 kHz, high speed mode  
Ω
Output voltage range  
Output load current  
Gain margin  
0.12  
VDD - 0.12  
V
0.5  
20  
56  
5.7  
mA  
dB  
PM  
Phase margin  
45  
deg  
μs  
Settling time2 (Buffer mode, low-power mode)  
(To<0.1%, Vin=1.65V)  
Tsettle  
Settling time2 (Buffer mode, high-speed mode)  
(To<0.1%, Vin=1.65V)  
Tsettle  
3.0  
μs  
Vn  
Vn  
Voltage noise density (noise floor) 1kHz  
Voltage noise density (noise floor) 10kHz  
350  
90  
nV/√Hz  
nV/√Hz  
1. The input capacitance is dependant on the package type used.  
2. Settling time is measured from the time the Op-amp is enabled until the output settles to within 0.1% of final value. This  
time includes Op-amp startup time, output slew, and settle time.  
6.6.5 Transimpedance amplifier electrical specifications — full range  
Table 35. TRIAMP full range operating requirements  
Symbol  
VDDA  
Description  
Min.  
Max.  
Unit  
Notes  
Supply voltage  
1.71  
-0.1  
3.6  
V
V
pf  
VIN  
CL  
Input voltage range  
Output load capacitance  
VDDA-1.4  
100  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
56  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 36. TRIAMP full range operating behaviors  
Symbol Description  
ISUPPLY Supply current (IOUT=0mA, CL=0) — Low-power  
mode  
Min.  
Typ.  
Max.  
Unit  
Notes  
60  
80  
μA  
μA  
mV  
ISUPPLY  
Supply current (IOUT=0mA, CL=0) — High-speed —  
mode  
280  
450  
VOS  
αVOS  
IOS  
Input offset voltage  
500  
TBD  
4.8  
0.3  
0.3  
TBD  
Input offset voltage temperature coefficient  
Input offset current  
μV/C  
nA  
5
IBIAS  
RIN  
Input bias current  
5
nA  
Input resistance  
MΩ  
pF  
CIN  
Input capacitance  
17  
ROUT  
Output AC impedance  
1500  
Ω
@ 100kHz,  
High speed  
mode  
|XIN|  
CMRR  
PSRR  
SR  
AC input impedance (fIN=100kHz)  
60  
60  
0.1  
1
159  
kΩ  
Input common mode rejection ratio  
Power supply rejection ratio  
dB  
dB  
Slew rate (ΔVIN=100mV) — Low-power mode  
Slew rate (ΔVIN=100mV) — High speed mode  
V/μs  
V/μs  
MHz  
MHz  
dB  
SR  
GBW  
GBW  
AV  
Unity gain bandwidth — Low-power mode 50pF 0.15  
Unity gain bandwidth — High speed mode 50pF  
DC open-loop voltage gain  
Output voltage range  
1
80  
0.15  
50  
VOUT  
IOUT  
GM  
VDD-0.15  
V
Output load current  
0.5  
20  
60  
280  
100  
mA  
Gain margin  
dB  
PM  
Phase margin  
deg  
nV/√Hz  
nV/√Hz  
Vn  
Voltage noise density (noise floor) 1kHz  
Voltage noise density (noise floor) 10kHz  
Vn  
6.6.6 Transimpedance amplifier electrical specifications — limited  
range  
Table 37. TRIAMP limited range operating requirements  
Symbol  
VDDA  
Description  
Min.  
Max.  
Unit  
Notes  
Supply voltage  
Input voltage range  
Temperature  
2.4  
0.1  
0
3.3  
V
V
C
VIN  
TA  
VDDA-1.4  
50  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
57  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 37. TRIAMP limited range operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Notes  
CL  
Output load capacitance  
100  
pf  
Table 38. TRIAMP limited range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VOS  
αVOS  
IOS  
IBIAS  
ROUT  
Input offset voltage  
3
5
mV  
Input offset voltage temperature coefficient  
Input offset current  
4.8  
μV/C  
pA  
300  
300  
600  
600  
Input bias current  
pA  
Output AC impedance  
1500  
Ω
@ 100kHz,  
High speed  
mode  
|XIN|  
CMRR  
PSRR  
SR  
AC input impedance (fIN=100kHz)  
159  
70  
70  
kΩ  
Input common mode rejection ratio  
Power supply rejection ratio  
dB  
dB  
Slew rate (ΔVIN=500mV) — Low-power mode  
Slew rate (ΔVIN=500mV) — High speed mode  
0.1  
1.5  
V/μs  
V/μs  
MHz  
MHz  
dB  
SR  
3.5  
GBW  
GBW  
AV  
Unity gain bandwidth — Low-power mode 50pF 0.15  
Unity gain bandwidth — High speed mode 50pF  
DC open-loop voltage gain  
Gain margin  
1
80  
60  
GM  
20  
69  
dB  
PM  
Phase margin  
deg  
6.6.7 Voltage reference electrical specifications  
Table 39. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
1.71  
−40  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Temperature  
105  
°C  
nF  
CL  
Output load capacitance  
100  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
