FAN6982MY [FAIRCHILD]

CCM Power Factor Correction Controller; CCM功率因数校正控制器
FAN6982MY
型号: FAN6982MY
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

CCM Power Factor Correction Controller
CCM功率因数校正控制器

功率因数校正 控制器
文件: 总16页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
February 2010  
FAN6982  
CCM Power Factor Correction Controller  
Features  
Description  
The FAN6982 is a 14-pin, Continuous Conduction Mode  
(CCM) PFC controller IC intended for Power Factor  
Correction (PFC) pre-regulators. The FAN6982 includes  
circuits for the implementation of leading edge, average  
current, “boost”-type power factor correction, and  
results in a power supply that fully complies with the  
IEC1000-3-2 specification.  
ƒ
ƒ
ƒ
ƒ
Continuous Conduction Mode  
Innovative Switching-Charge Multiplier-Divider  
Average-Current-Mode for Input-Current Shaping  
TriFault Detect™ Prevent Abnormal Operation for  
Feedback Loop  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Power-On Sequence Control  
A TriFault Detect™ function helps reduce external  
components and provides full protection for feedback  
loops such as open, short, and over voltage. An over-  
voltage comparator shuts down the PFC stage in the  
event of a sudden load decrease. The RDY signal can  
be used for power-on sequence control. The EN  
function can choose to enable or disable the range  
function. FAN6982 also includes PFC soft-start, peak  
current limiting, and input voltage brownout protection.  
Soft-Start Capability  
Brownout Protection  
Cycle-by-Cycle Peak Current Limiting.  
Improves Light-Load Efficiency  
Fulfills Class-D Requirements of IEC 1000-3-2  
Programmable Frequency: 50kHz to 130kHz  
Wide Range Universal AC Input Voltage  
Maximum Duty Cycle 97%  
VDD Under-Voltage Lockout (UVLO)  
Applications  
ƒ
ƒ
ƒ
ƒ
Desktop PC Power Supply  
Internet Server Power Supply  
LCD TV/Monitor Power Supply  
DC Motor Power Supply  
Ordering Information  
Operating  
Temperature Range  
Packing  
Part Number  
Package  
Method  
Eco Status  
FAN6982MY  
-40°C to +105°C  
Green  
14-Pin Small Outline Package (SOP)  
Tape & Reel  
For Fairchild’s definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
Application Diagram  
Figure 1. Typical Application  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
2
Block Diagram  
14  
1
11  
VDD  
VREF  
IEA  
VEA  
0.5V  
7.5V  
REFERENCE  
12  
PFC UVP  
PFC OVP  
Low-Power  
Detect Comparator  
2.75V/2.5V  
SET  
CLR  
S
R
Q
Q
VDD  
FBPFC  
EN  
2.5V  
0.3V  
28V/27V  
VDD OVP  
13  
6
RM  
GmI  
-1.15V  
ISENSE  
GmV  
OPFC  
PFC ILIMIT  
VIN UVP  
10  
Range  
1.05V/1.9V  
VRMS  
SET  
CLR  
VRMS  
IAC  
S
R
Q
Q
k
x2  
PGND  
4
2
VEA  
9
IMO  
RM  
Gain Modulator  
2.8V  
3
7
ISENSE  
RT/CT  
RDY  
UVLO  
VDD  
5
FBPFC  
2.4V/1.15V  
OSCILLATOR  
SGND  
8
Figure 2. Functional Block Diagram  
Marking Information  
F – Fairchild Logo  
Z – Plant Code  
X – 1-Digit Year Code  
Y – 1-Digit Week Code  
TT – 2-Digit Die-Run Code  
T – Package Type (M: SOP)  
P – Y: Green Package  
M – Manufacture Flow Code  
Figure 3. Top Mark  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
3
Pin Configuration  
Figure 4. Pin Configuration  
Pin Definitions  
Pin #  
Name  
Description  
Output of Current Amplifier. This is the output of the PFC current amplifier. The signal from  
this pin is compared with sawtooth and determines the pulsewidth for PFC gate drive.  
1
IEA  
