FAN5350MPX [FAIRCHILD]

3MHz, 600mA Step-Down DC-DC Converter in Chip-Scale and MLP Packaging; 3MHz的,在芯片规模和MLP封装600mA降压DC- DC转换器
FAN5350MPX
型号: FAN5350MPX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

3MHz, 600mA Step-Down DC-DC Converter in Chip-Scale and MLP Packaging
3MHz的,在芯片规模和MLP封装600mA降压DC- DC转换器

转换器
文件: 总15页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2007  
FAN5350  
3MHz, 600mA Step-Down DC-DC Converter in  
Chip-Scale and MLP Packaging  
Features  
Description  
The FAN5350 is a step-down switching voltage regulator  
that delivers a fixed 1.82V from an input voltage supply  
of 2.7V to 5.5V. Using a proprietary architecture with  
synchronous rectification, the FAN5350 is capable of  
delivering 600mA at over 90% efficiency, while  
maintaining a very high efficiency of over 80% at load  
currents as low as 1mA. The regulator operates at a  
nominal fixed frequency of 3MHz at full load, which  
reduces the value of the external components to 1µH for  
the output inductor and 4.7µF for the output capacitor.  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
3MHz Fixed-Frequency Operation  
16µA Typical Quiescent Current  
600mA Output Current Capability  
2.7V to 5.5V Input Voltage Range  
1.82V Fixed Output Voltage  
Synchronous Operation  
Power-Save Mode  
At moderate and light loads, pulse frequency modulation  
is used to operate the device in power-save mode with a  
typical quiescent current of 16µA. Even with such a low  
quiescent current, the part exhibits excellent transient  
response during large load swings. At higher loads, the  
system automatically switches to fixed-frequency  
control, operating at 3MHz. In shutdown mode, the  
supply current drops below 1µA, reducing power  
consumption.  
Soft-Start Capability  
Input Under-Voltage Lockout (UVLO)  
Thermal Shutdown and Overload Protection  
6-Lead 3 x 3mm MLP  
5-Bump 1 x 1.37mm WLCSP  
Applications  
The FAN5350 is available in a 6-lead Molded Leadless  
Package (MLP) and a 5-bump Wafer Level Chip Scale  
Package (WLCSP).  
ƒ
ƒ
ƒ
ƒ
ƒ
Cell Phones, Smart-Phones  
Pocket PCs  
WLAN DC-DC Converter Modules  
PDA, DSC, PMP, and MP3 Players  
Portable Hard Disk Drives  
Ordering Information  
Operating  
Temperature Range  
Part Number Pb-Free  
Package  
Packing Method  
FAN5350UCX  
FAN5350MPX  
Yes  
Yes  
-40°C to 85°C  
-40°C to 85°C  
WLCSP-5 1x1.37mm  
MLP-6 3 x 3mm  
Tape and Reel(1)  
Tape and Reel(1)  
Note:  
1. Please refer to tape and reel specifications on www.fairchildsemi.com; http://www.fairchildsemi.com/packaging.  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
Typical Applications  
4.7µF  
VIN  
CIN  
PGND  
VIN  
1
2
3
6
5
4
VIN  
4.7µF  
CIN  
VIN  
GND  
A1 A3  
P1  
(GND)  
AGND  
FB  
SW  
EN  
L1  
B2  
SW  
FB  
VOUT  
1µH  
EN  
C1  
C3  
4.7µF  
COUT  
L1  
VOUT  
COUT  
Η  
4.7µF  
Figure 1. WLCSP (top view)  
Figure 2. MLP (top view)  
Block Diagram  
VIN  
Current Limit  
Bias  
EN  
1.8V  
Reference  
+
-
SW  
Modulator  
Logic  
Driver  
FB  
3MHz OSC  
Zero Crossing  
GND  
Figure 3. Block Diagram  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
2
Pin Configurations  
A1 A3  
A3 A1  
B2  
VIN  
GND  
SW  
GND  
SW  
VIN  
B2  
EN C1 C3 FB  
FB C3 C1 EN  
Figure 4. WLCSP - Bumps Facing Down  
Figure 5. WLCSP - Bumps Facing Up  
PGND  
AGND  
FB  
1
2
3
6
5
4
VIN  
SW  
EN  
P1  
(GND)  
Figure 6. 3x3mm MLP - Leads Facing Down  
Pin Definitions  
WLCSP  
Pin #  
A1  
Name Description  
VIN  
Power Supply Input.  
A3  
GND  
Ground Pin. Signal and power ground for the part.  
Enable Pin. The device is in shutdown mode when voltage to this pin is <0.4V and enabled  
when >1.2V. Do not leave this pin floating.  
C1  
EN  
C3  
B2  
FB  
Feedback Analog Input. Connect directly to the output capacitor.  
SW  
Switching Node. Connection to the internal PFET switch and NFET synchronous rectifier.  
MLP  