58  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 40. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 41. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 42. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
59  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 43. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 20. MII transmit signal timing diagram  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
60  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 21. MII receive signal timing diagram  
6.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 44. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
61  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.8.3 USB DCD electrical specifications  
Table 45. USB DCD electrical specifications  
Symbol  
VDP_SRC  
VLGC  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
USB_DM sink current  
0.8  
2.0  
V
IDP_SRC  
IDM_SINK  
7
10  
13  
μA  
μA  
kΩ  
V
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.33  
6.8.4 USB VREG electrical specifications  
Table 46. USB VREG electrical specifications  
Typ.1  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
VREGIN Input supply voltage  
2.7  
5.5  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load current  
equal zero  
1.1  
1.54  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
650  
4
nA  
μA  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
62  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
6.8.5 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 47. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
0
8
ns  
ns  
ns  
ns  
14  
0
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 22. DSPI classic SPI timing — master mode  
Table 48. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
12.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
63  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 48. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
Description  
DSPI_SCK input high/low time  
Min.  
Max.  
Unit  
ns  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
20  
14  
14  
ns  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
ns  
2
ns  
7
ns  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 23. DSPI classic SPI timing — slave mode  
6.8.6 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 49. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
64  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 49. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-1.2  
19.1  
0
8.5  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 24. DSPI classic SPI timing — master mode  
Table 50. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6.25  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
24  
19  
19  
ns  
ns  
3.2  
7
ns  
ns  
ns  
ns  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
65  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
DS15  
DS12  
DS16  
DS11  
(CPOL=0)  
First data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
DS14  
First data  
Last data  
DSPI_SIN  
Figure 25. DSPI classic SPI timing — slave mode  
I2C switching specifications  
6.8.7  
See General switching specifications.  
6.8.8 UART switching specifications  
See General switching specifications.  
6.8.9 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 51. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25  
20  
400  
3
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed)  
Clock frequency (MMC full speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
ns  
Clock fall time  
3
ns  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
66  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 51. SDHC switching specifications  
(continued)  
Num  
Symbol  
Description  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
Min.  
Max.  
Unit  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 26. SDHC timing  
6.8.10 I2S/SAI Switching Specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock  
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]  
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the  
frame sync (FS) signal shown in the following figures.  
6.8.10.1 Normal Run, Wait and Stop mode performance over a limited  
operating voltage range  