Input AC Current. For normal operation, this input is used to provide current reference for the  
multiplier. The suggested maximum IAC is 100µA.  
2
IAC  
Current Sense. The non-inverting input of the PFC current amplifier and the output of  
multiplier and PFC ILIMIT comparator.  
3
4
ISENSE  
VRMS  
Line-Voltage Detection. The pin is used for PFC multiplier.  
Ready Signal. This pin controls the power-on sequence. Once the FAN6982 is turned on and  
the FBPFC voltage exceeds in 2.4V, the RDY pin pulls LOW impedance. If the FBPFC voltage  
is lower than 1.15V, the RDY pin pulls HIGH impedance.  
5
6
RDY  
EN  
Enable Range Function. The range function is enabled when EN is connected to VREF. The  
range function is disabled when EN is connected to GND.  
7
8
9
RT/CT  
SGND  
PGND  
Oscillator RC Timing Connection. Oscillator timing node; timing set by RT and CT.  
Signal Ground.  
Power Ground.  
Gate Drive. The totem-pole output drive for PFC MOSFET. This pin is internally clamped  
under 15V to protect the MOSFET.  
10  
OPFC  
Power Supply. The threshold voltages for startup and turn-off are 11V and 9.3V, respectively.  
The operating current is lower than 10mA.  
11  
12  
13  
VDD  
VREF  
FBPFC  
Reference Voltage. Buffered output for the internal 7.5V reference.  
Voltage Feedback Input. The feedback input for PFC voltage loop. The inverting input of PFC  
error amplifier. This pin is connected to the PFC output through a divider network.  
Output of Voltage Amplifier. The error-amplifier output for PFC voltage feedback loop. A  
compensation network is connected between this pin and ground.  
14  
VEA  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device  
reliability. The absolute maximum ratings are stress ratings only.  
Symbol  
VDD  
Parameter  
Min.  
Max.  
30  
Unit  
V
DC Supply Voltage  
VH  
OPFC, RDY, EN, VREF  
-0.3  
-0.3  
0
30.0  
7.0  
V
VL  
IAC, VRMS, RT/CT, FBPFC, VEA  
IEA  
V
VIEA  
VN  
VVREF+0.3  
0.7  
V
ISENSE  
-5.0  
V
IAC  
Input AC Current  
1
mA  
mA  
A
IREF  
VREF Output Current  
5
IPFC-OUT  
PD  
Peak PFC OUT Current, Source or Sink  
Power Dissipation, TA < 50°C  
Thermal Resistance (Junction-to-Air)  
0.5  
800  
mW  
°C/W  
RΘ j-a  
104.10  
RΘ j-c  
TJ  
Thermal Resistance (Junction-to-Case)  
Operating Junction Temperature  
Storage Temperature Range  
40.61  
+125  
+150  
+260  
°C/W  
°C  
-40  
-55  
TSTG  
TL  
°C  
Lead Temperature (Soldering)  
°C  
Human Body Model,  
JESD22-A114  
4.5  
1.0  
ESD  
Electrostatic Discharge Capability  
kV  
Charged Device Model,  
JESD22-C101  
Notes:  
1. All voltage values, except differential voltage, are given with respect to the GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Operating Ambient Temperature  
Min.  
Max.  
Unit  
TA  
-40  
+105  
°C  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
5
Electrical Characteristics  
Unless otherwise noted; VDD=15V, TA= 25°C, TA=TJ, RT=27k, and CT=1000pF.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Units  
VDD Section  
Continuously Operating  
Voltage  
VDD-OP  
22  
V
IDD ST  
IDD-OP  
Startup Current  
VDD=VTH-ON-0.1V; OPFC Open  
VDD=13V; OPFC Open  
30  
2.3  
11  
80  
3.0  
12  
µA  
mA  
V
Operating Current  
Turn-on Threshold Voltage  
Hysteresis  
2.0  
10  
VTH-ON  
1.35  
1.90  
V
VTH  
VDD-OVP  
VDD-OVP  
VDD OVP  
27  
60  
58  
28  
1
29  
V
V
VDD OVP Hysteresis  
Oscillator  
fOSC  
PFC Frequency  
RT=27k, CT=1000pF  
11V VDD 22V  