Pin #  
Name Description  
Power Ground Pin. Power stage ground. Connect PGND and AGND together via the board  
ground plane.  
1
PGND  
2
3
AGND  
FB  
Analog Ground Pin. Signal ground for the part.  
Feedback Analog Input. Connect directly to the output capacitor.  
Enable Pin. The device is in shutdown mode when voltage to this pin is <0.4V and enabled  
when >1.2V. Do not leave this pin floating.  
4
EN  
5
6
SW  
VIN  
Switching Node. Connection to the internal PFET switch and NFET synchronous rectifier.  
Power Supply Input.  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
-0.3  
-0.3  
-40  
Max.  
6.0  
Unit  
V
Input Voltage with respect to GND  
VIN  
Voltage on any other pin with respect to GND  
Junction Temperature  
VIN  
V
TJ  
TSTG  
TL  
150  
150  
260  
°C  
°C  
°C  
kV  
kV  
V
Storage Temperature  
-65  
Lead Temperature (Soldering 10 Seconds)  
Human Body Model  
4.5  
1.5  
200  
ESD  
Electrostatic Discharge Protection Level  
Charged Device Model  
Machine Model  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
VCC  
IOUT  
L
Parameter  
Min.  
2.7  
0
Typ.  
Max.  
5.5  
Unit  
V
Supply Voltage Range  
Output Current  
600  
mA  
µH  
µF  
µF  
°C  
Inductor  
0.7  
3.3  
3.3  
-40  
-40  
1.0  
4.7  
4.7  
3.0  
CIN  
Input Capacitor  
12.0  
12.0  
+85  
+125  
COUT  
TA  
Output Capacitor  
Operating Ambient Temperature  
Operating Junction Temperature  
TJ  
°C  
Thermal Properties  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Junction-to-Ambient Thermal Resistance(2)  
Junction-to-Ambient Thermal Resistance(2)  
°C/W  
°C/W  
180  
49  
ΘJA_WLCSP  
ΘJA_MLP  
Note:  
2. Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with  
four-layer 1s2p boards in accordance to JESD51- JEDEC standard. Special attention must be paid not to exceed  
junction temperature TJ(max) at a given ambient temperate TA.  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
4
Electrical Characteristics  
Minimum and maximum values are at VIN = 2.7V to 5.5V, TA = -40°C to +85°C, CIN = COUT = 4.7µF, L = 1µH, unless  
otherwise noted. Typical values are at TA = 25°C, VIN =3.6V.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Units  
Power Supplies  
Device is not switching, EN=VIN  
Device is switching, EN=VIN  
VIN = 3.6V, EN = GND  
Rising Edge  
16  
18  
µA  
IQ  
Quiescent Current  
25  
µA  
µA  
I(SD)  
Shutdown Supply Current  
0.05  
1.00  
2.1  
1.8  
1.75  
1.2  
VUVLO  
Under-Voltage Lockout Threshold  
V
Falling Edge  
1.95  
V(ENH)  
V(ENL)  
Enable HIGH-Level Input Voltage  
Enable LOW-Level Input Voltage  
Enable Input Leakage Current  
V
V
0.4  
I(EN)  
EN = VIN or GND  
0.01  
3.0  
1.00  
µA  
Oscillator  
f0SC  
Oscillator Frequency  
2.5  
3.5  
MHz  
Regulation  
ILOAD = 0 to 600mA  
CCM  
1.775  
1.784  
1.820  
1.820  
1.865  
1.856  
300  
V
V
VO  
Output Voltage Accuracy  
tSS  
Soft-Start  
EN = 0 -> 1  
µs  
Output Driver  
PMOS On Resistance  
VIN = VGS = 3.6V  
VIN = VGS = 3.6V  
Open-Loop(3)  
CCM Only  
180  
170  
800  
150  
20  
mΩ  
mΩ  
mA  
°C  
RDS(on)  
NMOS On Resistance  
PMOS Peak Current Limit  
Thermal Shutdown  
ILIM  
650  
900  
TTSD  
THYS  
Thermal Shutdown Hysteresis  
°C  
Note:  
3. The Electrical Characteristics table reflects open-loop data. Refer to Operation Description and Typical  
Characteristic for closed-loop data.  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
5
Operation Description  
The FAN5350 is a step-down switching voltage regulator  
that delivers a fixed 1.82V from an input voltage supply of  
2.7V to 5.5V. Using a proprietary architecture with  
synchronous rectification, the FAN5350 is capable of  
delivering 600mA at over 90% efficiency, while  
maintaining a light load efficiency of over 80% at load  
currents as low as 1mA. The regulator operates at a  
nominal frequency of 3MHz at full load, which reduces the  
