FS3332 [FORTUNE]

Two Cell Lithium-ion/Polymer Battery Protection;
FS3332
型号: FS3332
厂家: Fortune Semiconductor    Fortune Semiconductor
描述:

Two Cell Lithium-ion/Polymer Battery Protection

电池
文件: 总23页 (文件大小:997K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REV. 1.3 FS3332-DS-13_EN  
May 2014  
Datasheet  
FS3332  
Two Cell Lithium-ion/Polymer Battery Protection IC  
Fortune Semiconductor Corporation  
富晶電子股份有限公司  
23F., No.29-5,Sec. 2, Zhongzheng E. Rd.,  
Danshui Town, Taipei County 251, Taiwan  
Tel.886-2-28094742  
Fax886-2-28094874  
www.ic-fortune.com  
This manual contins new ct information. Fortune Semiconductor Corporation reserves the rights to  
modify the prouct specification without further notice. No liability is assumed by Fortune Semiconductor  
Corporation as a rsult of the use of this product. No rights under any patent accompany the sale of the  
product.  
1. General Description  
3. Ordering Information  
The FS3332 Series are protection ICs for  
2-serial-cell lithium-ion/lithium-polymer rechargeable  
batteries and include high-accuracy voltage  
detectors and delay circuits.  
FS3332 x-P (P stands for Pb free)  
Serial code *  
*: Refer to the product name list on next page.  
These ICs are suitable for protecting 2-cell  
rechargeable lithium-ion/lithium-polymer battery  
packs from overcharge, overdischarge, and  
over-current  
4. Applications  
Protction IC for 2-Cell Lithium-Ion /  
Lithium-Polymer Battery Pack  
Portable DVD, DSC, PDA, etc.  
2. Features  
Low supply current  
Normal Operation : 7.5μ A typ. 14.2μ A max
Power-down mode : 0.3μ A typ.  
Overcharge detection voltage  
VOU﹞  
VOCR﹞  
VODL﹞  
VODR﹞  
VOI1﹞  
V
3.90V~4.60V, Accuracy of 25mV  
Overcharge release voltage  
3.60V~4.60V, Accuracy of 50mV  
Over-discharge detection voltage  
1.70V~2.60V, Accura80mV  
Over-discharge reltage  
1.70V~3.80V, Accuof 100mV  
Over current detection voltage  
0.07V~0.3cy of 20mV  
Short circvoltage  
Fixed at 1.
Deay times are set by an external cr. Each  
dlay time for Overcharge detection
Overischarge detection, Overcurrenetection  
are Proortion of hundrf ten to one”  
Two over-current detvels (protection for  
short-circuit)  
Internal auxiliary over voltge detection circuit  
(Fail safe for over voltage)  
High-withstanding-voltage devices Absolute  
maximum rating: 18 V  
Wide operating temperature range 85°C  
Wide supply voltage range  
2.6V  
8-pin TSSOP Pb-free package  
5. Product Name List  
0 V Battery  
Charging  
Function  
Overcharge  
detection  
voltage  
Overcharge  
release  
voltage  
Over-discharge Over-discharge Over-current  
detection  
release  
detection  
Model  
voltage  
voltage  
voltage  
[VOCU] (V)  
[VOCR] (V)  
[VODL] (V)  
[VODR] (V)  
[VOI1] (mV)  
4.350±0.025  
4.150±0.050  
2.30±0.080  
3.00±0.100  
300±20  
FS3332C  
No  
6. Pin Configuration  
Pin No. Symbol  
Description  
SENS Detection pin fltage between SENS and VC (Detection  
foverchrge and over-discharge)  
2
3
4
5
DO  
CO  
ate connection pin fr discge cntrol  
FEgate connection pin for charge control  
VM  
Input pin for current seOver-current detection pin)  
VSS  
Negative powut pin  
6
7
ICT  
VC  
Capacitor coction pin for detection delay  
Connection for neative voltage of battery 1 and  
positive voltage of battery 2  
8
VDD  
