NM25C640LVM8 [FAIRCHILD]

SPI Serial EEPROM ; SPI串行EEPROM\n
NM25C640LVM8
型号: NM25C640LVM8
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

SPI Serial EEPROM
SPI串行EEPROM\n

存储 内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总10页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
March 1999  
NM25C640  
64K-Bit Serial CMOS EEPROM  
(Serial Peripheral Interface (SPI) Synchronous Bus)  
General Description  
Features  
The NM25C640 is a 65,536-bit CMOS EEPROM with an SPI  
compatible serial interface. The NM25C640 is designed for data  
storage in applications requiring both non-volatile memory and in-  
systemdataupdates. ThisEEPROMiswellsuitedforapplications  
using the 68HC11 series of microcontrollers that support the SPI  
interface for high speed communication with peripheral devices  
via a serial bus to reduce pin count. The NM25C640 is imple-  
mented in Fairchild Semiconductor’s floating gate CMOS process  
that provides superior endurance and data retention.  
2.75 MHz clock rate @ 4.5V to 5.5V  
2.1 MHz @ 2.7V to 4.5V  
65,536 bits organized as 8,192 x 8  
Multiple chips on the same 3-wire bus with separate chip  
select lines  
Self-timed programming cycle  
Simultaneous programming of 1 to 32 bytes at a time  
Status register can be polled during programming to monitor  
READY/BUSY  
The serial data transmission of this device requires four signal  
lines to control the device operation: Chip Select (CS), Clock  
(SCK), Data In (SI), and Serial Data Out (SO). All programming  
cycles are completely self-timed and do not require an erase  
before WRITE.  
Write Protect (WP) pin and write disable instruction for both  
hardware and software write protection  
Block write protect feature to protect against accidental  
writes  
BLOCK WRITE protection is provided by programming the STA-  
TUS REGISTER with one of four levels of write protection.  
Additionally, separate WRITE enable and WRITE disable instruc-  
tions are provided for data protection.  
Endurance: 1,000,000 data changes  
Data retention greater than 40 years  
Packages available: 8-pin DIP or 8-Pin SO  
Hardware data protection is provided by the WP pin to protect  
against inadvertent programming. The HOLD pin allows the serial  
communication to be suspended without resetting the serial  
sequence.  
Block Diagram  
CS  
HOLD  
SCK  
VCC  
VSS  
Instruction  
Decoder  
Control Logic  
and Clock  
WP  
Instruction  
SI  
Generators  
Register  
Program  
Enable  
Address  
Counter/  
Register  
High Voltage  
Generator  
and  
Program  
Timer  
VPP  
EEPROM Array  
65,536 Bits  
(8,192 x 8)  
Decoder  
1 of 8,192  
Read/Write Amps  
Data In/Out Register  
8 Bits  
Data Out  
Buffer  
SO  
Non-Volatile  
Status Register  
DS500041-1  
1
© 1999 Fairchild Semiconductor Corporation  
NM25C640 Rev. D.2  
www.fairchildsemi.com  
Connection Diagram  
Dual-In-Line Package (N)  
and SO Package (M8)  
CS  
SO  
WP  
VSS  
1
2
3
4
8
7
6
5
VCC  
HOLD  
SCK  
SI  
NM25C640  
Top View  
DS500041-2  
Pin Names  
CS  
SO  
Chip Select Input  
Serial Data Output  
Write Protect  
WP  
VSS  
Ground  
SI  
Serial Data Input  
Serial Clock Input  
Suspends Serial Data  
Power Supply  
SCK  
HOLD  
VCC  
Ordering Information  
NM 25  
C
XX LZ E XX  
Letter Description  
Package  
N
M8  
8-Pin DIP  
8-Pin SO  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 4.5V  
