RLD03N06CLE [FAIRCHILD]

0.3A, 60V, ESD Rated, Current Limited, Voltage Clamped Logic Level N-Channel Enhancement-Mode Power MOSFETs; 0.3A , 60V , ESD额定电流限制,钳位电压逻辑电平N沟道增强型功率MOSFET
RLD03N06CLE
型号: RLD03N06CLE
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

0.3A, 60V, ESD Rated, Current Limited, Voltage Clamped Logic Level N-Channel Enhancement-Mode Power MOSFETs
0.3A , 60V , ESD额定电流限制,钳位电压逻辑电平N沟道增强型功率MOSFET

晶体 晶体管 开关
文件: 总13页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RLD03N06CLE,  
RLD03N06CLESM, RLP03N06CLE  
S E M I C O N D U C T O R  
0.3A, 60V, ESD Rated, Current Limited, Voltage Clamped  
Logic Level N-Channel Enhancement-Mode Power MOSFETs  
July 1996  
Features  
Packages  
JEDEC TO-220AB  
• 0.30A, 60V  
SOURCE  
DRAIN  
GATE  
• rDS(ON) = 6.0  
• Built in Current Limit ILIMIT 0.140 to 0.210A at 150oC  
• Built in Voltage Clamp  
Temperature Compensating PSPICE Model  
• 2kV ESD Protected  
DRAIN  
(FLANGE)  
• Controlled Switching Limits EMI and RFI  
JEDEC TO-251AA  
Description  
SOURCE  
DRAIN  
GATE  
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE  
are intelligent monolithic power circuits which incorporate a lat-  
eral bipolar transistor, resistors, zener diodes and a power MOS  
transistor. The current limiting of these devices allow it to be used  
safely in circuits where a shorted load condition may be encoun-  
tered. The drain-source voltage clamping offers precision control  
of the circuit voltage when switching inductive loads. The “Logic  
Level” gate allows this device to be fully biased on with only 5.0V  
from gate to source, thereby facilitating true on-off power control  
directly from logic level (5V) integrated circuits.  
DRAIN  
(FLANGE)  
JEDEC TO-252AA  
DRAIN  
(FLANGE)  
GATE  
SOURCE  
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE  
incorporate ESD protection and are designed to withstand 2kV  
(Human Body Model) of ESD.  
Symbol  
D
PACKAGING AVAILABILITY  
PART NUMBER  
PACKAGE  
TO-251AA  
BRAND  
03N06C  
RLD03N06CLE  
G
RLD03N06CLESM TO-252AA  
RLP03N06CLE TO-220AB  
03N06C  
03N06CLE  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-252AA variant in tape and reel, i.e.  
RLD03N06CLESM9A.  
S
Formerly developmental type TA49026.  
o
Absolute Maximum Ratings T = +25 C  
C
RLD03N06CLE,  
RLD03N06CLESM,  
RLP03N06CLE  
UNITS  
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
60  
60  
V
V
V
DSS  
Drain Gate Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate Source Voltage (Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Reverse Voltage Gate Bias Not Allowed  
+5.5  
GS  
Drain Current  
RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Self Limited  
D
D
Power Dissipation  
o
T
= +25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
30  
0.2  
W
C
o
o
Derate above +25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P  
W/ C  
T
Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . . . . . . . . ESD  
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
2
KV  
o
-55 to +175  
C
STG  
J
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.  
File Number 3948.3  
Copyright © Harris Corporation 1996  
1
Specifications RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
o
Electrical Specifications T = +25 C, Unless Otherwise Specified  
C
PARAMETERS  
Drain-Source Breakdown Voltage  
Gate Threshold Voltage  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
85  
UNITS  
V
I
60  
-
DSS  
D
GS  
V
V
= V , I = 250µA  
1
-
2.5  
50  
V
GS(TH)  
GS  
DS  
D
o
