IRFP140 [FAIRCHILD]

31A, 100V, 0.077 Ohm, N-Channel Power MOSFET; 31A , 100V , 0.077 Ohm的N通道功率MOSFET
IRFP140
型号: IRFP140
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

31A, 100V, 0.077 Ohm, N-Channel Power MOSFET
31A , 100V , 0.077 Ohm的N通道功率MOSFET

文件: 总7页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFP140  
January 2002  
31A, 100V, 0.077 Ohm, N-Channel Power  
MOSFET  
Features  
• 31A, 100V  
This N-Channel enhancement mode silicon gate power field  
effect transistor is an advanced power MOSFET designed,  
tested, and guaranteed to withstand a specified level of  
energy in the breakdown avalanche mode of operation. All of  
these power MOSFETs are designed for applications such  
as switching regulators, switching convertors, motor drivers,  
relay drivers, and drivers for high power bipolar switching  
transistors requiring high speed and low gate drive power.  
These types can be operated directly from integrated  
circuits.  
• r = 0.077Ω  
DS(ON)  
• Single Pulse Avalanche Energy Rated  
• SOA is Power Dissipation Limited  
• Nanosecond Switching Speeds  
• Linear Transfer Characteristics  
• High Input Impedance  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA17421.  
Ordering Information  
Symbol  
PART NUMBER  
PACKAGE  
BRAND  
IRFP140  
D
IRFP140  
TO-247  
NOTE: When ordering, include the entire part number.  
G
S
Packaging  
JEDEC STYLE TO-247  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
IRFP140  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
IRFP140  
100  
100  
31  
22  
120  
20  
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
V
V
A
A
A
V
W
DS  
Drain to Gate Voltage (R  
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
D
D
o
T
= 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
DM  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
GS  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P  
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
180  
1.2  
D
o
W/ C  
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E  
100  
-55 to 175  
mJ  
C
AS  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
o
300  
260  
C
C
L
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 0V, I = 250µA (Figure 10)  
MIN  
TYP  
MAX  
-
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Threshold Voltage  
V
V
V
V
V
V
V
V
100  
-
-
-
-
-
-
DSS  
GS  
GS  
DS  
DS  
DS  
GS  
GS  
DS  
D
V
= V , I = 250µA  
DS  
2.0  
4.0  
25  
V
GS(TH)  
D
Zero Gate Voltage Drain Current  
I
= Rated BV  
, V  
= 0V  
-
µA  
µA  
A
DSS  
DSS GS  
o
= 0.8 x Rated BV , V  
= 0V, T = 125 C  
-
250  
-
DSS GS  
J
On-State Drain Current (Note 2)  
Gate to Source Leakage  
I
> I  
=
r
, V  
= 10V  
31  
D(ON)  
D(ON) x DS(ON)MAX GS  
20V  
I
-
100  
nA  
GSS  
Drain to Source On Resistance (Note 2)  
Forward Transconductance (Note 2)  
Turn-On Delay Time  
r
= 10V, I = 19A (Figures 8, 9)  
-
0.055 0.077  
DS(ON)  
D
g
50V, I = 19A (Figure 12)  
9.3  
14  
15  
72  
40  
50  
38  
-
S
fs  
d(ON)  
D
t
V
V
= 50V, I 28A, R  
= 9.1, R = 1.7,  
-
-
-
-
-
23  
110  
60  
75  
59  
ns  
ns  
ns  
ns  
nC  
DD  
GS  
D
GS  
L
= 10V  
Rise Time  
t
r
MOSFET Switching Times are Essentially  
Independent of Operating Temperature  
Turn-Off Delay Time  
t
