FSAM15SH60A [FAIRCHILD]

SPM (Smart Power Module); SPM (智能功率模块)
FSAM15SH60A
型号: FSAM15SH60A
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

SPM (Smart Power Module)
SPM (智能功率模块)

运动控制电子器件 信号电路 光电二极管 电动机控制
文件: 总16页 (文件大小:2024K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FSAM15SH60A  
TM  
SPM (Smart Power Module)  
General Description  
Features  
FSAM15SH60A is an advanced smart power module  
(SPM) that Fairchild has newly developed and designed to  
provide very compact and high performance ac motor  
drives mainly targeting high speed low-power inverter-  
driven application like washing machines. It combines  
optimized circuit protection and drive matched to low-loss  
IGBTs. Highly effective short-circuit current detection/  
protection is realized through the use of advanced current  
sensing IGBT chips that allow continuous monitoring of the  
IGBTs current. System reliability is further enhanced by the  
built-in over-temperature monitoring and integrated under-  
voltage lock-out protection. The high speed built-in HVIC  
provides opto-coupler-less IGBT gate driving capability that  
further reduce the overall size of the inverter system design.  
In addition the incorporated HVIC facilitates the use of  
single-supply drive topology enabling the FSAM15SH60A  
to be driven by only one drive supply voltage without  
negative bias. Inverter current sensing application can be  
achieved due to the divided negative dc terminals.  
UL Certified No. E209204  
600V-15A 3-phase IGBT inverter bridge including control  
ICs for gate driving and protection  
Divided negative dc-link terminals for inverter current  
sensing applications  
Single-grounded power supply due to built-in HVIC  
Typical switching frequency of 15kHz  
Built-in thermistor for over-temperature monitoring  
Inverter power rating of 0.8kW / 100~253 Vac  
Isolation rating of 2500Vrms/min.  
Very low leakage current due to using ceramic substrate  
Adjustable current protection level by varying series  
resistor value with sense-IGBTs  
Applications  
AC 100V ~ 253V 3-phase inverter drive for small power  
(0.8kW) ac motor drives  
Home appliances applications requiring high switching  
frequency operation like washing machines drive system  
Application ratings:  
- Power : 0.8kW / 100~253 Vac  
- Switching frequency : Typical 15kHz (PWM Control)  
- 100% load current : 5.0A (Irms)  
- 150% load current : 7.5A (Irms) for 1 minute  
External View  
Top View  
Bottom View  
60mm  
31mm  
Fig. 1.  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Integrated Power Functions  
600V-15A IGBT inverter for 3-phase DC/AC power conversion (Please refer to Fig. 3)  
Integrated Drive, Protection and System Control Functions  
For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting  
Control circuit under-voltage (UV) protection  
Note) Available bootstrap circuit example is given in Figs. 14 and 15.  
For inverter low-side IGBTs: Gate drive circuit, Short-Circuit (SC) protection  
