KA7M0880-TU [FAIRCHILD]

Switching Regulator, Current-mode, 32A, PZFM5, TO-3, 5 PIN;
KA7M0880-TU
型号: KA7M0880-TU
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Switching Regulator, Current-mode, 32A, PZFM5, TO-3, 5 PIN

局域网 开关
文件: 总16页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FS7M0880  
Fairchild Power Switch(FPS)  
Features  
Description  
• Precise Fixed Operating Frequency  
• FS7M0880(66kHz)  
• Pulse By Pulse Current Limiting  
• Over Current Protection  
The Fairchild Power Switch (FPS) product family is specially  
designed for an off line SMPS with minimal external compo-  
nents. The Fairchild Power Switch (FPS) consists of high volt-  
age power SenseFET and current mode PWM controller. The  
PWM controller includes integrated fixed oscillator, under volt-  
age lock out, leading edge blanking block, optimized gate turn-  
on/turn-off driver, thermal shut down protection, over voltage  
protection, temperature compensated precise current sources for  
loop compensation and fault protection circuit. Compared to  
discrete MOSFET and PWM controller or ring choke converter  
(RCC) solutions, the Fairchild Power Switch (FPS) can reduce  
total cost, component count, size and weight simultaneously  
increasing efficiency, productivity, and system reliability. It has  
simple applications well suited for cost down design for flyback  
converter or forward converter.  
• Over Load Protection  
• Over Voltage Protection (Min. 25V)  
• Internal Thermal Shutdown Function  
• Under Voltage Lockout with Hysteresis  
• Internal High Voltage Sense FET  
• Latch Up Mode  
• Soft Start  
TO-3P-5L  
1
1. DRAIN 2. GND 3. V  
CC  
4. FB 5. S/S  
Internal Block Diagram  
# 5  
Soft Start  
# 3  
Vc c  
# 1  
DRAIN  
UVLO  
+
-
Inte rna l  
Via s  
Vre f  
OSC  
S
Q
Vref  
PWM  
Compa ra tor  
-
R
# 4  
Fe edbac k  
+
Ifb  
Ro n  
R
Ro ff  
Vref  
Vref  
Vfb  
o ffs e t  
Idelay  
+
+
Vs d  
-
De la y  
120ns  
Rs e ns e  
-
Vo c p  
S
Q
Vc c  
+
Vc c  
Res et  
# 2  
R
Vo vp  
-
The rmal  
Sourc e  
GND  
Shutdown  
Rev.1.0.0  
©2002 Fairchild Semiconductor Corporation  
FS7M0880  
Absolute Maximum Ratings  
Parameter  
Maximum Drain Voltage (1)  
Symbol  
Value  
800  
Unit  
V
V
D,MAX  
Drain-Gate Voltage (R =1M)  
V
DGR  
800  
V
GS  
Gate-Source (GND) Voltage  
Drain Current Pulsed (2)  
Single Pulsed Avalanche Energy (3)  
Avalanche Current (4)  
V
±30  
V
GS  
I
32.0  
810  
A
DM  
DC  
E
I
mJ  
A
AS  
15  
AS  
Continuous Drain Current (T =25°C)  
I
I
8.0  
A
A
C
D
D
DC  
DC  
V
Continuous Drain Current (T =100°C)  
5.6  
C
Maximum Supply Voltage  
Input Voltage Range  
V
30  
CC,MAX  
V
-0.3 to V  
190  
V
FB  
SD  
P
W
W/°C  
°C  
D
Total Power Dissipation  
Derating  
1.54  
Operating Ambient Temperature  
Storage Temperature  
T
-25 to +85  
A
T
-55 to +150  
°C  
STG  
Note:  
1. T = 25°C to 150°C  
j
2. Repetitive rating: Pulse width limited by maximum junction temperature  
3. L = 24mH, V = 50V, R = 25, starting Tj =25°C  
DD  
G
4. L = 13µH, starting T = 25°C  
j
2
FS7M0880  
Electrical Characteristics (SFET part)  
(Ta=25°C unless otherwise specified)  
Parameter  
Symbol  
BV  
Condition  
Min. Typ. Max. Unit  
