MCF53015CMJ240 [FREESCALE]

Version 3 ColdFire? core with EMAC; 第3版的ColdFire ?核心与EMAC
MCF53015CMJ240
型号: MCF53015CMJ240
厂家: Freescale    Freescale
描述:

Version 3 ColdFire? core with EMAC
第3版的ColdFire ?核心与EMAC

外围集成电路
文件: 总62页 (文件大小:2881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MCF53017  
Rev. 5, 3/2010  
MCF53017  
LQFP–208  
28 x 28  
MAPBGA–256  
17 x 17  
MCF5301x Data Sheet  
Features  
®
Version 3 ColdFire core with EMAC  
• Up to 211 Dhrystone 2.1 MIPS @ 240 MHz  
• 16 KBytes unified instruction/data cache  
• 128 KBytes internal SRAM with standby power supply  
support  
• Crossbar switch technology (XBS) for concurrent access to  
peripherals or RAM from multiple bus masters  
• Enhanced Secure Digital Host Controller (eSDHC)  
– Supports CE-ATA, SD Memory, miniSD Memory,  
SDIO, miniSDIO, SD Combo, MMC, MMC plus, MMC  
4x, and MMC RS cards  
• Two ISO7816 smart card interfaces  
• IC identification module  
Voice-band audio codec with integrated speaker,  
microphone, headphone, and handset amplifiers  
• 16- or 32-bit SDR, 16-bit DDR/mobile-DDR SDRAM  
controller  
• USB 2.0 On-the-Go controller  
• USB host controller  
• 2 10/100 Ethernet MACs  
• Coprocessor for acceleration of the DES, 3DES, AES,  
MD5, and SHA-1 algorithms  
• Random number generator  
• 16-channel DMA controller  
• Synchronous serial interface  
• 4 periodic interrupt timers  
• 4 32-bit timers with DMA support  
• Real-time clock (RTC) module with standby support  
• DMA-supported serial peripheral interface (DSPI)  
• 3 UARTs  
2
• I C bus interface  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
Preliminary—Subject to Change Without Notice  
Table of Contents  
1
2
3
MCF5301x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . .4  
5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 34  
5.12 I2C Input/Output Timing Specifications . . . . . . . . . . . . 35  
5.13 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 37  
5.13.1 Receive Signal Timing Specifications . . . . . . . 37  
5.13.2 Transmit Signal Timing Specifications . . . . . . . 37  
5.13.3 Asynchronous Input Signal Timing Specifications38  
5.13.4 MII Serial Management Timing Specifications. 38  
5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 39  
5.15 DSPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 39  
5.16 eSDHC Electrical Specifications . . . . . . . . . . . . . . . . . 41  
5.16.1 eSDHC Timing . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5.16.2 eSDHC Electrical DC Characterisics . . . . . . . . 42  
5.17 SIM Electrical Specifications . . . . . . . . . . . . . . . . . . . . 43  
5.17.1 General Timing Requirements . . . . . . . . . . . . . 43  
5.17.2 Reset Sequence. . . . . . . . . . . . . . . . . . . . . . . . 44  
5.17.3 Power Down Sequence . . . . . . . . . . . . . . . . . . 45  
5.18 IIM/Fusebox Electrical Specifications . . . . . . . . . . . . . 46  
5.19 Voice Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.19.1 Voice Codec ADC Specifications . . . . . . . . . . . 47  
5.19.2 Voice Codec DAC Specifications . . . . . . . . . . . 51  
5.20 Integrated Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.20.1 Speaker Amplifier. . . . . . . . . . . . . . . . . . . . . . . 55  
5.20.2 Handset Amplifier. . . . . . . . . . . . . . . . . . . . . . . 56  
5.20.3 Headphone Amplifier . . . . . . . . . . . . . . . . . . . . 57  
5.20.4 Microphone Amplifier . . . . . . . . . . . . . . . . . . . . 57  
5.21 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 58  
5.22 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 60  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5  
3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.3 Supply Voltage Sequencing . . . . . . . . . . . . . . . . . . . . . .6  
3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .7  
3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .7  
3.4 Power Consumption Specifications. . . . . . . . . . . . . . . . .8  
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .9  
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4.2 Pinout—208 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.3 Pinout–256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .19  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .21  
5.4.1 PLL Power Filtering . . . . . . . . . . . . . . . . . . . . . .22  
5.4.2 USB Power Filtering. . . . . . . . . . . . . . . . . . . . . .22  
5.4.3 Supply Voltage Sequencing and Separation  
Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .24  
5.6 External Interface Timing Characteristics . . . . . . . . . . .25  
5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.7.1 SDR SDRAM AC Timing Characteristics. . . . . .27  
5.7.2 DDR SDRAM AC Timing Characteristics . . . . .30  
5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . .32  
5.9 Reset and Configuration Override Timing. . . . . . . . . . .33  
5.10 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
4
5
6
7
8
MCF5301x Data Sheet, Rev. 5  
2
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
MCF53017  
Version 3 ColdFire Core  
JTAG  
Oscillator  
USB Host  
PLL  
16K  
Instruction/  
Data  
Cache  
EMAC  
BDM  
CAU  
2 FECs  
Hardware  
Divide  
128K  
SRAM  
eDMA  
eSDHC  
USB OTG  
Crossbar Switch (XBS)  
Splitter  
Peripheral Bridge  
Smart Card  
Codec  
IIM  
DSPI  
Interface  
SDRAM  
Controller  
FlexBus  
RTC &  
Oscillator  
SSI  
RNG  
I2C  
GPIO  
4 DMA  
Timers  
4 PITs  
2 INTCs  
2 EPORTs  
3 UARTs  
LEGEND  
BDM  
CAU  
– Background debug module  
IIM  
IC identification module  
Interrupt controller  
– Cryptography acceleration unit  
– DMA serial peripheral interface  
– Enhanced direct memory access module  
– Enhanced Secure Digital host controller  
– Enchanced multiply-accumulate unit  
– Edge port module  
– Fast Ethernet Controller  
– General purpose input/output module  
– Inter-Integrated Circuit  
INTC  
JTAG  
PCI  
DSPI  
eDMA  
eSDHC  
EMAC  
EPORT  
FEC  
– Joint Test Action Group interface  
– Peripheral Component Interconnect  
– Programmable interrupt timers  
– Phase locked loop module  
– Random number generator  
– Real time clock  
PIT  
PLL  
RNG  
RTC  
SSI  
GPIO  
– Synchronous serial interface  
I2C  
USB OTG – Universal Serial Bus On-the-Go controller  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
3
MCF5301x Family Comparison  
1
MCF5301x Family Comparison  
The following table compares the various device derivatives available within the MCF5301x family.  
Table 1. MCF5301x Family Configurations  
Module  
Version 3 ColdFire Core with EMAC (enhanced  
multiply-accumulate unit)  
Core (system) clock  
up to 240 MHz  
up to 80 MHz  
Peripheral and external bus clock  
(Core clock ÷ 3)  
Performance (Dhrystone/2.1 MIPS)  
Unified data/instruction cache  
Static RAM (SRAM)  
up to 211  
16 Kbytes  
128 Kbytes  
Voice-over-IP software  
Cryptography acceleration unit (CAU)  
Random number generator  
Smart card interface (SIM)  
Voice-band audio codec  
Integrated audio amplifiers  
IC identification module (IIM)  
Enhanced Secure Digital host controller (eSDHC)  
SDR/DDR SDRAM controller  
FlexBus external interface  
USB 2.0 On-the-Go  
1 port  
2 ports  
2 Kbits  
USB 2.0 Host  
Synchronous serial interface (SSI)  
Fast Ethernet controller (FEC)  
UARTs  
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
I2C  
DSPI  
Real-time clock  
32-bit DMA timers  
4
4
4
4
4
4
4
4
Watchdog timer (WDT)  
Periodic interrupt timers (PIT)  
Edge port module (EPORT)  
Interrupt controllers (INTC)  
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
4
Freescale Semiconductor  
Ordering Information  
Table 1. MCF5301x Family Configurations (continued)  
Module  
16-channel direct memory access (DMA)  
General purpose I/O Module (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
208 LQFP  
256 MAPBGA  
2
Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part Number  
Description  
Package  
Speed  
Temperature  
MCF53010CQT240  
MCF53011CQT240  
MCF53012CQT240  
MCF53013CQT240  
MCF53014CMJ240J  
MCF53015CMJ240J  
MCF53016CMJ240J  
MCF53017CMJ240J  
MCF53010 Microprocessor  
MCF53011 Microprocessor  
MCF53012 Microprocessor  
MCF53013 Microprocessor  
MCF53014 Microprocessor  
MCF53015 Microprocessor  
MCF53016 Microprocessor  
MCF53017 Microprocessor  
208 LQFP  
240 MHz  
–40° to +85° C  
256 MAPBGA  
The following are not available from Freescale for import or sale in the United States prior to September 2010  
MCF53014CMJ240  
MCF53015CMJ240  
MCF53016CMJ240  
MCF53017CMJ240  
MCF53014 Microprocessor  
MCF53015 Microprocessor  
MCF53016 Microprocessor  
MCF53017 Microprocessor  
256 MAPBGA  
240 MHz  
–40° to +85° C  
3
Hardware Design Considerations  
3.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 1 should be connected between the board IV and the PLLV pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PV pin as possible. The 10-ohm resistor in the given filter is required, do not implement the filter circuit  
DD  
using only capacitors. The PV pins draw very little current, so concerns regarding voltage loss across the 10-ohm resistor are  
DD  
not valid.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
5
Hardware Design Considerations  
10 Ω  
Board IVDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 1. System PLL V Power Filter  
DD  
3.2  
USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be  
connected between the board EV and each of the USBV pins. The resistor and capacitors should be placed as close to the  
DD  
DD  
dedicated USBV pin as possible.  
DD  
Board EVDD  
USB VDD Pin  
0 Ω  
10 µF  
0.1 µF  
GND  
Figure 2. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
3.3  
Supply Voltage Sequencing  
Figure 3 shows situations in sequencing the I/O V (EV ), SDRAM V (SDV ), PLL V (PV ), and internal logic /  
DD  
DD  
DD  
DD  
DD  
DD  
core V (IV ). The relationship between SDV and EV is non-critical during power-up and power-down sequences.  
DD  
DD  
DD  
DD  
Both SDV (2.5V or 1.8V) and EV are specified relative to IV .  
DD  
DD  
DD  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
6
Freescale Semiconductor  
Hardware Design Considerations  
EVDD, USBVDD (3.3V)  
SDVDD (2.5V - DDR)  
3.3V  
2.5V  
Supplies Stable  
1.8V  
1.2V  
SDVDD (1.8V - DDR)  
IVDD, PVDD  
1
2
0
Time  
Notes:  
1
IVDD should not exceed EVDD, SDVDD or PVDD by more than 0.4V at any time, including power-up.  