This section provides the operating performance over a limited operating voltage for the  
device in Normal Run, Wait and Stop modes.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
67  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 52. I2S/SAI master mode timing in Normal Run, Wait and Stop modes  
(limited voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
15  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 27. I2S/SAI timing — master modes  
Table 53. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes  
(limited voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
68  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 53. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage  
range) (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S13  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
4.5  
2
ns  
ns  
S14  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
15  
25  
ns  
ns  
ns  
ns  
ns  
4.5  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 28. I2S/SAI timing — slave modes  
6.8.10.2 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 54. I2S/SAI master mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
69  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 54. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage  
range) (continued)  
Num.  
Characteristic  
Min.  
Max.  
55%  
Unit  
BCLK period  
S4  
S5  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
15  
ns  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1.0  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
15  
ns  
ns  
ns  
0
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
20.5  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 29. I2S/SAI timing — master modes  
Table 55. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
S15  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
5.8  
2
ns  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
20.6  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
70  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 55. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage  
range) (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
25  
ns  
ns  
ns  
ns  
5.8  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 30. I2S/SAI timing — slave modes  
6.8.10.3 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 56. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
71  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 56. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
Characteristic  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
Min.  
Max.  
Unit  
S7  
S8  
S9  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
45  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 31. I2S/SAI timing — master modes  
Table 57. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
3
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
63  
72  
ns  
ns  
ns  
ns  
ns  
30  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
72  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 32. I2S/SAI timing — slave modes  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 58. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE Target electrode capacitance range  
Min.  
1.71  
1
Typ.  
20  
8
Max.  
3.6  
500  
15  
Unit  
V
Notes  
pF  
1
fREFmax Reference oscillator frequency  
fELEmax Electrode oscillator frequency  
MHz  
MHz  
pF  
2, 3  
2, 4  
1
1.8  
CREF  
VDELTA  
IREF  
Internal reference capacitor  
Oscillator delta voltage  
1
500  
mV  
μA  
2, 5  
2, 6  
Reference oscillator current source base current  
2 μA setting (REFCHRG = 0)  
2
3
36  
50  
32 μA setting (REFCHRG = 15)  
IELE  
Electrode oscillator current source base current  
2 μA setting (EXTCHRG = 0)  
μA  
2, 7  
2
3
50  
36  
32 μA setting (EXTCHRG = 15)  
Pres5  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
1.46  
38400  
38400  
38400  
fF/count  
fF/count  
fF/count  
fF/count  
bits  
8
9
Pres20 Electrode capacitance measurement precision  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
10  
11  
0.008  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
12  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
73  
Preliminary  
General Business Information  