LZ  
2.7V to 4.5V and  
<1µA Standby Current  
Density/Mode  
Interface  
640  
C
64K, mode 0  
CMOS  
25  
SPI  
NM  
Fairchild Nonvolatile  
Memory  
2
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Standard Voltage 4.5 VCC 5.5V Specifications  
Operating Conditions  
Absolute Maximum Ratings (Note 1)  
Ambient Operating Temperature  
NM25C640  
Ambient Storage Temperature  
-65°C to +150°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage with  
Respect to Ground  
NM25C640E  
NM25C640V  
+6.5V to -0.3V  
+300°C  
Lead Temp. (Soldering, 10 sec.)  
ESD Rating  
Power Supply (VCC  
)
4.5V to 5.5V  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
ICC  
ICCSB  
IIL  
Operating Current  
CS = VIL  
3
50  
mA  
µA  
µA  
µA  
V
Standby Current  
Input Leakage  
CS = VCC  
VIN = 0 to VCC  
VOUT = GND to VCC  
-1  
-1  
+1  
IOL  
Output Leakage  
+1  
VIL  
CMOS Input Low Voltage  
CMOS Input High Voltage  
Output Low Voltage  
Output High Voltage  
SCK Frequency  
-0.3  
VCC * 0.3  
VCC + 0.3  
0.4  
VIH  
VOL  
VOH  
fOP  
VCC * 0.7  
V
IOL = 2.1 mA  
IOH = -0.8 mA  
V
VCC - 0.8  
V
2.75  
2.0  
MHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tRI  
Input Rise Time  
tFI  
Input Fall Time  
2.0  
tCLH  
tCLL  
tCSH  
tCSS  
tDIS  
tHDS  
tCSN  
tDIN  
tHDN  
tPD  
Clock High Time  
Clock Low Time  
(Note 2)  
(Note 2)  
(Note 3)  
155  
155  
240  
176  
50  
Min CS High Time  
CS Setup Time  
Data Setup Time  
HOLD Setup Time  
CS Hold Time  
90  
155  
50  
Data Hold Time  
HOLD Hold Time  
Output Delay  
90  
CL = 200 pF  
135  
tDH  
Output Hold Time  
HOLD to Output Low Z  
Output Disable Time  
HOLD to Output High Z  
Write Cycle Time  
0
tLZ  
240  
290  
240  
10  
tDF  
CL = 200 pF  
1–32 Bytes  
tHZ  
tWP  
Capacitance TA = 25°C, f = 2.1/1 MHz (Note 4)  
AC Test Conditions  
Output Load  
CL = 200 pF  
0.1 * VCC – 0.9 * VCC  
0.3 * VCC - 0.7 • VCC  
Symbol  
COUT  
Test  
Typ Max Units  
Input Pulse Levels  
Output Capacitance  
Input Capacitance  
3
2
8
6
pF  
pF  
Timing Measurement Reference Level  
CIN  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Note 2: The fOP frequency specification specifies a minimum clock period of 1/fOP. Therefore, for every fOP clock cycle, tCLH + tCLL must be equal to or greater than 1/fOP. For  
example, if the 2.1MHz period = 476ns and tCLH = 190ns, tCLL must be 286ns.  
Note 3: CS must be brought high for a minimum of tCSH between consecutive instruction cycles.  
Note 4: This parameter is periodically sampled and not 100% tested.  
3
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Low Voltage 2.7V VCC 4.5V Specifications  
Operating Conditions  
Absolute Maximum Ratings (Note 5)  
Ambient Operating Temperature  
NM25C640L/LZ  
Ambient Storage Temperature  
-65°C to +150°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage with  
Respect to Ground  
NM25C640LZ/LZE  
NM25C640LV  
+6.5V to -0.3V  
+300°C  
Lead Temp. (Soldering, 10 sec.)  
ESD Rating  
Power Supply (VCC  
)
2.7V–4.5V  
2000V  
DC and AC Electrical Characteristics 2.7V VCC 4.5V (unless otherwise specified)  
25C640L/LE  
25C640LV  
25C640LZ/LZE  
Symbol  
ICC  
Parameter  
Operating Current  
Standby Current  
Part  
Conditions  
Min.  
Max.  
Min Max  
Units  
CS = VIL  
3
3
mA  
ICCSB  
L
LZ  
CS = VCC  
10  
1
10  
N/A  
µA  
µA  
IIL  
Input Leakage  
VIN = 0 to VCC  
-1  
-1  
1
1
-1  