Recommended that IVDD/PVDD should track EVDD/SDVDD up to 0.9V then separate for completion of ramps  
2
3
Input voltage must not be greater than the supply voltage (EVDD, SDVDD, IVDD, or PVDD) by more than 0.5V  
at any time, including during power-up.  
4
Use 1 microsecond or slower rise time for all supplies.  
Figure 3. Supply Voltage Sequencing and Separation Cautions  
3.3.1  
Power Up Sequence  
If EV /SDV are powered up with the IV at 0V, then the sense circuits in the I/O pads will cause all pad output drivers  
DD  
DD  
DD  
connected to the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up  
DD  
DD  
DD  
DD  
before IV must power up. IV should not lead the EV , SDV or PV by more than 0.4V during power ramp up or  
DD  
DD  
DD  
DD  
DD  
there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1  
microsecond to avoid turning on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 microsecond or slower rise time for all supplies.  
2. IV /PV and EV /SDV should track up to 0.9V and then separate for the completion of ramps with  
DD  
DD  
DD  
DD  
EV /SDV going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage  
DD  
DD  
regulator.  
3.3.2  
Power Down Sequence  
If IV /PV are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance  
DD  
DD  
state. There is no limit on how long after IV and PV power down before EV or SDV must power down. IV should  
DD  
DD  
DD  
DD  
DD  
not lag EV , SDV , or PV going low by more than 0.4V during power down or there will be undesired high current in  
DD  
DD  
DD  
the ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PV to 0V.  
DD  
DD  
2. Drop EVDD/SDVDD supplies.  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
7
Hardware Design Considerations  
3.4  
Power Consumption Specifications  
Estimated maximum RUN mode power consumption measurements are shown in the below figure.  
Estimated Power Consumption vs. Core Frequency  
300  
250  
200  
150  
100  
50  
0
0
40  
80  
120  
160  
200  
240  
Core Frequency (MHz)  
Figure 4. Estimated Maximum RUN Mode Power Consumption  
Table 3 lists estimated maximum power and current consumption for the device in various operating modes.  
Table 3. Estimated Maximum Power Consumption Specifications  
Characteristic  
Symbol Typical  
Max  
Unit  
Run Mode — Total Power Dissipation  
TBD  
TBD  
TBD  
mW  
mW  
mW  
Static  
Dynamic  
Core Operating Supply Current 1  
Run Mode  
IDD  
EIDD  
82.9  
mA  
Pad Operating Supply Current  
Run Mode (application dependent)  
Wait Mode  
TBD  
TBD  
TBD  
mA  
mA  
mA  
Stop Mode  
1
Current measured at maximum system clock frequency, all modules active, and default drive  
strength with matching load.  
MCF5301x Data Sheet, Rev. 5  
8
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 4. Current Measurementas at Different VCO vs. Core Frequencies  
480VCO, 240MHz  
core  
240VCO, 120MHz  
core  
480VCO, 120MHz  
core  
480VCO, 48MHz  
core  
Limp Mode, 20HMHz  
crystal  
Stop Mode  
Executing  
Run  
55.3mA  
39.5mA  
16.28mA  
16.19mA  
8.41mA  
8.13mA  
1.83mA  
0.65mA  
28.36mA  
20.3mA  
8.53mA  
8.53mA  
4.60mA  
4.48mA  
1.86mA  
0.66mA  
30.00mA  
22.02mA  
10.23mA  
10.18mA  
6.29mA  
6.15mA  
1.87mA  
0.67mA  
13.6mA  
10.29mA  
5.53mA  
5.55mA  
3.90mA  
3.88mA  
1.82mA  
0.67mA  
5.90mA  
4.42mA  
2.43mA  
2.41mA  
1.78mA  
1.77mA  
1.76mA  
0.65mA  
Wait  
Doze  
Stop(0)  
Stop(1)  
Stop(2)  
Stop(3)  
4
Pin Assignments and Reset States  
4.1  
Signal Multiplexing  
The following table lists all the MCF5301x pins grouped by function. The “Dir” column is the direction for the primary function  
of the pin only. Refer to Section 4.2, “Pinout—208 LQFP,” and Section 4.3, “Pinout–256 MAPBGA,” for package diagrams.  
For a more detailed discussion of the MCF3xxx signals, consult the MCF5301x Reference Manual (MCF53017RM).  
NOTE  
In this table and throughout this document a single signal within a group is designated  
without square brackets (i.e., FB_A23), while designations for multiple signals within a  
group use brackets (i.e., FB_A[23:21]) and is meant to include all signals within the two  
bracketed numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Most pins that  
are muxed with GPIO will default to their GPIO functionality. See Table 5 for a list of the  
exceptions.  
Table 5. Special-Case Default Signal Functionality  
Pin  
Default Signal  
FB_BE/BWE[3:0]  
FB_CS[3:0]  
FB_OE  
FB_BE/BWE[3:0]  
FB_CS[3:0]  
FB_OE  
FB_TA  
FB_TA  
FB_R/W  
FB_R/W  
FB_TS  
FB_TS  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
9
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing  
MCF53010  
MCF53011  
MCF53012  
MCF53013  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
Reset  
I
EVDD  
EVDD  
41  
42  
M3  
N1  
RESET  
U
O
RSTOUT  
Clock  
I
EVDD  
EVDD  
49  
50  
T2  
T3  
EXTAL  
XTAL  
U3  
O
Mode Selection  
I
EVDD  
55, 17  
J5, G5  
BOOTMOD[1:0]  
FlexBus  
O
O
O
O
O
O
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
115, 114  
113–108  
107, 106  
105–103  
100  
P16, N16  
R16, N14, N15, P15-13  
R15, R14  
FB_A[23:22]  
FB_A[21:16]  
FB_A[15:14]  
FB_A[13:11]  
FB_A10  
FB_CS[3:2]  
SD_BA[1:0]  
SD_A[13:11]  
N13, R12, R13  
N12  
99–97  
95–89  
P12, T14, T15, R11, P11,  
N11, T13, R10, T11, T12  
FB_A[9:0]  
SD_A[9:0]  
I/O SDVDD 208–198, 57–62, B3, A2, D6, C5, B4, A3,  
FB_D[31:16]  
FB_D[15:0]  
SD_D[31:16]  
FB_D[31:16]  
64, 65  
B5, C6, D12, C14, B14,  
C13, D11, B13, A14, A13  
I/O SDVDD 182–189, 177–170 B9, A9, A8, D7, B8, C8,  
D8, B7, C10, A10, B10,  
D10, C11, A11, B11, A12  
O
O
O
O
O
O
I
SDVDD  
153  
D13  
FB_CLK  
FB_BE/BWE[3:0]  
FB_CS[5:4]  
FB_CS1  
SD_DQM[3:0]  
U
SDVDD 197, 166, 179, 178  
A4, B12, C9, D9  
PBE[3:0]  
PCS[5:4]  
PCS1  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
5
B6, C7  
D2  
SD_CS1  
FB_CS4  
6
C2  
FB_CS0  
PCS0  
1
D4  
FB_OE  
PFBCTL3  
PFBCTL2  
PFBCTL1  
PFBCTL0  
3
B2  
FB_TA  
O
O
2
C3  
FB_R/W  
4
D3  
FB_TS  
DACK0  
SDRAM Controller  
O
SDVDD  
206  
C4  
SD_A10  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
10  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing (continued)  
MCF53010  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
MCF53011  
MCF53012  
MCF53013  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
O
O
O
O
O
O
O
I
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
154  
D15  
SD_CAS  
SD_CKE  
151  
190  
B15  
A7  
SD_CLK  
191  
A6  
SD_CLK  
155  
A15  
C12, A5  
C15  
D5  
SD_CS0  
196, 167  
152  
SD_DQS[1:0]  
SD_RAS  
207  
SD_SDR_DQS  
SD_WE  
O
150  
D14  
External Interrupts Port 14,5  
I
I
EVDD  
EVDD  
H1, H4-2  
IRQ1DEBUG[7:4]  
IRQ1DEBUG[3:0]  
PIRQ1DEBUG  
[7:4]  
DDATA[3:0]  
K14, H14, K15, J13  
PIRQ1DEBUG  
[3:0]  
PST[3:0]  
I
I
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
29  
30  
J1  
J2  
IRQ1FEC7  
IRQ1FEC6  
PIRQ1FEC7  
PIRQ1FEC6  
RMII1_CRS_DV  
RMII1_RXER  
MII0_CRS  
MII0_RXCLK  
MII0_TXCLK  
D
31  
K4  
IRQ1FEC5  
PIRQ1FEC5  
RMII1_TXEN  
32  
J3  
IRQ1FEC4  
PIRQ1FEC4  
RMII1_REF_CLK  
RMII1_RXD[1:0]  
RMII1_TXD[1:0]  
33, 34  
35, 36  
J4, K1  
K2, L1  
IRQ1FEC[3:2]  
IRQ1FEC[1:0]  
PIRQ1FEC[3:2]  
PIRQ1FEC[1:0]  
MII0_RXD[3:2]  
MII0_TXD[3:2]  
External Interrupts Port 05  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
10  
19  
11  
E4  
L13  
D1  
F4  
IRQ07  
IRQ06  
IRQ04  
IRQ01  
PIRQ07  
PIRQ06  
PIRQ04  
PIRQ01  
U
U
U
U
USB_CLKIN  
DREQ0  
DREQ1  
Enhanced Secure Digital Host Controller  
I/O  
I/O  
I/O  
O
EVDD  
EVDD  
EVDD  
EVDD  
60  
61–63  
59  
N4  
R5, N6, N5  
R4  
SDHC_DAT3  
SDHC_DAT[2:0]  
SDHC_CMD  
SDHC_CLK  
PSDHC5  
PSDHC[4:2]  
PSDHC1  
UD  
U
U
58  
R3  
PSDHC0  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
11  
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing (continued)  
MCF53010  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
MCF53011  
MCF53012  
MCF53013  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
Codec  
I
I
85  
84  
86  
75  
67  
81  
79  
78  
82  
P10  
P9  
N9  
R7  
R6  
P6  
P8  
P7  
N7  
CODEC_ADCN  
CODEC_ADCP  
CODEC_BGRVREF  
CODEC_DACN  
CODEC_DACP  
CODEC_REGBYP  
CODEC_REFN  
CODEC_REFP  
CODEC_VAG  
AMP_MICN  
AMP_MICP  
I
O
O
I
AMP_HSN  
AMP_HSP  
I
I
I
Amplifiers  
O
O
O
O
R9  
R8  
T9  
T7  
AMP_HPDUMMY  
AMP_HPOUT  
AMP_SPKRN  
AMP_SPKRP  
Smart Card interface 1  
I/O  
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
141  
142  
144  
145  
143  
E14  
D16  
E13  
E15  
F13  
SIM1_DATA  
SIM1_VEN  
SIM1_RST  
SIM1_PD  
PSIM14  
PSIM13  
PSIM12  
PSIM11  
PSIM10  
SSI_TXD  
SSI_RXD  
SSI_FS  
U1TXD  
U1RXD  
U1RTS  
U1CTS  
UD  
UD  
O
O
SSI_BCLK  
SSI_MCLK  
O
SIM1_CLK  
Smart Card interface 0  
I/O  
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
L3  
M2  
SIM0_DATA  
SIM0_VEN  
SIM0_RST  
SIM0_PD  
PSIM04  
PSIM03  
PSIM02  
PSIM01  
PSIM00  
O
F16  
L14  
M16  
O
O
SIM0_CLK  
USB On-the-Go  
O
O
USB  
VDD  
148  
149  
C16  
B16  
USBO_DM  
USBO_DP  
USB  
VDD  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
12  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing (continued)  
MCF53010  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
MCF53011  
MCF53012  
MCF53013  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
USB Host  
O
O
USB  
VDD  
B1  
C1  
USBH_DM  
USBH_DP  
USB  
VDD  
FEC 1  
EVDD  
EVDD  
22  
23  
E1  
F1  
RMII1_MDC  
RMII1_MDIO  
PFECI2C5  
PFECI2C4  
MII0_TXER  
MII0_COL  
FEC 0  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
131  
130, 129  
127  
G16  
H15, H16  
J16  
RMII0_CRS_DV  
RMII0_RXD[1:0]  
RMII0_RXER  
RMII0_TXD[1:0]  
RMII0_TXEN  
RMII0_MDC  
PFEC06  
PFEC0[5:4]  
PFEC03  
MII0_RXDV  
MII0_RXD[1:0]  
MII0_RXER  
MII0_TXD[1:0]  
MII0_TXEN  
MII0_MDC  
D
125, 124  
123  
J15, J14  
K16  
PFEC0[2:1]  
PFEC00  
133  
G14  
PFECI2C3  
PFECI2C2  
132  
G15  
RMII0_MDIO  
MII0_MDIO  
Real Time Clock  
I
EVDD  
EVDD  
P1  
R1  
RTC_EXTAL  
RTC_XTAL  
O
Synchronous Serial Interface  
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
N3  
P3  
R2  
P4  
P5  
SSI_RXD  
SSI_TXD  
SSI_FS  
PSSI4  
PSSI3  
PSSI2  
PSSI1  
PSSI0  
U1RXD  
U1TXD  
UD  
O
UD  
I/O  
O
U1RTS  
SSI_MCLK  
SSI_BCLK  
SSI_CLKIN  
U1CTS  
I/O  
I2C  
I/O  
I/O  
EVDD  
EVDD  
37  
38  
M1  
K3  
I2C_SCL  
I2C_SDA  
PFECI2C1  
PFECI2C0  
U2RXD  
U2TXD  
RMII1_MDC  
RMII1_MDIO  
U
U
DSPI  
I/O  
I/O  