Control supply circuit under-voltage (UV) protection  
Temperature Monitoring: System over-temperature monitoring using built-in thermistor  
Note) Available temperature monitoring circuit is given in Fig. 15.  
Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side control supply circuit)  
Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input  
Pin Configuration  
Top View  
(1) VCC(L)  
(24) VTH  
(25) RTH  
(26) NU  
(27) NV  
(28) NW  
(2) com(L)  
(3) IN(UL)  
(4) IN(VL)  
(5) IN(WL)  
(6) com(L)  
(7) FO  
(8) CFOD  
(9) CSC  
(10) RSC  
(29) U  
(30) V  
(31) W  
(11) IN(UH)  
(12) VCC(UH)  
Case Temperature (TC)  
Detecting Point  
(13) VB(U)  
(14) VS(U)  
(15) IN(VH)  
(16) com(H)  
(17) VCC(VH)  
(18) VB(V)  
(19) VS(V)  
Ceramic Substrate  
(20) IN(WH)  
(32) P  
(21) VCC(WH)  
(22) VB(W)  
(23) VS(W)  
Fig. 2.  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Pin Descriptions  
Pin Number  
Pin Name  
Pin Description  
Low-side Common Bias Voltage for IC and IGBTs Driving  
Low-side Common Supply Ground  
Signal Input for Low-side U Phase  
Signal Input for Low-side V Phase  
1
V
CC(L)  
2
3
4
COM  
(L)  
(UL)  
IN  
IN  
(VL)  
5
IN  
Signal Input for Low-side W Phase  
(WL)  
6
7
COM  
V
Low-side Common Supply Ground  
Fault Output  
(L)  
FO  
8
9
C
C
R
IN  
Capacitor for Fault Output Duration Time Selection  
Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input  
Resistor for Short-Circuit Current Detection  
Signal Input for High-side U Phase  
High-side Bias Voltage for U Phase IC  
High-side Bias Voltage for U Phase IGBT Driving  
High-side Bias Voltage Ground for U Phase IGBT Driving  
Signal Input for High-side V Phase  
FOD  
SC  
SC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
(UH)  
V
CC(UH)  
V
V
IN  
B(U)  
S(U)  
(VH)  
COM  
High-side Common Supply Ground  
(H)  
V
High-side Bias Voltage for V Phase IC  
High-side Bias Voltage for V Phase IGBT Driving  
High-side Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for High-side W Phase  
High-side Bias Voltage for W Phase IC  
High-side Bias Voltage for W Phase IGBT Driving  
High-side Bias Voltage Ground for W Phase IGBT Driving  
Thermistor Bias Voltage  
Series Resistor for the Use of Thermistor (Temperature Detection)  
Negative DC–Link Input for U Phase  
Negative DC–Link Input for V Phase  
Negative DC–Link Input for W Phase  
Output for U Phase  
CC(VH)  
V
V
IN  
B(V)  
S(V)  
(WH)  
V
CC(WH)  
V
V
B(W)  
S(W)  
V
R
N
N
TH  
TH  
U
V
N
W
U
V
W
P
Output for V Phase  
Output for W Phase  
Positive DC–Link Input  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Internal Equivalent Circuit and Input/Output Pins  
Bottom View  
(32) P  
(31) W  
(22) VB(W )  
VB  
(21) VCC(W H)  
VCC  
OUT  
VS  
COM  
IN  
(20) IN(W H)  
(23) VS(W )  
(18) VB(V)  
VB  
(17) VCC(VH)  
VCC  
OUT  
VS  
(16) COM(H)  
(15) IN(VH)  
COM  
IN  
(30) V  
(19) VS(V)  
(13) VB(U)  
VB  
(12) VCC(UH)  
VCC  
OUT  
VS  
COM  
IN  
(11) IN(UH)  
(14) VS(U)  
(29) U  
(10) RSC  
OUT(W L)  
(9) CSC  