value of the external components to 1µH for the output  
inductor and 4.7µF for the output capacitor.  
Enable and Soft Start  
Maintaining the EN pin LOW keeps the FAN5350 in  
non-switching mode in which all circuits are off and the  
part draws ~50nA of current. Increasing EN above its  
threshold voltage activates the part and starts the soft-  
start cycle. During soft start, the current limit is  
increased in discrete steps so that the inductor current is  
increased in a controlled manner. This minimizes any  
large surge currents on the input and prevents any  
overshoot of the output voltage.  
Control Scheme  
The FAN5350 uses a proprietary non-linear, fixed-  
frequency PWM modulator to deliver a fast load  
Under-Voltage Lockout  
When EN is high, the under-voltage lock-out keeps the  
part from operating until the input supply voltage rises  
high enough to properly operate. This ensures no  
misbehavior of the regulator during start-up or shutdown.  
transient response, while maintaining  
a
constant  
switching frequency over a wide range of operating  
conditions. The regulator performance is independent of  
the output capacitor ESR, allowing for the use of  
ceramic output capacitors. Although this type of  
operation normally results in a switching frequency that  
varies with input voltage and load current, an internal  
frequency loop holds the switching frequency constant  
over a large range of input voltages and load currents.  
Current Limiting  
A heavy load or short circuit on the output causes the  
current in the inductor to increase until a maximum  
current threshold is reached in the high-side switch.  
Upon reaching this point, the high-side switch turns off,  
preventing high currents from causing damage.  
For very light loads, the FAN5350 operates in  
discontinuous current (DCM) single-pulse PFM mode,  
which produces low output ripple compared with other  
PFM architectures. Transition between PWM and PFM  
is seamless, with a glitch of less than 14mV at VOUT  
during the transition between DCM and CCM modes.  
The peak current limit shown in Figure 16, ILIM(PK) is  
slightly higher than the open-loop tested current limit,  
I
LIM(OL), in the Electrical Characteristics table. This is  
primarily due to the effect of propagation delays of the  
IC current limit comparator.  
Combined with exceptional transient response  
characteristics, the very low quiescent current of the  
controller (<16µA) maintains high efficiency, even at  
very light loads, while preserving fast transient response  
for applications requiring very tight output regulation.  
Thermal Shutdown  
When the die temperature increases, due to a high load  
condition and/or a high ambient temperature, the output  
switching is disabled until the temperature on the die  
has fallen sufficiently. The junction temperature at which  
the thermal shutdown activates is nominally 150°C with  
a 20°C hysteresis.  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
6
Applications Information  
Selecting the Inductor  
The output inductor must meet both the required  
inductance and the energy handling capability of the  
application.  
The increased RMS current produces higher losses  
through the RDS(ON) of the IC MOSFETs as well as the  
inductor ESR.  
Increasing the inductor value produces lower RMS  
currents, but degrades transient response. For a given  
physical inductor size, increased inductance usually  
results in an inductor with lower saturation current.  
The inductor value affects the average current limit, the  
PWM-to-PFM transition point, the output voltage ripple,  
and the efficiency.  
Table 1 shows the effects of inductance higher or lower  
than the recommended 1μH on regulator performance.  
The ripple current (I) of the regulator is:  
VOUT  
V
VOUT  
L FSW  
IN  
Output Capacitor  
ΔI ≈  
EQ. 1  
V
IN  
