FAN5340MTC [FAIRCHILD]

Switching Regulator/Controller, Voltage-mode, BIPolar, PDSO20;
FAN5340MTC
型号: FAN5340MTC
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Switching Regulator/Controller, Voltage-mode, BIPolar, PDSO20

光电二极管
文件: 总12页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN5340  
Four Channel Controller for Switching Regulator  
Features  
Description  
• 2.5V to 7.5V Input Voltage Range  
The FAN5340 is a flexible voltage-mode four-channel  
switching regulator, consuming very low quiescent current.  
The four channels can be configured to operate either as  
buck, boost, sepic, or inverting converters. Mode selection is  
achieved by connecting the SEL pin to VIN, GND, or left  
floating for boost/sepic, inverter and buck operation respec-  
tively. The controller outputs are suitable to drive external  
bipolar transistors, P-ch or N-ch MOSFET.  
• Four Independent PWM/PFM Channels  
• Four Independent Enable Controls  
• Four Independent Built-in Soft Start Functions  
• Drives MOSFET or BIPOLAR Power Switch  
• Channels are Configurable as Buck, Boost, Inverting, or  
Sepic Converters  
• 500µA Quiescent Current (Typ.)  
• Supply Current in Off Mode is less than 3µA  
• 500kHz Clock  
• Independent On/Off Control for Each Channel  
• Short Circuit Protection for Buck and Inverter  
The device has very low quiescent current, which makes it  
ideally suitable for portable electronic equipment.  
The FAN5340 is available in a 20-lead TSSOP package.  
Applications  
• Digital Still Cameras  
• PDAs  
• Handheld Equipment  
Typical Application  
V
IN  
V
IN  
C
IN  
C
IN  
500KΩ  
SEL  
V
IN  
EN  
FB  
SEL  
V
IN  
EN  
FB  
O
R2  
R1  
Cf  
C
OUT  
O
500KΩ  
R2  
R1  
Cf  
C
OUT  
Boost Converter  
Buck Converter  
V
IN  
V
IN  
C
IN  
500KΩ  
C
IN  
SEL  
V
IN  
EN  
L1  
SEL  
-ve output voltage  
V
IN  
EN  
REF  
FB  
O
-ve output voltage  
R2  
R2  
C
R1  
Cf  
O
Cf  
C
L2  
OUT  
OUT  
500KΩ  
R1  
FB  
REF(1.25V )  
Inverting Buck/Boost Converter  
Sepic Converter (Non-Inverting Buck/Boost)  
REV. 1.0.0 10/7/03  
FAN5340  
PRODUCT SPECIFICATIONS  
Pin Assignment  
TOP VIEW  
ENb  
ENa  
ENc  
ENd  
REF  
GND  
Oc  
NC  
VIN  
Oa  
SELc  
FBc  
FBd  
Od  
SELa  
FBa  
FBb  
Ob  
SELb  
SELd  
FAN5340  
20-Lead TSSOP  
Pin Description  
Pin No.  
1
Pin Name  
Pin Description  
ENc  
ENd  
REF  
GND  
Oc  
Enable Pin of Regulator c  
Enable Pin of Regulator d  
2
3
Auxiliary Reference Voltage Output  
System Ground  
4
5
Output (Gate Drive) of Regulator c  
Select Pin for Channel c  
6
SELc  
FBc  
FBd  
Od  
7
Feedback Voltage of Regulator c  
Feedback Voltage of Regulator d  
Output (Gate Drive) of Regulator d  
Select Pin for Channel d  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SELd  
SELb  
Ob  
Select Pin for Channel b  
Output (Gate Drive) of Regulator b  
Feedback Voltage of Regulator b  
Feedback Voltage of Regulator a  
Select Pin for Channel a  
FBb  
FBa  
SELa  
Oa  
Output (Gate Drive) of Regulator a  
Input Power Supply  
VIN  
NC  
No Connection  
ENa  
ENb  
Enable Pin of Regulator a  
Enable Pin of Regulator b  
2
REV. 1.0.0 10/7/03  
PRODUCT SPECIFICATIONS  
FAN5340  
Absolute Maximum Ratings (Note1)  
Parameter  
Min  
-0.3  
-0.3  
Max  
9
Unit  
V
VIN to GND  
FB, EN, SEL, O, REF to GND  
Lead Soldering Temperature (10 seconds)  
Junction Temperature  
VIN + 0.3  
300  
V
°C  
°C  
°C  
W
150  
Storage Temperature  
-55  
150  
Maximum Continuous Power Dissipation  
Electrostatic Discharge Protection (ESD) Level (Note 3)  
1
HBM  
CDM  
4
1
kV  
Recommended Operating Conditions  
Parameter  
Min  
2.5  
-40  
Typ  
Max  
7.5  
85  
Unit  
V
Input Voltage  
Operating Ambient Temperature  
25  
°C  
Notes:  