C(SC)  
C(FOD)  
VFO  
(8) CFOD  
(7) VFO  
(28) NW  
(27) NV  
(6) COM(L)  
(5) IN(W L)  
IN(W L)  
IN(VL)  
IN(UL)  
OUT(VL)  
OUT(UL)  
(4) IN(VL)  
(3) IN(UL)  
(2) COM(L)  
(1) VCC(L)  
COM(L)  
VCC  
(26) NU  
(25) RTH  
(24) VTH  
THERMISTOR  
Note:  
1) Inverter low-side is composed of three sense-IGBTs including freewheeling diodes for each IGBT and one control IC which has gate driving, current sensing and  
protection functions.  
2) Inverter power side is composed of four inverter dc-link input pins and three inverter output pins.  
3) Inverter high-side is composed of three normal-IGBTs including freewheeling diodes and three drive ICs for each IGBT.  
Fig. 3.  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Absolute Maximum Ratings (T = 25°C, Unless Otherwise Specified)  
J
Inverter Part  
Item  
Symbol  
Condition  
Applied between P- N , N ,N  
Rating  
450  
500  
600  
15  
11  
30  
Unit  
V
V
V
A
A
A
Supply Voltage  
Supply Voltage (Surge)  
Collector-Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
V
PN  
U
V
W
W
V
Applied between P- N , N ,N  
PN(Surge)  
U
V
V
CES  
± I  
± I  
T
T
T
= 25°C  
= 100°C  
= 25°C,  
C
C
C
C
C
± I  
CP  
Instantaneous Value (Pulse)  
= 25°C per One Chip  
Collector Dissipation  
P
T
50  
W
C
C
Operating Junction Temperature  
T
(Note 1)  
-20 ~ 125  
°C  
J
Note:  
1. It would be recommended that the average junction temperature should be limited to T 125°C (@T 100°C) in order to guarantee safe operation.  
J
C
Control Part  
Item  
Symbol  
Condition  
Rating  
Unit  
Control Supply Voltage  
High-side Control Bias Voltage  
Input Signal Voltage  
V
Applied between V  
, V  
, V  
- COM ,  
(H)  
20  
V
CC  
CC(UH)  
CC(VH)  
CC(WH)  
V
- COM  
CC(L)  
(L)  
V
Applied between V  
- V  
, V  
- V  
, V  
-
20  
V
V
BS  
B(U)  
S(U)  
B(V)  
S(V)  
B(W)  
(H)  
V
S(W)  
V
Applied between IN  
, IN  
(WL) (L)  
, IN  
- COM  
-0.3 ~ V +0.3  
CC  
IN  
(UH)  
(VH)  
(WH)  
IN  
, IN  
, IN  
- COM  
(UL)  
(VL)  
Fault Output Supply Voltage  
Fault Output Current  
Current Sensing Input Voltage  
V
I
V
Applied between V - COM  
-0.3 ~ V +0.3  
V
mA  
V
FO  
FO  
FO  
(L)  
CC  
Sink Current at V Pin  
5
FO  
Applied between C - COM  
-0.3 ~ V +0.3  
SC  
SC  
(L)  
CC  
Total System  
Item  
Symbol  
PN(PROT)  
Condition  
Rating  
400  
Unit  
V
Self Protection Supply Voltage Limit  
(Short-Circuit Protection Capability)  
V
V
J
= V = 13.5 ~ 16.5V  
CC  
BS  
T = 25°C, Non-repetitive, less than 6µs  
Module Case Operation Temperature  
Storage Temperature  
Isolation Voltage  
T
Note Fig.2  
-20 ~ 100  
-20 ~ 125  
2500  
°C  
°C  
C
T
STG  
V
60Hz, Sinusoidal, AC 1 minute, Connection  
Pins to Heat-sink Plate  
V
ISO  
rms  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Absolute Maximum Ratings  
Thermal Resistance  
Item  
Symbol  
Condition  
Min. Typ. Max. Unit  
Junction to Case Thermal  
Resistance  
R
Each IGBT under Inverter Operating Condition  
-
-
-
-
-
-
2.5  
°C/W  
th(j-c)Q  
R
