ITF87012SVT1 [FAIRCHILD]

Power Field-Effect Transistor, 6A I(D), 20V, 0.038ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, PLASTIC, TSOP-6;
ITF87012SVT1
型号: ITF87012SVT1
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Power Field-Effect Transistor, 6A I(D), 20V, 0.038ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, PLASTIC, TSOP-6

开关 光电二极管 晶体管
文件: 总13页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ITF87012SVT  
TM  
Data Sheet  
July 2000  
File Number 4810.3  
6A, 20V, 0.035 Ohm, N-Channel,  
2.5V Specified Power MOSFET  
Features  
• Ultra Low On-Resistance  
- r  
- r  
- r  
= 0.035Ω, VGS = 4.5V  
DS(ON)  
DS(ON)  
DS(ON)  
Packaging  
= 0.038Ω, VGS = 4.0V  
= 0.045Ω, VGS = 2.5V  
TSOP-6  
• 2.5 V Gate Drive Capability  
• Small Profile Package  
4
1
2
3
• Gate to Source Protection Diode  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
- Spice and SABER Thermal Impedance Models  
- www.intersil.com  
• Peak Current vs Pulse Width Curve  
Symbol  
Transient Thermal Impedance Curve vs Board Mounting  
Area  
DRAIN(1)  
DRAIN(2)  
DRAIN(6)  
DRAIN(5)  
• Switching Time vs R  
GS  
Curves  
Ordering Information  
GATE(3)  
SOURCE(4)  
PART NUMBER  
PACKAGE  
TSOP-6 (SC-95)  
BRAND  
ITF87012SVT  
012  
NOTE: When ordering, use the entire part number. ITF87012SVT is  
available only in tape and reel.  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
A
ITF87012SVT  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
20  
20  
V
V
V
DSS  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±12  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
= 4.5V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.0V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
6.0  
5.5  
3.5  
3.0  
Figure 4  
A
A
A
A
A
A
GS  
D
D
o
Continuous (T = 25 C, V  
A
GS  
o
Continuous (T = 100 C, V  
= 4.0V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 2.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
A
GS  
D
o
Continuous (T = 100 C, V  
A
GS  
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
DM  
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
16  
W
mW/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief TB370. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
o
o
1. T = 25 C to 125 C.  
J
o
2
2
2. 62.5 C/W measured using FR-4 board with 0.40 in (258.1 mm ) copper pad at 2 second.  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.  
SABER™ is a trademark of Analogy Inc., PSPICE® is a registered trademark of MicroSim Corporation.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
ITF87012SVT  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
BV  
DSS  
I
= 250µA, V  
= 0V (Figure 11)  
= 0V  
20  
-
-
-
-
-
V
D
GS  
I
V
= 20V, V  
10  
µA  
uA  
DSS  
DS  
GS  
GS  
I
V
= ±12V  
-
±10  
GSS  
V
V
= V , I = 250µA (Figure 10)  
0.5  
-
1.5  
V
GS(TH)  
GS  
DS  
D
GS  
GS  
GS  
r
I
I
I
= 6.0A, V  
= 3.5A, V  
= 3.0A, V  
= 4.5V (Figures 8, 9)  
= 4.0V (Figure 8)  
= 2.5V (Figure 8)  
-
-
-
0.028  
0.029  
0.037  
0.035  
0.038  
0.045  
DS(ON)  
D
D
D
THERMAL SPECIFICATIONS  
2
2
o
Thermal Resistance Junction to  
Ambient  
R
Pad Area = 0.40 in (258.1 mm ) (Note 2)  
-
-
-
-
-
-
62.5  
198.2  
218.4  
C/W  
θJA  
2
2
o
Pad Area = 0.0163 in (10.54 mm ) (Figure 20)  
C/W  
2
2
o
Pad Area = 0.0056 in (3.60 mm ) (Figure 20)  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Delay Time  
Rise Time  
= 2.5V)  
GS  
t
V
V
R
= 10V, I = 3.0A  
D
= 2.5V,  
= 15 Ω  
-
-
-
-
79  
-
-
-
-
ns  
ns  
ns  
ns  
d(ON)  
DD  
GS  
t
315  
154  
188  
r
GS  
(Figures 14, 18, 19)  
Turn-Off Delay Time  
Fall Time  
t
d(OFF)  
t
f
SWITCHING SPECIFICATIONS (V  
Turn-On Delay Time  
Rise Time  
= 4.5V)  
GS  
t
V
V
R
= 10V, I = 6.0A  
D
= 4.5V,  
= 16 Ω  
-
-
-
-
42  
-
-
-
-
ns  
ns  
ns  
ns  
d(ON)  
DD  
GS  
t
142  
236  
200  
r
GS  
(Figures 15, 18, 19)  
Turn-Off Delay Time  
Fall Time  
t
d(OFF)  
t
f
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 4.5V  