-1  
1
1
µA  
µA  
V
IOL  
Output Leakage  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
SCK Frequency  
Input Rise Time  
Input Fall Time  
VOUT = GND to VCC  
VIL  
-0.3  
0.3 * VCC  
-0.3  
0.3 * VCC  
VIH  
VOL  
VOH  
fOP  
tRI  
0.7 * VCC VCC + 0.3  
0.7 * VCC VCC + 0.3  
V
IOL = 1.6 mA  
0.4  
0.4  
V
IOH = –0.8 mA  
VCC - 0.8  
VCC - 0.8  
V
2.1  
1.0  
MHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
2.0  
2.0  
tFI  
2.0  
2.0  
tCLH  
tCLL  
tCSH  
tCSS  
tDIS  
tHDS  
tCSN  
tDIN  
tHDN  
tPD  
Clock High Time  
Clock Low Time  
Min. CS High Time  
CS Setup Time  
(Note 6)  
(Note 6)  
(Note 7)  
190  
190  
240  
240  
100  
90  
410  
410  
500  
500  
100  
240  
500  
100  
240  
500  
0
Data Setup Time  
HOLD Setup Time  
CS Hold Time  
240  
100  
90  
Data Hold Time  
HOLD Hold Time  
Output Delay  
CL = 200 pF  
240  
tDH  
tLZ  
Output Hold Time  
HOLD Output Low Z  
Output Disable Time  
HOLD to Output Hi Z  
Write Cycle Time  
0
100  
240  
100  
15  
240  
500  
240  
15  
tDF  
CL = 200 pF  
1-32 Bytes  
tHZ  
tWP  
Capacitance TA = 25°C, f = 2.1/1 MHz (Note 8)  
AC Test Conditions  
Output Load  
CL = 200pF  
Symbol  
COUT  
Test  
Typ Max Units  
Input Pulse Levels  
0.1 * VCC - 0.9 * VCC  
0.3 * VCC - 0.7 * VCC  
Output Capacitance  
Input Capacitance  
3
2
8
6
pF  
pF  
Timing Measurement Reference Level  
CIN  
Note 5: Stress above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Note 6: The fOP frequency specification specifies a minimum clock period of 1/fOP. Therefore, for every fOP clock cycle, tCLH + tCLL must be equal to or greater than 1/fOP. For  
example, if the 2.1MHz period = 476ns and tCLH = 190ns, tCLL must be 286ns.  
Note 7: CS must be brought high for a minimum of tCSH between consecutive instruction cycles.  
Note 8: This parameter is periodically sampled and not 100% tested.  
4
www.fairchildsemi.com  
NM25C640 Rev. D.2  
AC Test Conditions (Continued)  
FIGURE 1. Synchronous Data Timing Diagram  
t
V
CSH  
IH  
CS  
V
IL  
t
t
CSS  
CSN  
V
IH  
t
t
SCK  
SI  
CLL  
t
CLH  
V
IL  
t
DIS  
DIN  
V
IH  
V
IL  
t
t
DF  
t
PD  
DH  
V
OH  
SO  
V
OL  
DS500041-3  
FIGURE 2. Hold Timing  
SCK  
t
t
t
t
HDN  
HDS  
HDN  
HDS  
HOLD  
SO  
t
t
LZ  
HZ  
DS500041-6  
FIGURE 3. SPI Serial Interface  
MASTER MCU  
NM25C640  
SI  
DATA OUT (MOSI)  
DATA IN (MISO)  
SERIAL CLOCK (CLK)  
SS0  
SO  
SCK  
CS  
SPI  
SS1  
SS2  
SS3  
SI  
CHIP  
SO  
SCK  
CS  
SELECTION  
SI  
SO  
SCK  
CS  
SI  
SO  
SCK  
CS  
DS500041-4  
5
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Functional Description  
TABLE 1. Instruction Set  
Instruction Instruction  
HOLD: The HOLD pin is used in conjunction with the CS to select  
the device. Once the device is selected and a serial sequence is  
underway, HOLD may be forced low to suspend further serial  
communication with the device without resetting the serial se-  
quence. Note that HOLD must be brought low while the SCK pin  
is low. The device must remain selected during this sequence. To  
resume serial communication HOLD is brought high while the  
SCK pin is low. The SO pin is at a high impedance state during  
HOLD.  
Operation  
Name  
WREN  
WRDI  
Opcode  
00000110  
00000100  
00000101  
00000001  
00000011  
Set Write Enable Latch  
Reset Write Enable Latch  
Read Status Register  
Write Status Register  
RDSR  
WRSR  
READ  
INVALID OP-CODE: After an invalid code is received, no data is  
shifted into the NM25C640, and the SO data output pin remains  
high impedance until a new CS falling edge reinitializes the serial  
communication. See Figure 5 .  
Read Data from Memory  
Array  
WRITE  
00000010  
Write Data to Memory Array  
FIGURE 5. Invalid Op-Code  
MASTER: The device that generates the serial clock is desig-  
nated as the master. The NM25C640 can never function as a  
master.  
CS  
SI  
INVALID CODE  
SLAVE: The NM25C640 always operates as a slave as the serial  
clock pin is always an input.  
TRANSMITTER/RECEIVER: The NM25C640 has separate pins  
for data transmission (SO) and reception (SI).  
SO  
DS500041-7  
MSB: The Most Significant Bit is the first bit transmitted and  
received.  
CHIPSELECT:ThechipisselectedwhenpinCSislow. Whenthe  
chip is not selected, data will not be accepted from pin SI, and the  
output pin SO is in high impedance.  
SERIAL OP-CODE: The first byte transmitted after the chip is  
selected with CS going low contains the op-code that defines the  
operation to be performed.  
PROTOCOL: When connected to the SPI port of a 68HC11  
microcontroller, the NM25C640 accepts a clock phase of 0 and a  
clockpolarityof0. TheSPIprotocolforthisdevicedefinesthebyte  
transmitted on the SI and SO data lines for proper chip operation.  
See Figure 4.  
FIGURE 4. SPI Protocol  
CS  
SCK  
SI  
Bit 7 Bit 6  
Bit 7  
Bit 0  
Bit 1  
SO  
Bit 0  
DS500041-5  
Data is clocked in on the positive SCK edge and out on the  
negative SCK edge.  
6
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Functional Description (Continued)  
READ SEQUENCE: Reading the memory via the serial SPI link  
requiresthefollowingsequence.TheCSlineispulledlowtoselect  
the device. The READ op-code is transmitted on the SI line  
followed by the high order address byte (A12–A8), and the low  
order address byte (A7–A0). The leading three bits in the high  
order address byte will be ignored. After this is done, data on the  
SI line becomes don’t care. The data (D7–D0) at the address  
specified is then shifted out on the SO line. If only one byte is to  
be read, the CS line can be pulled back to the high level. It is  
possible to continue the READ sequence as the byte adress is  
automaticallyincrementedanddatawillcontinuetobeshiftedout.  
Whenthehighestaddressisreached(1FFF), theaddresscounter  
rollsovertolowestaddress(000)allowingtheentirememorytobe  
read in one continuous READ cycle. See Figure 6.  
TABLE 3. Block Write Protection Levels  
Level  
Status Register Bits  
Array  
Address  
Protected  
BP1  
BP0  
0
1
2
3
0
0
1
1
0
1
0
1
None  
1800-1FFF  
1000-1FFF  
0000–1FFF  
WRITE ENABLE (WREN): When VCC is applied to the chip, it  
“powers up” in the write disable state. Therefore, all programming  
modes must be preceded by a WRITE ENABLE (WREN) instruc-  
tion. Additionally, the WP must be held high during a write engble  
instruction. At the completion of a WRITE or WRSR cycle the  
device is automatically returned to the write disable state. Note  
that a WRITE DISABLE (WRD) instruction will also return the  
device to the write disable state. See Figure 8.  
FIGURE 6. Read Sequence  
CS  
Read  
Byte H Byte L  
SI  
Op-Code Addr. n Addr. n  
FIGURE 8. Write Enable  
CS  
Data  
n
Data  
n+1  
Data  
n+2  
Data  
n+3  
SO  
DS500041-8  
SI  