Zero Gate Voltage Drain Current  
I
V
V
= 45V,  
= 0V  
T = +25 C  
-
-
µA  
µA  
µA  
µA  
DSS  
GSS  
DS  
GS  
J
o
T = +150 C  
-
-
200  
5
J
o
Gate-Source Leakage Current  
On Resistance  
I
V
= 5V  
T = +25 C  
-
-
GS  
J
o
T = +150 C  
-
-
20  
J
o
r
I
= 0.100A,  
T = +25 C  
-
-
6.0  
12.0  
420  
210  
7.5  
2.5  
5.0  
7.5  
5.0  
12.5  
-
DS(ON)  
D
J
V
= 5V  
GS  
o
T = +150 C  
-
-
J
o
Limiting Current  
I
V
V
= 15V,  
= 5V  
T = +25 C  
280  
-
mA  
mA  
µs  
DS(LIMIT)  
DS  
GS  
J
o
T = +150 C  
140  
-
J
Turn-On Time  
t
V
= 30V, I = 0.10A,  
-
-
-
-
-
-
-
-
-
-
-
-
-
ON  
DD  
D
R = 300Ω, V = 5V,  
R
L
GS  
Turn-On Delay Time  
Rise Time  
t
= 25Ω  
-
µs  
D(ON)  
GS  
t
-
µs  
R
Turn-Off Delay Time  
Fall Time  
t
-
µs  
D(OFF)  
t
-
-
µs  
F
Turn-Off Time  
t
µs  
OFF  
Input Capacitance  
C
V
= 25V, V = 0V,  
100  
65  
3.0  
-
pF  
pF  
pF  
ISS  
DS  
GS  
f = 1MHz  
Output Capacitance  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
C
C
-
OSS  
RSS  
-
o
R
5.0  
80  
C/W  
JC  
JA  
θ
o
R
TO-220 Package  
-
C/W  
θ
o
TO-251 and TO-252 Packages  
-
100  
C/W  
Source-Drain Diode Ratings and Specifications  
PARAMETERS  
Forward Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
= 0.1A  
MIN  
TYP  
MAX  
1.5  
UNITS  
V
V
I
I
-
-
-
-
SD  
RR  
SD  
t
= 0.1A, dI /dt = 100A/µs  
1.0  
ms  
SD  
SD  
2
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Typical Performance Curves  
TC = +25oC  
1
10  
OPERATION IN THIS  
AREA IS LIMITED BY  
JUNCTION TEMPERATURE  
1
0.5  
0.2  
25oC  
PDM  
DC  
0.1  
0.05  
175oC  
0.1  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY rDS(ON)  
0.02  
t1  
0.01  
t2  
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t1/t2  
PEAK TJ = PDM x Z JC + TC  
θ
0.1  
0.01  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10  
100  
VDS, DRAIN-TO-SOURCE VOLTAGE (V)  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 1. SAFE OPERATING AREA CURVE  
FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL  
IMPEDANCE  
2.0  
1.5  
1.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.5  
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
25  
50  
75  
100  
125  
150  
175  
TJ, JUNCTION TEMPERATURE (oC)  
TC, CASE TEMPERATURE (oC)  
FIGURE 3. TYPICAL NORMALIZED DRAIN CURRENT vs  
JUNCTION TEMPERATURE  
FIGURE 4. NORMALIZED POWER DISSIPATION vs  
TEMPERATURE DERATING CURVE  
PULSE DURATION = 250µs, TC = +25oC  
VDD = 15V  
-55oC  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
VGS = 5V  
VGS = 7.5V  
PULSE TEST  
VGS = 4V  
PULSE DURATION = 250µs  
DUTY CYCLE = 0.5% MAX  
0.40  
0.30  
VGS = 3V  
+25oC  
0.20  
0.10  
0
+175oC  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
VDS, DRAIN-TO-SOURCE VOLTAGE (V)  
VGS, GATE-TO-SOURCE VOLTAGE (V)  
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS  
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS  
3
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Typical Performance Curves (Continued)  
ID = 250µA  
VGS = VDS  
,
ID = 0.30A  
PULSE DURATION = 250µs, VGS = 5V,  
2.0  
1.5  
2.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.0  
0.5  
0.0  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
TJ, JUNCTION TEMPERATURE (oC)  
TJ , JUNCTION TEMPERATURE (oC)  
FIGURE 7. NORMALIZED r  
vs JUNCTION TEMPERATURE  
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs  
TEMPERATURE  
DS(ON)  
TC = +25oC  
ID = 20mA  
1
2.0  
1.5  
TEMPERATURES LISTED ARE STARTING  
JUNCTION TEMPERATURES  
+25oC  
+50oC  
1.0  
+75oC  
+100oC  
0.5  
0.0  
+150oC  
+125oC  