-40°C ~ +105°C  
64  
67  
kHz  
(3)  
fDV  
Voltage Stability  
Temperature Stability  
Total Variation  
2
2
%
%
(3)  
fDT  
fTV  
fRV  
Line, Temperature  
Valley-to-Peak  
70  
kHz  
V
Ramp Voltage  
2.8  
IOSC-DIS  
fRANGE  
tPFC-DEAD  
VREF  
Discharge Current  
Frequency Range  
PFC Dead Time  
VRAMP=0V, VRT/CT=2.5V  
6.5  
50  
15.0  
75  
mA  
kHz  
ns  
RT=27k, CT=1000pF  
400  
600  
800  
VVREF  
Reference Voltage  
IREF=0mA, CREF=0.1µF  
7.4  
7.5  
30  
7.6  
50  
V
Load Regulation of  
Reference Voltage  
CREF=0.1µF, IREF=0mA to 3.5mA  
VVREF1  
VVREF2  
mV  
VVDD=14V, Rise/Fall Time > 20µs  
Line Regulation of Reference  
Voltage  
CREF=0.1µF, VVDD=11V to 22V  
25  
mV  
Temperature Stability(3)  
Total Variation(3)  
Long-Term Stability(3)  
-40°C ~ +105°C  
0.4  
0.5  
7.65  
25  
%
V
VVREF-DT  
VVREF-TV  
Line, Load, Temperature  
TJ=125°C, 0 ~ 1000HRs  
VVREF > 7.35V  
7.35  
5
VVREF-LS  
IREF-MAX  
mV  
mA  
Maximum Current  
5
Brownout  
VRMS-UVL  
VRMS Threshold Low  
VRMS Threshold High  
Hysteresis  
When VRMS=1.05V at 75 VRMS  
When VRMS=1.9V at 85 • 1.414  
1.00  
1.85  
750  
1.05  
1.90  
850  
1.10  
1.95  
950  
V
V
VRMS-UVH  
VRMS-UVP  
mV  
Under-Voltage Protection  
Debounce Time  
tUVP  
340  
410  
480  
ms  
RDY Section  
FBPFC Voltage Level to Pull  
Low Impedance with RDY Pin  
VFBPFC-RD  
2.3  
2.4  
2.5  
V
VFBPFC-RD  
IRDY-LEK  
Hysteresis  
1.15  
1.25  
1.35  
500  
0.5  
V
nA  
V
Leakage Current of RDY  
High Impedance  
VFBPFC<2.4V  
ISINK=2mA  
VRDY-L  
RDY Low Voltage  
Continued on the following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
6
Electrical Characteristics (Continued)  
Unless otherwise noted; VDD=15V, TA= 25°C, TA=TJ, RT=27k, and CT=1000pF.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Units  
Voltage Error Amplifier  
VREF  
AV  
Reference Voltage  
Open-Loop Gain(3)  
2.45 2.50  
2.55  
90  
V
dB  
µmho  
µA  
µA  
µA  
V
At TA=25°C  
35  
50  
40  
42  
70  
GmV  
Transconductance  
VNONINV=VINV, VVEA=3.75V at TA=25°C  
VFBPFC=2V, VVEA=1.5V  
IFBPFC-L  
IFBPFC-H  
IBS  
Maximum Source Current  
Maximum Sink Current  
Input Bias Current  
50  
VFBPFC=3V, VVEA=6V  
-50  
-40  
1
-1  
VVEA-H  
VVEA-L  
Output High Voltage on VVEA  
Output Low Voltage on VVEA  
5.8  
6.0  
0.1  
0.4  
0.7  
V
Current Error Amplifier  
VISENSE Input Voltage Range  
AI  
-1.5  
40  
V
dB  
µmho  
mV  
V
Open-Loop Gain(3)  
Transconductance  
Input Offset Voltage  
Output High Voltage  
Output Low Voltage  
Source Current  
At TA=25°C  
50  
88  
GmI  
VOFFSET  
VIEA-H  
VIEA-L  
IL  
VNONINV=VINV, VIEA=3.75V  
VVEA=0V, IAC Open  
75  
100  
10  
-10  
6.8  
7.4  
0.1  
50  
8.0  
0.4  
V
VISENSE= -0.6V, VIEA=1.5V  
VISENSE= +0.6V, VIEA=4.0V  
35  
µA  
µA  
IH  
Sink Current  
-50  
-35  
PFC OVP Comparator  
VFBPFC-OVP Over Voltage Protection  
2.70 2.75  
2.80  
300  
V
VFBPFC-OVP  
PFC OVP Hysteresis  
Low-Power Detect Comparator  
VVEA-OFF VEA Voltage Off OPFC  
200  
0.2  
2.2  
7.4  
250  
0.3  
2.8  
mV  
0.4  
3.3  
7.6  
V
V
PFC Soft-Start  
VVEA_CLAMP PFC Soft-Start  
EN Section  
VFBPFC < 2.4V  
VEN-H  
VEN-L  
High Voltage Level of VEN  
VEN=VVREF  
VEN=GND  
7.5  
0
V
V
Low Voltage Level of VEN  
Range  
VVRMS-L  
VVRMS-H  
VVEA-L  
VVEA-H  
ITC  
RMS AC Voltage Low  
RMS AC Voltage High  
VEA Low  
When VVRMS=1.95V at 132VRMS  
When VVRMS=2.45V at 150 VRMS  
When VVEA=1.95V at 30% Loading  
When VVEA=2.45V at 40% Loading  