WREN Op-Code  
READ STATUS REGISTER (RDSR) : The Read Status Register  
(RDSR) instruction provides access to the status register is used  
to interrogate the READY/BUSY and WRITE ENABLE status of  
the chip. Two non-volatile status register bits are used to select  
one of four levels of BLOCK WRITE PROTECTION. The status  
register format is shown in Table 2.  
SO  
DS500041-10  
WRITE DISABLE (WRDI): To protect against accidental data  
disturbance the WRITE DISABLE (WRDI) instruction disables all  
programming modes. See Figure 9.  
TABLE 2. Status Register Format  
FIGURE 9. Write Disable  
Bit  
7
Bit Bit  
Bit Bit  
Bit Bit Bit  
6
5
4
3
2
1
0
CS  
X
X
X
X
BP1  
BP0 WEN RDY  
X = Don't Care.  
SI  
WRDI Op-Code  
StatusregisterBit0=0(RDY)indicatesthatthedeviceisREADY;  
Bit 0 = 1 indicates that a program cycle is in progress. Bit 1 = 0  
(WEN) indicates that the device is not WRITE ENABLED; Bit 1 =  
1 indicates that the device is WRITE ENABLED. Non-volatile  
status register Bits 2 and 3 (BP0 and BP1) indicate the level of  
BLOCK WRITE PROTECTION selected. The block write protec-  
tion levels and corresponding status register control bits are  
shown in Table 3. Note that if a RDSR instruction is executed  
during a programming cycle only the RDY bit is valid. All  
other bits are 1s. See Figure 7.  
SO  
DS500041-11  
FIGURE 7. Read Status  
CS  
RDSR  
Op-Code  
SI  
SR Data  
MSB…LSB  
SO  
DS500041-9  
7
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Functional Description (Continued)  
At the completion of a WRITE cycle the device is automatically  
returned to the write disable state.  
WRITE SEQUENCE: To program the device, the WRITE PRO-  
TECT (WP) pin must be held high and two separate instructions  
must be executed. The chip must first be write enabled via the  
WRITE ENABLE instruction and then a WRITE instruction must  
be executed. Moreover, the address of the memory location(s) to  
be programmed must be outside the protected address field  
selected by the Block Write Protection Level. See Table 3.  
If the device is not WRITE enabled, the device will ignore the  
WRITE instruction and return to the standby state when CS is  
forced high. A new CS falling edge is required to re-initialize the  
serial communication.  
WRITE STATUS REGISTER (WRSR): The WRITE STATUS  
REGISTER (WRSR) instruction is used to program the non-  
volatile status register Bits 2 and 3 (BP0 and BP1). The WRITE  
PROTECT (WP) pin must be held high and two separate instruc-  
tions must be executed. The chip must first be write enabled via  
the WRITE ENABLE instruction and then a WRSR instruction  
must be executed.  
A WRITE command requires the following sequence. The CS line  
is pulled low to select the device, then the WRITE op-code is  
transmitted on the SI line followed by the high order address byte  
(A12-A8) and the low order address byte (A7–A0). The leading  
fivebitsinthehighorderaddressbytewillbeignored.Theaddress  
is followed by the data (D7–D0) to be written. Programming will  
start after the CS pin is forced back to a high level. Note that the  
LOW to HIGH transition of the CS pin must occur during the SCK  
low time immediately after clocking in the D0 data bit. See Figure  
10.  
The WRSR command requires the following sequence. The CS  
line is pulled low to select the device and then the WRSR op-code  