Each FWDi under Inverter Operating Condition  
3.6  
°C/W  
th(j-c)F  
Contact Thermal  
Resistance  
R
Ceramic Substrate (per 1 Module)  
Thermal Grease Applied (Note 3)  
0.06 °C/W  
th(c-h)  
Note:  
2. For the measurement point of case temperature(T ), please refer to Fig. 2.  
C
3. The thickness of thermal grease should not be more than 100um.  
Electrical Characteristics (T = 25°C, Unless Otherwise Specified)  
J
Inverter Part  
Item  
Symbol  
CE(SAT)  
Condition  
Min.  
Typ.  
Max. Unit  
Collector - Emitter  
Saturation Voltage  
FWDi Forward Voltage  
Switching Times  
V
V
V
= V = 15V  
I
= 15A, T = 25°C  
-
-
2.5  
V
CC  
IN  
BS  
C
J
= 0V  
= 5V  
V
V
V
I
= 15A, T = 25°C  
-
-
-
-
-
-
-
-
2.5  
V
FM  
ON  
IN  
C
J
t
= 300V, V = V = 15V  
0.34  
0.15  
0.73  
0.24  
0.13  
-
-
-
-
-
-
us  
us  
us  
us  
us  
µA  
PN  
CC  
BS  
I
= 15A, T = 25°C  
t
C
J
C(ON)  
V
= 5V 0V, Inductive Load  
IN  
t
OFF  
(High, Low-side)  
t
C(OFF)  
t
(Note 4)  
rr  
Collector -Emitter  
Leakage Current  
I
V
= V  
, T = 25°C  
250  
CES  
CE  
CES  
J
Note:  
4.  
t
and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the given gate driving condition  
C(OFF)  
ON  
OFF  
C(ON)  
internally. For the detailed information, please see Fig. 4.  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
100% IC  
t rr  
IC  
VCE  
VCE  
IC  
V IN  
t ON  
VIN  
tOFF  
VIN(O N)  
t
C(ON)  
tC(OFF)  
VIN(OFF)  
(a) Turn-on  
Fig. 4. Switching Time Definition  
(b) Turn-off  
IC : 5A/div.  
VCE : 100V/div.  
VCE : 100V/div.  
IC : 5A/div.  
time : 0.1us/div.  
time : 0.1us/div.  
(b) Turn-off  
(
(a)Turn-on
Fig. 5. Experimental Results of Switching Waveforms  
Test Condition: Vdc=300V, Vcc=15V, L=500uH (Inductive Load), TJ=25°C  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Electrical Characteristics (T = 25°C, Unless Otherwise Specified)  
J
Control Part  
Item  
Symbol  
QCCL  
Condition  
CC(L)  
Min. Typ. Max. Unit  
Quiescent V Supply Cur-  
I
V
= 15V  
(UL, VL, WL)  
= 15V  
(UH, VH, WH)  
= 15V  
(UH, VH, WH)  
V
- COM  
-
-
-
-
-
-
26  
mA  
CC  
CC  
(L)  
rent  
IN  
= 5V  
I
V
V
, V  
, V -  
CC(WH)  
130 uA  
420 uA  
QCCH  
CC  
CC(UH)  
CC(VH)  
IN  
= 5V  
= 5V  
COM  
(H)  
Quiescent V Supply Cur-  
I
V
V
V
- V  
, V  
-V  
,
S(V)  
BS  
QBS  
BS  
B(U)  
S(U)  
B(V)  
rent  
IN  
- V  
B(W) S(W)  
Fault Output Voltage  
V
V
V
V
V
= 0V, V Circuit: 4.7kto 5V Pull-up  
4.5  
-
-
-
-
V
V
V
V
FOH  
SC  
SC  
CC  
FO  
= 1V, V Circuit: 4.7kto 5V Pull-up  
1.1  
FOL  
FO  
Short-Circuit Trip Level  
Sensing Voltage  
of IGBT Current  
V
= 15V (Note 5)  
0.45 0.51 0.56  
0.45 0.51 0.56  
SC(ref)  
V
R
= 50 , R = R = R  
= 0 and I = 22.5A  
SW C  
SEN  
SC  
SU  
SV  
(Note Fig. 7)  
Supply Circuit Under-  
Voltage Protection  
UV  
Detection Level  
Reset Level  
Detection Level  
Reset Level  
11.5  
12  
7.3  
12 12.5  
12.5 13  
9.0 10.8  
V
V
V
CCD  
CCR  
BSD  
BSR  
UV  
UV  
UV  
8.6 10.3 12  
V
Fault Output Pulse Width  
ON Threshold Voltage  
OFF Threshold Voltage  