10  
0.1  
0.001  
-80  
-40  
0
40  
80  
120  
160  
200  
0.01  
0.1  
1
TJ, JUNCTION TEMPERATURE (oC)  
tAV, TIME IN CLAMP (s)  
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN  
VOLTAGE vs TEMPERATURE  
FIGURE 10. SELF-CLAMPED INDUCTIVE SWITCHING  
VGS = 0V, FREQUENCY (f) = 1MHz  
5.00  
60  
300  
45  
30  
15  
0
3.75  
2.50  
1.25  
0.00  
VDD = BVDSS  
200  
100  
RL = 600Ω  
0.75 BVDSS  
IG(REF) = 0.1mA  
CISS  
VGS = 5V  
0.50 BVDSS  
0.25 BVDSS  
COSS  
CRSS  
I
I
0
G(REF)  
G(REF)  
0
5
10  
15  
20  
25  
---------------------  
10  
t, TIME (µs)  
---------------------  
40  
I
I
G(ACT)  
G(ACT)  
VDS, DRAIN-TO-SOURCE VOLTAGE (V)  
FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE  
VOLTAGE  
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR  
CONSTANT GATE CURRENT. REFER TO HARRIS  
APPLICATION NOTES AN7254 AND AN7260  
4
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Test Circuit and Waveform  
VDD  
tON  
tD(ON)  
tOFF  
tD(OFF)  
tR  
tF  
RL  
VDS  
VDS  
90%  
90%  
VGS  
10%  
10%  
DUT  
90%  
50%  
0V  
50%  
VGS  
10%  
PULSE WIDTH  
RGS  
FIGURE 13. RESISTIVE SWITCHING TEST CIRCUIT  
FIGURE 14. RESISTIVE SWITCHING WAVEFORMS  
Detailed Description  
Duty Cycle Operation  
Temperature Dependence of Current Limiting and  
Switching Speed Performance  
In many applications either the drain to source voltage or the  
gate drive is not available 100% of the time. The copper  
header on which the RLD03N06CLE, RLD03N06CLESM  
and RLP03N06CLE is mounted has a very large thermal  
storage capability, so for pulse widths of less then 1ms, the  
temperature of the header can be considered a constant,  
thereby the junction temperature can be calculated simply as  
shown in Equation 2:  
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE  
are a monolithic power device which incorporates a Logic Level  
power MOSFET transistor with a current sensing scheme and  
control circuitry to enable the device to self limit the drain  
source current flow. The current sensing scheme supplies cur-  
rent to a resistor that is connected across the base to emitter of  
a bipolar transistor in the control section. The collector of this  
bipolar transistor is connected to the gate of the power MOS-  
FET transistor. When the ratiometric current from the current  
sensing reaches the value required to forward bias the base  
emitter junction of this bipolar transistor, the bipolar “turns on”.  
A resistor is incorporated in series with the gate of the power  
MOSFET transistor allowing the bipolar transistor to adjust the  
drive on the gate of the power MOSFET transistor to a voltage  
which then maintains a constant current in the power MOSFET  
transistor. Since both the ratiometric current sensing scheme  
and the base emitter unction voltage of the bipolar transistor  
vary with temperature, the current at which the device limits is a  
function of temperature. This dependence is shown in Figure 3.  
(EQ. 2)  
T
= (V  
I D R  
) + T  
θCA A MBIENT  
C
DS  
D
Generally the heat storage capability of the silicon chip in a  
power transistor is ignored for duty cycle calculations. Mak-  
ing this assumption, limiting junction temperature to 175oC  
and using the TC calculated in Equation 2, the expression for  
maximum VDS under duty cycle operation is shown in Equa-  
tion 3:  
o
150 C T  
C
V
=
(EQ. 3)  
-----------------------------------------  
DS  
I
D R  
LM  
θJC  
These values are plotted as Figures 16 through 21 for vari-  