1. Operation beyond the absolute maximum rating may cause permanent damage to device.  
2. Applies to all four switching regulator device outputs.  
3. Using Mil Std. 883E, method 3015.7(Human Body Model) and EIA/JESD22C101-A (Charge Device Model).  
REV. 1.0.0 10/7/03  
3
FAN5340  
PRODUCT SPECIFICATIONS  
DC Electrical Characteristics  
Unless otherwise noted, VIN = 5V, TA = -40°C to +85°C, Typical values are at TA = 25°C  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Quiescent Current (Note 4)  
VIN = 5V, One channel enabled, no  
load on all channels  
500  
µA  
V
IN = 5V, All channels enabled,  
800  
1
no load on any output  
VIN = 5V, No load on any output  
VIN = 7.5V  
Supply Current, Off Mode  
Feedback Voltage  
REF Voltage  
3
µA  
10  
FB Current = 0.1µA  
(Typical)  
TA = 25ºC  
0.61  
0.60  
1.19  
1.17  
0
0.63  
0.65  
0.66  
1.28  
1.3  
V
V
Load on REF Pin < 1mA  
TA = 25ºC  
1.235  
V
V
Enable Voltage  
Device Shutdown  
Device Enabled  
EN = High  
0.5  
V
1.7  
VIN  
V
Enable Pin Sink Current  
Enable Pin Source Current  
SEL Pin Sink Current  
1
1
µA  
µA  
µA  
µA  
EN = Low, VIN > 6V  
SEL = High  
12  
10  
SEL Pin Source Current  
Output Drivers a, b, c, and d:  
SEL = Low  
Output Source Current Io+  
(Note 2)  
Device Enabled  
15  
20  
20  
40  
mA  
(VIN =2.5V, VOUT = 0V)  
Device in Shutdown mode  
5
5
µA  
Output Sink Current Io-  
(Note 2)  
Device Enabled  
(VIN =2.5V, VOUT = 2.5V)  
mA  
Device in Shutdown mode  
µA  
Oscillator  
Oscillator Frequency  
Maximum Duty Cycle  
500  
75  
kHz  
%
Notes:  
4. No load supply current is measured with the oscillator running.  
4
REV. 1.0.0 10/7/03  
PRODUCT SPECIFICATIONS  
FAN5340  
Typical Performance Characteristics  
TA = 25°C, unless otherwise noted.  
Output Voltage vs Load Current  
Output Voltage vs Input Voltage  
Buck Mode  
Buck Mode  
1.190  
1.35  
1.30  
1.25  
1.185  
V
IN  
= 4V  
1.180  
1.175  
1.170  
1.165  
1.160  
1.155  
1.150  
1.20  
1.15  
1.10  
1.05  
No Load  
I
= 100mA  
load  
0
20  
40  
60  
80  
100  
120  
2
3
4
5
6
Load Current (mA)  
Input Voltage (V)  
Output Voltage vs Load Current  
Boost Mode  
Output Voltage vs Input Voltage  
Boost Mode  
16.0  
15.6  
15.4  
15.8  
15.6  
15.4  
15.2  
15.0  
14.8  
14.6  
14.4  
14.2  
14.0  
V
= 5V  
IN  
15.2  
I
= 100mA  
load  
15.0  
14.8  
14.6  
14.4  
No Load  
0
5
10  
15  
20  
25  
30  
2
3
4
5
6
Input Voltage (V)  
Load Current (mA)  
Ground Current vs Ambient Temperature  
Ground Current vs Input Voltage  
1000  
1.8  
1.6  
1.4  
All Channels Enabled  
All Channels Enabled  
900  
800  
700  
600  
500  
400  
300  
T
LOAD  
= 25°C  
A
V
IN  
= 3V  
I
= 100µA  
I
= 100µA  
LOAD  
1.2  
1.0  
0.8  
0.6  
0.4  
-40  
-20  
0
20  
40  
60  
80  
100  
2
4
6
8
10  
Ambient Temperature (°C)  
Input Voltage (V)  
REV. 1.0.0 10/7/03  
5
FAN5340  
PRODUCT SPECIFICATIONS  
Typical Performance Characteristics (Continued)  
TA = 25°C, unless otherwise noted.  