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermistor  
t
C
= 33nF (Note 6)  
1.4  
1.8 2.0  
ms  
V
V
V
V
FOD  
FOD  
V
High-Side  
Applied between IN  
(WH)  
, IN ,  
(VH)  
-
3.0  
-
3.0  
-
-
-
0.8  
-
IN(ON)  
(UH)  
IN  
- COM  
(H)  
V
IN(OFF)  
V
Low-Side  
Applied between IN  
, IN ,  
(VL)  
-
0.8  
IN(ON)  
(UL)  
IN  
- COM  
(L)  
V
(WL)  
-
-
-
-
IN(OFF)  
R
@ T = 25°C (Note Fig. 6) (Note 7)  
@ T = 100°C (Note Fig. 6) (Note 7)  
50  
3.4  
kΩ  
kΩ  
TH  
TH  
-
TH  
Note:  
5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R ) should be  
SC  
selected around 50 in order to make the SC trip-level of about 22.5A at the shunt resistors (R ,R ,R ) of 0. For the detailed information about the  
SU SV SW  
relationship between the external sensing resistor (R ) and the shunt resistors (R ,R ,R ), please see Fig. 7.  
SC  
SU SV SW  
-6  
6. The fault-out pulse width t  
depends on the capacitance value of C  
according to the following approximate equation : C  
= 18.3 x 10 x t  
[F]  
FOD  
FOD  
FOD  
FOD  
7.  
T
is the temperature of thermistor itself. To know case temperature (T ), please make the experiment considering your application.  
T
H
C
Recommended Operating Conditions  
Values  
Min. Typ. Max.  
Item  
Symbol  
Condition  
Unit  
Supply Voltage  
V
V
Applied between P - N , N , N  
-
300  
15  
400  
16.5  
V
V
PN  
CC  
U
V
W
Control Supply Voltage  
High-side Bias Voltage  
Applied between V  
, V  
, V -  
CC(WH)  
13.5  
CC(UH)  
CC(VH)  
COM , V  
- COM  
(H)  
CC(L)  
(L)  
V
Applied between V  
- V  
, V  
- V ,  
S(V)  
13.5  
15  
-
16.5  
V
BS  
B(U)  
S(U)  
B(V)  
V
- V  
B(W)  
S(W)  
Blanking Time for Preventing  
Arm-short  
PWM Input Signal  
t
For Each Input Signal  
3
-
-
-
us  
dead  
PWM  
f
T
100°C, T 125°C  
15  
kHz  
V
C
J
Input ON Threshold Voltage  
V
Applied between IN  
, IN  
(WL)  
, IN -  
(WH)  
0 ~ 0.65  
IN(ON)  
(UH)  
(VH)  
COM , IN  
, IN  
, IN  
- COM  
(H)  
(UL)  
(VL)  
(L)  
Input OFF Threshold Voltage  
V
Applied between IN  
, IN  
, IN  
-
4 ~ 5.5  
V
IN(OFF)  
(UH)  
(VH)  
(WH)  
COM , IN  
, IN  
, IN  
- COM  
(WL) (L)  
(H)  
(UL)  
(VL)  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
R-T Curve  
70  
60  
50  
40  
30  
20  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
[ ]  
Temperature TTH  
Fig. 6. R-T Curve of The Built-in Thermistor  
100  
80  
60  
40  
20  
0
(1)  
(2)  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
RSU,RSV,RSW []  
Fig. 7. RSC Variation by change of Shunt Resistors (RSU, RSV, RSW) for Short-Circuit Protection  
(1) @ around 100% Rated Current Trip (IC ·=· 15A)  
(2) @ around 150% Rated Current Trip (IC ·=· 22.5A)  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Mechanical Characteristics and Ratings  
Limits  
Typ.  
10  
0.98  
-
Item  
Condition  
Unit  
Min.  
Max.  
12  
1.17  
+120  
-
Mounting Torque  
Mounting Screw: M4  
(Note 8 and 9)  
Recommended 10Kg•cm  
Recommended 0.98N•m  
Note Fig.8  
8
0.78  
0
Kg•cm  
N•m  
um  
Ceramic Flatness  
Weight  
-
35  
g
(+)  
(+)  
(+)  
Datum Line  
Fig. 8. Flatness Measurement Position of The Ceramic Substrate  
Note:  
8. Do not make over torque or mounting screws. Much mounting torque may cause ceramic cracks and bolts and Al heat-fin destruction.  
9. Avoid one side tightening stress. Fig.9 shows the recommended torque order for mounting screws. Uneven mounting can cause the SPM ceramic substrate to  
be damaged.  
2
1
Fig. 9. Mounting Screws Torque Order  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Time Charts of SPMs Protective Function  
Input Signal  
Internal IGBT  
Gate-Emitter Voltage  
P3  
P2  
P5  
UV reset  
P6  
Control Supply Voltage  
UV detect  
P1  
Output Current  
P4  
Fault Output Signal  
P1 : Normal operation - IGBT ON and conducting current  
P2 : Under-Voltage detection  
P3 : IGBT gate interrupt  
P4 : Fault signal generation  
P5 : Under-Voltage reset  
P6 : Normal operation - IGBT ON and conducting current  
Fig. 10. Under-Voltage Protection (Low-side)  
Input Signal  
P3  
P2  
UV reset  
P6  
P5  
UV detect  
P1  
VBS  
Output Current  
Fault Output Signal  
P4  
P1 : Normal operation - IGBT ON and conducting current  
P2 : Under-Voltage detection  
P3 : IGBT gate interrupt  
P4 : No fault signal  
P5 : Under-Voltage reset  
P6 : Normal operation - IGBT ON and conducting current  
Fig. 11. Under-Voltage Protection (High-side)  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
P5  
Input Signal  
Internal IGBT  
P6  
Gate-Emitter Voltage  
SC Detection  
P1  
P4  
P7  
Output Current  
P2  
SC Reference  
Voltage (0.5V)  
Sensing Voltage  
RC Filter Delay  
P8  
Fault Output Signal  
P3  
P1 : Normal operation - IGBT ON and conducting current  
P2 : Short-Circuit current detection  
P3 : IGBT gate interrupt / Fault signal generation  
P4 : IGBT is slowly turned off  
P5 : IGBT OFF signal  
P6 : IGBT ON signal - but IGBT cannot be turned on during the fault Output activation  
P7 : IGBT OFF state  
P8 : Fault Output reset and normal operation start  
Fig. 12. Short-Circuit Current Protection (Low-side Operation only)  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
5V-Line  
SPM  
RPF  
RPL  
=
RPH  
4.7kΩ  
2kΩ  
4.7kΩ  
100 Ω  
100 Ω  
100 Ω  
,
,
,
IN(UH) IN(VH)  
IN(WH)  
IN(WL)  
,
IN(UL) IN(VL)  
CPU  
VFO  
CPF  
1nF  
CPL  
0.47nF  
CPH  
1.2nF  
1nF  
COM  
Note:  
1) It would be recommended that by-pass capacitors for the gating input signals, IN  
, IN , IN  
, IN  
, IN  
and IN  
should be placed on the SPM pins  
(UL)  
(VL)  
(WL)  
(UH)  
(VH)  
(WH)  
and on the both sides of CPU and SPM for the fault output signal, V , as close as possible.  
FO  
2) The logic input is compatible with standard CMOS or LSTTL outputs.  
3) R  
C
/R  
C
/R  
C
coupling at each SPM input is recommended in order to prevent input/output signals’ oscillation and it should be as close as possible to  
PL PL PH PH PF PF  
each of SPM pins.  
Fig. 13. Recommended CPU I/O Interface Circuit  
These Values depend on PWM Control Algorithm  