ous heatsink thermal resistances.  
The resistor in series with the gate of the power MOSFET  
transistor also results in much slower switching performance  
than in standard power MOSFET transistors. This is an Limited Time Operations  
advantage where fast switching can cause EMI or RFI. The  
switching speed is very predictable.  
Protection for a limited period of time is sufficient for many  
applications. As stated above the heat storage in the silicon  
chip can usually be ignored for computations of over 10 ms,  
thereby the thermal equivalent circuit reduces to a simple  
enough circuit to allow easy computation on the limiting con-  
ditions. The variation in limiting current with temperature  
complicates the calculation of junction temperature, but a  
simple straight line approximation of the variation is accurate  
enough to allow meaningful computations. The curves  
shown as Figures 22 through 25 (RLP03N06CLE) and Fig-  
ure 26 through 29 (RLD03N06CLE and RLD03N06CLESM)  
give an accurate indication of how long the specified voltage  
can be applied to the device in the current limiting mode  
without exceeding the maximum specified 175oC junction  
temperature. In practice this tells you how long you have to  
DC Operation  
The limit on the drain to source voltage for operation in cur-  
rent limiting on a steady state (DC) basis is shown in the  
equation below. The dissipation in the device is simply the  
applied drain to source voltage multiplied by the limiting cur-  
rent. This device, like most power MOSFET devices today, is  
limited to 175oC. The maximum voltage allowable can,  
therefore, be expressed as shown in Equation 1:  
(150°CT  
)
A MBIENT  
V
=
-------------------------------------------------------  
DS  
(EQ. 1)  
I
LM • (R  
+ R  
)
θJC  
θJA  
The results of this equation are plotted in Figure 15 for vari- alleviate the condition causing the current limiting to occur.  
ous heatsinks.  
5
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Performance Curves  
HEAT SINK THERMAL RESISTANCE = HSTR  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
90  
90  
HSTR = 0oC/W  
HSTR = 1oC/W  
HSTR = 2oC/W  
DC = 20%  
DC = 50%  
DC = 2%  
DC = 5%  
75  
60  
45  
30  
15  
0
75  
60  
45  
30  
15  
0
HSTR = 5oC/W  
HSTR = 10oC/W  
TJ = 175oC  
DC = 10%  
I
R
LIM = 0.210A  
JC = 5.0oC/W  
θ
HSTR = 25oC/W  
HSTR = 80oC/W  
TJ = 175oC  
I
R
LIM = 0.210A  
JC = 5.0oC/W  
θ
25  
50  
75  
100  
125  
150  
175  
100  
125  
150  
175  
TA , AMBIENT TEMPERATURE (oC)  
TA , AMBIENT TEMPERATURE (oC)  
FIGURE 15. DC OPERATION IN CURRENT LIMITING  
FIGURE 16. MAXIMUM V vs AMBIENT TEMPERATURE IN  
DS  
CURRENT LIMITING. (HEATSINK THERMAL  
o
RESISTANCE = 1 C/W)  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
90  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
90  
DC = 20%  
DC = 2%  
DC = 2%  
75  
75  
60  
45  
30  
15  
0
DC = 20%  
DC = 5%  
DC = 5%  
DC = 50%  
60  
DC = 10%  
DC = 10%  
DC = 50%  
45  
30  
TJ = 175oC  
TJ = 175oC  
I
R
LIM = 0.210A  
15  
0
I
R
LIM = 0.210A  
JC = 5.0oC/W  
JC = 5.0oC/W  
θ
θ
75  
100  
125  
150  
175  
100  
125  
150  
175  
TA , AMBIENT TEMPERATURE (oC)  
TA , AMBIENT TEMPERATURE (oC)  
FIGURE 17. MAXIMUM V vs AMBIENT TEMPERATURE IN  
FIGURE 18. MAXIMUM V vs AMBIENT TEMPERATURE IN  
DS  
DS  
o
o
CURRENT LIMITING. (HSTR = 2 C/W)  
CURRENT LIMITING. (HSTR = 5 C/W)  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
90  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
90  
DC = 20%  
DC = 2%  
DC = 10%  
