SGR6N60UF [FAIRCHILD]

Ultra-Fast IGBT; 超快速IGBT
SGR6N60UF
型号: SGR6N60UF
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Ultra-Fast IGBT
超快速IGBT

双极性晶体管
文件: 总7页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IGBT  
SGR6N60UF  
Ultra-Fast IGBT  
General Description  
Features  
Fairchild's UF series of Insulated Gate Bipolar Transistors  
(IGBTs) provides low conduction and switching losses.  
The UF series is designed for applications such as motor  
control and general inverters where high speed switching is  
a required feature.  
High speed switching  
Low saturation voltage : V  
High input impedance  
= 2.1 V @ I = 3A  
CE(sat)  
C
Applications  
AC & DC motor controls, general purpose inverters, robotics, and servo controls.  
C
E
C
G
D-PAK  
E
G
Absolute Maximum Ratings  
T = 25°C unless otherwise noted  
C
Symbol  
Description  
SGR6N60UF  
Units  
V
V
V
Collector-Emitter Voltage  
600  
CES  
GES  
Gate-Emitter Voltage  
± 20  
V
Collector Current  
@ T  
=
25°C  
6
A
C
I
I
C
Collector Current  
@ T = 100°C  
3
A
C
Pulsed Collector Current  
25  
30  
A
CM (1)  
P
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction Temperature  
Storage Temperature Range  
Maximum Lead Temp. for Soldering  
Purposes, 1/8” from Case for 5 Seconds  
@ T  
=
25°C  
W
W
°C  
°C  
D
C
@ T = 100°C  
12  
C
T
-55 to +150  
-55 to +150  
J
T
stg  
T
300  
°C  
L
Notes :  
(1) Repetitive rating : Pulse width limited by max. junction temperature  
Thermal Characteristics  
Symbol  
Parameter  
Typ.  
Max.  
Units  
°C/W  
°C/W  
R
R
Thermal Resistance, Junction-to-Case  
--  
--  
4.0  
50  
θJC  
θJA  
Thermal Resistance, Junction-to-Ambient (PCB Mount)  
(2)  
Notes :  
(2) Mounted on 1” squre PCB (FR4 or G-10 Material)  
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
Electrical Characteristics of the IGBT  
T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
Off Characteristics  
BV  
Collector-Emitter Breakdown Voltage  
Temperature Coefficient of Breakdown  
Voltage  
V
V
= 0V, I = 250uA  
600  
--  
--  
--  
--  
V
CES  
GE  
C
B  
/
VCES  
J
= 0V, I = 1mA  
0.6  
V/°C  
GE  
C
T  
I
I
Collector Cut-Off Current  
G-E Leakage Current  
V
V
= V  
= V  
, V = 0V  
--  
--  
--  
--  
250  
uA  
nA  
CES  
GES  
CE  
CES  
GE  
, V = 0V  
± 100  
GE  
GES  
CE  
On Characteristics  
V
G-E Threshold Voltage  
I
I
I
= 3mA, V = V  
GE  
3.5  
--  
4.5  
2.1  
2.6  
6.5  
2.6  
--  
V
V
V
GE(th)  
C
C
C
CE  
= 3A,  
= 6A,  
V
V
= 15V  
= 15V  
Collector to Emitter  
Saturation Voltage  
GE  
GE  
V
CE(sat)  
--  
Dynamic Characteristics  
C
C
C
Input Capacitance  
--  
--  
--  
220  
22  
7
--  
--  
--  
pF  
pF  
pF  
ies  
V
= 30V V = 0V,  
, GE  
CE  
Output Capacitance  
oes  
res  
f = 1MHz  
Reverse Transfer Capacitance  
Switching Characteristics  
t
t
t
t
Turn-On Delay Time  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
15  
25  
60  
70  
57  
25  
82  
22  
32  
80  
122  
65  
46  
111  
15  
5
--  
--  
ns  
ns  
ns  
ns  
uJ  
uJ  
uJ  
ns  
ns  
ns  
ns  
uJ  
uJ  
uJ  
nC  
nC  
nC  
nH  
d(on)  
Rise Time  
r
Turn-Off Delay Time  
Fall Time  
130  
150  
--  
V
R
= 300 V, I = 3A,  
C
d(off)  
f
CC  
= 80, V = 15V,  
G
GE  
Inductive Load, T = 25°C  
E
E
E
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
C
on  
off  
--  
120  
--  
ts  
t
t
t
t
d(on)  
r
--  
Turn-Off Delay Time  
Fall Time  
200  
300  
--  
V
= 300 V, I = 3A,  
C
d(off)  
f
CC  
R
= 80, V = 15V,  
G
GE  
Inductive Load, T = 125°C  
E
E
E
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Total Gate Charge  
Gate-Emitter Charge  
Gate-Collector Charge  
Internal Emitter Inductance  
C
on  
off  
ts  
--  
170  
22  
8
Q
Q
Q
g
V
V
= 300 V, I = 3A,  
CE  
GE  
C
ge  
gc  
= 15V  
4
6
L
Measured 5mm from PKG  
7.5  
--  
e
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
30  
25  
20  
15  
10  
5
15  
12  
9
Common Emitter  
GE = 15V  
20V  
Common Emitter  
V
TC = 25  
TC  
TC = 125  
= 25  
15V  
12V  
6
VGE = 10V  
3
0
0
0
2
4
6
8
0.5  
1
10  
Collector - Emitter Voltage, VCE [V]  
Collector - Emitter Voltage, VCE [V]  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Saturation Voltage  
Characteristics  
4
8
VCC = 300V  
Load Current : peak of square wave  