= 0V to 2V  
V
= 10V,  
-
-
-
-
-
7.7  
4.0  
-
-
-
-
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 5.5A,  
I
I
D
Gate Charge at 2V  
Q
g(2)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
= 0V to 0.5V  
(Figures 13, 16, 17)  
0.30  
1.1  
g(TH)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
2.7  
C
V
= 10V, V = 0V,  
GS  
-
-
-
655  
227  
118  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
C
OSS  
RSS  
Reverse Transfer Capacitance  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
0.84  
22  
MAX  
UNITS  
V
V
I
I
I
= 5.5A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 5.5A, dI /dt = 50A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 5.5A, dI /dt = 50A/µs  
SD  
6.1  
nC  
RR  
2
ITF87012SVT  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8
o
V
= 4.5V, R  
θJA  
= 62.5 C/W  
GS  
6
4
2
0
o
V
= 2.5V, R  
50  
= 218.4 C/W  
GS  
θJA  
0
25  
50  
75  
100  
125  
150  
25  
75  
100  
125  
150  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
3
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
o
R
= 62.5 C/W  
0.1  
θJA  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
0.001  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
x R + T  
J
DM  
θJA  
θJA A  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
100  
o
o
R
= 62.5 C/W  
θJA  
T
= 25 C  
A
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
o
CURRENT AS FOLLOWS:  
150 - T  
V
= 4.5V  
= 2.5V  
A
I = I  
GS  
25  
125  
V
GS  
10  
1
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
10  
-4  
10  
-3  
10  
-2  
10  
-1  
10  
0
1
2
3
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
3
ITF87012SVT  
Typical Performance Curves (Continued)  
200  
20  
15  
10  
SINGLE PULSE  
PULSE DURATION = 80µs  
T
= MAX RATED  
= 25 C  
J
100  
o
DUTY CYCLE = 0.5% MAX  
T
A
V
= 15V  
DD  
100µs  
10  
1ms  
OPERATION IN THIS  
AREA MAY BE  
o
5
0
T
= 150 C  
LIMITED BY r  
DS(ON)  
J
o
T
= 25 C  
J
o
R
= 62.5 C/W  
10ms  
θJA  
o
T
= -55 C  
J
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
50  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. TRANSFER CHARACTERISTICS  
20  
100  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 4.5V  
= 3V  
GS  
V
GS  
15  
80  
60  
40  
20  
I
= 6A  
D
V
= 2.5V  
GS  
10  
5
V
= 2V  
GS  
I
= 3A  
D
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 1.5V  
o
GS  
T
= 25 C  
A
0
0
0.5  
1.0  
1.5  
2.0  
1
2
3
4
5
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
DS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
1.6  
1.4  
1.2  
1.0  
1.4  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 4.5V, I = 6A  
V
= V , I = 250µA  
DS  
GS D  
GS  
D
1.2  
1.0  
0.8  
0.6  
0.4  
0.8  
0.6  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
4
ITF87012SVT  
Typical Performance Curves (Continued)  
1.10  
1500  
I
= 250µA  
D
C
= C + C  
GS GD  
ISS  
1000  
1.05  
1.00  
C
C
+ C  
OSS  
DS GD  
C
= C  
GD  
0.95  
0.90  
RSS  
100  
50  
V
= 0V, f = 1MHz  
GS  
-80  
-40  
0
40  
80  
120  
160  
0.1  
1.0  
, DRAIN TO SOURCE VOLTAGE (V)  
10  
20  
o
T , JUNCTION TEMPERATURE ( C)  
J
V
DS  
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
500  
5
V
= 2.5V, V = 10V, I = 3.0A  
DD D  
GS  
V
= 10V  
DD  
400  
300  
200  
4
3
2
1
0
t
r
t
f
WAVEFORMS IN  
DESCENDING ORDER:  
100  
0
I
I
= 5.5A  
= 3A  
t
D
D
t
d(ON)  
d(OFF)  
0
2
4
6
8
10  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
Q , GATE CHARGE (nC)  
GS  
g
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 14. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
400  
t
d(OFF)  
V
= 4.5V, V = 10V, I = 6A  
DD D  
GS  
300  
200  
t
f
t
r
100  
0
t
d(ON)  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
5
ITF87012SVT  
Test Circuits and Waveforms  
V
DS  
R
L
V
Q
DD  
g(TOT)  
V
DS  
V
= 4.5V  
GS  
V
GS  
+
-
Q
g(2)  
V
DD  
V
= 2V  
V
GS  
GS  
DUT  
V
= 0.5V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
R
L