One-Leg Diagram of SPM  
15V-Line  
P
20Ω  
DBS  
Vcc VB  
IN HO  
COM VS  
33uF  
0.1uF  
Inverter  
Output  
Vcc  
IN  
OUT  
470uF  
0.1uF  
COM  
N
Note:  
It would be recommended that the bootstrap diode, D , has soft and fast recovery characteristics.  
BS  
Fig. 14. Recommended Bootstrap Operation Circuit and Parameters  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
15V line  
5V line  
RBS  
DBS  
P
(32)  
(31)  
(22) VB(W)  
VB  
VCC  
(21) VCC(WH)  
RPH  
OUT  
VS  
COM  
IN  
RS  
RS  
RS  
CBS  
CBSC  
CBSC  
CBSC  
(20) IN(WH)  
(23) VS(W)  
W
Gating WH  
Gating VH  
CPH  
RBS  
DBS  
(18) VB(V)  
VB  
(17) VCC(VH)  
VCC  
RPH  
(16) COM(H)  
(15) IN(VH)  
OUT  
VS  
COM  
IN  
CBS  
V
U
(30)  
(19) VS(V)  
M
CPH  
DBS  
RBS  
(13) VB(U)  
VB  
C
P
U
(12) VCC(UH)  
VCC  
CDCS  
Vdc  
OUT  
VS  
RPH  
COM  
IN  
CBS  
(11) IN(UH)  
(14) VS(U)  
(29)  
Gating UH  
CPH  
RSC  
RF  
5V line  
(10) RSC  
RCSC  
(9) CSC  
OUT(WL)  
OUT(VL)  
OUT(UL)  
C(SC)  
C(FOD)  
VFO  
(8) CFOD  
RPL RPL RPL RPF  
CSC  
RSW  
NW (28)  
RS  
RS  
CFOD  
(7) VFO  
Fault  
(6) COM(L)  
(5) IN(WL)  
(4) IN(VL)  
(3) IN(UL)  
Gating WH  
Gating VH  
Gating UH  
IN(WL)  
IN(VL)  
IN(UL)  
RS  
RS  
RSV  
NV (27)  
(2) COM(L)  
(1) VCC(L)  
COM(L)  
VCC  
CBPF  
CPL CPL CPL CPF  
RSU  
NU (26)  
5V line  
VTH (24)  
CSPC15  
CSP15  
THERMISTOR  
RTH (25)  
RTH  
CSPC05  
CSP05  
Temp. Monitoring  
RFW  
W-Phase Current  
V-Phase Current  
RFV  
RFU  
U-Phase Current  
CFW  
CFU  
CFV  
Note:  
1) R  
C
/R  
C
/R  
C
coupling at each SPM input is recommended in order to prevent input signals’ oscillation and it should be as close as possible to each  
PL PL PH PH  
PF PF  
SPM input pin.  
2) By virtue of integrating an application specific type HVIC inside the SPM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is  
possible.  
3) V output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7kresistance. Please  
FO  
refer to Fig. 15.  
4) C  
of around 7 times larger than bootstrap capacitor C is recommended.  
BS  
SP15  
FO  
5) V output pulse width should be determined by connecting an external capacitor(C  
) between C  
(pin8) and COM (pin2). (Example : if C  
= 33 nF, then  
FOD  
FOD  
FOD  
(L)  
t
= 1.8 ms (typ.)) Please refer to the note 6 for calculation method.  
FO  
6) Each input signal line should be pulled up to the 5V power supply with approximately 4.7k(at high side input) or 2kΩ (at low side input) resistance (other RC  
coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedance of the system’s printed circuit board).  
Approximately a 0.22~2nF by-pass capacitor should be used across each power supply connection terminals.  
7) To prevent errors of the protection function, the wiring around R , R and C should be as short as possible.  
SC  
F
SC  
8) In the short-circuit protection circuit, please select the R C time constant in the range 3~4 µs.  
F
SC  
9) To enhance the noise immunity, C pin should be connected to the external circuit through a series resistor, R  