Positive power input pin  
7. Functional Block Diagram  
8. Typical Application Circuit  
gure 2  
9. Absolute Maximum Ratings  
(VSS=0V, Ta=25°C unless otherwise specified)  
Item  
Symbol  
Rating  
VSS-0.3 to VSS +18  
Unit  
Input voltage between VDD and VSS *  
VDD  
V
V
V
SENS input pin voltage  
ICT input pin voltage  
VSENS VSS -0.3 to VDD +0.3  
VIC
VSS -0.3 to VDD +0.3  
CO output pin voltage  
DO output pin voltage  
VM input pin voltage  
VC input pin voltage  
Power dissipation  
VCO  
VDO  
VVM  
VVC  
PD  
VVM -0.3 to VDD +0.3  
VSS -0.3 to VDD +0.3  
VDD -18 to VDD +0.3  
VSS -0.3 to VDD +0.3  
300  
V
V
V
V
mW  
Operating Temperature Range  
TOP  
-40 to +85  
Storage Temperature Range  
TST  
-40 to +
Note: FS3332 contains a cicuit that will protect it from static discharge; but please take special care  
that no excessive static electricity or voltage wch exceeds the limit of thprotection circuit  
will be applied to it.  
* Pulse (μsee exceeding the above input voltage (VSS +12V) may cause damage to  
the IC.  
10. Electrical Characteristics  
(Vss=0V, Ta=25°C unless otherwise specified)  
PARAMETER  
CURRENT CONSUMPTION  
Supply Current  
Power-Down Current  
OPERATING VOLTAGE  
Operating input voltage  
DETECTION VOLTAGE  
CONDITIONS  
SYMBOL  
Min  
Typ  
Max  
UNIT  
VDD=7V(2*3.5V)  
VDD=4.0V(2*2V)  
IDD  
IPD  
7.5  
0.3  
12.7  
0.6  
μA  
μA  
VDD-VSS  
VDS1  
2.0  
16  
V
V
VOCU  
-0.025  
VOCU*  
1.21  
VOCR  
-0.50  
VODL  
.080  
ODR  
-0.10  
VOI1  
VOCU  
+0.025  
VOCU*  
1.29  
VOCR  
+0.0
V
+
V
+0.100  
VOI1  
Overcharge detection voltage  
VOCU  
VCUUX1,2  
VOCR  
VOCU  
Auxiliary overcharge detection  
Voltage 1,2  
VOCU*  
1.25  
Overcharge release voltage  
VOCR  
VODL  
VODR  
V
V
Over-discharge detection voltage  
Over-discharge release voltage  
Over current detection voltage 1  
VODL  
VODR  
OI1  
VOI2  
VOI1  
1.0  
V
V
-0.020  
0.5  
+0.020  
1.5  
Over current detection voltage 2  
DELAY TIME(C3=0.2
Overcharge detectitime  
Over-discharge detectioelay time  
Over current don dely time  
OTHER  
VSS reference  
TOC  
TOD  
TOI1  
1.00  
100  
10  
s
ms  
ms  
138  
13.9  
CO pin outpe  
DO pin outpuge  
Voh1  
Voh2  
VDD-0.15 VDD-0.019  
0.05 VDD-0.003  
VDD  
VDD  
V
V
DO pn output “L” voltage  
Vol2  
VSS  
0.29  
105  
511  
VSS+0.003 VSS+0.05  
V
Resstancbetween VSS and CO  
Resistace between VDD and VM  
Resistance between VSS VM  
0 V battery charge startige  
RCOL  
RVMD  
RSM  
HA  
0.6  
240  
597  
No  
1.44  
575  
977  
MΩ  
kΩ  
kΩ  
V
(Vss=0V, Ta=-40°C ~ +85°C unless otherwise specified)  
PARAMETER  
CURRENT CONSUMPTION  
Supply Current  
Power-Down Current  
OPERATING VOLTAGE  
Operating input voltage  
DETECTION VOLTAGE  
CONDITIONS  
SYMBOL  
Min  
Typ  
Max  
UNIT  
VDD=7V(2*3.5V)  
VDD=4.0V(2*2V)  
IDD  
IPD  
7.5  
0.3  
14.2  
1.0  
μA  
μA  
VDD-VSS  
VDS1  
2.0  
16  
V
V
VOCU  
-0.055  
VOCU*  
1.19  
VOCR  
-0.080  
VODL  
-0.110  
VODR  
-0.30  
VOI1  
VOCU  
+0.045  
VOCU*  
1.31  
VOCR  
+0.070  
VODL  
+0.100  
VODR  
+0
Overcharge detection voltage  
VOCU  
VCUAUX1,2  
VOCR  
VOCU  
Auxiliary overcharge detection  
Voltage 1,2  
VOCU*  
1.25  
Overcharge release voltage  
VOCR  
VODL  
VODR  
V
V
V
Over-discharge detection voltage  
Over-discharge release voltage  
Over current detection voltage 1  
VODL  
