KA3030D [FAIRCHILD]

6-Channel Motor Drive IC; 6通道马达驱动器IC
KA3030D
型号: KA3030D
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

6-Channel Motor Drive IC
6通道马达驱动器IC

驱动器 驱动电子器件 驱动程序和接口 接口集成电路 光电二极管 CD
文件: 总17页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
KA3030D  
6-Channel Motor Drive IC  
Features  
Description  
• Wide operating supply voltage range: 4.5V ~ 13.2V  
• Built in TSD (Thermal shutdown) circuit  
• Built in protection circuit for under or high voltage  
• Built in mute circuit  
The KA3030D is a monolithic integrated circuit, suitable for  
a 6-ch motor drivers which drive focus actuator, tracking  
actuator, sled motor, spindle motor, loading motor and  
changer of CD system.  
• Built in speed control circuit  
• Built in level shift (V-I converter)  
28-SSOPH-375  
Typical Application  
Ordering Information  
• Compact disk player (CDP)  
• Video compact disk player (VCD)  
• Automotive compact disk player (CDP)  
Device  
Package  
Operating Temp.  
25°C ~ +75°C  
25°C ~ +75°C  
KA3030D  
28-SSOPH-375  
KA3030DTF 28-SSOPH-375  
Rev. 1.0.1  
February. 2000.  
©2000 Fairchild Semiconductor International  
1
KA3030D  
Pin Assignments  
FIN  
(GND)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
KA3030D  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
FIN  
(GND)  
2
KA3030D  
Pin Definitions  
Pin Number  
Pin Name  
I/O  
O
O
O
O
I
Pin Function Description  
1
DO1A  
DO1B  
LO1A  
LO1B  
DI1  
Drive output 1A ()  
Drive output 1B (+)  
Logic output 1A  
Logic output 1B  
Drive input 1  
2
3
4
5
6
DI1A  
DI1B  
GND  
I
Logic input 1A  
Logic input 1B  
Ground  
7
I
8
-
9
V
-
Supply voltage 2  
Drive input 2  
CC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DI2  
I
LO2A  
LO2B  
DO2A  
DO2B  
GND  
DO3A  
DO3B  
DI3  
O
O
O
O
-
Logic output 2A  
Logic output 2B  
Drive output 2A (+)  
Drive output 2B ()  
Ground  
O
O
I
Drive output 3A ()  
Drive output 3B (+)  
Drive input 3  
LI2A  
I
Logic input 2A  
Logic input 2B  
Speed control 2  
Power supply 1  
LI2B  
I
CTL2  
I
V
CC1  
-
REF  
I
Reference & mute input  
Speed control 1  
Drive input 4  
IN  
CTL1  
DI4  
I
I
DO4A  
DO4B  
GND  
O
O
-
Drive output 4A (+)  
Drive output 4B ()  
Ground  
3
KA3030D  
Internal Block Diagram  
FIN  
(GND)  
28  
27  
D
26  
D
25  
24  
23  
22  
21  
20  
19  
18  
17  
D
16  
D
15  
SW  
H.V.P  
+
+
LEVEL SHIFT  
LEVEL SHIFT  
+
T.S.D  
U.V.P  
MUTE  
BIAS  
+
+
BANGAP  
REFERENCE  
+
+
IN  
IN  
SPEED CTL  
SPEED CTL  
LEVEL SHIFT  
LEVEL SHIFT  
LEVEL SHIFT  
LEVEL SHIFT  
LOGIC  
LOGIC  
+
+
D
D
D
D
2
D
3
D
D
D
IN  
IN  
1
4
5
6
7
8
9
10  
11  
12  
13  
14  
FIN  
(GND)  
4
KA3030D  
Equivalent Circuit  
Driver input (Except for loading motor driver)  
Driver output  
10k  
2.5V  
1
2
3
4
11 26  
12 13 14 16 17 27  
10k  
20k  
0.58k  
18 10  
5
25  
V
REF1  
Loading motor driver input  
Loading motor speed control input  
6
7
10k  
10k  
21  
10k  
24  
19  
20  
Bias  
23  
5
KA3030D  
Absolute Maximum Ratings (Ta = 25°C)  
Parameter  
Symbol  
Value  
18  
1700 note  
Unit  
V
Maximum supply voltage  
Power dissipation  
Maximum output current  
Operating temperature  
Storage temperature  
NOTE:  
V
CCMAX  
P
D
mW  
A
I
1
OMAX  
T
OPR  
