1812SMS-47NJLC [FREESCALE]

RF Power Field Effect Transistor; 射频功率场效应晶体管
1812SMS-47NJLC
型号: 1812SMS-47NJLC
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistor
射频功率场效应晶体管

晶体 晶体管 功率场效应晶体管 电感器 测试 射频 射频感应器
文件: 总11页 (文件大小:748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6VP11KH  
Rev. 7, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
Designed primarily for pulsed wideband applications with frequencies up to  
150 MHz. Device is unmatched and is suitable for use in industrial, medical  
and scientific applications.  
MRF6VP11KHR6  
Typical Pulsed Performance at 130 MHz: VDD = 50 Volts, IDQ = 150 mA,  
P
out = 1000 Watts Peak (200 W Avg.), Pulse Width = 100 μsec,  
1.8--150 MHz, 1000 W, 50 V  
LATERAL N--CHANNEL  
BROADBAND  
Duty Cycle = 20%  
Power Gain — 26 dB  
Drain Efficiency — 71%  
RF POWER MOSFET  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 130 MHz, 1000 Watts Peak  
Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
CW Operation Capability with Adequate Cooling  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Designed for Push--Pull Operation  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
CASE 375D--05, STYLE 1  
NI--1230  
RoHS Compliant  
In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.  
PART IS PUSH--PULL  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Drain--Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
°C/W  
Case Temperature 80°C, 1000 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle  
Case Temperature 67°C, 1000 W CW, 100 MHz  
Z
R
0.03  
0.13  
θ
JC  
θ
JC  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
© Freescale Semiconductor, Inc., 2008--2010. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2 (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Off Characteristics  
Gate--Source Leakage Current  
I
110  
10  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(I = 300 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
100  
5
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(1)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1600 μAdc)  
V
1
1.63  
2.2  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(2)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
1.5  
3.5  
DD  
D
(1)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 4 Adc)  
V
0.28  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
3.3  
147  
506  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(2)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W Peak (200 W Avg.), f = 130 MHz,  
DD DQ out  
100 μsec Pulse Width, 20% Duty Cycle  
Power Gain  
G
24  
69  
26  
71  
28  
-- 9  
dB  
%
ps  
Drain Efficiency  
η
D
Input Return Loss  
IRL  
-- 1 6  
dB  
1. Each side of device measured separately.  
2. Measurement made with device in push--pull configuration.  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
2
R2  
L3  
V
V
SUPPLY  
B1  
L1  
BIAS  
R1  
+
+
+
+
+
+
C1 C2 C3  
C4 C5 C6  
C7  
C8 C9 C10  
C11  
C13 C14  
C15 C16 C17 C18 C19 C20  
C21  
Z10  
Z8  
Z12  
Z14  
Z16  
Z4  
Z5  
Z6  
Z7  
RF  
INPUT  
RF  
OUTPUT  
Z1  
Z2  
Z3  
Z18 Z19  
DUT  
Z9  
C23  
Z13  
C24  
Z15  
C25  
Z17  
J1  
J2  
L2  
C26  
C12  
Z11  
T1  
T2  
C22  
Z1  
Z2*  
Z3*  
Z4, Z5  
Z6, Z7, Z8, Z9  
Z10, Z11  
Z12, Z13  
0.175x 0.082Microstrip  
1.461x 0.082Microstrip  
0.080x 0.082Microstrip  
0.133x 0.193Microstrip  
0.500x 0.518Microstrip  
0.102x 0.253Microstrip  
0.206x 0.253Microstrip  
Z14, Z15  
Z16*, Z17*  
Z18  
Z19  
PCB  
0.116x 0.253Microstrip  
0.035x 0.253Microstrip  
0.275x 0.082Microstrip  
0.845x 0.082Microstrip  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
*Line length includes microstrip bends.  
Figure 2. MRF6VP11KHR6 Test Circuit Schematic  
Table 5. MRF6VP11KHR6 Test Circuit Component Designations and Values  
Part  
Description  
95 , 100 MHz Long Ferrite Bead  
47 μF, 50 V Electrolytic Capacitor  
22 μF, 35 V Tantalum Capacitor  
10 μF, 35 V Tantalum Capacitor  
10K pF Chip Capacitors  
20K pF Chip Capacitors  
0.1 μF, 50 V Chip Capacitors  
2.2 μF, 50 V Chip Capacitor  
0.22 μF, 100 V Chip Capacitor  
1000 pF Chip Capacitors  
18 pF Chip Capacitor  
Part Number  
Manufacturer  
Fair--Rite  
B1  
C1  
C2  
C3  
2743021447  
476KXM050M  
Illinois Cap  
Kemet  
Kemet  
ATC  
T491X226K035AT  
T491D106K035AT  
ATC200B103KT50XT  
ATC200B203KT50XT  
CDR33BX104AKYS  
C1825C225J5RAC  
C1825C223K1GAC  
ATC100B102JT50XT  
ATC100B180JT500XT  
MCGPR63V477M13X26--RH  
ATC100B470JT500XT  
ATC100B750JT500XT  
ATC100B101JT500XT  
ATC100B330JT500XT  
Copper Foil  
C4, C9, C17  
C5, C16  
ATC  
C6, C15  
Kemet  
Kemet  
Kemet  
ATC  
C7  
C8  
C10, C11, C13, C14  
C12  
ATC  
C18, C19, C20  
470 μF, 63 V Electrolytic Capacitors  
47 pF Chip Capacitors  
Multicomp  
ATC  
C21, C22  
C23  
75 pF Chip Capacitor  
ATC  
C24, C25  
100 pF Chip Capacitors  
33 pF Chip Capacitor  
ATC  
C26  
ATC  
J1, J2  
Jumpers from PCB to T1 and T2  
82 nH Inductor  
L1  
1812SMS--82NJLC  
1812SMS--47NJLC  
Copper Wire  
CoilCraft  
CoilCraft  
L2  
47 nH Inductor  
L3*  
10 Turn, #18 AWG Inductor, Hand Wound  
1 K, 1/4 W Carbon Leaded Resistor  
20 , 3 W Chip Resistor  
Balun  
R1  
MCCFR0W4J0102A50  
CPF320R000FKE14  
TUI--9  
Multicomp  
R2  
Vishay  
T1  
Comm Concepts  
Comm Concepts  
T2  
Balun  
TUO--4  
*L3 is wrapped around R2.  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
3
C1  
C19  
C17  
C16  
C15  
C4  
C5  
C6  
C18  
B1  
C20  
L1  
C2 C3  
C7  
C14  
C13  
L3, R2*  
R1  
C8  
C9  
C21  
C22  
C10  
T2  
C11  
T1  
C24  
C23  
J2  
C25  
J1  
L2  
C12  
C26  
MRF6VP11KH  
Rev. 3  
* L3 is wrapped around R2.  
Figure 3. MRF6VP11KHR6 Test Circuit Component Layout  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
C
oss  
T = 200°C  
J
T = 175°C  
J
T = 150°C  
J
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
C
rss  
T
= 25°C  
C
1
1
0
10  
20  
30  
40  
50  
1
10  
V , DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
100  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
Note: Each side of device measured separately.  
Figure 4. Capacitance versus Drain--Source Voltage  
Note: Each side of device measured separately.  
Figure 5. DC Safe Operating Area  
27  
80  
70  
60  
50  
40  
65  
64  
63  
62  
61  
60  
Ideal  
P3dB = 61.23 dBm (1327.39 W)  
26  
25  
24  
23  
22  
21  
20  
G
ps  
P1dB = 60.57 dBm (1140.24 W)  
Actual  
η
D
59  
58  
30  
20  
10  
V
= 50 Vdc, I = 150 mA, f = 130 MHz  
DQ  
Pulse Width = 100 μsec, Duty Cycle = 20%  
DD  
V
= 50 Vdc, I = 150 mA, f = 130 MHz  
DQ  
Pulse Width = 100 μsec, Duty Cycle = 20%  
DD  
57  
56  
10  
100  
1000 2000  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
P
, OUTPUT POWER (WATTS) PULSED  
P , INPUT POWER (dBm) PULSED  
in  
out  
Figure 6. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Pulsed Output Power versus  
Input Power  
32  
28  
24  
28  
24  
20  
16  
I
= 6000 mA  
DQ  
3600 mA  
1500 mA  
750 mA  
375 mA  
50 V  
45 V  
40 V  
35 V  
150 mA  
V
= 30 V  
DD  
20  
16  
I
= 150 mA, f = 130 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
DQ  
V
= 50 Vdc, f = 130 MHz  
DD  
Pulse Width = 100 μsec, Duty Cycle = 20%  
12  
10  
100  
1000  
2000  
0
200  
400  
600  
800  
1000 1200 1400 1600  
P
, OUTPUT POWER (WATTS) PULSED  
P
, OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 9. Pulsed Power Gain versus  
Output Power  
Figure 8. Pulsed Power Gain versus  
Output Power  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
65  
60  
55  
50  
45  
27  
26  
25  
24  
23  
80  
70  
60  
50  
T
= --30_C  
85_C  
C
T
= --30_C  
85_C  
C
25_C  
25_C  
G
ps  
40  
30  
20  
10  
η
D
V
I
= 50 Vdc  
= 150 mA  
DD  
V
I
= 50 Vdc  
= 150 mA  
DD  
22  
DQ  
DQ  
f = 130 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
f = 130 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
21  
20  
20  
25  
30  
35  
40  
45  
10  
100  
, OUTPUT POWER (WATTS) PULSED  
out  
1000 2000  
P , INPUT POWER (dBm) PULSED  
P
in  
Figure 10. Pulsed Output Power versus  
Input Power  
Figure 11. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
0.2  
0.18  
D = 0.7  
D = 0.5  
0.16  
0.14  
0.12  
0.1  
P
0.08  
D
t
1
t
0.06  
0.04  
2
D = Duty Factor = t /t  
1
2
t = Pulse Width  
1
D = 0.1  
t = Pulse Period  
2
J
0.02  
0
T = P * Z + T  
D
JC  
C
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
RECTANGULAR PULSE WIDTH (S)  
Figure 12. Maximum Transient Thermal Impedance  
8
7
6
5
9
10  
10  
10  
10  
10  
8
10  
7
10  
6
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W CW, and η = 72%.  
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W Peak, Pulse Width = 100 μsec,  
DD  
out  
D
DD  
out  
Duty Cycle = 20%, and η = 71%.  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 13. MTTF versus Junction Temperature -- CW  
MRF6VP11KHR6  
Figure 14. MTTF versus Junction Temperature -- Pulsed  
RF Device Data  
Freescale Semiconductor  
6
f = 130 MHz  
Z
source  
Z = 10 Ω  
o
f = 130 MHz  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
130  
1.58 + j6.47  
4.6 + j1.85  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 15. Series Equivalent Source and Load Impedance  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
8
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
9
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Jan. 2008  
Apr. 2008  
Initial Release of Data Sheet  
Corrected description and part number for the R1 resistor and updated R2 resistor to latest RoHS  
compliant part number in Table 5, Test Circuit Component Designations and Values, p. 3.  
Added Fig. 12, Maximum Transient Thermal Impedance, p. 6  
2
3
July 2008  
Added MTTF CW graph, Fig. 13, MTTF versus Junction Temperature, p. 6  
Sept. 2008  
Added Note to Fig. 4, Capacitance versus Drain--Source Voltage, to denote that each side of device is  
measured separately, p. 5  
Updated Fig. 5, DC Safe Operating Area, to clarify that measurement is on a per--side basis, p. 5  
Corrected Fig. 13, MTTF versus Junction Temperature – CW, to reflect the correct die size and increased  
the MTTF factor accordingly, p. 6  
Corrected Fig. 14, MTTF versus Junction Temperature – Pulsed, to reflect the correct die size and  
increased the MTTF factor accordingly, p. 6  
4
5
Dec. 2008  
July 2009  
Fig. 15, Series Equivalent Source and Load Impedance, corrected Z  
copy to read “Test circuit  
source  
impedance as measured from gate to gate, balanced configuration” and Z  
impedance as measured from drain to drain, balanced configuration”, p. 7  
copy to read “Test circuit  
load  
Added 1000 W CW thermal data at 100 MHz to Thermal Characteristics table, p. 1  
Changed “EKME630ELL471MK25S” part number to “MCGPR63V477M13X26--RH”, changed R1  
Description from “1 K, 1/4 W Axial Leaded Resistor” to “1 K, 1/4 W Carbon Leaded Resistor” and  
“CMF601000R0FKEK” part number to “MCCFR0W4J0102A50”, Table 5, Test Circuit Component  
Designations and Values, p. 3  
Corrected Fig. 13, MTTF versus Junction Temperature – CW, to reflect change in Drain Efficiency from  
70% to 72%, p. 6  
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Documentation,  
Tools and Software, p. 20  
6
7
Dec. 2009  
Apr. 2010  
Device frequency range improved from 10--150 MHz to 1.8--150 MHz, p. 1  
Reporting of pulsed thermal data now shown using the Z  
symbol, Table 2. Thermal Characteristics, p. 1  
θ
JC  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
MRF6VP11KHR6  
RF Device Data  
Freescale Semiconductor  
10  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6VP11KH  
Rev. 7,4/2010

相关型号:

1812SMS-47NJLD

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925, ROHS COMPLIANT
COILCRAFT

1812SMS-47NJSB

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925,
COILCRAFT

1812SMS-47NJSC

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925,
COILCRAFT

1812SMS-47NJSD

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925,
COILCRAFT

1812SMS-47NJTB

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925, ROHS COMPLIANT
COILCRAFT

1812SMS-47NJTC

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925, ROHS COMPLIANT
COILCRAFT

1812SMS-47NJTD

General Purpose Inductor, 0.047uH, 5%, 1 Element, Air-Core, SMD, 1925, ROHS COMPLIANT
COILCRAFT

1812SMS-56N-L

Midi Spring® Air Core Inductors
COILCRAFT

1812SMS-56NGLB

Midi Spring® Air Core Inductors
COILCRAFT

1812SMS-56NGLC

Midi Spring® Air Core Inductors
COILCRAFT

1812SMS-56NGLD

Midi Spring Air Core Inductors
COILCRAFT

1812SMS-56NGSC

General Purpose Inductor, 0.056uH, 2%, 1 Element, Air-Core, SMD, 1925,
COILCRAFT