Peripheral operating requirements and behaviors  
Table 58. TSI electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
55  
Max.  
Unit  
μA  
Notes  
ITSI_RUN Current added in run mode  
ITSI_LP  
Low power mode current adder  
1.3  
2.5  
μA  
13  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. Fixed external capacitance of 20 pF.  
3. REFCHRG = 2, EXTCHRG=0.  
4. REFCHRG = 0, EXTCHRG = 10.  
5. VDD = 3.0 V.  
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity  
depends on the configuration used. The documented values are provided as examples calculated for a specific  
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)  
The typical value is calculated with the following configuration:  
I
ext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF  
The minimum value is calculated with the following configuration:  
ext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF  
I
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be  
measured by a single count.  
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, EXTCHRG = 7.  
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of  
20 pF. Data is captured with an average of 7 periods window.  
6.9.2 LCD electrical characteristics  
Table 59. LCD electricals  
Symbol Description  
fFrame LCD frame frequency  
CLCD LCD charge pump capacitance — nominal value  
CBYLCD LCD bypass capacitance — nominal value  
CGlass LCD glass capacitance  
Min.  
28  
Typ.  
30  
Max.  
58  
Unit  
Hz  
nF  
Notes  
100  
100  
2000  
1
1
2
nF  
8000  
pF  
Table continues on the next page...  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
74  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Dimensions  
Table 59. LCD electricals (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VIREG  
VIREG  
• HREFSEL=0, RVTRIM=1111  
3
1.11  
1.01  
0.91  
V
V
V
• HREFSEL=0, RVTRIM=1000  
• HREFSEL=0, RVTRIM=0000  
1.84  
1.69  
1.54  
V
V
V
• HREFSEL=1, RVTRIM=1111  
• HREFSEL=1, RVTRIM=1000  
• HREFSEL=1, RVTRIM=0000  
ΔRTRIM  
VIREG TRIM resolution  
VIREG ripple  
3.0  
% VIREG  
30  
50  
mV  
mV  
• HREFSEL = 0  
• HREFSEL = 1  
IVIREG  
IRBIAS  
VIREG current adder — RVEN = 1  
RBIAS current adder  
1
10  
1
µA  
µA  
µA  
4
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
RRBIAS  
RBIAS resistor values  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
0.28  
2.98  
MΩ  
MΩ  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
VLL2  
VLL3  
VLL2 voltage  
• HREFSEL = 0  
• HREFSEL = 1  
2.0 − 5%  
3.3 − 5%  
2.0  
3.3  
V
V
VLL3 voltage  
• HREFSEL = 0  
• HREFSEL = 1  
3.0 − 5%  
5 − 5%  
3.0  
5
V
V
1. The actual value used could vary with tolerance.  
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter  
within the device's reference manual.  
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V  
4. 2000 pF load LCD, 32 Hz frame frequency  
7 Dimensions  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
75  
Preliminary  
General Business Information  
Pinout  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.freescale.com and perform a keyword  
search for the drawing’s document number:  
If you want the drawing for this package  
144-pin LQFP  
Then use this document number  
98ASS23177W  
98ASA00222D  
144-pin MAPBGA  
8 Pinout  
8.1 K53 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
For FlexBus applications, use only the CLKOUT signal on the  
PTA6 pin to ensure proper timing.  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
1
2
D3  
D2  
PTE0  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE4a  
ADC1_SE5a  
PTE0  
SPI1_PCS1  
SPI1_SOUT  
UART1_TX  
UART1_RX  
SDHC0_D1  
SDHC0_D0  
FB_AD27  
FB_AD26  
I2C1_SDA  
I2C1_SCL  
RTC_CLKOUT  
SPI1_SIN  
PTE1/  
PTE1/  
LLWU_P0  
LLWU_P0  
3
4
D1  
E4  
PTE2/  
LLWU_P1  
ADC1_SE6a  
ADC1_SE7a  
ADC1_SE6a  
ADC1_SE7a  
PTE2/  
LLWU_P1  
SPI1_SCK  
SPI1_SIN  
UART1_CTS_  
b
SDHC0_DCLK FB_AD25  
PTE3  
PTE3  
UART1_RTS_  
b
SDHC0_CMD  
FB_AD24  
SPI1_SOUT  
5
6
7
E5  
F6  
E3  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTE4/  
LLWU_P2  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_PCS0  
SPI1_PCS2  
UART3_TX  
UART3_RX  
SDHC0_D3  
SDHC0_D2  
FB_CS3_b/  
FB_BE7_0_b  