1.90 1.95 20.00  
V
V
2.40 2.45  
1.90 1.95  
2.40 2.45  
2.50  
2.00  
2.50  
22  
V
VEA High  
V
Source Current from FBPFC  
18  
20  
µA  
Continued on the following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
7
Electrical Characteristics (Continued)  
Unless otherwise noted; VDD=15V, TA= 25°C, TA=TJ, RT=27k, and CT=1000pF.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Units  
Gain Modulator  
IAC  
Input for AC Current  
Gain Modulator(3)(4)  
Multiplier Linear Range  
0
100  
µA  
I
V
IAC=17.67µA, VVRMS=1.080V  
FBPFC=2.25V, at TA=25°C  
7.500 9.000 10.500  
IIAC=20µA, VVRMS=1.224V  
FBPFC=2.25V, at TA=25°C  
6.367 7.004  
3.801 4.182  
0.950 1.045  
7.704  
4.600  
1.149  
0.798  
V
IIAC=25.69µA, VVRMS=1.585V  
FBPFC=2.25V, at TA=25°C  
GAIN  
V
IIAC=51.62µA, VVRMS=3.169V  
FBPFC=2.25V, at TA=25°C  
V
IIAC=62.23µA, VVRMS=3.803V  
FBPFC=2.25V, at TA=25°C  
0.660 0.726  
2
V
BW  
Bandwidth  
IIAC=40µA  
kHz  
V
Output Voltage=5.7k×  
IAC=20µA, VRMS=1.224V  
VFBPFC=2.25V, at TA=25°C  
VO(GM)  
0.710 0.798  
0.885  
(ISENSE-IOFFSET  
)
PFC ILIMIT Comparator  
Peak Current Limit  
VPFC-ILIMIT Threshold Voltage  
Cycle-by-Cycle Limit  
-1.25  
200  
-1.15 -1.05  
V
PFC ILIMIT-Gain Modulator  
IIAC=17.67µA, VVRMS=1.08V  
FBPFC=2.25V, at TA=25°C  
Vpk  
mV  
Output  
V
PFC Output Driver  
Gate Output Clamping  
VGATE-CLAMP  
Voltage  
VDD=22V  
13  
15  
70  
17  
V
VGATE-L  
VGATE-H  
Gate Low Voltage  
Gate High Voltage  
VDD=15V; IO=100mA  
VDD=13V; IO=100mA  
1.5  
V
V
8
VDD=15V; CL=4.7nF;  
O/P= 2V to 9V  
tR  
tF  
Gate Rising Time  
Gate Falling Time  
40  
120  
110  
ns  
ns  
VDD=15V; CL=4.7nF;  
40  
94  
60  
97  
O/P= 9V to 2V  
DPFC-MAX  
DPFC-MIN  
Maximum Duty Cycle  
Minimum Duty Cycle  
VIEA<1.2V  
%
%
VIEA>4.5V  
0
Tri-Fault Detect  
VFBPFC=VFBPFC-OVP to FBPFC  
OPEN, 470pF from FBPFC to GND  
tFBPFC_OPEN Time to FBPFC Open  
2
4
ms  
V
PFC Feedback Under-  
VPFC-UVP  
0.4  
0.5  
0.6  
Voltage Protection  
Notes:  
3. This parameter, although guaranteed by design, is not 100% production tested.  
4. This gain is the maximum gain of modulation with a given VRMS voltage when VEA is saturated to high.  
© 2009 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6982 • Rev. 1.0.1  
8
Typical Performance Characteristics  
Figure 5. IDD-OP vs. Temperature  
Figure 6. VDD-OVP vs. Temperature  
Figure 7. fOSC vs. Temperature  
Figure 8. VVREF vs. Temperature  
Figure 9. VRMS-UVL vs. Temperature  
Figure 10. VRMS-UVH vs. Temperature  
Figure 11. VFBPFC-RD vs. Temperature  
Figure 12. IRDY-LEK vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
9
Typical Performance Characteristics (Continued)  
Figure 13. VREF vs. Temperature  
Figure 14. GmV vs. Temperature  
Figure 15. VOFFSET vs. Temperature  
Figure 16. GmI vs. Temperature  
Figure 17. VFBPFC-OVP vs. Temperature  
Figure 18. ITC vs. Temperature  
Figure 19. VO(GM) vs. Temperature  
Figure 20. VPFC-ILIMIT vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
10  
Typical Performance Characteristics (Continued)  
Figure 21. VGATE-CLAMP vs. Temperature  
Figure 22. VPFC-UVP vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
11  
Functional Description  
Oscillator  
The internal oscillator frequency of FAN6982 is  
determined by the timing resistor and capacitor on the  
RT/CT pin. The frequency of the internal oscillator is  
given by:  
1
G ∝  
2
VRMS  
1
fOSC  
=
(1  
)
0.56RT CT + 360CT  