Common Emitter  
VGE = 15V  
3
2
6
4
2
0
6A  
3A  
IC = 1.5A  
1
0
Duty cycle : 50%  
TC = 100  
Power Dissipation = 9W  
0
30  
60  
90  
120  
150  
0.1  
1
10  
100  
1000  
Case Temperature, TC  
[
]
Frequency [KHz]  
Fig 3. Saturation Voltage vs. Case  
Fig 4. Load Current vs. Frequency  
Temperature at Variant Current Level  
20  
20  
16  
12  
8
Common Emitter  
TC = 125  
Common Emitter  
TC = 25  
16  
12  
8
6A  
6A  
4
4
3A  
3A  
IC = 1.5A  
IC = 1.5A  
0
0
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Gate - Emitter Voltage, VGE [V]  
Gate - Emitter Voltage, VGE [V]  
Fig 5. Saturation Voltage vs. V  
Fig 6. Saturation Voltage vs. V  
GE  
GE  
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
400  
350  
300  
250  
200  
150  
100  
50  
100  
Common Emitter  
Common Emitter  
V
GE = 0V, f = 1MHz  
±
15V  
VCC = 300V, VGE  
IC = 3A  
=
TC = 25  
Ton  
Tr  
TC  
= 25  
T
C = 125  
Cies  
Coes  
Cres  
0
10  
1
10  
Collector - Emitter Voltage, VCE [V]  
30  
1
10  
Gate Resistance, RG []  
100  
400  
Fig 7. Capacitance Characteristics  
Fig 8. Turn-On Characteristics vs.  
Gate Resistance  
600  
300  
Common Emitter  
Common Emitter  
±
15V  
VCC = 300V, VGE  
IC = 3A  
=
±
15V  
VCC = 300V, VGE  
C = 3A  
=
I
TC  
TC = 125  
= 25  
TC  
= 25  
100  
T
C = 125  
Eon  
Toff  
Eoff  
Eoff  
Toff  
Tf  
100  
50  
10  
5
Tf  
1
10  
Gate Resistance, RG []  
100  
400  
1
10  
Gate Resistance, RG []  
100  
400  
Fig 9. Turn-Off Characteristics vs.  
Gate Resistance  
Fig 10. Switching Loss vs. Gate Resistance  
200  
500  
Common Emitter  
Common Emitter  
±
15V  
VCC = 300V, VGE  
=
±
15V  
V
CC = 300V, VGE  
=
RG = 80  
R
G = 80Ω  
100  
TC  
TC = 125  
= 25  
TC  
TC = 125  
= 25  
Toff  
Ton  
Tr  
100  
50  
Tf  
10  
1
2
3
4
5
6
1
2
3
4
5
6
Collector Current, IC [A]  
Collector Current, IC [A]  
Fig 11. Turn-On Characteristics vs.  
Collector Current  
Fig 12. Turn-Off Characteristics vs.  
Collector Current  
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
200  
100  
15  
12  
9
Common Emitter  
Common Emitter  
RL = 100 Ω  
±
15V  
VCC = 300V, VGE  
G = 80Ω  
=
R
Tc = 25  
TC  
= 25  
TC = 125  
300 V  
Eon  
Eon  
6
200 V  
VCC = 100 V  
Eoff  
3
10  
5
Eoff  
1
0
2
3
4
5
6
0
3
6
9
12  
15  
Gate Charge, Qg [ nC ]  
Collector Current, IC [A]  
Fig 13. Switching Loss vs. Collector Current  
Fig 14. Gate Charge Characteristics  
50  
50  
10  
Ic MAX. (Pulsed)  
10  
50us  
100us  
Ic MAX. (Continuous)  
1
1
0.1  
DC Operation  
1
Single Nonrepetitive  
Pulse TC = 25  
Curves must be derated  
linearly with increase  
in temperature  
Safe Operating Area  
VGE=20V, TC=100oC  
10 100  
Collector-Emitter Voltage, VCE [V]  
0.01  
0.1  
0.3  
1
10  
100  
1000  
1
1000  
Collector-Emitter Voltage, VCE [V]  
Fig 15. SOA Characteristics  
Fig 16. Turn-Off SOA Characteristics  
10  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
0.1  
Pdm  
t1  
t2  
single pulse  
Duty factor D = t1 / t2  
Peak Tj = Pdm  
×
Zthjc + TC  
0.01  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
Rectangular Pulse Duration [sec]  
Fig 17. Transient Thermal Impedance of IGBT  
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
Package Dimension  
D-PAK  
6.60 ±0.20  
5.34 ±0.30  
2.30 ±0.10  
0.50 ±0.10  
(0.50)  
(4.34)  
(0.50)  
MAX0.96  
0.76 ±0.10  
0.50 ±0.10  
1.02 ±0.20  
2.30 ±0.20  
2.30TYP  
2.30TYP  
[2.30±0.20]  
[2.30±0.20]  
6.60 ±0.20  
(5.34)  
(5.04)  
(1.50)  
(2XR0.25)  
0.76 ±0.10  
Dimensions in Millimeters  
©2002 Fairchild Semiconductor Corporation  
SGR6N60UF Rev. A1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FAST®  
FASTr™  
FRFET™  
GlobalOptoisolator™ PACMAN™  
GTO™  
HiSeC™  
I2C™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MICROWIRE™  
OPTOLOGIC™  
OPTOPLANAR™  
SLIENT SWITCHER® UHC™  
SMART START™  
SPM™  
STAR*POWER™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
EcoSPARK™  
E2CMOS™  
EnSigna™  
FACT™  
UltraFET®  
VCX™  
POP™  
Power247™  
PowerTrench®  
QFET™  
QS™  
QT Optoelectronics™ TinyLogic™  
Quiet Series™ TruTranslation™  
FACT Quiet Series™ MicroPak™  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
©2002 Fairchild Semiconductor Corporation  
Rev. H5  