DC = 2%  
DC = 5%  
DC = 20%  
75  
75  
60  
45  
30  
15  
0
DC = 5%  
DC = 50%  
60  
45  
30  
15  
0
DC = 10%  
DC = 50%  
TJ = 175oC  
TJ = 175oC  
I
R
LIM = 0.210A  
JC = 5.0oC/W  
ILIM = 0.210A  
θ
R
JC = 5.0oC/W  
θ
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
TA , AMBIENT TEMPERATURE (oC)  
TA , AMBIENT TEMPERATURE (oC)  
FIGURE 19. MAXIMUM V vs AMBIENT TEMPERATURE IN  
FIGURE 20. MAXIMUM V vs AMBIENT TEMPERATURE IN  
DS  
DS  
o
o
CURRENT LIMITING. (HSTR = 10 C/W)  
CURRENT LIMITING. (HSTR = 25 C/W)  
6
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Performance Curves (Continued)  
DUTY CYCLE = DC MAX PULSE WIDTH = 100ms  
10  
8
90  
DC = 1%  
DC = 2%  
DC = 5%  
DC = 10%  
STARTING TJ = 75oC  
STARTING TJ = 100oC  
STARTING TJ = 125oC  
STARTING TJ = 150oC  
75  
60  
45  
30  
15  
0
TJ = 175oC  
ILIM = 0.210A  
R
JC = 5.0oC/W  
θ
6
4
2
0
DC = 20%  
DC = 50%  
25  
50  
75  
100  
125  
150  
175  
10  
30  
50  
70  
90  
TA , AMBIENT TEMPERATURE (oC)  
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
FIGURE 21. MAXIMUM V vs AMBIENT TEMPERATURE IN  
FIGURE 22. TIME TO 175 C IN CURRENT LIMITING  
DS  
o
o
CURRENT LIMITING. (HSTR = 80 C/W)  
(HEATSINK THERMAL RESISTANCE = 25 C/W)  
(HEATSINK THERMAL CAPACITANCE = 0.5J/ C)  
o
10  
10  
8
STARTING TJ = 75oC  
STARTING TJ = 100oC  
8
STARTING TJ = 125oC  
STARTING TJ = 150oC  
STARTING TJ = 75oC  
6
4
2
0
6
4
2
0
STARTING TJ = 100oC  
STARTING TJ = 125oC  
STARTING TJ = 150oC  
10  
30  
50  
70  
90  
10  
30  
50  
70  
90  
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
FIGURE 23. TIME TO 175 C IN CURRENT LIMITING  
FIGURE 24. TIME TO 175 C IN CURRENT LIMITING  
o
o
(HEATSINK THERMAL RESISTANCE = 10 C/W)  
(HEATSINK THERMAL CAPACITANCE = 1.0J/ C)  
(HEATSINK THERMAL RESISTANCE = 5 C/W)  
(HEATSINK THERMAL CAPACITANCE = 2.0J/ C)  
o
o
10  
8
10  
8
STARTING TJ = 75oC  
STARTING TJ = 75oC  
STARTING TJ = 100oC  
STARTING TJ = 125oC  
STARTING TJ = 150oC  
STARTING TJ = 100oC  
6
4
2
0
6
4
2
0
STARTING TJ = 125oC  
STARTING TJ = 150oC  
10  
30  
50  
70  
90  
10  
30  
50  
70  
90  
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
FIGURE 25. TIME TO 175 C IN CURRENT LIMITING  
FIGURE 26. TIME TO 175 C IN CURRENT LIMITING  
o
o
(HEATSINK THERMAL RESISTANCE = 2 C/W)  
(HEATSINK THERMAL CAPACITANCE = 4J/ C)  
(HEATSINK THERMAL RESISTANCE = 25 C/W)  
(HEATSINK THERMAL CAPACITANCE = 0.5J/ C)  
o
o
7
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Performance Curves (Continued)  
10  
8
10  
8
STARTING TJ = 75oC  
STARTING TJ = 100oC  
STARTING TJ = 125oC  
STARTING TJ = 150oC  
STARTING TJ = 75oC  
6
4
2
0
6
4
2
0
STARTING TJ = 100oC  
STARTING TJ = 125oC  
STARTING TJ = 150oC  
10  
30  
50  
70  
90  
10  
30  
50  
70  
90  
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
FIGURE 27. TIME TO 175 C IN CURRENT LIMITING  
FIGURE 28. TIME TO 175 C IN CURRENT LIMITING  
o
o
(HEATSINK THERMAL RESISTANCE = 10 C/W)  
(HEATSINK THERMAL CAPACITANCE = 1.0J/ C)  
(HEATSINK THERMAL RESISTANCE = 5 C/W)  
(HEATSINK THERMAL CAPACITANCE = 2.0J/ C)  
o
o
10  
STARTING TJ = 75oC  
8
6
4
STARTING TJ = 100oC  
STARTING TJ = 125oC  
2
0
STARTING TJ = 150oC  
10  
30  
50  
70  
90  
VDS , DRAIN TO SOURCE VOLTAGE (V)  
o
o
FIGURE 29. TIME TO 175 C IN CURRENT LIMITING (HEATSINK THERMAL RESISTANCE = 2 C/W)  
o
(HEATSINK THERMAL CAPACITANCE = 4J/ C)  
8
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
Temperature Compensated PSPICE Model for the RLD03N06CLE, RLD03N06CLESM,  
RLP03N06CLE  