FB_TA_b  
8
E2  
PTE5  
DISABLED  
PTE5  
FB_TBST_b/  
FB_CS2_b/  
FB_BE15_8_b  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
76  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
DISABLED  
DISABLED  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
9
E1  
PTE6  
PTE6  
SPI1_PCS3  
UART3_CTS_  
b
I2S0_MCLK  
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
USB_SOF_  
OUT  
10  
F4  
PTE7  
PTE7  
UART3_RTS_  
b
I2S0_RXD0  
FB_CS0_b  
11  
12  
F3  
F2  
PTE8  
PTE9  
DISABLED  
DISABLED  
PTE8  
PTE9  
I2S0_RXD1  
I2S0_TXD1  
UART5_TX  
UART5_RX  
I2S0_RX_FS  
FB_AD4  
FB_AD3  
I2S0_RX_  
BCLK  
13  
14  
15  
F1  
G4  
G3  
PTE10  
PTE11  
PTE12  
DISABLED  
DISABLED  
DISABLED  
PTE10  
PTE11  
PTE12  
UART5_CTS_  
b
I2S0_TXD0  
FB_AD2  
FB_AD1  
FB_AD0  
UART5_RTS_  
b
I2S0_TX_FS  
I2S0_TX_  
BCLK  
16  
17  
18  
19  
20  
21  
22  
23  
E6  
F7  
H3  
H1  
H2  
G1  
G2  
J1  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1/  
OP0_DP0  
ADC0_DP1/  
OP0_DP0  
ADC0_DP1/  
OP0_DP0  
24  
25  
J2  
ADC0_DM1/  
OP0_DM0  
ADC0_DM1/  
OP0_DM0  
ADC0_DM1/  
OP0_DM0  
K1  
ADC1_DP1/  
OP1_DP0/  
OP1_DM1  
ADC1_DP1/  
OP1_DP0/  
OP1_DM1  
ADC1_DP1/  
OP1_DP0/  
OP1_DM1  
26  
27  
K2  
L1  
ADC1_DM1/  
OP1_DM0  
ADC1_DM1/  
OP1_DM0  
ADC1_DM1/  
OP1_DM0  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
28  
29  
30  
L2  
M1  
M2  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
31  
32  
33  
34  
H5  
G5  
G6  
H6  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
77  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
35  
K3  
ADC1_SE16/  
OP1_OUT/  
CMP2_IN2/  
ADC0_SE22/  
OP0_DP2/  
OP1_DP2  
ADC1_SE16/  
OP1_OUT/  
CMP2_IN2/  
ADC0_SE22/  
OP0_DP2/  
OP1_DP2  
ADC1_SE16/  
OP1_OUT/  
CMP2_IN2/  
ADC0_SE22/  
OP0_DP2/  
OP1_DP2  
36  
J3  
ADC0_SE16/  
OP0_OUT/  
CMP1_IN2/  
ADC0_SE21/  
OP0_DP1/  
OP1_DP1  
ADC0_SE16/  
OP0_OUT/  
CMP1_IN2/  
ADC0_SE21/  
OP0_DP1/  
OP1_DP1  
ADC0_SE16/  
OP0_OUT/  
CMP1_IN2/  
ADC0_SE21/  
OP0_DP1/  
OP1_DP1  
37  
38  
M3  
L3  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
TRI0_OUT/  
OP1_DM2  
TRI0_OUT/  
OP1_DM2  
TRI0_OUT/  
OP1_DM2  
39  
40  
41  
42  
43  
L4  
M4  
L5  
TRI0_DM  
TRI0_DP  
TRI1_DM  
TRI1_DP  
TRI0_DM  
TRI0_DP  
TRI1_DM  
TRI1_DP  
TRI0_DM  
TRI0_DP  
TRI1_DM  
TRI1_DP  
M5  
K5  
TRI1_OUT/  
CMP2_IN5/  
ADC1_SE22  
TRI1_OUT/  
CMP2_IN5/  
ADC1_SE22  
TRI1_OUT/  
CMP2_IN5/  
ADC1_SE22  
44  
45  
K4  
J4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
OP0_DP4/  
OP1_DP4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
OP0_DP4/  
OP1_DP4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
OP0_DP4/  
OP1_DP4  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23/  
OP0_DP5/  
OP1_DP5  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23/  
OP0_DP5/  
OP1_DP5  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23/  
OP0_DP5/  
OP1_DP5  
46  
47  
48  
49  
50  
M7  
M6  
L6  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
H4  
J5  
PTE28  
PTA0  
DISABLED  
PTE28  
FB_AD20  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
TSI0_CH1  
PTA0  
UART0_CTS_  
b/  
UART0_COL_  
b
FTM0_CH5  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
51  
52  
J6  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
K6  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
UART0_TX  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
78  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
53  
54  
55  
K7  
PTA3  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS_  
b
FTM0_CH0  
FTM0_CH1  
FTM0_CH2  
JTAG_TMS/  
SWD_DIO  
L7  
PTA4/  
LLWU_P3  
NMI_b/  
EZP_CS_b  
PTA4/  
LLWU_P3  
NMI_b  
EZP_CS_b  
M8  
PTA5  
DISABLED  
PTA5  
USB_CLKIN  
RMII0_RXER/  
MII0_RXER  
CMP2_OUT  
CLKOUT  
I2S0_TX_  
BCLK  
JTAG_TRST_  
b
56  
57  
58  
E7  
G7  
J7  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA6  
DISABLED  
PTA6  
FTM0_CH3  
TRACE_  
CLKOUT  
59  
60  
J8  
PTA7  
PTA8  
ADC0_SE10  
ADC0_SE11  
ADC0_SE10  
ADC0_SE11  
PTA7  
PTA8  
FTM0_CH4  
FTM1_CH0  
FB_AD18  
FB_AD17  
TRACE_D3  
TRACE_D2  
K8  
FTM1_QD_  
PHA  
61  
62  
63  
64  
L8  
M9  
L9  
PTA9  
DISABLED  
DISABLED  
DISABLED  
CMP2_IN0  
PTA9  