Table 2 suggests 0603 capacitors. 0805 capacitors may  
further improve performance in that the effective  
capacitance is higher and ESL is lower than 0603. This  
improves the transient response and output ripple.  
The maximum average load current, IMAX(LOAD) is related  
to the peak current limit, ILIM(PK) (see figure 17) by the  
ripple current:  
Increasing COUT has no effect on loop stability and can  
therefore be increased to reduce output voltage ripple or  
to improve transient response. Output voltage ripple,  
VOUT, is:  
ΔI  
2
EQ. 2  
IMAX(LOAD) = ILIM(PK)  
The transition between PFM and PWM operation is  
determined by the point at which the inductor valley  
current crosses zero. The regulator DC current when the  
inductor current crosses zero, IDCM, is:  
1
ΔVOUT = ΔI•  
+ ESR  
EQ. 5  
8 COUT FSW  
ΔI  
2
IDCM  
=
EQ. 3  
Input Capacitor  
The 4.7μF ceramic input capacitor should be placed as  
close as possible between the VIN pin and GND to  
minimize the parasitic inductance. If a long wire is used  
to bring power to the IC, additional “bulk” capacitance  
(electrolytic or tantalum) should be placed between CIN  
and the power source lead to reduce ringing that can  
occur between the inductance of the power source leads  
and CIN.  
The FAN5350 is optimized for operation with L=1μH, but  
is stable with inductances ranging from 700nH to 3.0μH.  
The inductor should be rated to maintain at least 80% of  
its value at ILIM(PK)  
.
Efficiency is affected by the inductor DCR and  
inductance value. Decreasing the inductor value for a  
given physical size typically decreases the DCR; but  
since I increases, the RMS current increases, as do  
the core and skin effect losses.  
ΔI2  
12  
2
EQ. 4  
IRMS  
=
IOUT(DC)  
+
Inductor Value  
Increase  
IMAX(LOAD) EQ. 2  
Increase  
ILIM(PK)  
Decrease  
Increase  
VOUT EQ. 5  
Decrease  
Increase  
Transient Response  
Degraded  
Decrease  
Decrease  
Improved  
Table 1. Effects of changes in inductor value (from 1µH recommended value) on regulator performance  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
7
PCB Layout Guidelines  
For the bill of materials of the FAN5350 evaluation  
board, see Table 1. There are only three external  
components: the inductor and the input and output  
capacitors. For any buck switcher IC, including the  
FAN5350, it is always important to place a low-ESR  
input capacitor very close to the IC, as shown in Figure  
7. That ensures good input decoupling, which helps  
reduce the noise appearing at the output terminals and  
ensures that the control sections of the IC do not  
behave erratically due to excessive noise. This reduces  
switching cycle jitter and ensures good overall  
performance. It is not considered critical to place either  
the inductor or the output capacitor very close to the IC.  
There is some flexibility in moving these two  
components further away from the IC.  
Description  
Qty.  
Ref.  
Vendor  
TOKO  
Part Number  
1117AS-1R2M  
1.2μH, 1.8A, 55mΩ  
Inductor  
1
L1  
FDK  
MIPSA2520D1R0  
CBC3225T15MR  
GRM39 X5R 475K 6.3  
FAN5350UCX  
1.3μH, 1.2A, 90mΩ  
1.5μH, 1.3A  
Taiyo Yuden  
MURATA  
Fairchild  
Any  
2
1
1
CIN,COUT  
U1  
Capacitor 4.7μF, ±10%, 6.3V, X5R, 0603  
IC DC/DC Regulator in CSP, 5 bumps  
Load Resistor (Optional)  
RLOAD  
Table 2. FAN5350 Evaluation Board Bill of Materials (optional parts are installed by request only)  
Feedback Loop  
One key advantage of the non-linear architecture is that  
there is no traditional feedback loop. The loop response  
to changes in VOUT is essentially instantaneous, which  
explains its extraordinary transient response. The  
absence of a traditional, high-gain compensated linear  
loop means that the FAN5350 is inherently stable over a  
wide range of LOUT and COUT  
.
LOUT can be reduced further for a given application,  
provided it is confirmed that the calculated peak current  