相关型号:

SGR6N60UFTF

Insulated Gate Bipolar Transistor, 6A I(C), 600V V(BR)CES, N-Channel, TO-252, DPAK-3
FAIRCHILD

SGR6N60UFTF_NL

Insulated Gate Bipolar Transistor, 6A I(C), 600V V(BR)CES, N-Channel, TO-252, LEAD FREE, DPAK-3
FAIRCHILD

SGR6N60UFTM

6A, 600V, N-CHANNEL IGBT, TO-252, DPAK-3
ROCHESTER

SGR6N60UFTM

Discrete, High Performance IGBT, TO252 (D-PAK), MOLDED, 3 LEAD,OPTION AA&AB, 2500/TAPE REEL
FAIRCHILD

SGR70

Rundsteckverbinder mit Schraubverschluss nach IEC 60130-9, IP 40
LUMBERG

SGR71

Rundsteckverbinder mit Schraubverschluss nach IEC 60130-9, IP 40
LUMBERG

SGR80

Rundsteckverbinder mit Schraubverschluss nach IEC 60130-9, IP 40
LUMBERG

SGR81

Rundsteckverbinder mit Schraubverschluss nach IEC 60130-9, IP 40
LUMBERG

SGRP-3

SPECIFICATION CONTROL DRAWING
MACOM

SGS-5-10

DOUBLE-BALANCED MICROWAVE MIXER SURFACE WIDE BANDWIDTH - GALAXY SERIES 3 - 19 GHz
SYNERGY

SGS-5-13

DOUBLE-BALANCED MICROWAVE MIXER SURFACE WIDE BANDWIDTH - GALAXY SERIES 3 - 19 GHz
SYNERGY

SGS-5-17

DOUBLE-BALANCED MICROWAVE MIXER SURFACE WIDE BANDWIDTH - GALAXY SERIES 3 - 19 GHz
SYNERGY