d(ON)  
t
t
f
V
r
DS  
V
DS  
+
90%  
90%  
V
GS  
V
GS  
-
0V  
10%  
10%  
0
DUT  
R
GS  
90%  
50%  
V
GS  
50%  
PULSE WIDTH  
10%  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. SWITCHING TIME WAVEFORM  
Thermal Resistance vs Mounting Pad Area  
The maximum rated junction temperature, T , and the thermal  
resistance of the heat dissipating path determines the maximum  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
JM  
allowable device power dissipation, P , in an application.  
DM  
o
Therefore the application’s ambient temperature, T ( C), and  
A
2. The number of copper layers and the thickness of the board.  
3. The use of external heat sinks.  
o
thermal resistance R  
( C/W) must be reviewed to ensure  
θJA  
that T is never exceeded. Equation 1 mathematically  
represents the relationship and serves as the basis for  
establishing the rating of the part.  
JM  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the duty  
cycle and the transient thermal response of the part, the  
board and the environment they are in.  
(T  
T )  
JM  
Z
A
(EQ. 1)  
P
= ------------------------------  
DM  
θJA  
Intersil provides thermal information to assist the designer’s  
preliminary application evaluation. Figure 20 defines the  
In using surface mount devices such as the TSOP-6  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
R
for the device as a function of the top copper  
θJA  
(component side) area. This is for a horizontally positioned  
FR-4 board with 1oz copper after 1000 seconds of steady  
state power with no air flow. This graph provides the  
is  
DM  
6
ITF87012SVT  
necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Intersil device Spice  
thermal model or manually utilizing the normalized maximum  
transient thermal impedance curve.  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package. Therefore,  
CTHERM1 through CTHERM5 and RTHERM1 through  
RTHERM5 remain constant for each of the thermal models. A  
listing of the model component values is available in Table 1.  
Displayed on the curve are R  
θJA  
values listed in the Electrical  
Specifications table. The points were chosen to depict the  
compromise between the copper board area, the thermal  
260  
resistance and ultimately the power dissipation, P  
.
DM  
R
= 120.6- 18.9 * ln (AREA)  
θJA  
240  
Thermal resistances corresponding to other copper areas can  
be obtained from Figure 20 or by calculation using Equation 2.  
o
2
220  
200  
218.4 C/W - 0.0056in  
R
is defined as the natural log of the area times a coefficient  
θJA  
o
2
198.2 C/W - 0.0163in  
added to a constant. The area, in square inches is the top  
copper area including the gate and source pads.  
180  
160  
(EQ. 2)  
R
= 120.6 18.9 ln(Area)  
θJA  
140  
120  
The transient thermal impedance (Z  
θJA  
) is also effected by  
varied top copper board area. Figure 21 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
0.01  
0.001  
0.1  
2
1.0  
AREA, TOP COPPER AREA (in )  
FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA  
200  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.02 in  
2
0.05 in  
0.10 in  
0.25 in  
0.40 in  
160  
120  
80  
40  
0
2
2
2
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA  
7
ITF87012SVT  
PSPICE Electrical Model  
.SUBCKT ITF87012SVT 2 1 3 ;  
REV 25 Jan 2000  
CA 12 8 11.00e-10  
CB 15 14 9.50e-10  
CIN 6 8 5.25e-10  
LDRAIN  
DPLCAP  
10  
5
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DESD1 91 9 DESD1MOD  
DESD2 91 7 DESD2MOD  
DPLCAP 10 5 DPLCAPMOD  
DRAIN  
2
RLDRAIN  
DBREAK  
RSLC1  
51  
RSLC2  
+
5
ESLC  
11  
51  
EBREAK 11 7 17 18 27.41  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
16  
EBREAK  
6
ESG  
8
EVTHRES  
+
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
9
GATE  
1
6
IT 8 17 1  
+
-
18  
22  
MMED  
20  
LDRAIN 2 5 1.00e-9  
LGATE 1 9 1.04e-9  
LSOURCE 3 7 1.29e-10  
MSTRO  
8
RLGATE  
DESD1  
91  
DESD2  
LSOURCE  