SUBCKT RLD03N06CLE 2 1 3;  
CA 12 8 0.547e-9  
CB 15 14 0.547e-9  
rev 4/18/94  
5
DRAIN  
2
LDRAIN  
CIN 6 8 0.301e-9  
DBREAK  
DPLCAP  
DBODY 7 5 DBDMOD  
10  
DBREAK 5 11 DBKMOD  
DESD1 91 9 DESD1MOD  
DESD2 91 7 DESD2MOD  
DPLCAP 10 5 DPLCAPMOD  
11  
+
ESG  
RDRAIN  
DBODY  
6
8
17  
18  
EBREAK  
16  
EBREAK 11 20 17 18 66.5  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTO 20 6 18 8 1  
+
VTO  
-
+
MOS2  
EVTO  
+
21  
GATE  
1
RGATE  
18  
8
MOS1  
6
9
LGATE  
DESD1  
CIN  
RIN  
IT 8 17 1  
91  
LSOURCE  
DESD2  
RSOURCE1 RSOURCE2  
70  
8
LDRAIN 2 5 1e-9  
LGATE 1 9 2.96e-9  
LSOURCE 3 7 2.96e-9  
3
7
SOURCE  
S1A  
S2A  
MOS1 16 6 8 8 MOSMOD M = 0.99  
MOS2 16 21 8 8 MOSMOD M = 0.01  
RBREAK  
12  
14  
13  
15  
13  
8
18  
RVTO  
17  
S1B  
CA  
S2B  
QCONTROL 20 70 7 QMOD 1  
13  
RBREAK 17 18 RBKMOD 1  
RDRAIN 5 16 RDSMOD 1.123  
RGATE 9 20 3200  
19  
CB  
IT  
+
+
14  
VBAT  
6
8
5
8
EDS  
EGS  
+
RIN 6 8 1e9  
RSOURCE1 8 70 RDSMOD 1.12  
RSOURCE2 70 7 RSMOD 2.16  
RVTO 18 19 RVTOMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 8 19 DC 1  
VTO 21 6 0.22  
.MODEL DBDMOD D (IS = 7.97e-17 RS = 1.82 TRS1 = 3.91e-3 TRS2 = 1.24e-5 CJO = 3.00e-10 TT = 1.83e-7)  
.MODEL DBKMOD D (RS = 3150 TRS1 =0 TRS2 = 0)  
.MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0)  
.MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0)  
.MODEL DPLCAPMOD D (CJO = 74.2e-12 IS = 1e-30 N = 10)  
.MODEL MOSMOD NMOS (VTO = 1.67 KP = 3.40 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL QMOD NPN (BF =5)  
.MODEL RBKMOD RES (TC1 = 4e-4 TC2 = 1.13e-8)  
.MODEL RDSMOD RES (TC1 = 6.80e-3 TC2 = 6.5e-6)  
.MODEL RSMOD RES (TC1 = 2.95e-3 TC2 = -1e-6)  
.MODEL RVTOMOD RES (TC1 = -2.22e-3 TC2 = -1.95e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF = -1)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1 VOFF = -3)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.85 VOFF = 2.15)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.15 VOFF = -2.85)  
.ENDS  
NOTE:  
1. For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.  
9
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
E
ØP  
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
MIN  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
MAX  
4.57  
NOTES  
A1  
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
-
Q
H1  
A
1.32  
-
1
b
0.86  
3, 4  
TERM. 4  
D
b
1.39  
2, 3  
1
45o  
E1  
c
0.48  
2, 3, 4  
D1  
D
15.49  
4.06  
-
-
L1  
D
1
b1  
E
0.395  
-
10.04  
-
10.41  
0.76  
-
L
b
E
-
c
1
e
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
5
5
-
60o  
e
1
2
e
3
1
J1  
H
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
6.47  
2.79  
13.97  
3.81  
3.88  
2.84  
1
e1  
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.54  
13.47  
3.31  
6
-
1
L
LEAD NO. 1  
LEAD NO. 2  
LEAD NO. 3  
TERM. 4  
-
-
-
-
GATE  
L
2
-
1
DRAIN  
ØP  
Q
3.79  
SOURCE  
DRAIN  
2.60  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of  
JEDEC TO-220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 1 dated 1-93.  
10  
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
TO-251AA  
3 LEAD JEDEC TO-251AA PLASTIC PACKAGE  
E
A
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.094  
0.022  
0.032  
0.040  
0.215  
0.022  
0.290  
0.265  
MIN  
2.19  
0.46  
0.72  
0.84  
5.21  
0.46  
6.86  
6.35  
MAX  
2.38  
0.55  
0.81  
1.01  
5.46  
0.55  
7.36  
6.73  
NOTES  
b2  
A1  
TERM. 4  
H1  
A
0.086  
0.018  
0.028  
0.033  
0.205  
0.018  
0.270  
0.250  
-
A
3, 4  
SEATING  
PLANE  
1
D
b
3, 4  
b