for the required maximum load current is less than the  
minimum of the closed-loop current limit. The advantage  
is that this generally leads to improved transient  
response, since a small inductance allows for a much  
faster increase in current to cope with any sudden load  
demand.  
The inductor can be increased to 2.2µH; but, for the  
same reason, the transient response gets slightly  
degraded. In that case, increasing the output capacitor  
to 10µF helps significantly.  
Figure 7. The FAN5350 Evaluation Board PCB (CSP)  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
VIN = 3.6V, TA = 25°C, VEN = VIN, according to the circuit in Figure 1 or Figure 2, unless otherwise specified.  
1850  
24  
22  
20  
18  
1840  
DCM spreading  
+85°C  
1830  
1820  
1810  
CCM  
+25°C  
16  
14  
-40°C  
1800  
1790  
12  
10  
0
100  
200  
300  
400  
500  
600  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Battery Voltage (V)  
Load Current (mA)  
Figure 8. Quiescent Current vs. Battery Voltage  
Figure 9. Load Regulation, Increasing Load  
600  
600  
500  
400  
85°C CCM border  
-30°C CCM border  
500  
400  
300  
200  
100  
0
Continuous Conduction Mode  
Hysteresis  
Switching mode  
changes at these  
borders  
300  
200  
100  
0
85°C DCM border  
-30°C DCMborder  
Discontinuous Conduction Mode  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Battery Voltage (V)  
Battery Voltage (V)  
Figure 10. Switch Mode Operating Areas  
Figure 11. Switch Mode Over Temperature  
2.00  
1835  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1830  
1825  
V
IN=2.7V  
VIN=5.5V  
VIN=2.7V  
1820  
1815  
VIN=3.6V  
VIN=5.5V  
VIN=3.6V  
1810  
1805  
ILOAD=300mA  
60 80  
1800  
-40  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
-20  
0
20  
40  
Load Current (A)  
Ambient Temperature (°C)  
Figure 12. DC Current Voltage Output Characteristics  
Figure 13. Output Voltage vs. Temperature  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5350 Rev. 1.0.1  
9
Typical Performance Characteristics (Continued)  
VIN = 3.6V, TA = 25°C, VEN = VIN, according to the circuit in Figure 1 or Figure 2, unless otherwise specified.  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
VIN=2.5V  
VIN=2.7V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=5V  
-40°C  
+85°C  
+25°C  
70  
65  
60  
VIN=5.5V  
0.001  
0.010  
0.100  
1.000  
0.001  
0.010  
0.100  
1.000  
Load Current (A)  
Load Current (A)  
Figure 14. Power Efficiency vs. Load Current  
Figure 15. Power Efficiency Over Temperature Range  
1.3  
250  
200  
VIN=5.5V  
1.2  
1.1  
150  
+85°C  
1.0  
VIN=3.6V  
100  
0.9  
+25°C  
50  
0.8  
VIN=2.7V  
-40°C  
0
2.5  
0.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-20  
0
20  
40  
60  
80  
Battery Voltage (V)  
Ambient Temperature (°C)  
Figure 16. PMOS Current Limit in Closed Loop  
Figure 17. Shutdown Supply Current vs.  
Battery Voltage  
85dB  
3.3  
250mA Load  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
-40°C  
+25°C  
5dB  
/div  
+85°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
35dB  
1Hz  
10Hz  
100Hz  
1kHz  
10kHz  
Battery Voltage (V)  
Figure 18. Power Supply Rejection Ratio in CCM  
Figure 19. Switching Frequency in CCM  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
10  
Typical Performance Characteristics (Continued)  
VIN = 3.6V, TA = 25°C, VEN = VIN, according to the circuit in Figure 1 or Figure 2, unless otherwise specified.  
IL, 0.5A / div.  
IL, 0.5A / div.  
V
OUT, 0.5V / div.  
V
OUT, 0.5V / div.  
EN, 5.0V / div.  
EN, 5.0V / div.  
H scale: 20µs / div.  
Figure 20. Start-Up, Full Load  
H scale: 10µs / div.  
Figure 21. Start-Up, No Load  
V
OUT(ac), 20mV / div.  
V
OUT(ac), 20mV / div.  
ILOAD, 0.5A / div.  
ILOAD, 0.5A / div.  
H scale: 1µs / div.  
Figure 22. Fast Load Transient, No Load to Full Load  
H scale: 1µs / div.  