25 ~ 75  
55 ~ 150  
°C  
°C  
T
STG  
1. When mounted on 76mm ×114mm ×1.57mm PCB (Phenolic resin material).  
2. Power dissipation reduces 13.6mW / °C for using above Ta=25°C  
3. Do not exceed Pd and SOA.  
Power Dissipation Curve  
Pd (mW)  
3,000  
2,000  
1,000  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient temperature, Ta [°C]  
Recommended Operating Condition (Ta = 25°C)  
Parameter  
Operating supply voltage note  
NOTE:  
Symbol  
Value  
Unit  
V
CC  
4.5 ~ 13.2  
V
V
V
(pin 22) V  
(pin 22) must not exceed V  
(pin 9)  
CC1  
CC1  
CC2  
(pin 9)  
CC2  
6
KA3030D  
Electrical Characteristics  
(Ta=25°C, V =8V, unless otherwise specified)  
CC  
Parameter  
Quiescent circuit current  
Mute on current  
Symbol  
Conditions  
Under no load  
V =GND  
PIN23  
Min.  
Typ.  
Max.  
Units  
mA  
mA  
V
I
8
-
11  
3
-
14  
6
CC  
I
MUTE  
Mute on voltage  
V
MON  
-
-
-
-
-
0.5  
-
Mute off voltage  
V
2
-
-
V
MOFF  
Under voltage protection  
High voltage protection  
V
-
4
V
UVO  
V
19  
-
-
V
HVP  
FOCUS, TRACKING, SPINDLE, SLED, DRIVE PART (RL=8)  
Input offset voltage  
Output offset voltage  
Max. output voltage 1  
Close loop voltage gain 1  
Max. output voltage 2  
Close loop voltage gain 2  
Ripple rejection ratio  
Slew rate  
V
-
20  
40  
2.4  
7.5  
4.7  
7.5  
40  
-
-
20  
mV  
mV  
V
IO  
V
V =2.5V  
IN  
40  
OO  
V
V
V
V
V
V
=5V  
3
-
OM1  
CC  
CC  
CC  
CC  
A
VF1  
=5V, V =0.1V  
IN  
9
10.5  
dB  
V
RMS  
=8V  
5.7  
9
-
OM2  
A
VF2  
=8V, V =0.1V  
IN  
10.5  
dB  
dB  
V/µs  
RMS  
RR  
SR  
V =0.1V  
IN  
, f=100Hz  
60  
0.8  
-
-
RMS  
Square waveform,  
-
Vout=3Vp-p, f=100Hz  
LOADING, CHANGER DRIVE PART (RL=45)  
Input high level voltage  
Input low level voltage  
Output voltage 1  
V
-
2
-
-
-
V
V
IH  
V
-
-
0.5  
3.8  
6.8  
300  
IL  
V
V
V
V
=5V, V  
=8V, V  
=2.5V  
=3.5V  
2.6  
5.2  
-
3.2  
6.0  
100  
V
O1  
O2  
CC  
CC  
CTL  
Output voltage 2  
V
CTL  
Output load changing 1  
V  
I =100mA400mA,  
mV  
RL1  
L
High terminal  
Output load changing 2  
V  
I =100mA400mA,  
L
-
100  
300  
mV  
RL2  
low terminal  
Output offset voltage 1  
Output offset voltage 2  
V
V
V =5V, 5V  
IN  
10  
10  
-
-
10  
10  
mV  
mV  
OO1  
OO2  
V =0V, 0V  
IN  
7
KA3030D  
Application Information  
1. REFERENCE INPUT & MUTE CIRCUITS  
Pin 23 can be used as a reference input terminal and a mute terminal.  
• Reference input circuit  
An external allowable reference voltage to pin 23 is normally 2.5V.  
In general conditions, pin 23 is used as the reference input terminal and is good to be used between about  
2V-6.5V.  
• Mute circuit  
The following represents the conditions when the external mute is permitted to pin 23.  
Mute voltage  
Min.  
Typ.  
Max.  
0.5  
-
Device condition  
Mute  
Mute on voltage[V]  
Mute off voltage[V]  
-
-
-
2
Operate  
2. THERMAL SHUT-DOWN CIRCUIT  
V
REF BG  
R1  
R2  
Mute control  
Q
The setting voltage of V  
BE  
V
BE  
= V × R2 / (R1 + R2) = 400mV  
REF BG  
Because the thermal coefficient of V (Q) is 2mV / 1°C and if TR Q reaches 175°C from its normal off state  
BE  
(at 25°C), V for turning on Q becomes 400mV, and then Q turns on and the mute control circuit operates.  
BE  
8
KA3030D  