b
3
1
2
3, 4  
c
3, 4  
b1  
D
E
e
-
-
L1  
L
c
b
0.090 TYP  
0.180 BSC  
2.28 TYP  
4.57 BSC  
5
5
-
e
1
1
2
3
H
0.035  
0.045  
0.045  
0.375  
0.090  
0.89  
1.14  
1.14  
9.52  
2.28  
1
J1  
e
J
0.040  
0.355  
0.075  
1.02  
9.02  
1.91  
6
-
1
e1  
L
L
2
1
NOTES:  
LEAD NO. 1  
LEAD NO. 2  
LEAD NO. 3  
TERM. 4  
-
-
-
-
GATE  
1. These dimensions are within allowable dimensions of Rev. C of  
JEDEC TO-251AA outline dated 9-88.  
DRAIN  
SOURCE  
DRAIN  
2. Solder finish uncontrolled in this area.  
3. Dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder plating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 10-95.  
11  
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
TO-252AA  
SURFACE MOUNT JEDEC TO-252AA PLASTIC PACKAGE  
INCHES  
MIN  
MILLIMETERS  
A
E
A1  
SYMBOL  
MAX  
0.094  
0.022  
0.032  
0.040  
0.215  
-
MIN  
2.19  
0.46  
0.72  
0.84  
5.21  
4.83  
0.46  
6.86  
6.35  
MAX  
2.38  
0.55  
0.81  
1.01  
5.46  
-
NOTES  
H1  
b2  
A
0.086  
0.018  
0.028  
0.033  
0.205  
0.190  
0.018  
0.270  
0.250  
-
SEATING  
PLANE  
A
4, 5  
1
b
4, 5  
D
b
b
b
4
1
2
3
L
2
4, 5  
2
L
1
3
c
0.022  
0.290  
0.265  
0.55  
7.36  
6.73  
4, 5  
b1  
b
D
E
e
-
-
L1  
e
c
e1  
J1  
0.090 TYP  
0.180 BSC  
2.28 TYP  
4.57 BSC  
7
7
-
0.265  
(6.7)  
e
1
TERM. 4  
H
0.035  
0.045  
0.045  
0.115  
-
0.89  
1.14  
1.14  
2.92  
-
1
J
0.040  
0.100  
0.020  
0.025  
0.170  
1.02  
2.54  
0.51  
0.64  
4.32  
-
1
L
-
L3  
0.265 (6.7)  
b3  
L
L
L
4, 6  
3
2
1
2
3
0.040  
-
1.01  
-
0.070 (1.8)  
NOTES:  
0.118 (3.0)  
1. These dimensions are within allowable dimensions of Rev. B of  
JEDEC TO-252AA outline dated 9-88.  
BACK VIEW  
2. L and b dimensions establish a minimum mounting surface for  
3
3
0.063 (1.6)  
0.090 (2.3)  
0.063 (1.6)  
0.090 (2.3)  
terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
5. Add typically 0.002 inches (0.05mm) for solder plating.  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.090 inches (2.28mm) from bottom  
of dimension D.  
LEAD NO. 1  
LEAD NO. 3  
TERM. 4  
-
-
-
GATE  
SOURCE  
DRAIN  
8. Controlling dimension: Inch.  
9. Revision 5 dated 10-95.  
12  
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE  
TO-252AA  
16mm TAPE AND REEL  
22.4mm  
13mm  
4.0mm  
1.5mm  
DIA. HOLE  
2.0mm  
1.75mm  
C
L
16mm  
50mm  
330mm  
8.0mm  
16.4mm  
USER DIRECTION OF FEED  
GENERAL INFORMATION  
1. USE "9A" SUFFIX ON PART NUMBER.  
2. 2500 PIECES PER REEL.  
COVER TAPE  
3. ORDER IN MULTIPLES OF FULL REELS ONLY.  
4. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
Revision 5 dated 10-95  
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at  
any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is  
believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other  
rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.  
Sales Office Headquarters  
For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS  
UNITED STATES  
EUROPE  
SOUTH ASIA  
NORTH ASIA  
Harris Semiconductor  
P. O. Box 883, Mail Stop 53-210 Mercure Center  
Melbourne, FL 32902  
TEL: 1-800-442-7747  
(407) 729-4984  
Harris Semiconductor  
Harris Semiconductor H.K. Ltd.  
13/F Fourseas Building  
208-212 Nathan Road  
Tsimshatsui, Kowloon  
Hong Kong  
Harris K.K.  
Kojimachi-Nakata Bldg. 4F  
5-3-5 Kojimachi  
Chiyoda-ku, Tokyo 102 Japan  
TEL: (81) 3-3265-7571  
TEL: (81) 3-3265-7572 (Sales)  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2-724-2111  
FAX: (407) 729-5321  
TEL: (852) 723-6339  
S E M I C O N D U C T O R  
13  