d(OFF)  
Fall Time  
t
f
Total Gate Charge  
Q
V
= 10V, I 27A, V  
= 0.8 x Rated BV  
,
DSS  
g(TOT)  
GS  
D
DS  
(Gate to Source + Gate to Drain)  
I
= 1.5mA (Figure 14)  
G(REF)  
Gate Charge is Essentially Independent of Operating  
Temperature  
Gate to Source Charge  
Gate to Drain “Miller” Charge  
Input Capacitance  
Q
Q
-
-
-
-
-
-
10  
21  
-
-
-
-
-
-
nC  
nC  
pF  
pF  
pF  
nH  
gs  
gd  
C
V
= 0V, V  
GS DS  
25V, f = 1.0MHz (Figure 11)  
1275  
550  
160  
5.0  
ISS  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
Internal Drain Inductance  
C
L
Measured between the  
Contact Screw on Header Symbol Showing the  
that is Closer to Source Internal Devices  
Modified MOSFET  
D
and Gate Pins and Center Inductances  
of Die  
D
L
Internal Source Inductance  
L
Measured from the  
Source Lead, 6mm  
-
12.5  
-
nH  
S
D
(0.25in) From Header to  
Source Bonding Pad  
G
L
S
S
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
-
-
-
-
0.83  
30  
C/W  
θJC  
o
Free Air Operation  
C/W  
θJA  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
IRFP140  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Modified MOSFET  
Symbol Showing the  
Integral Reverse P-N  
Junction Diode  
MIN  
TYP  
MAX  
31  
UNITS  
Continuous Source to Drain Current  
Pulse Source to Drain Current (Note 3)  
I
-
-
-
-
A
A
SD  
D
S
I
120  
SDM  
G
o
Source to Drain Diode Voltage (Note 2)  
Reverse Recovery Time  
Reverse Recovered Charge  
NOTES:  
V
T = 25 C, I = 31A, V  
= 0V (Figure 13)  
-
-
2.5  
300  
1.9  
V
SD  
J
SD  
SD  
SD  
GS  
o
t
T = 25 C, I  
J
= 28A, dI /dt = 100A/µs  
70  
150  
0.91  
ns  
µC  
rr  
SD  
= 28A, dI /dt = 100A/µs  
o
Q
T = 25 C, I  
0.44  
RR  
J
SD  
2. Pulse test: pulse width 300µs, duty cycle 2%.  
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).  
o
4. V  
DD  
= 25V, starting T = 25 C, L = 160µH, R = 50, peak I = 31A.  
J G AS  
Typical Performance Curves Unless Otherwise Specified  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
40  
32  
24  
16  
8
0
25  
50  
75  
100  
125  
150  
175  
125  
o
0
25  
50  
75  
100  
175  
150  
o
T
, CASE TEMPERATURE ( C)  
T
, CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
10  
1
0.5  
0.2  
0.1  
P
0.1  
DM  
0.05  
0.02  
0.01  
t
1
-2  
t
10  
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
θJC  
+ T  
DM  
C
-3  
10  
-5  
-4  
10  
-3  
10  
-2  
10  
10  
0.1  
1
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
IRFP140  
Typical Performance Curves Unless Otherwise Specified (Continued)  
3
50  
40  
30  
20  
10  
0
10  
OPERATION IN THIS  
REGION IS LIMITED  
V
= 7V  
GS  
V
= 10V  
= 8V  
GS  
BY r  
DS(ON)  
V
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
10µs  
2
10  
100µs  
V
= 6V  
GS  
1ms  
10  
1
V
= 5V  
= 4V  
GS  
10ms  
DC  
o
T
T
= 25 C  
C
J
= MAX RATED  
SINGLE PULSE  
V
GS  
2
3
10  
, DRAIN TO SOURCE VOLTAGE (V)  
10  
1
10  
0
2
10  
V
20  
30  
40  
50  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. OUTPUT CHARACTERISTICS  
50  
10  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
V
= 7.0V  
GS  
DUTY CYCLE = 0.5% MAX  
V
50V  
DS  
V
= 10V  
40  
30  
20  
10  
0
GS  
V
= 8V  
GS  
10  
1
V
= 6V  
GS  
o
o
T
= 25 C  
T
= 175 C  
J
J
V
= 5V  