3. UNDER / HIGH VOLTAGE PROTECTION CIRCUIT  
V
CC  
V
REF BG  
V1  
R1  
R2  
Mute control  
V2  
V3  
+
Mute control  
Q
V
R
Q
[HIGH VOLTAGE]  
[UNDER VOLTGE PROTECTION]  
[UNDER VOLTGE PROTECTION]  
• Normal state: V  
= 2.5V < V1 = V × R2 / (R1 + R2)  
CC  
BGR  
• Normal state: V = V1 + V2 + V3 + V  
Z
R
[HIGH VOLTAGE]  
• Mute state: V1 < V  
(V is below 4V)  
BGR CC  
• Mute state: V > V (V is above 20V)  
CC CC  
Z
9
KA3030D  
4. FOCUS, TRACKING, SPINDLE, SLED DRIVE CIRCUITS  
M
V2’  
V1’  
+
GV2  
+
V2  
V1  
V
REF  
Rref  
I
C
+
LEVEL SHIFTER  
GV1  
+
V
REF  
(pin 23)  
V
IN  
GV = 20log (V /V ) = GV1 + GV2 = 3.5dB + 6dB = 9.5dB  
IN  
O
Vref is fixed to 2.5V as the external bias voltage and the input signal through the V is amplified to about 9.5dB through two  
IN  
state AMP.  
In the level shift circuitry, the input signal is transformed into the current so that the voltage V1 and V2 are shifted to V1’ and  
V2’ respectively.  
V1’ = V1 + (I × V  
) = V1 + V  
REF  
) = V2 − ∆V  
REF  
C
V2’ = V2 (I × V  
C
Because V1 and V2 voltages, in their initial state, are equal, the voltage, V , on the sides of the motor is following V = V1’  
M
M
V2’ = V ()V = 2V  
Rotation occurs due to 2V voltage difference at both sides of the motor.  
10  
KA3030D  
5. LOADING, CHANGER DRIVE CIRCUITS  
M
OUT1  
OUT2  
D
D
LEVEL SHIFT  
V
CTL  
SPEED  
CONTROL  
LOGIC  
IN  
IN  
V
V
IN2  
IN1  
Notes:  
: When the motor speed control voltage is permitted between 0V ~ 4V, the motor varies its speed.  
V
CTL  
Between 4V ~ 5V, the motor can be used at constant speed and over 5.8V, the motor should not be used.  
Furthermore, when V = 5V, CTL voltage should not be permitted to exceed 3V  
CC  
The logic signals, input from the MCU, is inverted in the inverter and can control the changes of the output properties, that  
depend on the input signal. There properties are shown in the table below.  
Logic input A  
Logic input B  
Output type  
Pin 6, Pin 19  
Pin 7, Pin 20  
H
H
H
L
L
H
L
L
On  
H(note)  
L
On  
L
Logic output A  
Logic output B  
Pin 3, Pin 11  
Pin 4, Pin 12  
Vr  
Vr  
H
Notes:  
The bias voltage Vr is expressed as below;  
CC VBE  
V
---------------------------  
Vr =  
[V]  
2
11  
KA3030D  
Typical Performance Characteristics  
Vcc vs Icc  
Icc(mA)  
Vcc vs Vreg  
Vre(V)  
12  
8
7
6
5
4
3
2
10  
8
6
4
Vcc=vara*  
Vpad23=2.5V  
Vpad7=Vcc  
Vpad23=2.5V  
Vpad7=Vcc  
2
0
0
2
4
6
8
9
10  
11  
12  
13  
0
2
4
6
8
9
10  
11  
12  
13  
Vcc(V)  
Vcc(V)  
Vcc vs Avf  
Vo1(V)  
Av(db)  
Vctl vs Vo1  
16  
14  
12  
10  
8
6
5
4
3
2
1
0
Vcc=8V  
Vpad23=2.5V  
Vpad7=Vcc  
Vpad9=5V  
RL=45Ohm  
6
Vcc=8V  
Vpad23=2.5V  
Vpad7=Vcc  
IL=100mA  
4
2
0
0
6
8
9
10  
11  
12  
13  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vcc(V)  
Vctl(V)  
Vreg(V)  
Icc(mA)  
Temp vs Vreg  
Temp vs Icc  
8
7
6
5
4
3
2
1
0
14.00  
12.00  
10.00  
8.00  
6.00  
Vcc=8V  
Vcc=8V  
4.00  
Vpad23=2.5V  
Vpad7=Vcc  
Vin=0.1Vrms  
f=1Khz  
Vpad23=2.5V  
Vpad7=Vcc  
IL=100mA  
2.00  
0.00  
-25  
-12.5  
0
12.5  
25  
37.5  
50  
62.5  
75  
-25  
-13  
0
13  
25  
38  
50  
63  
75  
Temp()  
Temp()  
12  
KA3030D  
Typical Performance Characteristics (Continued)  
Vcc vs Vom  
Temp vs Vom  
Vom(V)  