VODR  
VOI1  
VOI2  
VOI1  
1.0  
V
033  
0.4  
+
1.
Over current detection voltage 2  
DELAY TIME(C3=0.22μF)  
Overcharge detection delay time  
Over-discharge detection delay time  
Over current detection time  
OTHER  
VSreferece  
C  
TOD  
TOI1  
1.00  
100  
10  
s
ms  
ms  
67  
6.3  
141  
14.7  
CO pin output “H” volt
DO pin output “oltage  
Voh1  
Voh2  
VDD-0.27 VDD-0.09  
VDD-0.17 VDD-0.003  
VDD  
VDD  
V
V
DO pin outpge  
Vol2  
VSS  
0.2
9  
VSS+0.003 VSS+0.17  
V
Resistance S and CO  
Resistance bD and VM  
Resisance betwVSS and VM  
0 V attery charge starting voltage  
RCOL  
RVMD  
RVSM  
V0CHA  
0.6  
240  
597  
No  
2.20  
878  
1491  
MΩ  
kΩ  
kΩ  
V
87  
11. Measurement Circuits  
Measurement 1 Measurement Circuit 1  
Set S1=OFF, V1=V2=3.6V, and V3=0V under normal condition. Increase V1 from 3.6V gradually. The V1  
voltage when CO = 'L' is overcharge detection voltage 1 (VCU1). Decrease V1 gradually. The V1 voltage  
when CO = 'H' is overcharge release voltage 1 (VCR1). Further decrease V1. The V1 voltage when DO =  
'L' is overdischarge detection voltage 1 (VDL1). Increase V1 gradually. The V1 voltage when DO = 'H' is  
overdischarge release voltage 1 (VDR1). Set S1=ON, and V1=V2=3.6V and V3=0V under normal  
condition. Increase V1 from 3.6V gradually. The V1 voltage when CO = 'L' is auxiliary overcharge  
detection voltage 1 (VCUaux1).  
MeasurMeasurement Circuit
Set S12=3.6V, and V3=0V ormal condition. Increase V2 from 3.6V gradually. The V2  
vltage w= 'L' is overcharge detecn voltage 2 (VCU2crease V2 gradually. The V2 voltage  
when CO = 'H' is overcharge releage 2 (VCR2). Furthecreae V2. The V2 voltage when DO =  
'L' is overdischarge voltage 2 Increase V2 grduall. The V2 voltage when DO = 'H' is  
ordischarge release voltae 2 R2). Set S1=ON, nd V1=V2=3.6V and V3=0V under normal  
condtion. Increase Vfrom 3.6V gradually. The V2 voltage when CO = 'L' is auxiliary overcharge  
detection voltage 2 ux2).  
Measurement 3 Measurement Circuit 1  
Set S1=OFF, V1=V2=3.6V, and V3=0V unormal condition. Increase V3 from 0V gradually. The V3  
voltage when DO = 'L' is overcurrent detecn volage 1 (VIOV1). Set S1=ON, V1=V2=3.6V, V3=0 under  
normal condition. Increase V3 frV gradually. (The voltage change rate < 1.0V/ms) (V1+V2-V3)  
voltage when DO = 'L' is overcutection voltage 2 (VIOV2).  
Measurement 4 Measurement Circuit 2  
Set S1=ON, V1=V2=3.6V, and V3=0V under normal condition and measure current consumption. Current  
consumption I1 is the normal condition current consumption (IDD). Set S1=OFF, V1=V2=1.5V under  
overdischarge condition and measure current consumption. Current consumption I1 is the power-down  
current consumption (IPD).  
Measurement 5 urement Circuit 2  
Set S1=ON, V1V3=1.5V, and V3=2.5V uoverdischarge condition(V1+V-V3)/I2 is the internal  
resistance betweeVCC and VM (RVMD). S1=ON, V1=V2=3.5V, and V3=1.1V under overcurrent  
conditiois the nternal resistance betwen VSS and VM (RVSM).  
MeasurMeasurement Circuit
Set S1=ON, S2=OFF, V1=V2=3V3=0V under normal ndition. Increase V4 from 0V gradually.  
The V4 voltage when I1 = 10µ'H' voltage (Voh2). Set S1=OFF, S2=ON, V1=V2=3.6V, and  
V30.5V under overcurrent ondition. Increase V5 from 0V radually. The V5 voltage when I2 = 10 µA is  
the DO 'L' voltage (V
Measurement 7 Measurement Circuit 4  