EVDD  
EVDD  
P2  
N2  
DSPI_PCS3  
DSPI_PCS2  
PDSPI6  
PDSPI5  
USBH_VBUS_EN  
USBH_VBUS_OC  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
13  
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing (continued)  
MCF53010  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
MCF53011  
MCF53012  
MCF53013  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
I/O  
I/O  
I/O  
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
140  
F14  
DSPI_PCS1  
DSPI_PCS0/SS  
DSPI_SCK  
PDSPI4  
PDSPI3  
PDSPI2  
PDSPI1  
PDSPI0  
U
137  
134  
136  
135  
G13  
H13  
E16  
F15  
U2RTS  
U2CTS  
U2RXD  
U2TXD  
DSPI_SIN  
O
DSPI_SOUT  
UARTs  
I
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
14  
18  
20  
21  
27  
28  
E2  
F2  
U2RXD  
U2TXD  
U0CTS  
U0RTS  
U0RXD  
U0TXD  
PUART5  
PUART4  
PUART3  
PUART2  
PUART1  
PUART0  
G4  
G3  
G2  
G1  
USBO_VBUS_EN  
USB_PULLUP  
O
I
USBO_VBUS_OC  
O
DMA Timers  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
13  
12  
F3  
E3  
T3IN  
T2IN  
T1IN  
T0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
T3OUT  
T2OUT  
T1OUT  
T0OUT  
IRQ03  
IRQ02  
122  
121  
K13  
L16  
DACK1  
CODEC_ALTCLK  
BDM/JTAG6  
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
43  
64  
M8  
ALLPST  
JTAG_EN  
PSTCLK  
DSI  
PDEBUG  
D
I
65  
T5  
TCLK  
TDI  
U
I
66  
T4  
O
I
120  
119  
118  
M15  
M14  
L15  
DSO  
TDO  
TMS  
TRST  
U
BKPT  
I
DSCLK  
U
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
14  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 6. MCF5301x Signal Information and Muxing (continued)  
MCF53010  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
MCF53011  
MCF53012  
MCF53013  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
208 LQFP  
256 MAPBGA  
Test  
I
EVDD  
146  
F12  
TEST  
Power Supplies  
D
16, 44, 69, 77, 128, E9, F8, F9, H5, H6, H11,  
IVDD  
169, 193  
H12, J6, J11, L8, L9  
9, 24, 26, 40, 47,  
51, 54, 57, 74, 126,  
139, 195  
F5, G6, G11, G12,  
J12, K6, K11, K12,  
L5-7, L10-12, M5-7, M12  
EVDD  
7, 102, 116, 156, E5, E6, E10-12, F6, F7,  
163, 181, 208  
SD_VDD  
F10, F11  
46  
M4  
VDD_OSC_A_PLL  
VDD_USBO  
VDD_USBH  
VDD_RTC  
147  
E7  
E8  
80  
N8  
T8  
M9  
L2  
L4  
AVDD_CODEC  
AVDD_SPKR  
VDD_EPM  
96  
VSTBY_SRAM  
VSTBY_RTC  
VSS  
8, 15, 25, 39, 45, A1, A16, G7-10, H7-10,  
48, 52, 53, 56, 68,  
73, 76, 101, 117,  
138, 168, 180, 192,  
194  
J7-10, K7-10, T1, T16  
83  
N10  
T6  
VSS_CODEC  
AVSS_SPKR_HDST  
AVSS_SPKR_HP  
T10  
1
Pull-ups are generally only enabled on pins with their primary function, except as noted.  
Refers to pin’s primary function.  
2
3
4
Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).  
The edge port 1 signals are the primary functions on two sets of pins (IRQ1FECn and IRQ1DEBUGn). If an IRQ1 function is configured on  
both pins, the IRQ1FECn pin takes priority. The corresponding IRQ1DEBUGn pin is disconnected internally from the edge port 1 module.  
5
6
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions.  
If JTAG_EN is asserted, these pins default to alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
15  
Pin Assignments and Reset States  
4.2  
Pinout—208 LQFP  
The pinout for the 208 LQFP devices is shown in Figure 5 and Figure 6.  
1
2
3
4
5
6
7
8
FB_OE  
FB_R/W  
FB_TA  
FB_TS  
FB_CS1  
FB_CS0  
SDVDD  
VSS  
9
EVDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
IRQ07  
IRQ01  
T2IN  
T3IN  
U2RXD  
VSS  
IVDD  
BOOTMOD0  
U2TXD  
IRQ04  
U0CTS  
U0RTS  
RMII1_MDC  
RMII1_MDIO  
EVDD  
VSS  
EVDD  
U0RXD  
U0TXD  
IRQ17  
IRQ16  
IRQ15  
IRQ14  
IRQ13  
IRQ12  
IRQ11  
IRQ10  
I2C_SCL  
I2C_SDA  
VSS  
EVDD  
RESET  
RSTOUT  
ALLPST  
IVDD  
VSS  
VDD_OSC  
EVDD  
VSS  
EXTAL  
XTAL  
EVDD  
VSS 52  
Figure 5. MCF53010, MCF53011, MCF53012, and MCF53013 Pinout Top View, Left (208 QFP)  
MCF5301x Data Sheet, Rev. 5  
16  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Pin Assignments and Reset States  
156 SDVDD  
155 SD_CS0  
154 SD_CAS  
153 FB_CLK  
152 SD_RAS  
151 SD_CKE  
150 SD_WE  
149 USBO_DP  
148 USBO_DM  
147 VDD_USBO  
146 TEST  
145 SIM1_PD  
144 SIM1_RST  
143 SIM1_CLK  
142 SIM1_VEN  
141 SIM1_DATA  
140 DSPI_PCS1  
139 EVDD  
138 VSS  
137 DSPI_PCS0  
136 DSPI_SIN  
135 DSPI_SOUT  
134 DSPI_SCK  
133 RMII0_MDC  
132 RMII0_MDIO  
131 RMII0_CRSDV  
130 RMII0_RXD1  
129 RMII0_RXD0  
128 IVDD  
127 RMII0_RXER  
126 EVDD  
125 RMII0_TXD1  
124 RMII0_TXD0  
123 RMII0_TXEN  
122 T1IN  
121 T0IN  
120 TDO  
119 TMS  
118 TRST  
117 VSS  
116 SDVDD  
115 FB_A23  
114 FB_A22  
113  
FB_A21  
112 FB_A20  
111 FB_A19  
110 FB_A18  
109 FB_A17  
108 FB_A16  
107 FB_A15  
106 FB_A14  
105 FB_A13  
Figure 6. MCF53010, MCF53011, MCF53012, and MCF53013 Pinout Top View, Right (208 QFP)  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
17  
Pin Assignments and Reset States  
4.3  
Pinout–256 MAPBGA  
The pinout for the MCF53014, MCF53015, MCF53016, and MCF53017 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FB_D  
30  
FB_D  
26  
FB_BE/  
BWE3  
SD_  
DQS1  
SD_  
CLK  
SD_  
CLK  
FB_D  
13  
FB_D  
14  
FB_D  
6
FB_D  
2
FB_D  
0
FB_D  
16  
FB_D  
17  
A
B
C
D
E
F
VSS  
SD_CS  
VSS  
A
B
C
D
E
F
USBH_  
DM  
FB_D  
31  
FB_D  
27  
FB_D  
25  
FB_D  
8
FB_D  
11  
FB_D  
15  
FB_D  
5
FB_D FB_BE/  
1
FB_D  
18  
FB_D  
21  
SD_  
CKE  
USBO_  
DP  
FB_TA  
FB_CS5  
BWE2  
USBH_  
DP  
FB_D  
28  
FB_D  
24  
FB_D FB_BE/ FB_D  
10 BWE1  
FB_D  
3
SD_  
DQS2  
FB_D  
20  
FB_D  
22  
SD_  
RAS  
USBO_  
DM  
FB_CS0 FB_R/W SD_A10  
FB_CS4  
7
SD_SDR FB_D  
_DQS 29  
FB_D  
12  
FB_D FB_BE/ FB_D  
9
FB_D  
19  
FB_D  
23  
SD_  
WE  
SD_  
CAS  
SIM1_  
VEN  
IRQ04 FB_CS1 FB_TS  
FB_OE  
IRQ07  
IRQ01  
FB_CLK  
BWE0  
4
RMII1_  
MDC  
VDD_  
USBO  
VDD_  
USBH  
SIM1_  
RST  
SIM1_  
DATA  
SIM1_  
PD  
DSPI_  
SIN  
U2RXD  
U2TXD  
T2IN  
T3IN  
SDVDD SDVDD  
IVDD  
SDVDD SDVDD SDVDD  
SDVDD SDVDD TEST  
RMII1_  
MDIO  
SIM1_  
CLK  
DSPI_  
PCS1  
DSPI_  
SOUT  
SIM0_  
RST  
EVDD SDVDD SDVDD  
IVDD  
VSS  
VSS  
VSS  
VSS  
IVDD  
IVDD  
VSS  
VSS  
VSS  
VSS  
IVDD  
BOOT  
DSPI_  
PCS0  
RMII0_  
MDC  
RMII0_ RMII0_  
MDIO  
G
H
J
U0TXD U0RXD U0RTS U0CTS  
EVDD  
IVDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
EVDD  
NC  
EVDD  
IVDD  
IVDD  
EVDD  
EVDD  
NC  
EVDD  
IVDD  
G
H
J
MOD0  
IVDD  
CRSDV  
IRQ1  
IRQ1  
IRQ1  
IRQ1  
DSPI_  
SCK  
IRQ1  
DEBUG2 RXD1  
RMII0_ RMII0_  
RXD0  
DEBUG7 DEBUG4 DEBUG5 DEBUG6  
IRQ1  
FEC7  
IRQ1  
FEC6  
IRQ1  
FEC4  
IRQ1  
FEC3  
BOOT  
MOD1  
IRQ1  
DEBUG0 TXD0  
RMII0_  
RMII0_ RMII0_  
TXD1  
IVDD  
VSS  
EVDD  
EVDD  
EVDD  
EVDD  
RXER  
IRQ1  
FEC2  
IRQ1  
FEC1  
I2C_  
SDA  
IRQ1  
FEC5  
IRQ1  
T1IN  
IRQ1  
RMII0_  
K
L
NC  
EVDD  
EVDD  
EVDD  
VSS  
K
L
DEBUG3 DEBUG1 TXEN  
IRQ1  
FEC0  
VSTBY_ SIM0_ VSTBY_  
SRAM  
SIM0_  
PD  
EVDD  
EVDD  
EVDD  
IRQ06  
NC  
TRST  
TDO  
T0IN  
DATA  
RTC  
VDD_  
I2C_  
SCL  
SIM0_  
VEN  
JTAG_  
EN  
VDD_  
EPM  
SIM0_  
CLK  
M
RESET OSC_A_ EVDD  
PLL  
TMS  
M
N
P
R
T
CODEC  
_BGR  
VREF  
RST  
OUT  
DSPI_  
PCS2  
SSI_  
RXD  
SDHC_ SDHC_ SDHC_ CODEC AVDD_  
DAT3  
VSS_  
CODEC  
N
P
FB_A4 FB_A10 FB_A13 FB_A20 FB_A19 FB_A22  
FB_A5 FB_A9 FB_A16 FB_A17 FB_A18 FB_A23  
DAT0  
DAT1  
_VAG CODEC  
CODEC  
_REG  
BYP  
RTC_  
EXTAL  
DSPI_  
PCS3  
SSI_  
TXD  
SSI_  
MCLK  
SSI_  
BCLK  
CODEC CODEC CODEC CODEC  
_REFP _REFN _ADCP _ADCN  
AMP_  
HP  
OUT  
AMP_  
HP  
DUMMY  
R
T
RTC_  
XTAL  
SDHC_ SDHC_ SDHC_ CODEC CODEC  
CLK  
SSI_FS  
FB_A2 FB_A6 FB_A12 FB_A11 FB_A14 FB_A15 FB_A21  
AVSS_  
SPKR_ FB_A1 FB_A0  
HP  
CMD  
DAT2  
_DACP _DACN  
AVSS_  
SPKR_  
HDST  
AMP_ AVDD_ AMP_  
SPKRP SPKR SPKRN  
VSS  
EXTAL  
XTAL  
TDI  
TCLK  
FB_A3  
FB_A8  
FB_A7  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 7. MCF53014, MCF53015, MCF53016, and MCF53017 Pinout (256 MAPBGA)  
MCF5301x Data Sheet, Rev. 5  
18  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5
Preliminary Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5301x microprocessor. This  
section contains detailed information on DC/AC electrical characteristics and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will  
be met. Finalized specifications will be published after complete characterization and device qualifications have been  
completed.  
NOTE  
The parameters specified in this MCU document supersede any values found in the module  
specifications.  
5.1  
Maximum Ratings  
1, 2  
Table 7. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
SDVDD  
PLLVDD  
VIN  
–0.5 to +2.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +2.0  
–0.3 to +3.6  
25  
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
V
V
Digital Input Voltage 3  
V
Instantaneous Maximum Current  
ID  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL – TH)  
–40 to +85  
°C  
°C  
Storage Temperature Range  
Tstg  
–55 to +150  
1
2
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either VSS or EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous  
and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater  
than IDD, the injection current may flow out of EVDD and could result in external power supply  
going out of regulation. Insure external EVDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power (ex; no  
clock). Power supply must maintain regulation within operating EVDD range during  
instantaneous and operating maximum current conditions.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
19  
Preliminary Electrical Characteristics  
5.2  
Thermal Characteristics  
Table 8. Thermal Characteristics  
256  
MAPBGA  
208  
LQFP  
Characteristic  
Symbol  
Unit  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
361,2  
381,2  
°C/W  
Four layer board  
(2s2p)  
θJMA  
321,2  
331,2  
°C/W  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
253  
144  
21,5  
105  
293  
114  
31,5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
1
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware  
that device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in  
the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written in conformance with Psi-JT.  
4
5
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
TA  
= Ambient Temperature, °C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
MCF5301x Data Sheet, Rev. 5  
20  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
5.3  
ESD Protection  
1, 2  