Vom(V)  
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Vcc=8V  
Vctl=3V  
Vin=6V /0V  
RL=45  
2-ch logic  
drive  
Vctl=3.8V  
Vin=6V /0V  
RL=45Ω  
2-ch logic  
drive  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
9
10  
11  
12  
13  
-25  
-10  
5
20  
35  
50  
65  
75  
Vcc(V)  
temp()  
Vctl vs Vom  
Vom(V)  
7
6
5
4
3
2
1
Vcc=8V  
Vpad23=2.5V  
RL=45Ω  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Vctl(V)  
13  
KA3030D  
Test Circuits  
V
REF  
2.5V  
MUTE  
2
1
TRACKING  
~
SW5  
CHANGER  
~
SLED  
IN4  
CTL1  
10µF  
10µF  
2
2
CTL2  
+
+
8
8
3
1
IN3  
1
3
SW3  
SW6  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
KA3030D  
1
2
3
4
5
6
7
8
9
1
10  
11  
12  
13  
14  
SW2  
SW1  
1
+
3
3
8
8
45  
45  
IN2  
2
+
2
10µF  
10µF  
IL  
IL  
IL  
IL  
~
~
SPINDLE  
IN1  
FOCUS  
LOADING  
SW4  
1
2
+
1000µF  
+
100µF  
~
RIPPLE  
VCC  
14  
KA3030D  
Test Circuits (Continued)  
(Switch condition)  
Switch number  
Parameter  
Symbol  
Remark  
R =∞  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
Quiescent circuit current  
Mute on current  
I
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
1
1
2
2
2
2
2
2
CC  
L
I
MUTE  
Mute on voltage  
V
MON  
Mute off voltage  
V
MOFF  
Under voltage protection  
High voltage protection  
V
UVP  
HVP  
V
FOCUS, TRACKING, SPINDLE, DRIVE PART  
Input offset voltage  
V
2
2
3
1
3
1
3
1
2
2
3
1
3
1
3
1
2
2
3
1
3
1
3
1
2
2
2
2
2
2
1
2
1
1
1
1
1
1
1
1
2
2
3
1
3
1
3
1
R =8Ω  
L
IO  
Output offset voltage  
Max. output voltage 1  
Close loop voltage gain 1  
Max. output voltage 2  
Close loop voltage gain 2  
Ripple rejection ratio  
Slew rate  
V
OO  
V
OM1  
A
VF1  
V
OM2  
A
VF2  
RR  
SR  
LOADING, CHANGER DRIVE PART  
Input high level voltage  
Input low level voltage  
Output voltage 1  
V
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
-
2
2
2
2
2
2
2
2
R =45Ω  
L
IH  
V
IL  
V
V
O1  
O2  
Output voltage 2  
Output load changing 1  
Output load changing 2  
Output offset voltage 1  
Output offset voltage 2  
V  
V  
RL1  
RL2  
V
V
OO1  
OO2  
15  
KA3030D  
Application Circuits  
SERVO PRE-AMP  
CONTROLLER  
FOCUS  
INPUT  
TRACKING REF &  
INPUT MUTE  
SLED  
INPUT  
SPINDLE  
INPUT  
CHANGER  
INPUT  
LOADING  
INPUT  
CONTROL  
INPUT  
SLED  
TRACKING  
M
VCC1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
KA3030D  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Vcc2  
M
M
M
FOCUS  
SPINDLE  
LOADING  
CHANGER  
16  
KA3030D  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
INTERNATIONAL. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
12/1/00 0.0m 001  
Stock#DSxxxxxxxx  
2000 Fairchild Semiconductor International  

相关型号:

KA3030DTF

6-Channel Motor Drive IC
FAIRCHILD

KA3031

6-Channel Motor Drive IC
FAIRCHILD

KA3032

5-Channel Motor Drive IC
FAIRCHILD

KA3037

7-CH Motor Driver
FAIRCHILD

KA3038

4-Channel Motor Drive IC
FAIRCHILD

KA3050

Camera Motor Drive and Control IC
FAIRCHILD

KA3080

3-Phase BLDC Motor Driver
FAIRCHILD

KA3080BD

3-Phase BLDC Motor Driver
FAIRCHILD

KA3080BD3

3-Phase BLDC Motor Driver
FAIRCHILD

KA3080BD3TF

3-Phase BLDC Motor Driver
FAIRCHILD

KA3080BDTF

3-Phase BLDC Motor Driver
FAIRCHILD

KA3080C

3-Phase BLDC Motor Driver
FAIRCHILD