Set S1=ON, S2=OFF, V1=V2=3.6V and V3=0V under normal condition. Increase V4 from 0V gradually.  
The V4 voltage when I1 = 10µA is the CO 'H' voltage (Voh1). Set S1=OFF S2=ON, V1=V2=4.7V, V3=0V,  
and V4=9.4V under over voltage condition. (V5)/I2 is the CO pin internal resistance (RCOL).  
Measurement 8 asurement Circuit 5  
Set V1and V3=0V under norcondition. Increase V1 rom (VCU1-0.2V) to (VCU1+0.2V)  
immed10µs). The time aftcomes (VCU1+0.2V) ntil CO goes 'L' is the overcharge  
detectioe 1 (tCU1). Set V1=VV, and V3=0V under normal condition. Decrease V1 from  
(VDL1+0.(VDL1-0.2V) immely (hin 10µs). The timer V1 becomes (VDL1-0.2V) until DO  
goes 'L' is the overdischarge detlay time 1 (tDL1).  
Measurement 9 Measurement Circuit 5  
Set V1=V2=3V, and V3=0V under normal condition. Increase V2 from (VCU2-0.2V) to (VCU2+0.2V)  
immediately (witin 10µs). The time after V2 becomes (VCU2+0.2V) until CO goes 'L' is the overcharge  
detection delay time 2 (tCU2). Set V1=V2=3.6V, and V3=0V under normal condition. Decrease V2 from  
(VDL2+0.2V) to (VDL2-0.2V) immediately (within 10µs). The time after V2 becomes (VDL2-0.2V) until DO  
goes 'L' is the overdischarge detection delay time 2 (tDL2).  
Measurement 10 Measurement Circuit 5  
Set V1=V2=3.6V, and V3=0V under normal condition. Increase V3 from 0V to 0.5V immediately (within  
10µs). The time after V3 becomes 0.5V until DO goes 'L' is the overcurrent detection delay time 1 (tIOV1).  
Measurement 11 Measurement Circuit 6  
Set V1=V2=0V, and V3=2V, and decrease V3 gradually. The V3 voltage when CO = 'L' (VDD-0.3V or  
lower) is the 0V charge starting voltage (V0CHA).  
12. Description of Operation  
discharging current flows through the parasitic  
diode in the charging control FET. At this  
moment the VM pin potential becomes Vf, the  
voltage for the parasitic diode, higher than the  
VSS level. When the battery voltage goes  
under overcharge detection voltage (VCU1,2)  
and provided that the VM pin voltage is higher  
than over-current detection voltage 1, the IC  
releases the overcharge status and returns to  
the normal status.  
Normal Condition  
This IC monitors the voltage of the battery connected  
between the VDD and VSS pins and the voltage  
difference between the VM and VSS pins to control  
charging and discharging. When the voltages of two  
batteries are in the range from over-discharge  
detection voltage (VDL1,2) to overcharge detection  
voltage (VCU1,2), and the VM pin voltage is in the  
range from the charger detection voltage (VCHA) to  
over-current detection voltage 1 (VIOV1), the IC  
turns both the charging and discharging control FETs  
on. This condition is called the normal status, and in  
this condition charging and discharging n be  
carried out freely. The VM and VSS pins are shorted  
by the RVSM resistor in this condition.  
Over-discharge Condition  
When one of the battery voltages belw  
over-discharge detectin voltage (Vring  
discharginthe normal status ion  
continues thover-discharge deelay  
time (tDL1,) or onger, the discharging control FET  
tuns off to stop discharging. This condition is called  
the over-discharge status. the discharging  
ontrol FET is turned off, the pin oltage is pulled  
up by the resistor between the VM and VDD pins in  