CIN  
SOURCE  
3
7
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RSOURCE  
RLSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 2.00e-3  
RGATE 9 20 118  
RLDRAIN 2 5 10  
RLGATE 1 9 9 10.4  
RLSOURCE 3 7 1.29  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 17.00e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*175),2))}  
.MODEL DBODYMOD D (IS = 3.48e-11 IKF = 0.15 XT I= 0.18 RS = 1.47e-2 TRS1 = 1.25e-3 TRS2 = 0 CJO = 3.67e-10 TT = 2.20e-8 M = 0.52)  
.MODEL DBREAKMOD D (RS = 9.52e-2 TRS1 = 1.05e-3 TRS2 = 1.13e-6)  
.MODEL DESD1MOD D (BV = 8.2 Tbv1= -1.87e-3 N= 12 RS = 20)  
.MODEL DESD2MOD D (BV = 11.5 Tbv1= -2.01e-3 N= 8 RS = 20)  
.MODEL DPLCAPMOD D (CJO = 4.91e-10 IS = 1e-30 M = 0.59)  
.MODEL MMEDMOD NMOS (VTO = 1.10 KP = 2.60 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 118)  
.MODEL MSTROMOD NMOS (VTO = 1.29 KP = 58 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 0.86 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1180 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 7.58e-4 TC2 = -1.43e-6)  
.MODEL RDRAINMOD RES (TC1 = 2.21e-2 TC2 = 2.72e-5)  
.MODEL RSLCMOD RES (TC1 = 1.21e-3 TC2 = 1.00e-5)  
.MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.01e-3 TC2 = -1.01e-6)  
.MODEL RVTEMPMOD RES (TC1 = -8.40e-4 TC2 = 0)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.5 VOFF= -3.0)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.0 VOFF= -3.5)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= 0)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -1.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
8
ITF87012SVT  
SABER Electrical Model  
REV 25 Jan 2000  
template itf87012svt n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (is = 3.48e-11,ikf = 0.15,xti = 0.18,rs = 1.47e-2,trs1 = 1.25e-3,trs2 = 0,cjo = 3.67e-10,tt = 2.20e-8,m = 0.52)  
dp..model dbreakmod = (rs = 9.52e-2,trs1 = 1.05e-3,trs2 = 1.13e-6)  
dp..model desd1mod = (bv = 8.2,tbv1 = -1.87e-3,n1 = 12,rs = 20)  
dp..model desd2mod = (bv = 11.5,tbv1 = -2.01e-3,n1 = 8,rs = 20)  
dp..model dplcapmod = (cjo = 4.91e-10,is = 1e-30,m = 0.59)  
m..model mmedmod = (type=_n, vto = 1.01,kp = 2.60,is = 1e-30,tox = 1)  
LDRAIN  
m..model mstrongmod = (type=_n, vto = 1.29, kp = 58, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 0.86, kp = 0.10, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -3.5, voff = -3.0)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = -3.5)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -1.5)  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
c.ca n12 n8 = 11.00e-10  
c.cb n15 n14 = 9.50e-10  
c.cin n6 n8 = 5.25e-10  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
dp.dbody n7 n71 = model=dbodymod  
dp.dbreak n72 n11 = model=dbreakmod  
dp.desd1 n91 n9 = model=desd1mod  
dp.desd2 n91 n7 = model=desd2mod  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
dp.dplcap n10 n5 = model=dplcapmod  
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
i.it n8 n17 = 1  
17  
18  
-
RLGATE  
DESD1  
91  
DESD2  
LSOURCE  
CIN  
l.ldrain n2 n5 = 1.00e-9  
l.lgate n1 n9 = 1.04e-9  
l.lsource n3 n7 = 1.29e-10  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
14  
13  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RBREAK  
12  
15  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
res.rbreak n17 n18 = 1, tc1 = 7.58e-4, tc2 = -1.43e-6  
res.rdrain n50 n16 = 2.00e-3, tc1 = 2.21e-2, tc2 = 2.75e-5  
res.rgate n9 n20 = 118  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 10.4  
res.rlsource n3 n7 = 1.29  
res.rslc1 n5 n51 = 1e-6, tc1 = 1.21e-3, tc2 = 1.00e-5  
res.rslc2 n5 n50 = 1e3  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
res.rsource n8 n7 = 17.00e-3, tc1 = 1.00e-3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -8.40e-4, tc2 = 0  
res.rvthres n22 n8 = 1, tc1 = -2.01e-3, tc2 = -1.01e-6  
spe.ebreak n11 n7 n17 n18 = 27.41  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/175))** 2))  
}
}
9