Figure 23. Fast Load Transient, Full Load to No Load  
VSW, 5V / div.  
VSW, 5V / div.  
V
OUT(ac), 20mV / div.  
VOUT(ac), 20mV / div.  
I
LOAD = 600mA  
ILOAD = 300mA  
ILOAD = 50mA  
I
LOAD = 1mA  
H scale: 20µs / div.  
H scale: 20µs / div.  
Figure 24. Fast Load Transient in CCM  
Figure 25. Fast Load Transient in DCM  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
11  
Typical Performance Characteristics (Continued)  
VIN = 3.6V, TA = 25°C, VEN = VIN, according to the circuit in Figure 1 or Figure 2, unless otherwise specified.  
VSW, 2V / div.  
VSW, 5V / div.  
VOUT(ac), 20mV / div.  
VOUT(ac), 20mV / div.  
ILOAD, 0.2A / div.  
I
LOAD = 300mA  
LOAD = 20mA  
I
H scale: 20µs / div.  
Figure 26. Fast Load Transient DCM – CCM – DCM  
H scale: 2ms / div.  
Figure 27. Slow Load Transient DCM – CCM – DCM  
VOUT(ac), 20mV / div.  
VOUT(ac), 20mV / div.  
VIN = 3.6V  
VIN = 3.6V  
V
IN = 3.0V  
VIN = 3.0V  
H scale: 10µs / div.  
H scale: 10µs / div.  
Figure 28. Line Transient, 600mV, 50mA Load  
Figure 29. Line Transient, 600mV, 50mA Load  
VOUT(ac), 10mV / div.  
VIN = 3.6V  
VIN = 3.0V  
ILOAD = 350mA  
ILOAD = 100mA  
H scale: 5µs / div.  
Figure 30. Combined Line (600mV) and Load (100mA to 350mA) Transient Response  
VSW, 2V / div.  
VSW, 2V / div.  
IL = 0.2A / div.  
IL = 0.1A / div.  
OUT(ac), 20mV / div.  
V
V
OUT(ac), 20mV / div.  
H scale: 1µs / div.  
H scale: 200µs / div.  
Figure 32. Typical Waveforms in CCM, 150mA Load  
Figure 31. Typical Waveforms in DCM, 50mA Load  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
12  
Physical Dimensions  
Dimensions are in millimeters unless otherwise noted.  
Figure 33. 6-Lead Molded Leadless Package (MLP)  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
13  
Physical Dimensions (Continued)  
Dimensions are in millimeters unless otherwise noted.  
F
BALL A1  
INDEX AREA  
A
E
(0.50)  
(0.866)  
(Ø0.25)  
Cu PAD  
B
D
0.03 C  
A1  
2X  
(Ø0.35)  
SOLDER MASK  
OPENING  
F
(0.433)  
0.03 C  
2X  
RECOMMENDED LAND PATTERN (NSMD)  
TOP VIEW  
0.332±0.018  
0.06 C  
E
0.625 MAX  
0.250±0.025  
0.05 C  
D
C
SEATING PLANE  
SIDE VIEWS  
(X)+/-.018  
F
A. NO JEDEC REGISTRATION APPLIES  
B. DIMENSIONS ARE IN MILLIMETERS.  
0.005  
C A B  
0.50  
5 X Ø0.315 +/- .025  
0.50  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994  
C
D
E
F
DATUM C, THE SEATING PLANE, IS DEFINED  
BY THE SPHERICAL CROWNS OF THE BALLS.  
PACKAGE TYPICAL HEIGHT IS 582 MICRONS  
+/- 43 MICRONS (539-625 MICRONS)  
FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
B
A
0.433  
1 2 3  
BOTTOM VIEW  
(Y)+/-.018  
F
G. BALL COMPOSITION: Sn95.5Ag3.9Cu0.6  
SAC405 ALLOY  
H. DRAWING FILENAME: MKT-UC005AArev3  
Product Specific Dimensions  
Product  
D
E
X
Y
FAN5350UCX  
1.370 +/- 0.030  
1.000 +/- 0.030  
0.270  
0.272  
Figure 34. 5-Bump Wafer-Level Chip-Scale Package (WLCSP)  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
14  
© 2007 Fairchild Semiconductor Corporation  
FAN5350 Rev. 1.0.1  
www.fairchildsemi.com  
15  

相关型号:

FAN5350UCX

3MHz, 600mA Step-Down DC-DC Converter in Chip-Scale and MLP Packaging
FAIRCHILD

FAN5350_08

3MHz, 600mA Step-Down DC-DC Converter in Chip-Scale and MLP Packaging
FAIRCHILD

FAN53525

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53525

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
FAIRCHILD

FAN53525UC48X

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53525UC48X

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
FAIRCHILD

FAN53525UC96X

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53525UC96X

3.0A, 2.4MHz, Digitally Programmable TinyBuck Regulator
FAIRCHILD

FAN53526

3.0 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53526UC00X

3.0 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53526UC100X

3.0 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53526UC106X

3.0 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI