FAN6206MY

更新时间:2024-09-18 12:52:35
品牌:FAIRCHILD
描述:Highly Integrated Dual-Channel Synchronous Rectification Controller

FAN6206MY 概述

Highly Integrated Dual-Channel Synchronous Rectification Controller 高度集成的双通道同步整流控制器 开关式稳压器或控制器

FAN6206MY 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Obsolete零件包装代码:SOIC
包装说明:SOP,针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.31.00.01风险等级:5.66
模拟集成电路 - 其他类型:DUAL SWITCHING CONTROLLER控制技术:PULSE WIDTH MODULATION
最大输入电压:25 V最小输入电压:8 V
标称输入电压:20 VJESD-30 代码:R-PDSO-G8
JESD-609代码:e3长度:4.9 mm
湿度敏感等级:3功能数量:1
端子数量:8最高工作温度:105 °C
最低工作温度:-40 °C封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
认证状态:Not Qualified座面最大高度:1.75 mm
表面贴装:YES切换器配置:PHASE-SHIFT
温度等级:INDUSTRIAL端子面层:Matte Tin (Sn)
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:30
宽度:3.9 mmBase Number Matches:1

FAN6206MY 数据手册

通过下载FAN6206MY数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
April 2010  
FAN6206  
Highly Integrated Dual-Channel Synchronous  
Rectification Controller for Dual-Forward Converter  
Features  
Description  
The highly integrated FAN6206 is a dual-channel  
synchronous rectification (SR) controller. FAN6206  
allows design of a cost-effective power supply with  
fewer external components, especially suited for dual-  
forward topology used to obtain higher efficiency for  
ATX power supplies.  
ƒ
ƒ
Highly Integrated Dual-Channel SR Controller  
Receives Synchronized Driving Signal from the  
Primary Side  
ƒ
ƒ
Internal Linear-Predict Timing Control for DCM  
Operation  
The primary-side control method provides synchronous  
rectification control for dual-forward converters that  
operate in continuous conduction mode (CCM).  
FAN6206 includes a proprietary linear-predict timing  
control mechanism for dual-forward converters that  
operate in discontinuous conduction mode (DCM) at  
fixed or variable frequency. PWM frequency tracking  
with secondary-side winding detection is provided by  
adding dividing resistors. The primary-side signals are  
generated from Fairchild’s FAN6210 (Primary-Side  
Synchronous Rectifier Signal Trigger for Dual-Forward  
Converter). The primary-side signals are transferred  
through a pulse transformer to the secondary-side. The  
benefits of this technique include simple control method  
and improved power system reliability.  
Ultra-Low VDD Operating Voltage for Different  
Output Voltage of PC Power  
ƒ
ƒ
VDD Over-Voltage Protection  
14V Gate Driver Clamp  
Applications  
ƒ
ƒ
ƒ
PC Power  
Server Power  
Open-Frame SMPS  
FAN6206 is available in 8-pin SOP package.  
Ordering Information  
Operating  
Temperature Range  
Packing  
Part Number  
Package  
Method  
-40°C to +105°C  
FAN6206MY  
8-Pin Small Outline Package (SOP)  
Tape & Reel  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
Application Diagram  
Figure 1. Typical Application  
Internal Block Diagram  
Figure 2. Functional Block Diagram  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
2
Marking Information  
F: Fairchild Logo  
Z: Plant Code  
X: Year Code  
Y: Week Code  
TT: Package Type  
T: M=SOP  
P: Y: Green Package  
M: Manufacture Flow Code  
Figure 3. Top Mark  
Pin Configuration  
Figure 4. Pin Configuration  
Description  
Pin Definitions  
Pin #  
Name  
Winding detection. This pin is used to detect the voltage on the winding during the on-time  
period of the primary GATE. An internal current source, ICHG, is determined according to the  
voltage on the DET pin.  
LPC1,  
LPC2  
1,2  
Synchronized signal to turn on SR. This pin is used to receive the “XN” signal from the primary  
side to turn off the SR gate.  
3
4
5
SN  
SP  
Synchronized signal to turn on SR. This pin is used to receive the “XP” signal from the primary-  
side to turn-on the SR gate.  
Power supply pin. The threshold voltages for startup and turn-off are 8.5V and 7.5V,  
respectively.  
VDD  
6
7
8
GATE2 Driver output for freewheeling synchronous rectifier MOSFET.  
GND Ground  
GATE1 Driver output for rectifying synchronous rectifier MOSFET.  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VDD  
VHV  
VL  
DC Supply Voltage  
SP, SN  
30  
30  
V
V
LPC  
-0.3  
7.0  
V
PD  
Power Dissipation at TA < 50°C  
400  
130  
46  
mW  
°C/W  
°C/W  
°C  
ΘJA  
Ψjt  
Junction to Ambient Thermal Resistance  
Junction to Top Thermal Characteristics  
Operating Junction Temperature  
TJ  
-40  
-55  
+125  
+150  
+260  
4.00  
1.25  
TSTG  
TL  
Storage Temperature Range  
°C  
Lead Temperature, (Soldering 10 Seconds)  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
°C  
ESD  
kV  
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
2. All voltage values, except differential voltages, are given with respect to GND pin.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TA  
Operating Ambient Temperature  
-40  
+105  
°C  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
4
Electrical Characteristics  
VDD=20V, TA=25Ԩ, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Units  
VDD Section  
VOP  
Continuously Operating Voltage  
Turn-On Threshold Voltage  
Turn-On Threshold Voltage  
Turn-Off Threshold Voltage  
Turn-Off Threshold Voltage  
Operating Current  
25  
9.0  
9.0  
8.0  
8.0  
5
V
V
VTH-ON1  
VTH-ON2  
VTH-OFF1  
VTH-OFF2  
IDD-OP  
8.0  
8.0  
7.0  
7.0  
8.5  
8.5  
7.5  
7.5  
3
V
V
V
VDD=15V, DET=50KHz  
VDD = 7.5V  
mA  
μA  
V
IDD-ST  
Startup Current  
340  
21  
500  
22  
VDD-OVP1  
VDD-OVP2  
VDD-OVP-HYS1  
VDD-OVP-HYS2  
tOVP1  
VDD Over-Voltage Protection 1  
VDD Over-Voltage Protection 2  
Hysteresis Voltage for VDD OVP 1  
Hysteresis Voltage for VDD OVP 2  
VDD OVP Debounce Time 1  
VDD OVP Debounce Time 2  
20  
20  
21  
22  
V
1.2  
1.2  
40  
1.7  
1.7  
60  
2.2  
2.2  
100  
100  
V
V
μs  
μs  
tOVP2  
40  
60  
Output Drive for SR MOSFET Section  
VZ1  
VZ2  
Output Voltage Maximum (Clamp) 1 VDD = 20V  
Output Voltage Maximum (Clamp) 2 VDD = 20V  
12  
12  
14  
14  
V
V
V
V
V
V
VOL1  
VOL2  
VOH1  
VOH2  
Output Voltage LOW 1  
Output Voltage LOW 2  
Output Voltage HIGH 1  
Output Voltage HIGH 2  
VDD=12V, IO=50mA  
VDD=12V, IO=50mA  
VDD=12V, IO=50mA  
VDD=12V, IO=50mA  
0.5  
0.5  
9
9
VDD=12V, CL=7nF,  
OUT=2V~9V  
tR1  
tR2  
tF1  
tF2  
Rising Time 1  
Rising Time 2  
Falling Time1  
30  
30  
20  
20  
70  
70  
50  
50  
120  
120  
100  
100  
ns  
ns  
ns  
VDD=12V, CL=7nF,  
OUT=2V~9V  
VDD=12V, CL=7nF,  
OUT=9V~2V  
VDD=12V, CL=7nF,  
OUT=9V~2V  
Falling Time 2  
ns  
V
VZ1  
Output Voltage Maximum (Clamp)  
VDD = 20V  
12  
14  
tPD-HIGH-SP1  
tR+tPD  
(Trigger by SP),  
|SP-SN|=5V  
,
280  
280  
180  
180  
350  
450  
Propagation Delay to OUT HIGH  
Propagation Delay to OUT LOW  
ns  
tPD-HIGH-SP2  
tPD-LOW-SN1  
tPD-LOW-SN2  
350  
250  
250  
450  
350  
350  
tR+tPD  
,
(Trigger by SN),  
|SP-SN|=5V  
ns  
ns  
tPD-LOW-LPC1  
tPD-LOW-LPC2  
tON-MAX1  
100  
100  
12  
150  
150  
13  
200  
200  
14  
tR+tPD  
(Trigger by LPC)  
,
Propagation Delay to OUT LOW  
Maximum On Time  
μs  
μs  
tON-MAX2  
12  
13  
14  
Continued on the following page…  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
5
Electrical Characteristics  
VDD=20V, TA=25°C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
SP/SN Section  
Threshold Voltage of  
VN-VP to Turn-Off SR MOS 1  
Sweep VN-P- from LOW  
to HIGH  
VN-P(turn off) 1  
VN-P(turn off) 2  
VP-N(turn on) 1  
VP-N(turn on) 2  
3
3
3
3
4
4
4
4
5
5
5
5
5
V
V
Threshold Voltage of  
VN-VP to Turn-Off SR MOS 2  
Threshold Voltage of  
VP-VN to Turn-On SR MOS 1  
Sweep VP-N- from LOW  
to HIGH  
V
Threshold Voltage of  
VP-VN to Turn-On SR MOS 2  
Sweep VP-N- from LOW  
to HIGH  
V
Voltage Difference between  
SP and SN  
| VSP-VSN | /  
Ratio_SP-SN  
%
MIN(VSP,VSN  
)
LPC Section  
Connect a Diode  
Charge Divide Discharge Current 1N4148 and Divider  
Ratio_LPC-RES  
2.79  
3.00  
3.21  
Transfer Ratio vs. Input Voltage  
(Ratio 12) to LPC,  
DET = 3V, VLPC = 3V  
V
VLPC-EN1  
VLPC-EN2  
LPC Enable Threshold Voltage 1  
LPC Enable Threshold Voltage 2  
1.8  
1.8  
2.0  
2.0  
2.2  
2.2  
V
V
VLPC-CLAMP1 Lower Clamp Voltage 1  
VLPC-CLAMP2 Lower Clamp Voltage 2  
ILPC-SOURCE1 Maximum Source Current 1  
ILPC-SOURCE2 Maximum Source Current 2  
ILPC = -5μA  
ILPC = -5μA  
VLPC = -0.3V  
VLPC = -0.3V  
0.10  
0.10  
0.25  
0.25  
250  
250  
0.40  
0.40  
300  
300  
V
V
μA  
μA  
Threshold Voltage for Disable  
LPC Function  
VLPC-LOW1  
1.3  
1.3  
70  
1.5  
1.5  
1.7  
1.7  
V
V
Threshold Voltage for Disable  
LPC Function  
VLPC-LOW2  
Debounce Time for Disable LPC  
μs  
μs  
tLPC-LOW1  
Function  
VLPC < VLPC-LOW  
100  
100  
130  
130  
Debounce Time for Disable LPC  
tLPC-LOW2  
Function  
VLPC < VLPC-LOW  
70  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
6
Typical Performance Characteristics  
These characteristic graphs are normalized at TA = 25°C.  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 5. Turn-On Threshold Voltage 1  
Figure 6. Turn-On Threshold Voltage 2  
7.7  
7.6  
7.5  
7.4  
7.3  
7.7  
7.6  
7.5  
7.4  
7.3  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 7. Turn-Off Threshold Voltage 1  
Figure 8. Turn-Off Threshold Voltage 2  
2.9  
2.8  
2.7  
2.6  
2.5  
500  
400  
300  
200  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 9. Operating Current  
Figure 10.Startup Current  
420  
400  
380  
360  
340  
320  
300  
280  
420  
400  
380  
360  
340  
320  
300  
280  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 11.Propagation Delay to OUT HIGH 1  
(Trigger by SP)  
Figure 12.Propagation Delay to OUT HIGH 2  
(Trigger by SP)  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
7
Typical Performance Characteristics  
These characteristic graphs are normalized at TA = 25°C.  
350  
300  
250  
200  
150  
350  
300  
250  
200  
150  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 13.Propagation Delay to OUT LOW 1  
(Trigger by SN)  
Figure 14.Propagation Delay to OUT LOW 2  
(Trigger by SN)  
180  
160  
140  
120  
180  
160  
140  
120  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 15.Propagation Delay to OUT LOW 1  
(Trigger by LPC)  
Figure 16.Propagation Delay to OUT LOW 2  
(Trigger by LPC)  
14.0  
13.5  
13.0  
12.5  
12.0  
14.0  
13.5  
13.0  
12.5  
12.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature℃  
Temperature℃  
Figure 17.Maximum On Time 1  
Figure 18.Maximum On Time 2  
5.0  
4.5  
4.0  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 19.Threshold Voltage of VN-VP  
to Turn Off SR MOS 1  
Figure 20.Threshold Voltage of VN-VP  
to Turn Off SR MOS 2  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
These characteristic graphs are normalized at TA = 25°C.  
5.0  
4.5  
4.0  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 21.Threshold Voltage of VP-VN  
to Turn On SR MOS 1  
Figure 22.Threshold Voltage of VP-VN  
to Turn On SR MOS 2  
2.2  
2.1  
2.0  
1.9  
1.8  
2.2  
2.1  
2.0  
1.9  
1.8  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 23.LPC Enable Threshold Voltage 1  
Figure 24.LPC Enable Threshold Voltage 2  
0.4  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
0.1  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 25.Lower Clamp Voltage 1  
Figure 26.Lower Clamp Voltage 2  
300  
275  
250  
225  
200  
300  
275  
250  
225  
200  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature℃  
Temperature℃  
Figure 27.Maximum Source Current 1  
Figure 28.Maximum Source Current 2  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
9
Function Description  
Figure 29 and Figure 30 show the simplified circuit  
diagram of a dual-forward converter and its key  
waveforms. Switches Q1 and Q2 are turned on and off  
together. Once Q1 and Q2 are turned on, input voltage is  
applied across the transformer primary side and power  
is delivered to the secondary side through the  
transformer, powering D1. During this time, the  
magnetizing current linearly increases. When Q1 and Q2  
are turned off, the magnetizing current of the  
transformer forces the reset diodes (DR1 and DR2) and  
negative input voltage is applied across the transformer  
primary side. During this time, magnetizing current  
linearly decreases to zero and the secondary-side  
inductor current freewheels through diode D2. When  
synchronous rectifier SR1 and SR2 are used instead of  
diodes D1 and D2, it is important to have proper timing  
between drive signals for SR1 and SR2.  
Figure 31 shows a typical application circuit. When a  
dual-forward converter operates in continuous  
conduction mode, the SR gate signals (GATE1 and  
GATE2) are mainly controlled by SP and SN signals. SP  
and SN signals are transferred through  
a pulse  
transformer from XP and XN signals, which are  
generated by FAN6210 (Primary-Side Synchronous  
Rectifier Signal Trigger for Dual Forward Converter).  
Figure 31.Typical Application Circuit  
Figure 32 shows the timing diagram for continuous  
conduction mode (CCM). Figure 33 shows the timing  
diagram for discontinuous conduction mode (DCM).  
The switching operation of SR MOSFETs Q3 and Q4 is  
determined by the SN and SP signals. FAN6206 turns  
on SR MOSFETs at the rising edge of the SP signal,  
while it turns off the SR MOSFETs at the rising edge of  
the SN signal. Within one switching cycle, SP and SN  
are obtained two times.  
Figure 29.Simplified Circuit Diagram of  
Dual-Forward Converter  
With a voltage divider R1 and R2 connected from LPC1  
to secondary winding, R3 and R4 connected from LPC2  
to secondary winding, the PWM timing sequences and  
frequency can be tracked precisely. The SR MOSFET is  
turned on by SP signal only when the voltage level on  
LPC1 or LPC2 pin is pulled LOW to GND.  
During PWM-on period, the rectifying SR Q3 is turned on  
by the rising edge of the SP signal after a propagation  
delay (tPD-HIGH-SP1) and Q3 is turned off by the rising edge  
of the SN signal after a propagation delay (tPD-LOW-SN1).  
During PWM-off period, the freewheeling SR Q4 is  
turned on by the rising edge of the SP signal after a  
propagation delay (tPD-HIGH-SP2) and Q4 is turned off by  
the rising edge of the SN signal after a propagation  
delay (tPD-LOW-SN2) in CCM operation.  
In DCM operation, the proprietary Linear-Predict Timing  
Control (LPC) technique can provide synchronous  
rectification control mechanism for freewheeling SR  
MOSFET. Since SN signal is sent following with PWM  
signal, the freewheeling SR MOSFET cannot be turned  
off in time by SN signal before ILo linearly decreases to  
zero. Therefore, the LPC mechanism is applied to turn  
off Q3 in DCM mode.  
Figure 30.Key Waveforms of Dual-Forward  
Converter  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
10  
Figure 32. SR Gate is Driven by SP & SN Signal in CCM Mode  
Figure 33.Freewheeling SR Turned Off by LPC Mechanism in DCM Mode  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
11  
Linear-Predict Timing Control  
Under-Voltage Lockout (UVLO)  
When a dual-forward converter operates in CCM or  
DCM; in PWM tON period, the VIN voltage is applied to  
the primary winding and the secondary inductor starts to  
rise linearly and store energy. The across voltage on  
secondary winding is coupled from primary winding and  
proportional to VIN. The SR controller can detect this  
winding voltage through a voltage divider and acquire  
the VIN level. According to this detected VIN level during  
PWM turn-on period, SR controller produces a charge  
current ICHG to charge internal capacitor, CT, of the SR  
controller. On the other hand, at PWM turn-off period,  
the energy stored in the secondary inductor is  
discharged. The SR controller also detects the output  
voltage level to modulate discharge current IDISCHG of  
internal capacitor, CT. Once the internal capacitor  
voltage reaches zero, SR controller turns off SR MOS  
immediately.  
The power-on and off thresholds are fixed at 8.5V and  
7.5V. The VDD pin is connected to a 12V output voltage  
terminal.  
VDD Pin Over-Voltage Protection  
The over-voltage conditions are usually caused by open  
feedback loops. VDD over-voltage protection is built in to  
prevent damage if over voltage occurs. When the  
voltage on the VDD pin exceeds 21V, the SR controller  
turns off all of SR MOS operations.  
R4 is connected between the LPC2 pin and the drain  
terminal of Q4. During PWM turn-on period, voltage on  
the LPC2 pin is pulled HIGH due to the secondary  
winding coupled from primary winding. At this moment,  
SR MOS is turned off and the internal body diode of SR  
MOS is reverse-biased. During PWM turn-off period, the  
potential on the primary winding reverses and the  
internal body diode starts to conduct output current. The  
voltage on the LPC2 pin is also pulled LOW to GND. R2  
is recommended as 10kand the divided voltage level  
on the LPC1 pin is suggested between 3V~5V. If the  
voltage level of VO is 12V, the resistor values are  
recommended as 105kfor R3 and 10kfor R4. The  
R4  
turn-off timing of Q4 is determined by the ratio  
R3 + R4  
R4  
as Figure 34 shows. If  
off earlier.  
decreases, Q4 is turned  
R3 + R4  
Figure 34.Turn-Off Timing of Freewheeling SR  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
12  
Typical Application Circuit (Dual-Forward Converter with SR)  
Application  
Fairchild Devices  
Input Voltage Range  
Output  
FAN4801  
FAN6210  
FAN6206  
PC Power  
90~264VAC  
12V/25A  
Figure 35. Application Circuit  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
13  
Physical Dimensions  
5.00  
4.80  
A
0.65  
3.81  
8
5
B
1.75  
6.20  
5.80  
4.00  
3.80  
5.60  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.10  
C
0.51  
0.33  
OPTION A - BEVEL EDGE  
0.50  
0.25  
x 45°  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8°  
0°  
0.90  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA, ISSUE C,  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
(1.04)  
0.406  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.  
E) DRAWING FILENAME: M08AREV13  
DETAIL A  
SCALE: 2:1  
Figure 36. 8-Pin Small Outline Package (SOP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the  
warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
14  
© 2010 Fairchild Semiconductor Corporation  
FAN6206 • Rev. 1.0.2  
www.fairchildsemi.com  
15  

FAN6206MY 相关器件

型号 制造商 描述 价格 文档
FAN6208 FAIRCHILD Secondary-Side Synchronous Rectifier (SR) for LLC Resonant Converter 获取价格
FAN6208MY FAIRCHILD Secondary-Side Synchronous Rectifier Controller 获取价格
FAN6208MY_12 FAIRCHILD Secondary-Side Synchronous Rectifier Controller for LLC Topology 获取价格
FAN6208_12 FAIRCHILD Secondary-Side Synchronous Rectifier Controller for LLC Topology 获取价格
FAN6210 FAIRCHILD Primary-Side Synchronous Rectifier (SR) Trigger Controller for Dual Forward Converter 获取价格
FAN6210MY FAIRCHILD Primary-Side Synchronous Rectifier (SR) Trigger Controller for Dual Forward Converter 获取价格
FAN6210_10 FAIRCHILD Primary-Side Synchronous Rectifier (SR) Trigger Controller 获取价格
FAN6224 ONSEMI Synchronous Rectification Controller 获取价格
FAN6224M ONSEMI Synchronous Rectification Controller 获取价格
FAN6230A ONSEMI Secondary-Side Synchronous Rectification Controller 获取价格

FAN6206MY 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6