the IC (RVMD). When the voltage difference  
between the VM and VDD pins then is over-current  
Caution: When the battery is connected for the first  
time, discharging may not be nabled. In this case,  
short the VM and VSS pins r conect the charger to  
restore the normal status.  
Overcharge Cn  
When one of tattery voltages becomes highe
than overchion voltage (VCU1,2) g  
charging in mal status and d
continues for charge detection delay e  
(tCU1,2) or longer, the charging controrns off  
to stp carging. When one of the baltages  
becomehigher than auxiliary ovrcharge detection  
voltage (VCUAUX1,2), targing control FET  
turns off to stop chargBoth conditions ar
called the overcharge staThe VM and VSS pins  
are shorted by the RVSM resstor in this condition.  
detection voltae  
2
or lower, the current  
consumption is reduced to the power-down current  
consumptioPDN)This condition is called the  
power-dostats. The power-down status is  
releasd wen a charger is connected and the  
voltage difference between the VM and VDD pins is  
ocurret detection voltage 2 or higher. Moreover,  
n althe battery voltages become over-discharge  
dection voltage (VDL1,2) or higher, the discharging  
FET turns on and returns to the normal status.  
The overcharge status is released in
following two cases (a and b).  
a) The battery voltage wceeded  
overcharge detection voltage (U1,2) falls  
below the overcharge release voltage  
(VCR1,2), the charging control FET turns on  
and returns to the normal satus.  
b) The battery vowich exceeded  
overcharge detectige (VCU1,2) is  
equal to or higher thaovercharge release  
voltage (VCR1,2, the charger is removed, a  
load is conned and discharging starts, the  
charging control FET turns on and returns to  
the normal status. Just after the load is  
connected and discharging starts, the  
Over Current Condition  
Delay Circuits  
When a battery in the normal status is in the status  
where the voltage of the VM pin is equal to or higher  
than the over-current detection voltage because the  
discharge current is higher than the specified value  
and the status lasts for the over-current detection  
delay time, the discharge control FET is turned off  
and discharging is stopped. This status is called the  
over-current status. In the over-current status, the  
VM and VSS pins are shorted by the resistor  
between VM and VSS (RVSM) in the IC. The  
charging FET is also turned off. The voltage of the  
VM pin is at the VDD potential as long as the load i
connected. When the load is disconnected, the VM  
pin returns to the VSS potential. This IC detets the  
status when the impedance between the EB  
The overcharge detection delay time (tCU1,2), the  
over-discharge detection delay time (tDL1,2), and  
the over-current detection delay time 1 (tOI1) are set  
via an external capacitor (C3). One capacitor  
determines each delay time, and the delay times are  
correlated by following ratio:  
Overcharge delay time : Over-discharge  
delay time : Over-current delay time = 100 :  
10 : 1  
Te delay times are calculated as follows:  
Overcharge detection delay time  
tCU [s] = delay factor 1 x C3 [μF]  
and EB-  
(see typical application circuit)  
Delay factor 1 = 2.500 min, 4364  
max
increases and is equal to the mpedance that  
enables automatic restoration ad the voltage t the  