FTM1_CH1  
FTM2_CH0  
FTM2_CH1  
FTM1_CH0  
MII0_RXD3  
MII0_RXD2  
MII0_RXCLK  
FB_AD16  
FB_AD15  
FB_OE_b  
FTM1_QD_  
PHB  
TRACE_D1  
TRACE_D0  
PTA10  
PTA11  
PTA12  
PTA10  
PTA11  
PTA12  
FTM2_QD_  
PHA  
FTM2_QD_  
PHB  
K9  
CMP2_IN0  
CMP2_IN1  
RMII0_RXD1/  
MII0_RXD1  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_16_  
b
I2S0_TXD0  
FTM1_QD_  
PHA  
65  
66  
J9  
PTA13/  
LLWU_P4  
CMP2_IN1  
DISABLED  
PTA13/  
LLWU_P4  
FTM1_CH1  
RMII0_RXD0/  
MII0_RXD0  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_24_  
b
I2S0_TX_FS  
FTM1_QD_  
PHB  
L10  
PTA14  
PTA14  
SPI0_PCS0  
UART0_TX  
UART0_RX  
RMII0_CRS_  
DV/  
MII0_RXDV  
FB_AD31  
I2S0_RX_  
BCLK  
I2S0_TXD1  
I2S0_RXD1  
67  
68  
L11  
K10  
PTA15  
PTA16  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
RMII0_TXEN/  
MII0_TXEN  
FB_AD30  
FB_AD29  
I2S0_RXD0  
SPI0_SOUT  
UART0_CTS_  
b/  
RMII0_TXD0/  
MII0_TXD0  
I2S0_RX_FS  
UART0_COL_  
b
69  
K11  
PTA17  
ADC1_SE17  
ADC1_SE17  
PTA17  
SPI0_SIN  
UART0_RTS_  
b
RMII0_TXD1/  
MII0_TXD1  
FB_AD28  
I2S0_MCLK  
70  
71  
72  
73  
E8  
G8  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
M12  
M11  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
LPTMR0_  
ALT1  
74  
75  
76  
77  
L12  
K12  
J12  
J11  
RESET_b  
PTA24  
RESET_b  
DISABLED  
DISABLED  
DISABLED  
RESET_b  
PTA24  
PTA25  
PTA26  
MII0_TXD2  
MII0_TXCLK  
MII0_TXD3  
FB_AD14  
FB_AD13  
FB_AD12  
PTA25  
PTA26  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
79  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
78  
79  
80  
81  
J10  
H12  
H11  
H10  
PTA27  
DISABLED  
DISABLED  
DISABLED  
PTA27  
MII0_CRS  
MII0_TXER  
MII0_COL  
FB_AD11  
FB_AD10  
FB_AD19  
PTA28  
PTA29  
PTA28  
PTA29  
PTB0/  
LLWU_P5  
LCD_P0/  
LCD_P0/  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
FTM1_CH1  
RMII0_MDIO/  
MII0_MDIO  
FTM1_QD_  
PHA  
LCD_P0  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
82  
H9  
PTB1  
LCD_P1/  
LCD_P1/  
PTB1  
RMII0_MDC/  
MII0_MDC  
FTM1_QD_  
PHB  
LCD_P1  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
83  
84  
G12  
G11  
PTB2  
PTB3  
LCD_P2/  
ADC0_SE12/  
TSI0_CH7  
LCD_P2/  
ADC0_SE12/  
TSI0_CH7  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RTS_  
b
ENET0_1588_  
TMR0  
FTM0_FLT3  
FTM0_FLT0  
LCD_P2  
LCD_P3  
LCD_P3/  
ADC0_SE13/  
TSI0_CH8  
LCD_P3/  
ADC0_SE13/  
TSI0_CH8  
UART0_CTS_  
b/  
UART0_COL_  
b
ENET0_1588_  
TMR1  
85  
86  
87  
88  
89  
90  
91  
92  
G10  
G9  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
LCD_P4/  
ADC1_SE10  
LCD_P4/  
ADC1_SE10  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
ENET0_1588_  
TMR2  
FTM1_FLT0  
FTM2_FLT0  
LCD_P4  
LCD_P5  
LCD_P6  
LCD_P7  
LCD_P8  
LCD_P9  
LCD_P10  
LCD_P11  
LCD_P5/  
ADC1_SE11  
LCD_P5/  
ADC1_SE11  
ENET0_1588_  
TMR3  
F12  
F11  
F10  
F9  
LCD_P6/  
ADC1_SE12  
LCD_P6/  
ADC1_SE12  
LCD_P7/  
ADC1_SE13  
LCD_P7/  
ADC1_SE13  
LCD_P8  
LCD_P9  
LCD_P8  
LCD_P9  
UART3_RTS_  
b
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
UART3_CTS_  
b
E12  
E11  
LCD_P10/  
ADC1_SE14  
LCD_P10/  
ADC1_SE14  
UART3_RX  
FTM0_FLT1  
FTM0_FLT2  
LCD_P11/  
LCD_P11/  
UART3_TX  
ADC1_SE15  
ADC1_SE15  
93  
94  
95  
H7  
F5  
VSS  
VSS  
VDD  
VSS  
VDD  
VDD  
E10  
PTB16  
LCD_P12/  
TSI0_CH9  
LCD_P12/  
TSI0_CH9  
PTB16  
PTB17  
PTB18  
PTB19  
SPI1_SOUT  
SPI1_SIN  
UART0_RX  
UART0_TX  
FTM2_CH0  
FTM2_CH1  
EWM_IN  
LCD_P12  
LCD_P13  
LCD_P14  
LCD_P15  
96  
97  
98  
E9  
PTB17  
PTB18  
PTB19  
LCD_P13/  
TSI0_CH10  
LCD_P13/  
TSI0_CH10  
EWM_OUT_b  
D12  
D11  
LCD_P14/  
TSI0_CH11  
LCD_P14/  
TSI0_CH11  
I2S0_TX_  
BCLK  
FTM2_QD_  
PHA  
LCD_P15/  
TSI0_CH12  
LCD_P15/  
TSI0_CH12  
I2S0_TX_FS  
FTM2_QD_  
PHB  
99  
D10  
D9  
PTB20  
PTB21  
PTB22  
LCD_P16  
LCD_P17  
LCD_P18  
LCD_P16  
LCD_P17  
LCD_P18  
PTB20  
PTB21  
PTB22  
SPI2_PCS0  
SPI2_SCK  
SPI2_SOUT  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
LCD_P16  
LCD_P17  
LCD_P18  
100  
101  
C12  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
80  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
102  
103  
C11  
B12  
PTB23  
LCD_P19  
LCD_P19  
PTB23  
SPI2_SIN  
SPI0_PCS5  