Table 9. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
1
All ESD testing is in conformity with JEDEC JESD22-A114 specification.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4  
DC Electrical Specifications  
Table 10. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
IVDD  
SRAMVSTBY  
RTCVSTBY  
PLLVDD  
1.08  
1.08  
3.0  
1.32  
1.32  
3.6  
V
V
V
V
V
V
SRAM Standby Voltage  
RTC Standby Voltage  
PLL Supply Voltage  
3.0  
3.6  
CMOS Pad Supply Voltage  
EVDD  
3.0  
3.6  
SDRAM and FlexBus Supply Voltage  
SDVDD  
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.70  
2.25  
3.0  
1.95  
2.75  
3.6  
USB Supply Voltage  
USBVDD  
EVIH  
3.0  
3.6  
EVDD + 0.3  
0.42 × EVDD  
V
V
V
V
CMOS Input High Voltage  
CMOS Input Low Voltage  
0.51 × EVDD  
VSS – 0.3  
0.8 × EVDD  
EVIL  
CMOS Output High Voltage  
IOH = –2.0 mA  
EVOH  
CMOS Output Low Voltage  
EVOL  
0.2 × EVDD  
V
V
IOL = 2.0 mA  
SDRAM and FlexBus Input High Voltage  
SDVIH  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
SDVDD × 0.7 SDVDD+0.3  
Vref+0.15  
SDVDD+0.3  
2
SDVDD + 0.3  
SDRAM and FlexBus Input Low Voltage  
SDVIL  
V
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
–0.3  
–0.3  
VSS – 0.3  
SDVDD × 0.3  
Vref+0.15  
0.8  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
21  
Preliminary Electrical Characteristics  
Table 10. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
SDRAM and FlexBus Output High Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOH = –5.0 mA for all modes  
SDVOH  
V
SDVDD × 0.9  
SDVDD – 0.35  
2.9  
SDRAM and FlexBus Output Low Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
SDVOL  
V
SDVDD × 0.1  
0.35  
0.4  
IOL = 5.0 mA for all modes  
Input Leakage Current  
Iin  
–2.5  
2.5  
μA  
Vin = VDD or VSS, Input-only pins  
Weak Internal Pull-Up/Pull-down Device Current1  
IAPU  
IAPU  
Cin  
10  
25  
315  
150  
μA  
μA  
pF  
Selectable Weak Internal Pull-Up/Pull-down Device Current2  
Input Capacitance 3  
All input-only pins  
All input/output (three-state) pins  
7
7
1
Refer to the signals section for pins having weak internal pull-up devices.  
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
3
5.4.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 8 should be connected between the board V and the PLLV pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board IVDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 8. System PLL V Power Filter  
DD  
5.4.2  
USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be  
connected between the board EV or IV and each of the USBV pins. The resistor and capacitors should be placed as  
DD  
DD  
DD  
close to the dedicated USBV pin as possible.  
DD  
MCF5301x Data Sheet, Rev. 5  
22  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
0 Ω  
Board EVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 9. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
5.4.3  
Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences. Both SDV (2.5V  
DD  
DD  
DD  
or 3.3V) and EV are specified relative to IV  
.
DD  
DD  
5.4.3.1  
Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers  
DD  
DD  
DD  
connected to the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up  
DD  
DD  
DD  
DD  
before IV must powered up. IV should not lead the EV , SDV or PLLV by more than 0.4 V during power ramp-up,  
DD  
DD  
DD  
DD  
DD  
or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than  
500 us to avoid turning on the internal ESD protection clamp diodes.  
5.4.3.2  
Power Down Sequence  
If IV /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high  
DD  
DD  
impedance state. There is no limit on how long after IV and PLLV power down before EV or SDV must power  
DD  
DD  
DD  
DD  
down. IV should not lag EV , SDV , or PLLV going low by more than 0.4 V during power down or there will be  
DD  
DD  
DD  
DD  
undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
23  
Preliminary Electrical Characteristics  
5.5  
Oscillator and PLL Electrical Characteristics  
Table 11. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
14  
14  
251  
481  
MHz  
MHz  
External reference  
2
Core frequency  
fsys  
fsys/3  
488 x 10-6  
163 x 10-6  
240  
80  
MHz  
MHz  
CLKOUT Frequency2  
3
4
Crystal Start-up Time3, 4  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode5  
All other modes (External, Limp)  
VIHEXT  
VIHEXT  
VXTAL + 0.4  
EVDD/2 + 0.4  
V
V
5
EXTAL Input Low Voltage  
Crystal Mode5  
VILEXT  
VILEXT  
VXTAL – 0.4  
EVDD/2 – 0.4  
V
V
All other modes (External, Limp)  
7
8
PLL Lock Time 3, 6  
tlpll  
tdc  
40  
1
750  
60  
us  
%
Duty Cycle of reference 3  
9
XTAL Current  
IXTAL  
3
mA  
pF  
pF  
10  
11  
12  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
Crystal capacitive load  
CS_XTAL  
CS_EXTAL  
CL  
1.5  
1.5  
See crystal  
spec  
13  
14  
17  
Discrete load capacitance for XTAL  
Discrete load capacitance for EXTAL  
CL_XTAL  
CL_EXTAL  
Cjitter  
2 × CL –  
pF  
pF  
CS_XTAL  
7
CPCB_XTAL  
2 × CL –  
CS_EXTAL  
CPCB_EXTAL  
7
CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter  
TBD  
TBD  
% fsys/3  
% fsys/3  
18  
19  
Frequency Modulation Range Limit 3, 10, 11  
(fsysMax must not be exceeded)  
Cmod  
fvco  
0.8  
2.2  
%fsys/3  
VCO Frequency. fvco = (fref × PFD)/4  
200  
667  
MHz  
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock  
frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.  
All internal registers retain data at 0 Hz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification is the PLL lock time only and does not include oscillator start-up time..  
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
2
3
4
5
6
7
MCF5301x Data Sheet, Rev. 5  
24  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
8
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase  
the Cjitter percentage for a given interval.  
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.  
Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100kHz.  
Modulation range determined by hardware design.  
9
10  
11  
5.6  
External Interface Timing Characteristics  
Table 12 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and output delay with  
respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values. Timings listed in Table 12  
are shown in Figure 11 and Figure 12.  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK (80MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
Input Fall Time  
t
t
rise  
V
= V  
IH  
h
V = V  
l
IL  
fall  
V
= V  
IH  
h
V = V  
l
IL  
FB_CLK  
B4  
B5  
Inputs  
Figure 10. General Input Timing Requirements  
5.6.1  
FlexBus  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up  
to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external  
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose  
chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
25  
Preliminary Electrical Characteristics  
Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or  
longword (32 bits) wide. Control signal timing is 1‘compatible with common ROM/flash memories.  
5.6.1.1  
FlexBus AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock.  
Table 12. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit Notes  
Frequency of Operation  
FB1 Clock Period (FB_CLK)  
12.5  
80  
Mhz  
ns  
fsys/3  
tFBCK  
tcyc  
1
FB2 Address, Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)  
tFBCHDCV  
7.0  
ns  
1, 2  
FB3 Address, Data, and Control Output Hold (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)  
tFBCHDCI  
1
ns  
FB4 Data Input Setup  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
3.5  
0
ns  
ns  
ns  
ns  
FB5 Data Input Hold  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
4
0
1
2
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC Timing  
Characteristics” for SD_CS[3:0] timing.  
The FlexBus supports programming an extension of the address hold. Please consult the MCF5301x Reference  
Manual for more information.  
NOTE  
The processor drives the data lines during the first clock cycle of the transfer with the full  
32-bit address. This may be ignored by standard connected devices using non-multiplexed  
address and data buses. However, some applications may find this feature beneficial.  
The address and data busses are muxed between the FlexBus and SDRAM controller. At  
the end of the read and write bus cycles the address signals are indeterminate.  
MCF5301x Data Sheet, Rev. 5  
26  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
FB5  
FB_D[31:X]  
ADDR[31:X]  
DATA  
FB4  
FB_R/W  
FB_TS  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB6  
FB7  
FB_TA  
Figure 11. FlexBus Read Timing  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
ADDR[31:X]  
FB_D[31:X]  
DATA  
FB_R/W  
FB_TS  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB6  
FB7  
FB_TA  
Figure 12. Flexbus Write Timing  
5.7  
SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard  
SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.7.1  
SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus  
clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller  
is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to the  
device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
27  
Preliminary Electrical Characteristics  
read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the  
SD_SDR_DQS signal and its usage.  
Table 13. SDR Timing Specifications  
Symbol  
Characteristic  
Frequency of operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
50  
12.5  
0.45  
0.45  
80  
20  
Mhz  
ns  
2
3
4
SD1 Clock period  
tSDCK  
tSDCKH  
SD2 Pulse width high  
SD3 Pulse width low  
0.55  
0.55  
SD_CLK  
SD_CLK  
ns  
tSDCKH  
SD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] output valid  
tSDCHACV  
0.5 × SD_CLK  
+ 1.0  
SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] output hold  
tSDCHACI  
2.0  
ns  
5
6
SD6 SD_SDR_DQS output valid  
tDQSOV  
Self timed  
ns  
ns  
SD7 SD_DQS[3:0] input setup relative to SD_CLK  
tDQVSDCH  
0.25 ×  
0.40 × SD_CLK  
SD_CLK  
7
8
SD8 SD_DQS[3:2] input hold relative to SD_CLK  
tDQISDCH  
tDVSDCH  
tDISDCH  
Does not apply. 0.5×SD_CLK fixed  
width.  
SD9 Data (D[31:0]) input setup relative to SD_CLK (reference  
only)  
0.25 ×  
SD_CLK  
ns  
SD10 Data input hold relative to SD_CLK (reference only)  
1.0  
ns  
ns  
SD11 Data (D[31:0]) and data mask (SD_DQM[3:0]) output valid tSDCHDMV  
0.75 × SD_CLK  
+ 0.5  
SD12 Data (D[31:0]) and data mask (SD_DQM[3:0]) output hold tSDCHDMI  
1.5  
ns  
1
The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock.  
Please see the PLL chapter of the MCF5301x Reference Manual for more information on setting the SDRAM clock rate.  
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation  
from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data  
beat.  
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does  
not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be  
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup  
spec is just provided as guidance.  
2
3
4
5
6
7
8
MCF5301x Data Sheet, Rev. 5  
28  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SD2  
SD1  
SD_CLK  
SD3  
SD5  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
ROW  
SD4  
A[23:0]  
SD_BA[1:0]  
COL  
SD11  
SDDM  
D[31:0]  
SD12  
WD1  
WD2  
WD3  
WD4  
Figure 13. SDR Write Timing  
SD2  
SD1  
SD_CLK  
SD5  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
SD3  
CMD  
3/4 MCLK  
Reference  
SD4  
A[23:0],  
SD_BA[1:0]  
ROW  
COL  
tDQS  
SDDM  
SD6  
SD_SDR_DQS (Measured at Output Pin)  
SD_DQS[3:2] (Measured at Input Pin)  
Board Delay  
SD8  
Board Delay  
SD7  
Delayed  
SD_CLK  
SD9  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD10  
Figure 14. SDR Read Timing  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
29  
Preliminary Electrical Characteristics  
5.7.2  
DDR SDRAM AC Timing Characteristics  
When the SDRAM controller is configured for DDR SDRAM, the following timing numbers must be followed to properly latch  
or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes. The following timing numbers  
are subject to change at anytime, and are only provided to aid in early board design.  
Table 14. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
tDDCK  
tDDSK  
50  
12.5  
0.45  
0.45  
80  
20  
Mhz  
ns  
2
3
3
4
DD1 Clock Period  
DD2 Pulse Width High  
DD3 Pulse Width Low  
tDDCKH  
tDDCKL  
tSDCHACV  
0.55  
0.55  
SD_CLK  
SD_CLK  
ns  
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] Output Valid  
0.5 × SD_CLK  
+ 1.0  
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] Output Hold  
tSDCHACI  
2.0  
ns  
DD6 Write Command to first DQS Latching Transition  
tCMDVDQ  
tDQDMV  
1.25  
SD_CLK  
ns  
5
6
DD7 Data and Data Mask Output Setup (DQ-->DQS)  
Relative to DQS (DDR Write Mode)  
1.5  
7
DD8 Data and Data Mask Output Hold (DQS-->DQ)  
Relative to DQS (DDR Write Mode)  
tDQDMI  
1.0  
ns  
8
9
DD9 Input Data Skew Relative to DQS (Input Setup)  
DD10 Input Data Hold Relative to DQS.  
tDVDQ  
tDIDQ  
1
ns  
ns  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH  
0.5  
0.9  
1.1  
0.6  
ns  
DD12 DQS input read preamble width  
DD13 DQS input read postamble width  
DD14 DQS output write preamble width  
DD15 DQS output write postamble width  
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
0.4  
0.25  
0.4  
0.6  
1
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the  
same frequency as the internal bus clock.  
2
3
4
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature,  
and voltage variations.  
5
This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.  
SD_D[31:24] is relative to SD_DQS3, SD_D[23:16] is relative to SD_DQS2, SD_D[15:8] is relative to SD_DQS1, and  
SD_D[7:0] is relative SD_DQS0.  
6
7
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats  
will be valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. SD_D[31:24] is relative to SD_DQS3,  
SD_D[23:16] is relative to SD_DQS2, SD_D[15:8] is relative to SD_DQS1, and SD_D[7:0] is relative SD_DQS0.  
MCF5301x Data Sheet, Rev. 5  
30  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
8
9
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes  
invalid.  
SD_CLK  
VIX  
VID  
VMP  
VIX  
SD_CLK  
Figure 15. SD_CLK and SD_CLK Crossover Timing  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 16. DDR Write Timing  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 17. DDR Read Timing  
5.8  
General Purpose I/O Timing  
1
Table 15. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 FB_CLK High to GPIO Output Valid  
G2 FB_CLK High to GPIO Output Invalid  
G3 GPIO Input Valid to FB_CLK High  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
G4 FB_CLK High to GPIO Input Invalid  
GPIO pins include: IRQn, PWM, UART, and Timer pins.  
1.5  
1
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
FB_CLK  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 18. GPIO Timing  
5.9  
Reset and Configuration Override Timing  
Table 16. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 19. RESET and Configuration Override Timing  
NOTE  
Refer to the CCM chapter of the MCF5301x Reference Manual for more information.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
33  
Preliminary Electrical Characteristics  
5.10 USB On-The-Go  
The MCF53017 device is compliant with industry standard USB 2.0 specification.  
5.11 SSI Timing Specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
1
Table 17. SSI Timing - Master Modes  
Num  
Description  
Symbol  
Min  
Max  
Units  
Notes  
2
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
SSI_MCLK cycle time  
tMCLK 8 × tSYS  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time  
45%  
3
tBCLK 8 × tSYS  
SSI_BCLK pulse width  
45%  
0
55%  
15  
tBCLK  
ns  
SSI_BCLK to SSI_FS output valid  
SSI_BCLK to SSI_FS output invalid  
SSI_BCLK to SSI_TXD valid  
ns  
–2  
10  
0
15  
ns  
SSI_BCLK to SSI_TXD invalid / high impedence  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
ns  
ns  
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
ns  
1
2
3
All timings specified with a capactive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (SYSCLK).  
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum  
divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure that SSI_BCLK does  
not exceed 4 x fSYS  
.
1
Table 18. SSI Timing — Slave Modes  
Num  
Description Symbol  
Min  
Max  
Units  
Notes  
S11 SSI_BCLK cycle time  
tBCLK 8 × tSYS  
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high / low  
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD / SSI_FS output valid  
45%  
10  
2
ns  
0
15  
ns  
S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high  
impedence  
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
10  
2
ns  
ns  
1
All timings specified with a capactive load of 25pF.  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 20. SSI Timing — Master Modes  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 21. SSI Timing — Slave Modes  
2
5.12 I C Input/Output Timing Specifications  
2
Table 19 lists specifications for the I C input timing parameters shown in Figure 22.  
2
Table 19. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
35  
Preliminary Electrical Characteristics  
2
Table 19. I C Input Timing Specifications between SCL and SDA (continued)  
Num  
Characteristic  
Min  
Max  
Units  
I5  
I6  
I7  
I8  
I9  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
1
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 20 lists specifications for the I C output timing parameters shown in Figure 22.  
2
Table 20. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I2 1 Clock low period  
Characteristic  
Min  
Max  
Units  
6
10  
7
3
tcyc  
tcyc  
µs  
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I4 1 Data hold time  
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I6 1 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I7 1 Data setup time  
I8 1 Start condition setup time (for repeated start condition only)  
I9 1 Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 20. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR; however, the numbers  
given in Table 20 are minimum values.  
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance  
and pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 22 shows timing for the values in Table 20 and Table 19.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 22. I C Input/Output Timings  
MCF5301x Data Sheet, Rev. 5  
36  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.13 Fast Ethernet AC Timing Specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing  
specs/constraints for the physical interface.  
5.13.1 Receive Signal Timing Specifications  
The following timing specs meet the requirements for both MII and 7-Wire style interfaces for a range of transceiver devices.  
Table 21. Receive Signal Timing  
MII Mode  
RMII Mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E1  
E2  
E3  
E4  
RXD[n:0], RXDV, RXER to RXCLK setup1  
RXCLK to RXD[n:0], RXDV, RXER hold1  
RXCLK pulse width high  
5
4
ns  
5
2
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
E4  
E3  
E2  
RXCLK (Input)  
E1  
RXD[n:0]  
RXDV,  
Valid Data  
RXER  
Figure 23. MII Receive Signal Timing Diagram  
5.13.2 Transmit Signal Timing Specifications  
Table 22. Transmit Signal Timing  
MII Mode  
RMII Mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E5  
E6  
E7  
E8  
TXCLK to TXD[n:0], TXEN, TXER invalid1  
TXCLK to TXD[n:0], TXEN, TXER valid1  
TXCLK pulse width high  
5
5
ns  
25  
10  
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
tTXCLK  
tTXCLK  
TXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
E8  
TXCLK (Input)  
E7  
E5  
E6  
TXD[n:0]  
TXEN,  
TXER  
Valid Data  
Figure 24. MII Transmit Signal Timing Diagram  
5.13.3 Asynchronous Input Signal Timing Specifications  
Table 23. MII Transmit Signal Timing  
Num  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
E9  
1.5  
TXCLK period  
CRS, COL  
E9  
Figure 25. MII Async Inputs Timing Diagram  
5.13.4 MII Serial Management Timing Specifications  
Table 24. MII Serial Management Channel Signal Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
E10  
E11  
E12  
E13  
E14  
E15  
MDC cycle time  
MDC pulse width  
tMDC  
400  
40  
25  
10  
0
60  
375  
ns  
% tMDC  
ns  
MDC to MDIO output valid  
MDC to MDIO output invalid  
MDIO input to MDC setup  
MDIO input to MDC hold  
ns  
ns  
ns  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
E10  
E11  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
E11  
E12  
E13  
Valid Data  
E14  
E15  
Valid Data  
Figure 26. MII Serial Management Channel TIming Diagram  
5.14 32-Bit Timer Module Timing Specifications  
Table 25 lists timer module AC timings.  
Table 25. Timer Module AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.15 DSPI Timing Specifications  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with both master and slave operations. Many  
of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the MCF5301x Reference Manual for information on the modified transfer formats used for  
communicating with slower peripheral devices.  
1
Table 26. DSPI Module AC Timing Specifications  
Name  
Characteristic  
DSPI_SCK Cycle Time  
DSPI_SCK Duty Cycle  
Symbol  
Min  
Max  
Unit  
Notes  
2
DS1  
DS2  
tSCK  
4 x tSYS  
ns  
ns  
3
(tsck ÷ 2) – 2.0 (tsck ÷ 2) + 2.0  
Master Mode  
4
5
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_PCSn to DSPI_SCK delay  
tCSC  
tASC  
(2 × tSYS) – 1.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_PCSn delay  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(2 × tSYS) – 3.0  
–5  
9
0
Slave Mode  
DS9  
DSPI_SCK to DSPI_SOUT valid  
4
ns  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
39  
Preliminary Electrical Characteristics  
Table 26. DSPI Module AC Timing Specifications (continued)  
1
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
DS10 DSPI_SCK to DSPI_SOUT invalid  
DS11 DSPI_SIN to DSPI_SCK input setup  
DS12 DSPI_SCK to DSPI_SIN input hold  
DS13 DSPI_SS active to DSPI_SOUT driven  
DS14 DSPI_SS inactive to DSPI_SOUT not driven  
0
2
20  
18  
ns  
ns  
ns  
ns  
ns  
7
1
Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin  
on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.  
2
3
When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR].  
This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR],  
DCTARn[CPHA], and DCTARn[PBR].  
4
5
The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].  
The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].  
DS3  
DS4  
DSPI_PCSn  
DS1  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS7  
DS8  
DSPI_SIN  
Last Data  
First Data  
Data  
Data  
DS6  
DS5  
DSPI_SOUT  
First Data  
Last Data  
Figure 27. DSPI Classic SPI Timing — Master Mode  
MCF5301x Data Sheet, Rev. 5  
40  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
DSPI_SS  
DS1  
DSPI_SCK  
DS2  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS13  
DS9  
DS10  
Data  
DS14  
First Data  
DSPI_SOUT  
DSPI_SIN  
Last Data  
DS11  
DS12  
Data  
Last Data  
First Data  
Figure 28. DSPI Classic SPI Timing — Slave Mode  
5.16 eSDHC Electrical Specifications  
This section describes the electrical information of the eSDHC.  
5.16.1 eSDHC Timing  
Figure 29 depicts the timing of eSDHC, and Table 29 lists the eSDHC timing characteristics.  
SD2  
SD1  
SD4  
SD5  
SDHC_CLK  
SD3  
SD6  
Output from eSDHC to card  
SDHC_CMD  
SDHC_DAT[3:0]  
SD7  
SD8  
Input from card to eSDHC  
SDHC_CMD  
SDHC_DAT[3:0]  
Figure 29. eSDHC Timing  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
41  
Preliminary Electrical Characteristics  
Table 27. eSDHC Interfacde Timing Specifications  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
Clock Frequency (SD/SDIO Full Speed)  
Clock Frequency (MMC Full Speed)  
Clock Frequency (Identification Mode)  
SD2 Clock Low Time  
fPP  
0
0
400  
25  
20  
400  
3
kHz  
MHz  
MHz  
kHz  
ns  
2
fPP  
3
fPP  
0
4
fOD  
100  
7
tWL  
tWH  
tTLH  
tTHL  
SD3 Clock High Time  
7
ns  
SD4 Clock Rise Time  
ns  
SD5 Clock Fall Time  
3
ns  
eSDHC Output / Card Inputs SDHC_CMD, SDHC_DAT (Reference to SDHC_CLK)  
SD6 eSDHC Output Delay tOD  
eSDHC Input / Card Outputs SDHC_CMD, SDHC_DAT (Reference to SDHC_CLK)  
–5  
5
ns  
SD7 eSDHC Input Setup Time  
SD8 eSDHC Input Hold Time  
tISU  
tIH  
4
0
ns  
ns  
1
2
3
4
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz.  
In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz.  
In card identification mode, card clock must be 100 kHz – 400 kHz, voltage ranges from 2.7 to 3.6 V.  
5.16.2 eSDHC Electrical DC Characterisics  
Table 28 lists the eSDHC electrical DC characteristics.  
Table 28. MMC/SD Interface Electrical Specifications  
Design  
Value  
Num  
Parameter  
Min  
Max  
Unit  
Condition/Remark  
General  
1
Peak Voltage on All Lines  
Input Leakage Current  
–0.3  
–10  
–10  
2.7  
VDD + 0.3  
V
uA  
uA  
V
All Inputs  
2
10  
10  
All Outputs  
3
Output Leakage Current  
Power Supply  
4
5
Supply Voltage (HV card)  
3.1  
3.6  
for high voltage cards, must  
provide this voltage for card  
initialization  
Supply Voltage (LV card)  
1.8  
1.65  
1.95  
V
for low voltage cards  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
42  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 28. MMC/SD Interface Electrical Specifications (continued)  
Design  
Value  
Num  
Parameter  
Min  
Max  
Unit  
Condition/Remark  
5
6
Power Up Time  
Supply Current  
250  
200  
ms  
100  
mA  
Bus Signal Line Load  
7
8
Pull-up Resistance  
Open Drain Resistance  
47  
10  
100  
NA  
kohm Internal PU  
NA  
NA  
kohm For MMC cards only  
For MMC cards only  
Open Drain Signal Level  
9
Output High Voltage  
Output Low Voltage  
V
DD – 0.2  
V
V
IOH = –100 µA  
IOL= 2 mA  
10  
0.3  
Bus Signal Levels  
11  
12  
Output HIGH Voltage  
0.75 x VDD  
V
V
IOH = –100 µA @VDD min  
IOL = 100 µA @VDD min  
Output LOW Voltage  
0.125 x VDD  
13  
14  
Input HIGH Voltage  
Input LOW Voltage  
0.625 x VDD  
VSS – 0.3  
VDD + 3  
V
V
0.25 x VDD  
5.17 SIM Electrical Specifications  
Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used).  
The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM  
card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work  
with CLK equal to 16 times the data rate on TX/RX pins.  
There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used  
by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used)  
of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between  
the signals in normal mode. However, there are some in reset and power down sequences.  
5.17.1 General Timing Requirements  
Figure 30 shows the timing of the SIM module, and Table 29 lists the timing parameters.  
1/Sfreq  
SIM_CLK  
Sfall  
Srise  
Figure 30. SIM Clock Timing Diagram  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
43  
Preliminary Electrical Characteristics  
Table 29. SIM Timing Specification—High Drive Strength  
Num  
Description  
Symbol  
Min  
Max  
Unit  
1
SIM Clock Frequency (SIM_CLK)1  
Sfreq  
0.01  
5 (Some new cards  
may reach 10)  
MHz  
2
3
4
SIM_CLK Rise Time 2  
Srise  
Sfall  
20  
20  
25  
ns  
ns  
ns  
SIM_CLK Fall Time 3  
SIM Input Transition Time (RX, SIM_PD)  
Strans  
1
2
3
50% duty cycle clock  
With C = 50pF  
With C = 50pF  
5.17.2 Reset Sequence  
5.17.2.1 Cards with Internal Reset  
The reset sequence for this kind of SIM card is as follows (see Figure 31):  
After powerup, the clock signal is enabled on SIM_CLK (time T0)  
After 200 clock cycles, RX must be high.  
The card must send a response on RX acknowledging the reset between 400 and 40,000 clock cycles after T0.  
SIM_VEN  
SIM_CLK  
Response  
SIM_RX  
1
2
1
2
< 200 clock cycles  
T0  
400 clock cycles <  
< 40,000 clock cycles  
Figure 31. Internal-Reset Card Reset Sequence  
5.17.2.2 Cards with Active-Low Reset  
The sequence of reset for this kind of card is as follows (see Figure 32):  
1. After powerup, the clock signal is enabled on SIM_CLK (time T0)  
2. After 200 clock cycles, RX must be high.  
3. SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those  
40,000 clock cycles)  
4. SIM_RST is set high (time T1)  
5. SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between  
400 and 40,000 clock cycles after T1.  
MCF5301x Data Sheet, Rev. 5  
44  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SIM_VEN  
SIM_RST  
SIM_CLK  
SIM_RX  
Response  
2
1
3
3
T0  
T1  
< 200 clock cycles  
1
2
3
400 clock cycles <  
< 40,000 clock cycles  
400,000 clock cycles <  
Figure 32. Active-Low-Reset Card Reset Sequence  
5.17.3 Power Down Sequence  
Power down sequence for SIM interface is as follows:  
1. SIM_PD port detects the removal of the SIM card  
2. SIM_RST goes low  
3. SIM_CLK goes low  
4. SIM_TX goes low  
5. SIM_VEN goes low  
Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a  
card-removal detection or launched by the processor. Figure 33 and Table 30 show the usual timing requirements for this  
sequence, with Fckil = CKIL frequency value.  
Table 30. Timing Requirements for Power Down Sequence  
Num  
Description  
Symbol  
Min  
Max  
Unit  
1
2
3
4
SIM reset to SIM clock stop  
Srst2clk  
Srst2dat  
Srst2ven  
Spd2rst  
0.9 ÷ fCKIL  
1.8 ÷ fCKIL  
2.7 ÷ fCKIL  
0.9 ÷ fCKIL  
0.8  
1.2  
1.8  
25  
µs  
µs  
µs  
ns  
SIM reset to SIM TX data low  
SIM reset to SIM Voltage Enable Low  
SIM Presence Detect to SIM reset Low  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
45  
Preliminary Electrical Characteristics  
Spd2rst  
SIM_PD  
SIM_RST  
Srst2clk  
SIM_CLK  
SIM__TX  
Srst2dat  
Srst2ven  
SIM_VEN  
Figure 33. SmartCard Interface Power-Down AC Timing  
5.18 IIM/Fusebox Electrical Specifications  
Table 31. IIM/Fusebox Timing Characteristics  
Num  
Description  
Program time for eFuse1  
Symbol  
Min  
Max  
Unit  
1
tprogram  
125  
µs  
1
The program length is defined by the value defined in IIM_FCR[PRG_LENGTH] of the IIM module. The value to program is  
based on a 32 kHz clock source (4 ÷ 32 kHz = 125 μs)  
5.19 Voice Codec  
The voice codec function is analog-to-digital and digital-to-analog conversion of the voice signal. The following section  
contains detailed electrical specifications for the analog and digital parts’ performance. The voice codec is powered down when  
not enabled for power consumption.  
MCF5301x Data Sheet, Rev. 5  
46  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 32 shows the voice codec general specifications.  
Table 32. Voice Codec General Specifications  
Parameter  
Condition  
VCLK[2:0]=0  
VCLK[2:0]=1,2  
VCLK[2:0]=3  
VCLK[2:0]=4  
VCLK[2:0]=5  
VCLK[2:0]=6  
VCLK[2:0]=7  
Min  
Typ  
Max  
Units  
CODEC Input clock CODEC_CLK  
16.8  
19.44  
20.0  
24.0  
26.0  
28.0  
30.0  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
VAG input Voltage  
No Load,  
1.225  
1.325  
1.425  
V
AVDD (CODEC_REGBYP) =  
2.5V  
Ref_Codec_p  
TBD  
TBD  
1.665  
0.985  
0.1  
TBD  
TBD  
V
V
Ref_Codec_n  
VAG External Cap  
μF  
μF  
μF  
μF  
mA  
avoco_ref_codec_p External Cap  
avoco_ref_codec_n External Cap  
avoco_vagout_codec External Cap  
0.1  
0.1  
0.1  
Codec Analog Supply Current  
(includes Rx and Tx paths)  
AVDD (CODEC_REGBYP) =  
2.5V, operational  
5
6
Power-down mode  
Operational mode  
5
1
1
μA  
mA  
ms  
Codec Digital Supply Current1  
Response to input ON/OFF  
(settling time at turn on)  
1
More accurate estimation will be given after some progress in design.  
5.19.1 Voice Codec ADC Specifications  
Voice coding function includes a 50 kHz second-order, low-pass anti-aliasing filter, an analog-to-digital converter, digital filters  
for decimation, band-passing, frequency ripple compensation, and DSP interface logic. The audio input A/D converter converts  
the incoming signal to 13-bit two’s-compliment linear PCM words at an 8 or 8.1 kHz rate. Following the A/D converter, the  
signal is digitally filtered, low-pass, and selectable high-pass. Table 33 shows the voice coding specifications.  
1
Table 33. Voice Codec ADC Specifications  
Parameter  
Condition  
20Hz to 100kHz,  
with 100 mVpp noise applied to AVDD,  
with an external VAG cap  
Min  
Typ  
Max  
Units  
Power Supply Rejection Ratio  
with respect to  
50  
60  
dB  
AVDD (CODEC_REGBYP)2  
Peak Input  
(+3dBm0)3 on an individual differential VAG–0.34  
pin (ADC_P or ADC_M)  
VAG+0.34  
V
Tx AC Input Impedance  
Absolute Gain  
f=1.02kHz  
100  
kΩ  
0dBm0@1.02kHz  
–1.0  
1.0  
dB  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
47  
Preliminary Electrical Characteristics  
Table 33. Voice Codec ADC Specifications (continued)  
1
Parameter  
Gain vs. Signal  
Condition  
Min  
Typ  
Max  
Units  
Relative to –10dBm0 @1.02kHz  
+3 to –40dBm0  
–40 to –50dBm0  
–0.25  
–1.2  
–1.3  
0.25  
1.2  
1.3  
dB  
dB  
dB  
–50 to –55dBm0  
Total Distortion  
1.02kHz tone (linear)  
(noise and harmonic)  
(300Hz – 20kHz Noise BW in  
300Hz – 4kHz measured BW  
out)  
+2dBm04  
0dBm0  
57  
60  
60  
55  
45  
35  
25  
20  
15  
60  
64  
70  
65  
55  
45  
35  
30  
20  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–6dBm0  
–10dBm0  
–20dBm0  
–30dBm0  
–40dBm0  
–45dBm0  
–55dBm0  
Idle Channel Noise5  
Digital Offset6  
Psophometric Weighting at the output  
–72  
5
dBm0p  
%Full  
Scale  
Frequency Response  
VCIHPF = logic high  
Relative to 0dBm0@1.02kHz  
50Hz  
–8  
–0.5  
–1.0  
–25  
–23  
–0.5  
+0.5  
+0.1  
–14  
–35  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
60Hz7  
200Hz  
300 to 3000Hz  
3400Hz8  
4000Hz  
4600Hz  
Frequency Response  
VCIHPF=logic low  
Relative to 0dBm0@1.02kHz  
50Hz  
200Hz  
300 to 3000Hz  
3400Hz9  
4000Hz  
4600Hz  
–0.5  
–0.5  
–0.5  
–1.0  
+0.5  
+0.5  
+0.5  
+0.1  
–14  
dB  
dB  
dB  
dB  
dB  
dB  
–35  
Inband Spurious  
1.02kHz @ 0dBm0,  
300 to 3kHz  
–48  
dB  
Crosstalk D/A to A/D  
D/A = 0 dBm0 @1.02kHz  
Measured while stimulated w/ 2667Hz  
@–50dBm0  
–75  
dB  
Intermodulation Distortion  
Two frequencies of amplitudes –4 to  
–21 dBm0 from the range 300 to  
3400Hz  
–41  
dB  
MCF5301x Data Sheet, Rev. 5  
48  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 33. Voice Codec ADC Specifications (continued)  
1
Parameter  
Filter Group Delay  
Condition  
500Hz < f < 600Hz  
600Hz < f < 800Hz  
800Hz < f < 1kHz  
1kHz < f < 1.6kHz  
1.6kHz < f < 2.6kHz  
2.6kHz < f < 2.8kHz  
2.8kHz < f < 3.0kHz  
Min  
Typ  
Max  
Units  
260  
155  
57  
15  
95  
μS  
μS  
μS  
μS  
μS  
μS  
μS  
VCIHPF=logic high  
CODEC_CLK=26MHz  
(Relative to 1.6kHz)  
135  
190  
Filter Group Delay  
VCIHPF=logic low  
CODEC_CLK=26MHz  
(Relative to 1.6kHz)  
f < 1.6kHz  
–40  
0
0
μS  
μS  
μS  
μS  
1.6kHz < f < 2.6kHz  
2.6kHz < f < 2.8kHz  
2.8kHz < f < 3.0kHz  
100  
150  
200  
Filter Absolute Group Delay  
VCIHPF=logic high  
f=1.6kHz  
300  
235  
–50  
μS  
μS  
dB  
Filter Absolute Group Delay  
VCIHPF=logic low  
f=1.6kHz  
Out of Band input fold-in  
spurious  
with 0dBm0 input signal from 4.6 kHz  
to 8.4 kHz  
1
All analog signals are referenced to VAG unless otherwise noted.  
2
Power Supply Rejection Ratio is for Longjing IC only. Total PSRR from battery to output is obtained by summing the  
PSRR from Neptune to the one from the Regulator in Seaweed. It is assumed that the regulators in Seaweed will  
have a minimum PSRR of 45 dB.  
3
4
For A/D differential input (ADC_P - ADC_M) 0dBm0 = 340mVrms  
The codec output will not “foldback” or oscillate if overdriven, but clip.  
.
The digital word corresponding to +3dBm0 is ‘0111111111111’b. Therefore if the audio level is set to +3dBm0, any  
variation in gain could cause large distortion if the digital number exceeds ‘0111111111111’b. For this reason the  
maximum recommended signal for low distortion is +3dBm0 (Absolute Gain Error) = +2dBm0.  
5
6
7
8
9
GSM Spec = –64 0dB.  
This value is a preliminary target. The final number will be specified after obtaining the production statistical data.  
Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements.  
Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.  
Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
49  
Preliminary Electrical Characteristics  
Figure 34 and Figure 35 show the filter frequency response for the audio signal for voice coding path. (All filter frequencies  
increase by 8.1/8.0 if VCLK is selected to generate f  
=8.1kHz).  
SYNC  
4
+0.1dB  
@ 3.4kHz  
+0.5dB @ 3.0kHz  
0
-5  
-0.5dB  
@ 3.0kHz  
-1.0dB  
@ 3.4kHz  
-14dB  
@ 4.0kHz  
-10  
-15  
dB  
-20  
-25  
-30  
-35dB  
@ 4.6kHz  
-35  
-38  
20  
30 40 50  
70  
100  
200  
300 400 500 700 1000  
2000  
3000 4000 5000  
8000  
Hz  
Figure 34. Voice Signal Frequency Response Requirements at the ADC Path  
(VCIHPF=0, LPF Alone Without HPF)  
MCF5301x Data Sheet, Rev. 5  
50  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
4
0
+0.5dB @ 3.0kHz  
+0.5dB @ 300Hz  
-0.5dB  
@ 200Hz  
-0.5dB  
@ 3.0kHz  
+0.1dB  
@ 3.4kHz  
-0.5dB  
@ 300Hz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-1.0dB  
@ 3.4kHz  
-14dB  
@ 4.0kHz  
-8.0dB  
@ 200Hz  
-23dB  
@ 60Hz  
dB  
-25dB  
@ 50Hz  
-35dB  
@ 4.6kHz  
-38  
20  
30 40 50  
70  
100  
200  
300 400 500 700  
1000  
2000 3000 40005000  
8000  
Hz  
Figure 35. Voice Signal Frequency Response Requirements at the ADC Path  
(VCIHPF=1, HPF and LPF Together)  
5.19.2 Voice Codec DAC Specifications  
Voice-decoding function includes frequency ripple compensation, interpolation, digital-to-analog conversion, and anti-imaging  
filter. The input signal for the voice-decoding function is in linear 16-bit two’s compliment PCM words at an 8 kHz or 8.1 kHz  
rate. Table 34 shows the voice decoding specifications.  
1
Table 34. Voice Codec DAC Specifications  
Parameter  
Output Level  
Condition  
Min  
Typ  
Max  
Units  
+3dbm02 (clipping level) on an  
individual differential output pin  
(CODEC_DACP or CODEC_DACN)  
VAG–0.5  
VAG+0.5  
V
Output Source Impedance  
10kΩ Load  
100  
60  
Ω
Output Power Supply Rejection  
Ratio  
20Hz to 100kHz with 100 mVrms,  
noise applied to AVDD  
50  
dBa  
(CODEC_REGBYP)  
Absolute Gain  
Gain vs. Signal  
0dBm0@1.02kHz  
–1.0  
1.0  
dB  
–10dBm0@1.02kHz  
+3 to –40dBm0  
–40 to –50dB  
–50 to –55dBm0  
–0.25  
–1.2  
–1.3  
0.25  
1.2  
1.3  
dB  
dB  
dB  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
51  
Preliminary Electrical Characteristics  
Table 34. Voice Codec DAC Specifications (continued)  
1
Parameter  
Total Distortion  
Condition  
Min  
Typ  
Max  
Units  
1.02 kHz tone (linear)  
+2 dBm0  
0 dBm0  
57  
60  
60  
55  
45  
35  
25  
20  
15  
60  
64  
70  
65  
55  
45  
35  
30  
20  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(4 kHz noise BW in  
300 Hz – 20 kHz measured BW –6 dBm0  
out)  
–10 dBm0  
–20 dBm0  
–30 dBm0  
–40 dBm0  
–45 dBm0  
–55 dBm0  
Idle Channel Noise3  
(At CODEC out)  
A weighted to 20kHz  
–78  
–73  
dBm0  
8kHz, 30Hz BW, D/A = zero code  
No spurious  
Differential offset  
TA = 70 ° C  
TA = 25 ° C  
40  
30  
mV  
Frequency Response  
VCOHPF = logic high  
Relative to 0dBm0@1.02kHz  
50Hz  
–8  
–0.5  
–0.8  
–25  
–23  
–0.5  
+0.5  
+0.1  
–14  
–35  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(Min. limit valid for  
CODEC_CLK=26MHz)  
60Hz4  
200Hz  
300–3000Hz  
3400Hz5  
4000Hz  
4600Hz  
Frequency Response  
VCOHPF = logic low  
Relative to 0dBm0@1.02kHz  
50Hz  
200Hz  
300–3000Hz  
3400Hz6  
4000Hz  
4600Hz  
–0.5  
–0.5  
–0.5  
–0.8  
v
+0.5  
+0.5  
+0.5  
+0.1  
–14  
dB  
dB  
dB  
dB  
dB  
dB  
(Min. limit valid for  
CODEC_CLK=26MHz)  
–35  
Inband Spurious  
1.02kHz @ 0dBm0, 300 to 3kHz  
300 to 3400Hz @ 0dBm0 input  
–48  
dB  
Out-of-Band Spurious  
(Interpolation Image Suppression)  
4600 to 7600Hz  
7600 to 8400Hz  
8400 to 20,000Hz  
–50  
–50  
–50  
dB  
dB  
dB  
Crosstalk A/D to D/A  
A/D = 0dBm0 @1.02kHz  
–75  
–41  
dB  
dB  
Intermodulation Distortion  
Two frequencies. of amplitudes –4 to  
–21 dBm0 from the range 300 to  
3400Hz  
MCF5301x Data Sheet, Rev. 5  
52  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 34. Voice Codec DAC Specifications (continued)  
1
Parameter  
Filter Group Delay  
VCOHPF = logic high  
CODEC_CLK=26 MHz  
(Relative to 1.6kHz)  
Condition  
500Hz < f < 600Hz  
600Hz < f < 800Hz  
800Hz < f < 1kHz  
1kHz < f < 1.6kHz  
1.6kHz < f < 2.6kHz  
2.6kHz < f < 2.8kHz  
2.8kHz < f < 3.0kHz  
Min  
Typ  
Max  
Units  
300  
200  
70  
30  
95  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
135  
190  
Filter Group Delay  
VCOHPF = logic low  
CODEC_CLK=26 MHz (Relative 2.6kHz < f < 2.8kHz  
to 1.6kHz)  
f < 1.6kHz  
1.6kHz < f < 2.6kHz  
–40  
0
0
μs  
μs  
μs  
μs  
100  
160  
200  
2.8kHz < f < 3.0kHz  
Filter Absolute Group Delay  
VCOHPF = logic high  
f=1.6kHz  
350  
μs  
Filter Absolute Group Delay  
VCOHPF = logic low  
f=1.6kHz  
320  
μs  
1
2
3
4
5
6
All analog signals are referenced to VAG unless otherwise noted. Output is 0dbm0 unless noted.  
For D/A differential output (CODEC_DACP - CODEC_DACN) 0dBm0 = 500 mVrms  
GSM Spec = –64.  
.
Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements.  
Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.  
Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
53  
Preliminary Electrical Characteristics  
Figure 36 and Figure 37 show the filter frequency response for the audio signal for voice decoding. The requirements for the  
decoding path at 3.4 kHz are slightly different from the coding path. (All filter frequencies increase by 8.1/8.0 if VCLK is  
selected to generate f  
= 8.1 kHz).  
SYNC  
4
+0.1dB  
@ 3.4kHz  
+0.5dB @ 3.0kHz  
0
-0.5dB  
@ 3.0kHz  
-5  
-0.8dB  
@ 3.4kHz  
-14dB  
@ 4.0kHz  
-10  
-15  
-20  
-25  
-30  
dB  
-35dB  
@ 4.6kHz  
-35  
-38  
20  
30 40 50 70  
100  
200  
300 400 500 700 1000  
2000 300040005000 8000  
Hz  
Figure 36. Voice Signal Frequency Response Requirements at the DAC Path  
(VCOHPF=0, LPF Alone Without HPF)  
MCF5301x Data Sheet, Rev. 5  
54  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
4
0
+0.5dB @ 3.0kHz  
+0.5dB @ 300Hz  
-0.5dB  
@ 200Hz  
-0.5dB  
@ 3.0kHz  
+0.1dB  
@ 3.4kHz  
-0.5dB  
@ 300Hz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-0.8dB  
@ 3.4kHz  
-14dB  
@ 4.0kHz  
-8.0dB  
@ 200Hz  
-23dB  
@ 60Hz  
dB  
-25dB  
@ 50Hz  
-35dB  
@ 4.6kHz  
-38  
20  
30 40 50  
70  
100  
200  
300 400 500 700  
1000  
2000 3000 40005000  
8000  
Hz  
Figure 37. Voice Signal Frequency Response Requirements at the DAC Path  
(VCOHPF=1, HPF and LPF Together)  
5.20 Integrated Amplifiers  
5.20.1 Speaker Amplifier  
The speaker amplifier boosts the power from the DAC and drives the speaker. It also provides analog volume control to optimize  
the noise performance of the entire channel. Table 35 shows the specifications for the speaker amplifier.  
Table 35. Speaker Amplifier Specifications  
Parameter  
Quiescent Current  
Conditions  
Min  
Typ  
Max  
Units  
800  
TBD  
2
5
μA  
Shutdown Current  
Input Reference Offset  
Max Output Power  
mV  
mW  
%
F
in = 1kHz, THD+N = 1%, RL = 4Ω  
600  
0.050  
0.050  
0.1  
Total Harmonic Distortion (THD)  
Gain = 0dB,  
Full Power, 500mW  
Half Power, 250mW  
Full Power, 500mW  
Half Power, 250mW  
RL = 4Ω, Fin = 1kHz  
Gain = 0dB,  
RL = 4Ω, Fin = 4kHz  
0.1  
Integrated Output Noise  
Freescale Semiconductor  
Gain = 0dB, BW = 20Hz – 20kHz  
15  
μV  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
55  
Preliminary Electrical Characteristics  
Table 35. Speaker Amplifier Specifications (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Signal to Noise Ratio (SNR)  
Gain = 0dB, VOUT = 1.4VRMS  
,
99  
dB  
BW = 20Hz – 20kHz  
Power Supply Rejection Ratio  
(PSRR)  
Gain = 0dB,  
ripple = 200mVpp  
f = 217Hz  
f = 1kHz  
f = 4kHz  
60  
60  
dB  
V
60  
Max. Cap Load Drive  
Output SC Current  
Gain Error  
No Sustained Oscillations  
300  
625  
0.5  
pF  
mA  
dB  
Gain = –45,–21, –6, 0, 4, 6 dB  
5.20.2 Handset Amplifier  
The handset amplifier boosts the power from the DAC and drives the handset. It also provides analog volume control to  
optimize the noise performance of the entire channel. Table 36 shows the specifications for handset amplifier.  
Table 36. Handset Amplifier Specifications  
Parameter  
Quiescent Current  
Conditions  
Min  
Typ  
Max  
Units  
800  
TBD  
2
5
μA  
Shutdown Current  
Input Reference Offset  
Max. Output Power  
mV  
mW  
%
Fin = 1kHz, THD + N = 1%, RL = 8Ω  
300  
0.050  
0.050  
0.1  
Total Harmonic Distortion (THD)  
Gain = 0dB,  
Full Power, 250mW  
Half Power, 125mW  
Full Power, 250mW  
Half Power, 125mW  
RL = 8Ω, Fin = 1kHz  
Gain = 0dB,  
RL = 8Ω, Fin = 4kHz  
0.050  
15  
Integrated Output Noise  
Gain = 0dB, BW = 20Hz – 20kHz  
μV  
Signal to Noise Ratio (SNR)  
Gain = 0dB, VOUT = 1.4VRMS  
BW = 20Hz – 20kHz  
,
99  
dB  
Power Supply Rejection Ratio  
(PSRR)  
Gain = 0dB,  
Vripple = 200mVpp  
f = 217Hz  
f = 1kHz  
f = 4kHz  
60  
60  
dB  
60  
Maximum Cap Load Drive  
Output SC Current  
Gain Error  
No Sustained Oscillations  
300  
325  
0.5  
pF  
mA  
dB  
Gain = –45, –21, –6, 0, 4, 6 dB  
MCF5301x Data Sheet, Rev. 5  
56  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.20.3 Headphone Amplifier  
The headphone amplifier boosts the power from the DAC and drives the headphone. It also provides analog volume control to  
optimize the noise performance of the entire channel. Table 37 shows the specifications for the microphone amplifier.  
Table 37. Headphone Amplifier Specifications  
Parameter  
Quiescent Current  
Conditions  
Min  
Typ  
Max  
Units  
600  
TBD  
2
5
μA  
Shutdown Current  
Input Reference Offset  
Output Power  
mV  
mW  
%
F
in = 1kHz, THD+N = 1%, RL = 16Ω  
40  
Total Harmonic Distortion (THD)  
Gain = 0dB, RL = 16Ω, Full Power, 31.25mW  
0.05  
0.05  
15  
BW = 200Hz – 4kHz  
Half Power, 16.5mW  
Integrated Output Noise  
Gain = 0dB, BW = 20Hz – 20kHz  
μV  
Signal to Noise Ratio (SNR)  
Gain = 0dB, VOUT = 0.7VRMS  
BW = 20Hz – 20kHz  
,
93  
dB  
Power Supply Rejection Ratio  
(PSRR)  
Gain = 0dB,  
Vripple = 200mVpp  
f = 217Hz  
f = 1kHz  
f = 4kHz  
60  
60  
dB  
60  
Maximum Cap Load Drive  
Output SC Current  
Gain Error  
No Sustained Oscillations  
300  
150  
0.5  
pF  
mA  
dB  
Gain = –45, –21, –12, –6, –2, 0 dB  
5.20.4 Microphone Amplifier  
The microphone amplifier boosts the signal from the microphone and provides it to the ADC. The gain control present in the  
microphone amplifier helps in optimizing the noise performance of the entire channel. Table 38 shows the specifications for the  
microphone amplifier.  
Table 38. Microphone Amplifier Specifications  
Parameter  
Quiescent Current  
Conditions  
Min  
Typ  
Max  
Units  
500  
TBD  
2
5
μA  
Shutdown Current  
Input Reference Offset  
mV  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
57  
Preliminary Electrical Characteristics  
Table 38. Microphone Amplifier Specifications (continued)  
Parameter  
Conditions  
VOUT = 0.5VRMS  
VOUT = 0.35VRMS  
OUT = 0.5VRMS  
VOUT = 0.35VRMS  
OUT = 0.5VRMS  
Min  
Typ  
Max  
Units  
Total Harmonic Distortion (THD)  
Gain = 0dB, Fin = 1k  
Gain = 20dB, Fin = 1k  
Gain = 0dB, Fin = 4k  
Gain = 20dB, Fin = 4k  
BW = 20Hz – 20kHz  
1.5  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
12  
24.0  
%
V
V
VOUT = 0.35VRMS  
VOUT = 0.5VRMS  
VOUT = 0.35VRMS  
Integrated Output Noise  
Signal to Noise Ratio (SNR)  
THD plus Noise  
Gain = 0dB  
Gain = 20dB  
Gain = 0dB  
Gain = 20dB  
Gain = 0dB  
Gain = 20dB  
f = 1kHz  
μV  
dB  
dB  
dB  
dB  
40  
VOUT = 0.5VRMS  
BW = 20Hz – 20kHz  
,
92.4  
81.9  
80  
VOUT = 0.35VRMS  
BW = 20Hz – 20kHz  
,
80  
Power Supply Rejection Ratio  
Commom Mode Rejection Ratio  
Gain = 0dB,  
60  
Vripple = 200mVpp  
f = 4kHz  
60  
Gain = 0dB,  
f = 1kHz  
50  
Vripple = 100mVpp  
f = 4kHz  
50  
Gain Error  
Gain = 0, 6, 9.56, 15.56, 20, 24, 29.56, 39.9 dB  
Depends on the Gain Setting  
0.5  
dB  
Input Impedance  
kΩ  
5.21 JTAG and Boundary Scan Timing  
Table 39. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/3  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
10  
ns  
MCF5301x Data Sheet, Rev. 5  
Preliminary—Subject to Change Without Notice  
58  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 39. JTAG and Boundary Scan Timing (continued)  
Num  
Characteristics1  
Symbol  
Min  
Max  
Unit  
J11 TCLK Low to TDO Data Valid  
J12 TCLK Low to TDO High Z  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
0
0
26  
8
ns  
ns  
ns  
ns  
J13 TRST Assert Time  
100  
10  
J14 TRST Setup Time (Negation) to TCLK High  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 38. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 39. Boundary Scan (JTAG) Timing  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
59  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 40. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 41. TRST Timing  
5.22 Debug AC Timing Specifications  
Table 40 lists specifications for the debug AC timing parameters shown in Figure 42.  
Table 40. Debug AC Timing Specification  
Num  
Characteristic  
PSTCLK cycle time  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
1.5  
1.5  
1
1.5  
3.0  
tSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized  
DSCLK input relative to the rising edge of PSTCLK.  
MCF5301x Data Sheet, Rev. 5  
60  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
Package Information  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 42. Real-Time Trace AC Timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 43. BDM Serial Port AC Timing  
6
Package Information  
The latest package outline drawings are available on the product summary pages on our web site:  
http://www.freescale.com/coldfire. The following table lists the package case number per device. Use these numbers in the web  
page keyword search engine to find the latest package outline drawings.  
Table 41. Package Information  
Device  
Package Type  
Case Outline Number  
MCF53010  
MCF53011  
MCF53012  
MCF53013  
MCF53014  
MCF53015  
MCF53016  
MCF53017  
208 LQFP  
98ASS23458W  
256 MAPBGA  
98ARH98219A  
7
Product Documentation  
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution  
Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.  
MCF5301x Data Sheet, Rev. 5  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
61  
8
Revision History  
Table 42 summarizes revisions to this document.  
Table 42. Revision History  
Revision  
Date  
Location  
Changes  
3
4
12 Aug 2009  
10 Feb 2010  
Initial public revision  
Table 8  
Table 41  
Added thermal characteristics for 208LQFP package  
Added 208LQFP case outline number  
5
3 Mar 2010  
Table 2  
Added non-J suffixed part numbers for the 256MAPBGA package  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
support.asia@freescale.com  
For Literature Requests Only:  
© Freescale Semiconductor, Inc. 2010. All rights reserved.  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF53017  
Rev. 5  
3/2010  
Preliminary—Subject to Change Without Notice  

相关型号:

MCF53015CMJ240J

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53015CMJ240J

MICROPROCESSOR, PBGA256, 17 X 17 MM, ROHS COMPLIANT, PLASTIC, MAPBGA-256
NXP

MCF53016CMJ240

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53016CMJ240J

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53017

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53017CMJ240

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53017CMJ240J

Version 3 ColdFire? core with EMAC
FREESCALE

MCF53017CMJ240J

MCF5301x 32-bit MPU, ColdFire V3 core, 240MHz, MAPBGA 256
NXP

MCF53017_10

Version 3 ColdFire? core with EMAC
FREESCALE

MCF5307

UART MODULE
MOTOROLA

MCF5307

Integrated Microprocessor
FREESCALE

MCF5307AI90B

Integrated Microprocessor
FREESCALE