VM pin returns to over-currendetection voltage 1  
(VIOV1) or lower and the overcurrent status is  
restored to the normal status.  
Over-discharge detection delay time  
tDL [s] = delay factor 2 x μF]  
Delay factor 2 = (0.305 mn, 0.4545 typ,  
0.6409 max)  
Caution: Thdance that enables  
autoc restoration varie
dependng on the batter
e and the set valof  
rrent detection
Over-current detection delay time 1  
tIOV1 [s] = delay factor 3 x C3 [μF]  
Delaor 3 = (0.02864 min, 0.04545 typ,  
0.066max
Note: The over-current detection delay  
ime 2 is fixed by internal circuit  
13. Timing Diagram  
Overcharge detection  
Over-discharge detection  
Over-current detection  
14. Typical Characteristics  
Detection Voltage Temperature Characteristics  
Over Charge Detection Voltage  
OVERCHARGE VOLTAGE  
SENS V  
VC V  
4.3  
4.29  
4.28  
4.27  
4.26  
4.25  
4.24  
4.23  
4.22  
4.21  
4.2  
-40 -30 -20 -10  
0
10 30 0 50 60 70 80  
Temperature℃)  
Over Charge Release Voltage  
OVCHARGE RELEASE  
OLTAGE  
OCR1 V  
VOCV  
4.1  
4.09  
4.08  
4.07  
4.06  
4
4
4.01  
4
-40 -30 -20 -10  
0
10  
0  
40  
50  
60  
70  
80  
Temperature(℃)  
Auxiliary Over e Detection Voltage  
Auxiry overcharge detection Voltage  
Vcuaux1 V  
Vcuaux2 V  
5.34  
5.32  
5.3  
5.28  
5.26  
5.24  
5.22  
5.2  
5.18  
5.16  
5.14  
5.12  
-4-30
10 20 30 40 50 60 70 80  
Temperature(℃)  
Over Dis-Charge Detection Voltage  
OVERDISCHARGE VOLTAGE  
VODL1 V  
VODL2 V  
2.45  
2.44  
2.43  
2.42  
2.41  
2.4  
2.39  
2.38  
2.37  
2.36  
2.35  
-40 -30 -20 -10  
0
10 20 30 40 50 670 8
Temperature(℃)  
Over Dis-Charge Release Voltage  
OVERDISCHARGE RELEASVOLTAE  
VODR1 V  
VODR2 V  
3.15  
3.1  
3.05  
3
2.95  
2.9  
-20 -10  
0
10 20 0 60 70 80  
Temperature(℃
Delay Time Temperature Characteristics  
Over Charge Detection Delay Time  
OVERCHARGE DELAY TIME  
TOC mS  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
-40 -30 -20 -10  
0
10 20 30 0 80  
Temperatu(℃)  
Over Dis-Charge DetectioDelay Tim
OVERSCHARGE DLAY TME  
TOD mS  
150  
140  
130  
120  
110  
10
-20 -10  
0
10 20 40 60 70 80  
Tempe
Overcurrent1 Deton Dlay Time  
URRENT1 DELAY TIME  
TmS  
8
7.5  
7
6.5  
6
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
mperature(℃)  
15. Package Outline  
8-Pin TSSOP  
16. Revision History  
Version  
1.0  
Date  
Page  
Description  
2007/01/08  
2009/06/03  
2009/06/17  
2014/05/22  
-
New Release  
1.1  
8
4
2
Delete 0V Charge  
1.2  
Delete FS3332AFS3332BFS3332L  
1.3  
Revise company address  

相关型号:

FS3332C

Two Cell Lithium-ion/Polymer Battery Protection
FORTUNE

FS33A

Surface Mount Schottky Rectifier
GOOD-ARK

FS34

Surface Mount Schottky Rectifier
GOOD-ARK

FS3405

high efficiency synchronous FS3405A: No output discharge function FS3405: Auto output discharge function General Description boost regulator that converts down to 1.8V input and up to 5.5V output voltage.
FUJIKURA

FS345

Surface Mount Schottky Rectifier
GOOD-ARK

FS34A

Surface Mount Schottky Rectifier
GOOD-ARK

FS34AP-1304SA1CN

MIL Series Connector
AMPHENOL

FS34AP-1304SA1SN

MIL Series Connector
AMPHENOL

FS34AP-1304SA6SN

MIL Series Connector
AMPHENOL

FS34AP-1304SN1CN

MIL Series Connector
AMPHENOL

FS34AP-1304SN1SN

MIL Series Connector
AMPHENOL

FS34AP-1304SN6CN

MIL Series Connector
AMPHENOL