is transmitted on the SI line followed by the data to be pro-  
grammed. See Figure 12.  
FIGURE 10. End of WRITE Sequence  
FIGURE 12. Write Status Register  
CS  
CS  
SCK  
WRSR  
Op-Code  
SR Data  
xxxxBP1BP0xx  
SI  
D2  
D1  
D0  
SI  
SO  
SO  
DS500041-14  
DS500041-12  
Note that the first four bits are don’t care bits followed by BP1 and  
BP0 then two additional don’t care bits. Programming will start  
after the CS pin is forced back to a high level. As in the WRITE  
instruction the LOW to HIGH transition of the CS pin must occur  
duringtheSCKlowtimeimmediatelyafterclockinginthelastdon’t  
care bit. See Figure 13.  
The READY/BUSY status of the device can be determined by  
executing a READ STATUS REGISTER (RDSR) instruction. Bit 0  
= 1 indicates that the WRITE cycle is still in progress and Bit 0 =  
0 indicates that the WRITE cycle has ended. During the WRITE  
programming cycle (Bit 0 = 1) only the READ STATUS REGIS-  
TER instruction is enabled.  
FIGURE 13. Start WRSR Condition  
The NM25C640 is capable of a 32 byte PAGE WRITE operation.  
Afterreceiptofeachbyteofdatathefiveloworderaddressbitsare  
internally incremented by one. The eight high order bits of the  
address will remain constant. If the master should transmit more  
than 32 bytes of data, the address counter will “roll over,” and the  
previously loaded data will be reloaded. See Figure 11.  
CS  
SCK  
FIGURE 11. 32 Byte Page Write  
BP0  
SI  
CS  
Write  
Byte H Byte L  
Data  
(n)  
Data  
(n+1)  
Data  
(n+2)  
Data  
(n+3)  
Data  
(n+31)  
. . .  
SO  
SI  
DS500041-15  
Op-Code Addr (n) Addr (n)  
The READY/BUSY status of the device can be determined by  
executing a READ STATUS REGISTER (RDSR) instruction. Bit 0  
= 1 indicates that the WRSR cycle is still in progress and Bit 0 =  
0 indicates that the WRSR cycle has ended.  
SO  
DS500041-13  
At the completion of a WRITE cycle the device is automatically  
returned to the write disable state.  
8
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
0.053 - 0.069  
(1.346 - 1.753)  
(3.810 - 3.988)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Package Number M08A  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 ± 0.005  
(0.813 ± 0.127)  
8
7
6
5
4
0.092  
(2.337)  
RAD  
DIA  
0.250 - 0.005  
Pin #1  
IDENT  
+
Pin #1 IDENT  
(6.35 ± 0.127)  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° ± 1°  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.125 - 0.140  
95° ± 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° ± 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
NOM  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.040  
-0.015  
0.325  
0.100 ± 0.010  
+1.016  
-0.381  
8.255  
(2.540 ± 0.254)  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
9
www.fairchildsemi.com  
NM25C640 Rev. D.2  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
10  
www.fairchildsemi.com  
NM25C640 Rev. D.2  

相关型号:

NM25C640LVN

SPI Serial EEPROM
FAIRCHILD

NM25C640LZEM8

SPI Serial EEPROM
FAIRCHILD

NM25C640LZEN

SPI Serial EEPROM
FAIRCHILD

NM25C640LZM8

SPI Serial EEPROM
FAIRCHILD

NM25C640LZN

SPI Serial EEPROM
FAIRCHILD

NM25C640LZVM8

SPI Serial EEPROM
FAIRCHILD

NM25C640LZVN

SPI Serial EEPROM
FAIRCHILD

NM25C640M8

SPI Serial EEPROM
FAIRCHILD

NM25C640N

SPI Serial EEPROM
FAIRCHILD

NM25C640VM8

SPI Serial EEPROM
FAIRCHILD

NM25C640VN

SPI Serial EEPROM
FAIRCHILD