LCD_P19  
LCD_P20  
PTC0  
LCD_P20/  
ADC0_SE14/  
TSI0_CH13  
LCD_P20/  
ADC0_SE14/  
TSI0_CH13  
PTC0  
SPI0_PCS4  
PDB0_EXTRG  
I2S0_TXD1  
I2S0_TXD0  
I2S0_TX_FS  
104  
105  
B11  
A12  
PTC1/  
LLWU_P6  
LCD_P21/  
ADC0_SE15/  
TSI0_CH14  
LCD_P21/  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
SPI0_PCS3  
SPI0_PCS2  
UART1_RTS_  
b
FTM0_CH0  
FTM0_CH1  
LCD_P21  
LCD_P22  
PTC2  
LCD_P22/  
LCD_P22/  
PTC2  
UART1_CTS_  
b
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
106  
A11  
PTC3/  
LLWU_P7  
LCD_P23/  
CMP1_IN1  
LCD_P23/  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_PCS1  
UART1_RX  
FTM0_CH2  
CLKOUT  
I2S0_TX_  
BCLK  
LCD_P23  
107  
108  
109  
110  
111  
112  
113  
H8  
C10  
C9  
VSS  
VSS  
VSS  
VLL3  
VLL3  
VLL3  
VLL2  
VLL2  
VLL2  
B9  
VLL1  
VLL1  
VLL1  
B10  
A10  
A9  
VCAP2  
VCAP1  
VCAP2  
VCAP1  
LCD_P24  
VCAP2  
VCAP1  
LCD_P24  
PTC4/  
LLWU_P8  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_CH3  
I2S0_RXD0  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
LCD_P24  
LCD_P25  
LCD_P26  
LCD_P27  
LCD_P28  
114  
115  
116  
117  
D8  
C8  
B8  
A8  
PTC5/  
LLWU_P9  
LCD_P25  
LCD_P25  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
PTC6/  
LLWU_P10  
LCD_P26/  
CMP0_IN0  
LCD_P26/  
CMP0_IN0  
PTC6/  
LLWU_P10  
PDB0_EXTRG I2S0_RX_  
BCLK  
PTC7  
PTC8  
LCD_P27/  
CMP0_IN1  
LCD_P27/  
CMP0_IN1  
PTC7  
PTC8  
USB_SOF_  
OUT  
I2S0_RX_FS  
LCD_P28/  
LCD_P28/  
I2S0_MCLK  
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
118  
D7  
PTC9  
LCD_P29/  
ADC1_SE5b/  
CMP0_IN3  
LCD_P29/  
ADC1_SE5b/  
CMP0_IN3  
PTC9  
I2S0_RX_  
BCLK  
FTM2_FLT0  
LCD_P29  
119  
120  
121  
122  
C7  
B7  
A7  
D6  
PTC10  
LCD_P30/  
ADC1_SE6b  
LCD_P30/  
ADC1_SE6b  
PTC10  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_FS  
I2S0_RXD1  
LCD_P30  
LCD_P31  
LCD_P32  
LCD_P33  
PTC11/  
LLWU_P11  
LCD_P31/  
ADC1_SE7b  
LCD_P31/  
ADC1_SE7b  
PTC11/  
LLWU_P11  
PTC12  
PTC13  
LCD_P32  
LCD_P33  
LCD_P32  
LCD_P33  
PTC12  
PTC13  
UART4_RTS_  
b
UART4_CTS_  
b
123  
124  
125  
C6  
B6  
A6  
PTC14  
PTC15  
PTC16  
LCD_P34  
LCD_P35  
LCD_P36  
LCD_P34  
LCD_P35  
LCD_P36  
PTC14  
PTC15  
PTC16  
UART4_RX  
UART4_TX  
UART3_RX  
LCD_P34  
LCD_P35  
LCD_P36  
ENET0_1588_  
TMR0  
126  
D5  
PTC17  
LCD_P37  
LCD_P37  
PTC17  
UART3_TX  
ENET0_1588_  
TMR1  
LCD_P37  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
81  
Preliminary  
General Business Information  
Pinout  
144  
LQFP  
144  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
127  
128  
129  
130  
131  
C5  
B5  
A5  
D4  
C4  
PTC18  
LCD_P38  
LCD_P39  
LCD_P40  
LCD_P38  
LCD_P39  
LCD_P40  
PTC18  
UART3_RTS_  
b
ENET0_1588_  
TMR2  
LCD_P38  
LCD_P39  
LCD_P40  
LCD_P41  
LCD_P42  
PTC19  
PTC19  
UART3_CTS_  
b
ENET0_1588_  
TMR3  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
UART2_RTS_  
b
PTD1  
LCD_P41/  
ADC0_SE5b  
LCD_P41/  
ADC0_SE5b  
PTD1  
UART2_CTS_  
b
PTD2/  
LCD_P42  
LCD_P42  
PTD2/  
UART2_RX  
LLWU_P13  
LLWU_P13  
132  
133  
B4  
A4  
PTD3  
LCD_P43  
LCD_P44  
LCD_P43  
LCD_P44  
PTD3  
SPI0_SIN  
UART2_TX  
LCD_P43  
LCD_P44  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
UART0_RTS_  
b
FTM0_CH4  
FTM0_CH5  
EWM_IN  
134  
A3  
PTD5  
LCD_P45/  
ADC0_SE6b  
LCD_P45/  
ADC0_SE6b  
PTD5  
SPI0_PCS2  
SPI0_PCS3  
UART0_CTS_  
b/  
UART0_COL_  
b
EWM_OUT_b  
LCD_P45  
135  
A2  
PTD6/  
LLWU_P15  
LCD_P46/  
ADC0_SE7b  
LCD_P46/  
ADC0_SE7b  
PTD6/  
LLWU_P15  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
FTM0_FLT0  
LCD_P46  
136  
137  
138  
139  
M10  
F8  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
A1  
PTD7  
PTD10  
LCD_P47  
DISABLED  
LCD_P47  
PTD7  
CMT_IRO  
UART0_TX  
FTM0_FLT1  
LCD_P47  
B3  
PTD10  
UART5_RTS_  
b
FB_AD9  
140  
B2  
PTD11  
DISABLED  
PTD11  
SPI2_PCS0  
UART5_CTS_  
b
SDHC0_  
CLKIN  
FB_AD8  
141  
142  
143  
144  
B1  
C3  
C2  
C1  
PTD12  
PTD13  
PTD14  
PTD15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD12  
PTD13  
PTD14  
PTD15  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
SDHC0_D4  
SDHC0_D5  
SDHC0_D6  
SDHC0_D7  
FB_AD7  
FB_AD6  
FB_AD5  
FB_RW_b  
SPI2_PCS1  