ITF87012SVT  
SPICE Thermal Model  
REV 24 Jan 2000  
ITF87012SVT  
2
JUNCTION  
th  
Copper Area = 0.02 in  
CTHERM1 th 8 1.10e-3  
CTHERM2 8 7 5.00e-3  
CTHERM3 7 6 7.00e-3  
CTHERM4 6 5 9.00e-3  
CTHERM5 5 4 1.10e-2  
CTHERM6 4 3 4.00e-2  
CTHERM7 3 2 3.00e-1  
CTHERM8 2 tl 1.50  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
8
7
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM1 th 8 0.25  
RTHERM2 8 7 0.60  
RTHERM3 7 6 1.25  
RTHERM4 6 5 8.00  
RTHERM5 5 4 10.00  
RTHERM6 4 3 43.00  
RTHERM7 3 2 48.00  
RTHERM8 2 tl 50.00  
6
5
SABER Thermal Model  
2
Copper Area = 0.02 in  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 = 1.10e-3  
ctherm.ctherm2 8 7 = 5.00e-3  
ctherm.ctherm3 7 6 = 7.00e-3  
ctherm.ctherm4 6 5 = 9.00e-3  
ctherm.ctherm5 5 4 = 1.10e-2  
ctherm.ctherm6 4 3 = 4.00e-2  
ctherm.ctherm7 3 2 = 3.00e-1  
ctherm.ctherm8 2 tl = 1.50  
4
3
2
rtherm.rtherm1 th 8 = 0.25  
rtherm.rtherm2 8 7 = 0.60  
rtherm.rtherm3 7 6 = 1.25  
rtherm.rtherm4 6 5 = 8.00  
rtherm.rtherm5 5 4 = 10.00  
rtherm.rtherm6 4 3 = 43.00  
rtherm.rtherm7 3 2 = 48.00  
rtherm.rtherm8 2 tl = 50.00  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
2
2
2
2
2
COMPONENT  
CTHERM6  
0.02 in  
0.05 in  
4.00e-2  
3.50e-1  
1.50dd  
35  
0.10 in  
0.25 in  
0.40 in  
4.00e-2  
3.00e-1  
1.50  
43  
4.20e-2  
4.00e-2  
3.00e-1  
1.50  
27  
4.00e-2  
2.80e-1  
1.50  
27  
CTHERM7  
3.30e-1  
1.50  
35  
CTHERM8  
RTHERM6  
RTHERM7  
48  
40  
37  
30  
29  
RTHERM8  
50  
45  
42  
45  
37  
10  
ITF87012SVT  
MO-193AA (TSOP-6)  
6 LEAD JEDEC MO-193AA TSOP PLASTIC PACKAGE  
(SIMILAR TO SSOT™-6)  
A
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
MAX  
NOTES  
E
A
1
1
A
0.035  
0.043  
0.90  
1.10  
A
0.004  
0.10  
1
e
b
c
0.012  
0.003  
0.107  
0.103  
0.056  
0.020  
0.008  
0.122  
0.118  
0.070  
0.30  
0.08  
2.70  
2.60  
1.40  
0.50  
0.20  
3.10  
3.00  
1.80  
D
b
D
E
2
3
4
E
C
o
1
e
L
0.037 BSC  
0.014 0.021  
0.95 BSC  
0.35 0.55  
0.004in  
0.10mm  
L
NOTES:  
o
0 -8  
1. All dimensions are within the allowable dimensions of Rev. B of  
JEDEC MO-193AA outline dated 10-99.  
0.037  
0.95  
0.039  
1.00  
2. Dimension "D" does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.006 inches (0.15mm) per side.  
0.075  
1.90  
3. Dimension "E " does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 0.006 inches  
(0.15mm) per side.  
0.024  
0.60  
0.095  
2.40  
4. "L" is the length of terminal for soldering.  
5. Controlling dimension: Millimeter.  
6. Revision 2 dated 5-00.  
MO-193AA (TSOP-6)  
8mm TAPE AND REEL  
USER DIRECTION OF FEED  
4.0mm  
2.0mm  
1.75mm  
1.5mm DIAMETER HOLE  
C
L
3.5mm  
8.0mm  
4.0mm  
COVER TAPE  
13.0mm  
13.0mm  
178mm  
60mm  
9.0mm  
GENERAL INFORMATION  
1. 3000 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
3. MEETS EIA-481 REVISION “A” SPECIFICATIONS.  
SSOT™-6 is a trademark of Fairchild Semiconductor.  
11  
ITF87012SVT  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Intersil Ltd.  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
Mercure Center  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
12  
Product Status - check the current status  
Interface bug.gif (14146 bytes)  
of a particular device (active, obsolete, etc).  
Search should include:  
nmklji  
All parts (regardless of status)  
nmklj  
Active parts only  
nmklj  
Withdrawn parts only  
Enter at least the first five (5) characters of a  
part number and press Find. To search for  
multiple part numbers, separate each part  
number with a space (example: part01 part02  
part03).  
Intersil's Global Customer Care Network  
Please contact your local sales office, sales  
representative or distributor for possible  
available inventory or e-mail our Technical  
Support group to discuss an alternate solution.  
ITF87012SVT1  
Find  
Intersil Home  
interface Home  
Product Number Prenotification Date Withdrawal Date Obsolete Date Reason  
ITF87012SVT1 Active Part  