The dead time for the PFC gate drive signal is  
determined by  
VRMS  
tDEAD = 360CT  
(2  
)
VRMS-UVP  
The dead time should be smaller than 2% of switching  
period to minimize line current distortion around line  
zero crossing.  
Figure 24. Modulation Gain Characteristics  
VIN  
Gain Modulator  
Gain modulator is the key block for PFC stage because  
it provides the reference to the current control error  
amplifier for the input current shaping, as shown in  
Figure 23. The output current of gain modulator is a  
function of VEA, IAC and VRMS. The gain of the gain  
modulator is given as a ratio between IMO and IAC with a  
given VRMS when VEA is saturated to high. The gain is  
inversely proportional to VRMS2, as shown in Figure 24,  
to implement line feed-forward. This automatically  
adjusts the reference of current control error amplifier  
according to the line voltage such that the input power  
of PFC converter is not changed with line voltage, as  
shown in, Figure 25.  
VEA  
IL  
Figure 25. Line Feed-Forward Operation  
To sense the RMS value of the line voltage, an  
averaging circuit with two poles is typically employed as  
shown in Figure 23. Notice that the input voltage of  
PFC is clamped at the peak of the line voltage once  
PFC stops switching since the junction capacitance of  
bridge diode is not discharged, as shown in Figure 26.  
Therefore, the voltage divider for VRMS should be  
designed considering the brownout protection trip point  
and minimum operation line voltage.  
IMO = G IAC  
K (VEA 0.6)  
= IAC  
PFC stops  
VRMS2(VEA  
0.6)  
MAX  
PFC runs  
VIN  
Figure 23. Gain Modulator Block  
VRMS  
Figure 26. VRMS According to the PFC Operation  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
12  
The rectified sinusoidal signal is obtained by the current  
flowing into the IAC pin. The resistor RIAC should be  
large enough to prevent saturation of the gain  
modulator as:  
The current-control feedback loop also has a pulse-by-  
pulse current limit comparator that forces the PFC  
switch to turn off if the ISENSE pin voltage drops below  
-1.15V until the next switching cycle.  
2VLINE.BO  
GMAX <159μA  
(3)  
Voltage-Control of Boost Stage  
The voltage-control loop regulates PFC output voltage  
using internal error amplifier such that the FBPFC  
voltage is same as internal reference of 2.5V.  
RIAC  
where VLINE.BO is the line voltage that trips brownout  
protection, GMAX is the maximum modulator gain when  
VRMS is 1.08V, and 159µA is the maximum output  
current of the gain modulator.  
To improve system efficiency at low AC line voltage  
and light-load condition, FAN6982 provides adjustable  
PFC output voltage. As shown in Figure 29, FAN6982  
monitors VEA and VRMS to adjust the PFC output  
voltage. When VEA and VRMS are lower than thresholds,  
internal current source of 20µA is enabled that flows  
through RFB2, increasing the voltage of the FBPFC pin.  
This causes the PFC output voltage to reduce when  
20µA is enabled as:  
Current-Control of Boost Stage  
As shown in Figure 27 the FAN6982 employs two  
control loops for power factor correction, a current-  
control loop and a voltage-control loop. The current-  
control loop shapes inductor current, as shown in  
Figure 28, based on the reference signal obtained at  
IAC pin as:  
RFB1 + R  
VOPFC 2  
=
FB2 ×(2.5- 20μA× RFB2  
)
(5)  
RFB2  
IL RCS1 = IMO RM = IAC G RM  
(4)  
Figure 29. Block of Adjustable PFC Output  