, which is approximately 390. R  
should  
SC  
CSC  
SCS  
be connected to C pin as close as possible.  
SC  
10)Each capacitor should be mounted as close to the pins of the SPM as possible.  
11)To prevent surge destruction, the wiring between the smoothing capacitor and the P&N pins should be as short as possible. The use of a high frequency non-  
inductive capacitor of around 0.1~0.22 uF between the P&N pins is recommended.  
12)Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and  
the relays. It is recommended that the distance be 5cm at least.  
Fig. 15. Typical Application Circuit  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
Detailed Package Outline Drawings  
SPM32-AA  
28x2.00 0.30=(56.0)  
(2.00)  
MAX1.05  
0.60 0.10  
0.40  
MAX1.00  
0.60 0.10  
0.40  
2.00 0.30  
28.0 0.30  
#23  
#1  
#32  
19.86 0.30  
#24  
7.20 0.5  
(46.60)  
53.0 0.30  
60.0 0.50  
12.30 0.5  
3x7.62 0.30=(22.86)  
3x4.0 0.30=(12.0  
2.00 0.30  
)
11.0 0.30  
10.14  
(
)
0.80  
1.30 0.10  
MAX3.20  
0.80  
0.40  
1.30 0.10  
MAX2.50  
0.60 0.10  
MAX1.60  
Dimensions in Millimeters  
©2003 Fairchild Semiconductor Corporation  
Rev. E, August 2003  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
Power247™  
PowerTrench  
QFET  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic  
LittleFET™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
MSXPro™  
OCX™  
OCXPro™  
OPTOLOGIC  
OPTOPLANAR™  
PACMAN™  
POP™  
FACT Quiet Series™  
FAST  
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT™  
QS™  
QT Optoelectronics™ TINYOPTO™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
UHC™  
UltraFET  
HiSeC™  
I2C™  
SILENT SWITCHER VCX™  
SMART START™  
SPM™  
ImpliedDisconnect™  
ISOPLANAR™  
Across the board. Around the world.™  
The Power Franchise™  
ProgrammableActive Droop™  
Stealth™  
SuperSOT™-3  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVESTHE RIGHTTO MAKE CHANGES WITHOUTFURTHER NOTICETOANY  
PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUMEANYLIABILITY  
ARISING OUTOFTHEAPPLICATION OR USE OFANYPRODUCTOR CIRCUITDESCRIBED HEREIN; NEITHER DOES IT  
CONVEYANYLICENSE UNDER ITS PATENTRIGHTS, NORTHE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I5  

相关型号:

FSAM15SL60

SPMTM (Smart Power Module)
FAIRCHILD

FSAM15SM60

SPM (Smart Power Module) General Description
FAIRCHILD

FSAM15SM60A

SPM (Smart Power Module) General Description
FAIRCHILD

FSAM18D9651

Through Beam Photoelectric Sensor, 20mm Min, 20mm Max, Cylindrical, Board Mount, THROUGH BEAM SENSOR
IVO

FSAM18D9651/S14

Through Beam Photoelectric Sensor, 20mm Min, 20mm Max, Cylindrical, Board Mount, THROUGH BEAM SENSOR
IVO

FSAM20SH60A

SPMTM (Smart Power Module)
FAIRCHILD

FSAM20SH60A

智能功率模块,600V,20A
ONSEMI

FSAM20SH60A_03

SPMTM (Smart Power Module)
FAIRCHILD

FSAM20SL60

SPMTM (Smart Power Module)
FAIRCHILD

FSAM20SM60A

SPMTM (Smart Power Module)
FAIRCHILD

FSAM20SM60A

智能功率模块,600V,20A
ONSEMI

FSAM30SH60A

SPMTM (Smart Power Module)
FAIRCHILD