Drain-Source Breakdown Voltage  
V
=0V, I =50µA  
800  
-
-
V
DSS  
GS  
D
V
V
=Max., Rating,  
=0V  
DS  
GS  
-
-
50  
µA  
Zero Gate Voltage Drain Current  
I
DSS  
V
V
=0.8Max., Rating,  
DS  
-
-
200  
µA  
=0V, T =125°C  
GS  
C
Static Drain-Source On Resistance (note1)  
Forward Transconductance (note1)  
Input Capacitance  
R
V
V
=10V, I =5.0A  
D
-
1.2  
2.5  
2460  
210  
64  
1.5  
-
DS(ON)  
GS  
DS  
gfs  
=15V, I =5.0A  
D
1.5  
S
Ciss  
-
-
-
-
-
-
-
-
V
=0V, V =25V,  
DS  
GS  
Output Capacitance  
Coss  
Crss  
-
pF  
nS  
f=1MHz  
Reverse Transfer Capacitance  
Turn On Delay Time  
-
td(on)  
tr  
V
=0.5BV  
, I =8.0A  
DSS  
-
90  
200  
450  
150  
DD  
D
(MOSFET switching  
time are essentially  
independent of  
Rise Time  
95  
Turn Off Delay Time  
td(off)  
tf  
150  
60  
Fall Time  
operating temperature)  
Total Gate Charge  
(Gate-Source+Gate-Drain)  
V
V
=10V, I =8.0A,  
D
GS  
DS  
Qg  
-
-
150  
=0.5BV  
(MOSFET  
DSS  
switching time are  
essentially independent of  
operating temperature)  
nC  
Gate-Source Charge  
Qgs  
Qgd  
-
-
20  
70  
-
-
Gate-Drain (Miller) Charge  
Note:  
1. Pulse test: Pulse width 300µS, duty cycle 2%  
1
2. S = ---  
R
3
FS7M0880  
Electrical Characteristics (CONTROL part) (Continued)  
(Ta=25°C unless otherwise specified)  
Parameter  
Symbol  
Condition  
-
Min. Typ. Max.  
Unit  
UVLO SECTION  
Start Threshold Voltage  
Stop Threshold Voltage  
OSCILLATOR SECTION  
Initial Frequency  
Frequency Change With Temperature (2)  
Maximum Duty Cycle  
Voltage Stability  
V
14  
8
15  
9
16  
10  
V
V
START  
V
STOP  
After turn on  
F
OSC  
-
-25°C Ta +85°C  
-
60  
-
66  
±5  
50  
1
72  
±10  
55  
3
kHz  
%
F/T  
Dmax  
45  
0
%
Fstable  
12V Vcc 23V  
%
FEEDBACK SECTION  
Feedback Source Current  
Shutdown Delay Current  
Shutdown Feedback Voltage  
SOFT START SECTION  
Soft Start Voltage  
I
Ta=25°C, 0V Vfb 3V  
0.7  
4.0  
6.9  
0.9  
5.0  
7.5  
1.1  
6.0  
8.1  
mA  
µA  
V
FB  
Idelay  
Vsd  
Ta=25°C, 5V Vfb V  
SD  
V
V
=2V  
FB  
4.7  
5.0  
5.3  
V
SS  
Soft Start Resistor  
Rsoft  
Bias=Vref, SS=0V  
17.0 18.5 21.0  
kΩ  
REFERENCE SECTION  
Output Voltage (1)  
Vref  
Ta=25°C  
4.80 5.00 5.20  
V
Temperature Stability (1)(2)  
Vref/T  
-25°C Ta +85°C  
-
0.3  
0.6 mV/°C  
CURRENT LIMIT (SELT-PROTECTION)SECTION  
Peak Current Limit  
I
Max. inductor current  
4.40 5.00 5.60  
A
OVER  
PROTECTION SECTION  
Thermal Shutdown Temperature (Tj) (1)  
Over Voltage Protection Voltage  
Over Current Protection Voltage  
TOTAL DEVICE SECTION  
Start Up Current  
T
-
-
-
140  
°C  
V
SD  
V
OVP  
V
OCP  
25  
28  
31  
1.05 1.10 1.15  
V
I
V
=14V  
CC  
-
-
40  
8
80  
12  
uA  
START  
I
Ta=25°C  
mA  
OP  
Operating Supply Current  
(Control Part Only)  
After latch,  
Iop(lat)  
150  
250  
350  
uA  
Vcc=Vstop-0.1V  
Note:  
1. These parameters, although guaranteed, are not 100% tested in production  
2. These parameters, although guaranteed, are tested in EDS (wafer test) process  
4
FS7M0880  
power MOSFET. Then, the current required by the control  
IC is suddenly increased to 7mA, which makes it difficult for  
FPS to operate with the current provided through Rstart.  
Therefore, after FPS starts, the auxiliary winding of the  
transformer should supply most of the power required by the  
General Application  
In general, the FPS consists of several functional sections:  
under voltage lockout circuit (UVLO), reference voltage,  
oscillator (OSC), pulse width modulation (PWM) block, pro-  
tection circuits and gate drive circuit.  
FPS. It is suitable to use an appropriately sized V capaci-  
CC  
tor, generally about 33µF, because the starting time can be  
delayed if it is too large. This operation is described in figure  
2. Although V needs to be set only above 9V during the  
CC  
normal operation, it should be set to such an extent that over  
voltage protection (OVP) is not activated during an overload  
condition. For full load, about 18~20V is appropriate for  
Start-Up  
The minimum current that FPS requires for the start-up is  
80µA. This current can be provided by the DC link bulk  
capacitor (DC start-up) or directly by the AC line (AC start-  
up).  
V
CC  
and for no load, about 13~14V is suitable.  
DC start-up  
Assuming wide range input voltage (85-265V), the maxi-  
mum value of Rstart is calculated with the minimum input  
voltage as follows:  
Protection  
The FPS has not only pulse by pulse current limit circuit, but  
also several self-protection circuits. These protection circuits  
are fully integrated and do not require external components.  
After the protection circuits are activated, the FPS com-  
pletely stops the SMPS (Latch Mode Protection) until the  
power on reset circuit is activated by removing and restoring  
input power, or restarts the SMPS automatically (Auto  
Restart Mode Protection).  
85 2 15  
80µA  
R
= -------------------------- = 1.3MΩ  
start  
The maximum power dissipation in Rstart is calculated with  
the maximum input voltage as follows:  
(265 2 15)2  
Ploss = ------------------------------------- = 0.1(W)  
1.3MΩ  
DC  
Rs tart  
LINK  
Va  
Vcc  
3
265V  
85V  
Good Logic  
Power on  
Reset  
5V  
15V/ 9V  
Vref  
Latch  
Comparator  
Vz  
UVLO  
6V  
Good Logic  
FPS  
Figure 1. Undervoltage lockout (UVLO) circuit  
AC start-up  
When the start-up current is provided directly by the AC line  
through a single rectifier diode, the maximum value of Rstart  
is calculated with the minimum input voltage as follows:  
These two operations are user-selected operations, so the  
user can select proper device according to the shutdown  
mode. The operations principle and applications for each  
protection are described as follows.  
2 85 2 15π  
---------------------------------------  
÷ (80µA)  
R
=
Start  
2π  
= 380kΩ  
I cc  
[ mA]  
The maximum power dissipation in Rstart is calculated with  
the maximum input voltage as follows:  
20  
π
2
1
2π  
------  
Va(rms) =  
(Vpsint 15) dt  
o
Power On Reset  
Range  
7
= 177V(Vp = 265 2)  
2
2
(177)  
Va(rms)  
Rstart  
P
= -------------------------- = -----------------  
loss  
380k  
0. 1  
= 82(mW)  
Vcc  
Vz [ V]  
6V  
9V  
15V  
The current provided through the starting resistor charges the  
Vcc capacitor. When Vcc becomes higher than the threshold  
voltage, the FPS starts the switching operation of the built-in  
Fig 2
 
< Start-up Waveform >  
Figure 2. Variation of Icc according to Vcc  
5
FS7M0880  
FPS  
Vck  
5uA  
D1  
0.9mA  
Vfb  
OSC.  
Vo  
#4  
D2  
Vfb*  
S
R
2.5 R  
R
Cfb  
PWM comp  
Q
Ioffset  
KA431  
Sense  
Rsense  
Reset  
R
S
7.5V  
Shutdown  
Q
Thermal  
Shutdown  
7.5V  
3.2 V  
0
t
t2  
C fb × 4.3V  
5µA  
Shutdown  
t2  
=
.
Figure 3. Pulse-width-modulation (PWM) block  
input power is restricted with a given input voltage. If the  
output consumes beyond this maximum power, the output  
voltage (Vo) decreases below the set voltage. This reduces  
the current through the opto-coupler diode, which also  
reduces opto-coupler transistor current increasing Vfb. If  
Vfb exceeds 3.2V, D1 is blocked and the 5µA current source  
starts to charge Cfb slowly compared to when the 0.9mA  
current source charges Cfb. Vfb continues increasing until it  
reaches 7.5V, and the FPS shuts down at that time. The delay  
time for shutdown is the time required to charge Cfb from  
3.2V to 7.5V with 5µA. When Cfb is 10nF (103), t2 is  
approximately 8.6mS and when Cfb is 0.1µF (104), t2 is  
approximately 86ms. These values are enough to prevent  
SMPS from being shut down for most transient situations.  
Just increasing Cfb to obtain a longer delay time may cause  
problems, because Cfb is an important parameter for deter-  
mining the response speed of the SMPS. To solve this prob-  
lem, auxiliary capacitor in series with zener diode can be  
used in parallel with Cfb. The breakdown voltage of the  
zener diode should be about 3.9 ~ 4.7V. When Vfb is below  
the zener voltage, the system dynamics is determined by  
Cfb. When Vfb exceeds the zener voltage, the delay time is  
determined by the auxiliary capacitor. By using large auxil-  
iary capacitor, the delay time can be extended without sacri-  
fice of the dynamic response.  
Pulse by pulse current limit  
Figure 3 shows the pulse-width-modulation (PWM) block of  
the FPS. Since the FPS employs the peak current mode con-  
trol, the current through the power MOSFET is limited by  
the inverting input voltage of PWM comparator (Vfb*).  
Assuming that the 0.9mA current source flows only through  
the internal resistor (2.5R + R ·= 2.8k) and the diode forward  
voltage drop is 0.7V, the anode voltage of diode D2 is about  
3.2V. Since D1 is blocked when the feedback voltage (Vfb)  
exceeds 3.2V, the maximum voltage of the anode of D2 is  
3.2V. Therefore, the maximum value of Vfb* is about 0.7V,  
which determines the maximum current through the power  
MOSFET.  
Over Load Protection  
Overload means that the load current exceeds a pre-set level  
due to the abnormal situation. In this situation, protection  
circuit should be activated in order to protect the SMPS.  
However, even when the SMPS is in the normal operation,  
the over load protection circuit can be activated during the  
load transition. In order to avoid this undesired operation, the  
over load situation should be distinguished from the normal  
load transition situation. As a measure against this problem,  
over load protection circuit in the FPS is designed to be acti-  
vated after a specified period to determine whether it is a  
transient situation or an overload situation. The protection  
circuit is allowed to shut down the SMPS only when the over  
load condition continues longer than preset period. The  
detailed operation principle is explained in figure 3. Because  
of the pulse by pulse current limit circuit, the maximum cur-  
rent through the FPS is limited, and therefore the maximum  
Over voltage Protection (OVP) Circuit  
The FPS has a self-protection feature against malfunctions,  
such as feedback circuit open or short-circuit. When the  
feedback terminal is open due to a malfunction in the sec-  
ondary side feedback circuit or a defect of solder, the current  
through the opto-coupler transistor becomes almost zero.  
6
FS7M0880  
Then, Vfb continues increasing and the preset maximum  
current flows through the primary side until the over load  
protection circuit is activated. Since maximum current is  
transferred to the secondary side, the secondary side voltage  
becomes much higher than the rated voltage. If there is no  
protection circuit against over voltage, the devices in the  
secondary side will be damaged. In order to prevent this sit-  
uation, the FPS has an over voltage protection circuit (pro-  
tection against feedback circuit abnormalities). In general,  
Vcc is proportional to the output voltage and FPS uses Vcc  
instead of directly monitoring the output voltage to detect  
to increase slowly, also increasing the duty ratio slowly.  
When the voltage of C reaches about 3.2V, PNP transistor  
S
is turned off and Cs continues being charged up to 5V  
through Rss. Then, the voltage of the comparator inverting  
input follows the feedback voltage of pin 4 instead of follow-  
ing the voltage of C . When the SMPS is shut down by the  
S
protection circuits, C is discharged through the internal  
S
resistor allowing C to be charged from 0V when the SMPS  
S
starts up again.  
over voltage situation. If V exceeds 24 V, the FPS acti-  
CC  
vates the OVP circuit. Therefore, V should be properly  
CC  
designed to be below 24V during normal operation to avoid  
the undesired activation of OVP.  
1 0 V  
Fa irc h ild P o we r  
S witc h (FP S )  
5 u A  
0 .9 m A  
D2  
PWM  
Comparator  
D1  
5 V  
OCP (Over Current Protection)  
R s s  
18.5K  
OCP Operating  
#4  
#5  
Vf b  
Cfb  
Latch signal  
S
Q
C S  
R
Rsense  
100ns delay  
200ns  
OCP time  
R
Figure 5. Soft Start Circuit  
C
OCP Level  
Minimum Turn- on Time  
Fiqure 4. OCP Function & Block  
Even though the FPS has OLP (Over Load Protection) and  
pulse by pulse current limiting feature, these are not enough  
to protect FPS when a secondary side diode short or load  
short occurs. Therefore, FPS has internal OCP (Over Cur-  
rent Protection) circuit as shown in figure 4. When the gate  
turn-on signal is applied to the power MOSFET, the OCP  
block is enabled and monitors the current through the sens-  
ing resistor for 1us. The voltage across the resistor is com-  
pared with the preset OCP level. If the sensing resistor  
voltage is greater than the OCP level for longer than 200ns  
within the allowed comparison time of 1us, the reset signal  
is applied to the latch, resulting in the shutdown of SMPS.  
Here, the additional delay of 100ns after the 200ns delay is  
the time required for the operation of the protection circuit.  
Soft start operation  
At startup, the voltage of the PWM comparator inverting  
input is saturated to its maximum value. In that case, the  
power MOSFET current is at its maximum value and maxi-  
mum allowable power is delivered to the secondary side  
until the output voltage is established. It should be noted  
that when the SMPS delivers maximum power to the sec-  
ondary side during the startup, the entire circuit is seriously  
stressed. By using a soft start function, such stresses can be  
alleviated. Figure 5 shows how the soft-start circuit is  
implemented. When it starts up, the soft start capacitor Cs  
on pin 5 begins to be charged through the internal resistor  
(Rss), which forces the comparator inverting input voltage  
7
FS7M0880  
3. Application Note using the FPS  
-Flyback Application (100W)  
HOT  
NTC  
Ω
47k  
/2W  
47nF  
/630V  
Bridge  
Diode  
220uF  
/400V  
MBRF2060CT  
30uH  
5M  
UF4007  
Ω
1K  
12V  
DC OUTPUT  
/ 9A  
Ω
7.6k  
2200uF  
/50V  
2200uF  
/50V  
Ω
2k  
Q817A  
0.1uF  
0.45uF  
/275Vac  
Ω
10  
UF4004  
4.7nF  
4.7nF  
Line  
Filter  
Ω
1.2k  
KA431  
3
1
Ω
2k  
Ω
3.3k  
S/S  
Vcc Drain  
KA7M0880  
GND FB  
5
4.7nF  
4.7nF  
0.45uF  
/275Vac  
2
4
47uF  
/50V  
FUSE:  
250V2A  
22nF  
10nF  
1uF  
/50V  
Q817A  
PRIMARY  
GND  
18 5VAC-265VAC  
Transformer Specification  
2. Winding Specification  
No.  
PIN(S F)  
1 3  
WIRE  
TURNS  
WINDING METHOD  
N
0.4 φ × 1  
42  
SOLENOID WINDING  
P/2  
INSULATION : POLYESTER TAPE t = 0.050mm, 1Layer  
12 13 14mm × 1 COPPER WINDING  
INSULATION : POLYESTER TAPE t = 0.050mm, 3Layer  
8 7 0.3 φ × 1 SOLENOID WINDING  
INSULATION : POLYESTER TAPE t = 0.050mm, 1Layer  
3 4 0.4 φ × 1 42 SOLENOID WINDING  
OUTER INSULATION : POLYESTER TAPE t = 0.050mm, 3Layer  
N+12V  
8
N
B
9
N
P/2  
3. Electical Characteristic  
CLOSURE  
PIN  
1 - 4  
1 - 4  
SPEC.  
REMARKS  
1kHz, 1V  
INDUCTANCE  
700uH ±10%  
10uH MAX.  
LEAKAGE L  
2nd ALL SHORT  
4. Core & Bobbin  
CORE : EER 4042  
BOBBIN : EER4042  
8
FS7M0880  
-Forward Application (250W)  
Ω Ω  
56K 56K  
223  
Line Inductor  
/630V /2W  
/2W  
T1  
T3  
UF4007  
+ 12V / 10A  
T13,14  
Line  
NTC  
FUSE  
Inductor  
102  
472  
470uF  
/200V  
Ω
220k  
/1W  
/275V  
2200uF  
UF4007  
2200uF  
0.47uF  
/275V  
Ω
10  
S30SC4M  
470uF  
/200V  
+ 5V / 26A  
Ω
220k  
/1W  
L4  
472  
T8,9  
/275V  
Ω
33k  
/0.5W  
Ω
2.2k  
Ω
33k  
UF4004  
T6  
/0.5W  
Ω
10  
3300uF  
1000uF  
UF4007  
Ω
2.2k  
Vcc  
Drain  
T10,11,12  
T7  
S P S  
Ω
5.6k  
Ω
1k  
GN S.S.  
D
F.B.  
123  
Ω
820  
Q817  
33uF  
/35V  
1uF  
/50V  
333  
104  
Q817  
KA431  
103  
103  
Transformer Specification  
2. Winding Specification  
No.  
PIN(S F)  
1 3  
WIRE  
TURNS  
50T  
4T  
WINDING METHOD  
N
0.65 φ × 1  
14mm × 1  
0.65 φ × 4  
0.65 φ × 1  
0.65 φ × 1  
SOLENOID WINDING  
COPPER WINDING  
SOLENOID WINDING  
SOLENOID WINDING  
SOLENOID WINDING  
P/2  
N+5V  
N+12V  
8, 9 10, 11, 12  
13, 14 9  
1 3  
5T  
N
P/2  
50T  
6T  
N
VCC  
7 6  
3. Electical Characteristic  
CLOSURE  
PIN  
1 - 3  
1 - 3  
INDUCTANCE  
LEAKAGE L  
4. Secondary Inductor(L2) Specipication  
Core : Power Core 27 φ 16 Grade  
5V : 12T (1 φ × 2)  
10V : 27T (1.2 φ × 1)  
9
FS7M0880  
Typical Performance Characteristics  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 2. Start up Current vs. Temp.  
Figure 1. Operating Supply Current vs. Temp.  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 4. Stop Threshold Voltage vs. Temp.  
Figure 3. Start Threshold Voltage vs. Temp.  
1.20  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 6. Maximum Duty Cycle vs. Temp.  
Figure 5. Operating Frequency vs. Temp.  
10  
FS7M0880  
Typical Performance Characteristics(Continued)  
1.7  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 8. Feedback Offset Voltage vs. Temp.  
Figure 7. Minimum Duty Cycle vs. Temp.  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 9. Shutdown Feedback Voltage vs. Temp.  
Figure 10. Shutdown Delay Current vs. Temp.  
1.20  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-40 -20  
0
20  
40  
60 80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 12. Over Voltage Protection vs. Temp.  
Figure 11. SoftStart Voltage vs. Temp.  
11  
FS7M0880  
Typical Performance Characteristics(Continued)  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 -20  
0
20 40 60 80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [°C]  
Temperature [°C]  
Figure 14. Peak Current vs. Temp.  
Figure 13. Feedback Sink Current vs. Temp.  
18  
16  
14  
12  
10  
8
6
4
2
0.2  
0.4  
0.6  
0.8  
1.0  
Soft_start capacitor[µF]  
Figure 15. Soft_start Capacitor vs. Soft_start Temp.  
12  
FS7M0880  
Package Dimensions  
TO-3P-5L  
13  
FS7M0880  
Package Dimensions (Continued)  
TO-3P-5L (Forming)  
14  
FS7M0880  
Ordering Information  
Product Number  
Package  
Rating  
Fosc  
KA7M0880-TU  
TO-3P-5L  
800V, 8A  
67kHz  
KA7M0880-YDTU  
TO-3P-5L(Forming)  
TU : Non Forming Type  
YDTU : Forming type  
15  
FS7M0880  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
11/8/02 0.0m 001  
Stock#DSxxxxxxxx  
2002 Fairchild Semiconductor Corporation  

相关型号:

KA7M0880-YDTU

Switching Regulator, Current-mode, 32A, PZFM5, TO-3, 5 PIN
FAIRCHILD

KA8104

Consumer Circuit, Bipolar, PDIP30, SHRINK, DIP-30
SAMSUNG

KA8112

Video Preamplifier, 6 Channel(s), 1 Func, PQFP48, 10 X 10 MM, VQFP-48
SAMSUNG

KA8113

Consumer Circuit, Bipolar, PDIP30, SHRINK, DIP-30
SAMSUNG

KA8114

Consumer Circuit, PDIP30, SHRINK, DIP-30
SAMSUNG

KA8115

Consumer Circuit, PDIP24, SHRINK, DIP-24
SAMSUNG

KA8116

Video Preamplifier, 6 Channel(s), 1 Func, PDSO20, 0.375 INCH, SOP-20
SAMSUNG

KA8119B

Audio/Video Switch, 1 Func, 12 Channel, PDIP30, SDIP-30
SAMSUNG

KA8120

Consumer Circuit, PDIP36, SHRINK, DIP-36
SAMSUNG

KA8301

MOTOR DRIVER FOR VTR
SAMSUNG

KA8301

Bi-Directional DC Motor Driver
FAIRCHILD

KA8301-L

Bi-Directional DC Motor Driver
FAIRCHILD