Brownout Protection  
FAN6982 has a built-in internal brownout protection  
comparator monitoring the voltage of the VRMS pin.  
Once the VRMS pin voltage is lower than 1.05V, the  
PFC stage is shutdown to protect the system from over  
current. FAN6982 starts up the boost stage once the  
VRMS voltage increases above 1.9V.  
TriFault Detect™  
Figure 27. Gain Modulation Block  
To improve power supply reliability, reduce system  
component count, and simplify compliance to UL 1950  
safety standards; the FAN6982 includes TriFault Detect  
technology. This feature monitors FBPFC for certain  
PFC fault conditions.  
IAC  
RM  
IMO  
In the case of a feedback path failure, the output of the  
PFC could exceed operating limits. Should FBPFC go  
too low, or too high, or open; TriFault Detect senses the  
error and terminates the PFC output drive.  
RCS1  
IL  
TriFault detect is an entirely internal circuit. It requires  
no external components to serve its protective function.  
Figure 28. Inductor Current Shaping  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
13  
PFC Soft-Start Function  
RDY Function  
The FAN6982 PFC soft-start function is shown in  
Figure 30. When bulk voltage is under the 96% of  
setting voltage; VEA clamps to 2.8V, the output current  
of multiplier cuts half, the rectifier line current is limited  
by current loop, and PFC output rise time increases.  
The FAN6982 RDY function, is shown in Figure 31, is  
controlled by voltage of FBPFC. If the voltage of  
FBPFC is over than 96% of 2.5V, the RDY pin is  
connected to SGND. If the FBPFC is under the 46% of  
2.5V, the RDY appears open-drain situation. Usually  
the capacitor is parallel with the RDY pin to prevent the  
layout noise.  
When bulk voltage is over 96%, the clamping function  
is disabled, and the bulk voltage can be regulated by  
voltage error amplifier.  
The PNP transistor can control the AHB LLC or dual-  
forward controller on the same side or the “op-to” to  
control the LLC controller on the other side.  
There have two advantages with PFC soft-start: one is  
the MOSFET experience of current is reduced, which  
can obtain more de-rating with MOSFET current level.  
The other one is to reduce the overshoot of PFC bulk  
voltage at the rising time because the charge current  
becomes small, the bulk voltage can not exceed to  
setting voltage easily.  
Figure 31. RDY Application Circuit  
Figure 30. PFC Soft-Start  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
14  
Physical Dimensions  
Figure 32. 14-Pin Small Outline Package (SOIC)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
15  
© 2009 Fairchild Semiconductor Corporation  
FAN6982 • Rev. 1.0.1  
www.fairchildsemi.com  
16  

相关型号:

FAN7000

Low Power Amplifier
FAIRCHILD

FAN7000D

Low Power Amplifier
FAIRCHILD

FAN7000DTF

Dual Audio Amplifier
ETC

FAN7005

200mW Stereo Power Amplifier with Shutdown
FAIRCHILD

FAN7005M

200mW Stereo Power Amplifier with Shutdown
FAIRCHILD

FAN7005MU

200mW Stereo Power Amplifier with Shutdown
FAIRCHILD

FAN7005MUX

200mW Stereo Power Amplifier with Shutdown
FAIRCHILD

FAN7005MX

200mW Stereo Power Amplifier with Shutdown
FAIRCHILD

FAN7021

CMOS Power Amplifier
FAIRCHILD

FAN7021M

AUDIO AMPLIFIER|SINGLE|CMOS|SOP|8PIN|PLASTIC
FAIRCHILD

FAN7021MX

Audio Amplifier, 1W, 1 Channel(s), 1 Func, CMOS, PDSO8, 0.225 INCH, SOP-8
FAIRCHILD

FAN7023

1W CMOS Mono Power Amplifier
FAIRCHILD