相关型号:

RLD03N06CLESM

0.3A, 60V, ESD Rated, Current Limited, Voltage Clamped Logic Level N-Channel Enhancement-Mode Power MOSFETs
FAIRCHILD

RLD03N06CLESM

0.3A, 60V, 6 Ohm, ESD Rated, Current Limited, Voltage Clamped, Logic Level N-Channel Power MOSFETs
INTERSIL

RLD03N06CLESM9A

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | TO-252AA
ETC

RLD06P075B

This new radial leaded products are designed specifi cally for Universal Serial Bus (USB
LITTELFUSE

RLD06P075BA

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED
LITTELFUSE

RLD06P075BF

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED
LITTELFUSE

RLD06P075BFA

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED, LEAD FREE
LITTELFUSE

RLD06P075BFF

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED, LEAD FREE
LITTELFUSE

RLD06P075BFG

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED, LEAD FREE
LITTELFUSE

RLD06P120B

This new radial leaded products are designed specifi cally for Universal Serial Bus (USB
LITTELFUSE

RLD06P120BA

暂无描述
LITTELFUSE

RLD06P120BF

RESISTOR, TEMPERATURE DEPENDENT, PTC RESETTABLE FUSE, THROUGH HOLE MOUNT, RADIAL LEADED
LITTELFUSE