8.2 K53 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
82  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Pinout  
PTE0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VLL3  
PTE1/LLWU_P0  
2
VSS  
PTE2/LLWU_P1  
3
PTC3/LLWU_P7  
PTC2  
PTE3  
4
VDD  
5
PTC1/LLWU_P6  
PTC0  
VSS  
6
PTE4/LLWU_P2  
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE5  
8
PTE6  
9
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTE8  
98  
PTE9  
97  
PTE10  
96  
PTE11  
95  
PTE12  
94  
VDD  
VSS  
93  
VSS  
PTB11  
PTB10  
PTB9  
92  
VSS  
91  
USB0_DP  
90  
USB0_DM  
PTB8  
89  
VOUT33  
PTB7  
88  
VREGIN  
PTB6  
87  
ADC0_DP1/OP0_DP0  
PTB5  
86  
ADC0_DM1/OP0_DM0  
PTB4  
85  
ADC1_DP1/OP1_DP0/OP1_DM1  
PTB3  
84  
ADC1_DM1/OP1_DM0  
PTB2  
83  
PGA0_DP/ADC0_DP0/ADC1_DP3  
PTB1  
82  
PGA0_DM/ADC0_DM0/ADC1_DM3  
PTB0/LLWU_P5  
PTA29  
PTA28  
PTA27  
PTA26  
PTA25  
PTA24  
RESET_b  
PTA19  
81  
PGA1_DP/ADC1_DP0/ADC0_DP3  
80  
PGA1_DM/ADC1_DM0/ADC0_DM3  
79  
VDDA  
78  
VREFH  
77  
VREFL  
VSSA  
76  
75  
ADC1_SE16/OP1_OUT/CMP2_IN2/ADC0_SE22/OP0_DP2/OP1_DP2  
ADC0_SE16/OP0_OUT/CMP1_IN2/ADC0_SE21/OP0_DP1/OP1_DP1  
74  
73  
Figure 33. K53 144 LQFP Pinout Diagram  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
Freescale Semiconductor, Inc.  
83  
Preliminary  
General Business Information  
Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PTC4/  
LLWU_P8  
PTC3/  
LLWU_P7  
PTD6/  
LLWU_P15  
PTD4/  
LLWU_P14  
PTD0/  
LLWU_P12  
A
B
C
D
E
F
PTC8  
VCAP1  
PTC2  
A
B
C
D
E
F
PTD7  
PTD5  
PTC16  
PTC12  
PTC11/  
LLWU_P11  
PTC1/  
LLWU_P6  
PTD12  
PTD15  
PTD11  
PTD14  
PTD10  
PTD13  
PTE0  
PTD3  
PTC19  
PTC18  
PTC17  
VDD  
PTC15  
PTC14  
PTC13  
VDD  
PTC7  
VLL1  
VLL2  
VCAP2  
VLL3  
PTC0  
PTB22  
PTB18  
PTB10  
PTB6  
PTD2/  
LLWU_P13  
PTC6/  
LLWU_P10  
PTC10  
PTC9  
VDD  
PTB23  
PTB19  
PTB11  
PTB7  
PTE2/  
LLWU_P1  
PTE1/  
LLWU_P0  
PTC5/  
LLWU_P9  
PTD1  
PTE3  
PTE7  
PTE11  
PTB21  
PTB17  
PTB9  
PTB5  
PTB1  
PTB20  
PTB16  
PTB8  
PTE4/  
LLWU_P2  
PTE6  
PTE10  
PTE5  
PTE9  
VDD  
VDD  
VSS  
PTE8  
PTE12  
VSS  
VDD  
VSS  
VSS  
G
H
J
G
H
J
VOUT33  
USB0_DP  
VREGIN  
USB0_DM  
VREFH  
VDDA  
VREFL  
VSSA  
PTA1  
PTA2  
VBAT  
VSS  
PTB4  
PTB3  
PTB2  
PTB0/  
LLWU_P5  
PTE28  
VSS  
VSS  
PTA29  
PTA26  
PTA17  
PTA15  
PTA28  
PTA25  
PTA24  
RESET_b  
DAC1_OUT/  
ADC0_SE16/  
OP0_OUT/  
CMP1_IN2/  
CMP0_IN4/  
ADC0_DP1/ ADC0_DM1/  
CMP2_IN3/  
PTA13/  
LLWU_P4  
PTA0  
PTA6  
PTA3  
PTA7  
PTA8  
PTA9  
PTA27  
PTA16  
PTA14  
OP0_DP0  
OP0_DM0 ADC0_SE21/ ADC1_SE23/  
OP0_DP1/  
OP0_DP5/  
OP1_DP1  
OP1_DP5  
ADC1_SE16/  
OP1_OUT/  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/ CMP2_IN5/  
ADC1_DP1/  
OP1_DP0/  
OP1_DM1  
TRI1_OUT/  
ADC1_DM1/ CMP2_IN2/  
OP1_DM0  
K
L
K
L
PTA12  
PTA11  
ADC0_SE22/  
OP0_DP4/  
ADC1_SE22  
OP0_DP2/  
OP1_DP4  
OP1_DP2  
PGA0_DP/  
PGA0_DM/  
ADC0_DP0/ ADC0_DM0/  
TRI0_OUT/  
OP1_DM2  
PTA4/  
LLWU_P3  
TRI0_DM  
TRI1_DM  
ADC1_DP3  
ADC1_DM3  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
PGA1_DP/  
ADC1_DP0/ ADC1_DM0/  
ADC0_DP3  
PGA1_DM/  
M
M
TRI0_DP  
TRI1_DP  
EXTAL32  
XTAL32  
PTA5  
PTA10  
VSS  
PTA19  
PTA18  
ADC0_DM3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 34. K53 144 MAPBGA Pinout Diagram  
K53 Sub-Family Data Sheet, Rev. 1, 6/2012.  
84  
Freescale Semiconductor, Inc.  
Preliminary  
General Business Information  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2012 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: K53P144M100SF2V2  
Rev. 1, 6/2012  
Preliminary  
General Business Information  

相关型号:

MK53DN512CLQ10R

RISC MICROCONTROLLER
NXP

MK53DN512CMD10

K53 Sub-Family
FREESCALE

MK53DN512CMD10R

RISC MICROCONTROLLER
NXP

MK53DN512ZCYY10

Integrated measurement engine, Ethernet and LCD
FREESCALE

MK53DN512ZVMD10

RISC MICROCONTROLLER
NXP

MK53DN512ZVMD10R

RISC MICROCONTROLLER
NXP

MK53DX256CLQ10

K53 Sub-Family
FREESCALE

MK53DX256CLQ10R

RISC MICROCONTROLLER
NXP

MK53DX256CMD10

K53 Sub-Family
FREESCALE

MK53DX256CMD10R

RISC MICROCONTROLLER
NXP

MK53DX256ZCYY10

Integrated measurement engine, Ethernet and LCD
FREESCALE

MK53N512CLQ100

Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz
FREESCALE