相关型号:

ITF87052SVT

3A, 20V, 0.115 Ohm, P-Channel, 2.5V Specified Power MOSFET
INTERSIL

ITF87052VT

ITF87052VT
RENESAS

ITF87056DQT

5A, 20V, 0.045 Ohm, Dual P-Channel, 2.5V Specified Power MOSFET
INTERSIL

ITF87056DQT2

Power Field-Effect Transistor, 5A I(D), 20V, 0.045ohm, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, PLASTIC, TSSOP-8
FAIRCHILD

ITF87056DQT2

20V, 0.045ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, MO-153AA, PLASTIC, TSSOP-8
RENESAS

ITF87068SQT

9A, 20V, 0.015 Ohm, P-Channel, 2.5V Specified Power MOSFET
INTERSIL

ITF87068SQT2

9A, 20V, 0.015ohm, P-CHANNEL, Si, POWER, MOSFET, MO-153AA, PLASTIC, TSSOP-8
RENESAS

ITF87068SQT2

Power Field-Effect Transistor, 9A I(D), 20V, 0.015ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, PLASTIC, TSSOP-8
FAIRCHILD

ITF87072DK8T

6A, 20V, 0.037 Ohm, Dual P-Channel, 2.5V Specified Power MOSFET
INTERSIL

ITG-1010

陀螺仪
TDK

ITG-3050

MEMS gyroscope
TDK

ITG-3200

陀螺仪
TDK