= 4V  
GS  
V
GS  
0.1  
0
2
4
6
8
10  
0
1
2
3
4
5
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 6. SATURATION CHARACTERISTICS  
FIGURE 7. TRANSFER CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.4  
1.8  
1.2  
0.6  
0
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
I
= 19A, V  
= 10V  
D
GS  
V
= 10V  
GS  
V
= 20V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
o
0
25  
50  
, DRAIN CURRENT (A)  
100  
125  
75  
I
T , JUNCTION TEMPERATURE ( C)  
J
D
NOTE: Heating effect of 2µs pulse is minimal.  
FIGURE 9. NORMALIZED DRAINTO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 8. DRAINTO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
IRFP140  
Typical Performance Curves Unless Otherwise Specified (Continued)  
1.25  
1.15  
1.05  
0.95  
0.85  
0.75  
3000  
2400  
1800  
1200  
600  
I
= 250µA  
D
V
= 0V, f = 1MHz  
GS  
ISS  
C
= C  
+ C  
GS  
GD  
C
C
= C  
GD  
RSS  
OSS  
C + C  
DS  
GD  
C
ISS  
C
OSS  
C
RSS  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
o
0
2
5
10  
20  
50  
100  
T , JUNCTION TEMPERATURE ( C)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
J
FIGURE 10. NORMALIZED DRAINTO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
3
20  
10  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
V
50V  
DS  
16  
12  
8
o
T
J
= 25 C  
J
2
10  
o
T
= 175 C  
o
T
= 175 C  
J
10  
1
4
o
T
= 25 C  
J
0
0
10  
20  
30  
40  
50  
0
0.6  
1.2  
1.8  
2.4  
3.0  
I
, DRAIN CURRENT (A)  
V
, SOURCE TO DRAIN VOLTAGE (V)  
D
SD  
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT  
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE  
20  
I
= 34A  
D
16  
V
= 20V  
DS  
12  
8
V
= 50V  
DS  
V
= 80V  
DS  
4
0
0
12  
24  
36  
48  
60  
Q , GATE CHARGE (nC)  
g
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
IRFP140  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
AS  
VARY t TO OBTAIN  
P
V
DD  
+
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
0
I
AS  
0V  
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
V
DS  
90%  
90%  
R
L
+
10%  
10%  
0
0
V
DD  
R
G
-
90%  
50%  
DUT  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
(ISOLATED  
SUPPLY)  
CURRENT  
REGULATOR  
V
DD  
Q
g(TOT)  
V
SAME TYPE  
AS DUT  
GS  
Q
gd  
12V  
BATTERY  
0.2µF  
50kΩ  
Q
gs  
0.3µF  
D
S
V
DS  
G
DUT  
0
0
I
G(REF)  
I
G(REF)  
0
V
DS  
I CURRENT  
D
SAMPLING  
RESISTOR  
I
CURRENT  
SAMPLING  
RESISTOR  
G
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
IRFP140 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

IRFP1405

AUTOMOTIVE MOSFET
INFINEON

IRFP1405PBF

HEXFET㈢ Power MOSFET
INFINEON

IRFP140A

Advanced Power MOSFET
FAIRCHILD

IRFP140N

33A, 100V, 0.040 Ohm, N-Channel Power MOSFET
INTERSIL

IRFP140N

Power MOSFET(Vdss=100V, Rds(on)=0,052ohm, Id=33A)
INFINEON

IRFP140N-R4942

Transistor
FAIRCHILD

IRFP140NPBF

HEXFET Power MOSFET
INFINEON

IRFP140PBF

Power MOSFET
VISHAY

IRFP140PBF

Preferred for commercail-industrial applications where higher power levels preclude the use of TO-220 devices.
INFINEON

IRFP140R

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 31A I(D) | TO-247
ETC

IRFP141

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 29A I(D) | TO-247AC
ETC

IRFP141CF

IRFP141CF
NSC