Shutdown Current vs Ambient Temperature  
Shutdown Current vs Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
6
5
4
3
2
T
= 25°C  
A
V
= 3V  
IN  
0.5  
0.0  
1
0
-40  
-20  
0
20  
40  
60  
80  
100  
4
5
6
7
8
9
10  
Ambient Temperature (°C)  
Input Voltage (V)  
Output Sink Current vs  
Ambient Temperature  
Output Source Current vs  
Ambient Temperature  
160  
150  
140  
130  
120  
110  
100  
70  
65  
60  
55  
50  
45  
40  
V
IN  
= 5V  
V
= 5V  
IN  
90  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
6
REV. 1.0.0 10/7/03  
PRODUCT SPECIFICATIONS  
FAN5340  
Block Diagram  
REG  
FBa  
ENa  
Oa  
ENb  
SELa  
SELb  
V
IN  
GND  
SEL  
A
SEL  
B
EN  
EN  
OSC  
FB  
O
Ob  
O
OSC  
FB  
REGULATOR  
OSCILLATOR  
FBb  
ENc  
EN  
D
EN  
C
OSC  
OSC  
FB  
O
FB  
O
Oc  
SEL  
SEL  
FBc  
REG  
SELc  
Od  
ENd  
FBd SELd  
Functional Block Diagram  
V
REF  
SOFT-START  
TIMER  
REGULATOR  
OSCILLATOR  
SHORT-CIRCUIT  
DETECTION  
FB  
DISABLE  
SEL  
MODE SELECTION  
REF  
FB  
PWM  
GENERATOR  
O
DRIVER  
FB  
-
-
REF  
+
+
CONTROLLER BLOCK  
In discontinuous conduction mode, the pulse width gener-  
ated by the internal PWM generator depends on various fac-  
tors such as input/output conversion ratio and the output  
load.  
Circuit Description  
The FAN5340 has four independent channels for regulating  
up to four voltages. Each channel compares the feedback  
voltage with an internal reference voltage. If the feedback  
voltage is less than the reference voltage, internally gener-  
ated PWM pulses drive the external switch to bring output to  
regulation. As soon as the feedback voltage reaches the  
internal reference, the PWM pulses are disabled and the con-  
troller enters “pulse skipping” mode and remains in that  
mode until feedback voltage falls below the reference volt-  
age.  
Buck Mode  
In the discontinuous mode of operation, for a buck controller  
the conversion ratio is given by:  
VOUT  
2
------------- = ----------------------------------------------  
VIN  
1 + 1 + 4 × K D2  
As described above, the controller uses “PWM pulses” to  
reach regulation and enters “pulse skipping” when the output  
is in regulation. For proper regulation of the output, the com-  
ponent values need to be selected to ensure discontinuous  
conduction mode (DCM).  
Where D = Duty Cycle and  
2 × L  
----------------  
K =  
× Clock Frequency  
RLOAD  
REV. 1.0.0 10/7/03  
7
FAN5340  
PRODUCT SPECIFICATIONS  
The input-output relationship is shown in the figure below.  
The input-output relationship is shown in the figure below.  
Voltage Conversion Ratio vs Duty Cycle  
Voltage Conversion Ratio vs Duty Cycle  
5
1.2  
K = 0.01  
1.0  
4
K = 0.05  
0.8  
0.6  
K = 0.01  
3
D
= 0.75  
MAX  
0.4  
0.2  
0.0  
2
D
= 0.75  
MAX  
K = 0.1  
K = 0.1  
1
K = 0.5  
0
0.00  
0.25  
0.50  
0.75  
1.00  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Duty Cycle D”  
Duty Cycle “D”  
Voltage conversion ratio M (D, K) - Buck Converter  
Voltage conversion ratio M (D, K) - Boost Converter  
For proper regulation:  
2 × L  
The inductor value is selected by maximum load current  
required, and is given by:  
----------------  
× Clock Frequency < 1 – DMAX  
RLOAD  
0.075 × RMIN  
2 × Clock Frequency  
-------------------------------------------------  
L <  
--------------------------- (2)  
Where DMAX for the controller is 3/4.  
The inductor value is selected based on maximum load cur-  
rent required, and is given by:  
VOUT(NOM)  
where RMIN = ----------------------------  
ILOAD(MAX)  
R
-----------------------M-----I-N--------------------  
Inverter Mode  
The conversion ratio is:  
L <  
----------------------------- (1)  
8 × Clock Frequency  
VOUT  
–D  
VOUT(NOM)  
ILOAD(MAX)  
------------- = -------  
where RMIN = ----------------------------  
VIN  
K
Selecting a very small inductor value increases the ripple and  
peak currents.  
Where D = Duty Cycle and  
2 × L  
------------  
K =  
× Clock Frequency  
Boost Mode  
R
In the discontinuous conduction mode (DCM), the conver-  
sion ratio is:  
For proper regulation:  
1 + 1 + 4 × D2 K  
VOUT  
2 × L  
9
6
------------- = ----------------------------------------------  
-------------  
--  
× Clock Frequency < (approx.)  
VIN  
2
RLoad  
and  
Where D = Duty Cycle and  
RMIN  
9
----- ----------------------------------------  
L <  
×
-------------------------- (3)  
2 × L  
32 Clock Frequency  
----------------  
K =  
× Clock Frequency  
RLOAD  
VOUT(NOM)  
where RMIN = ----------------------------  
ILOAD(MAX)  
For proper regulation:  
2 × L  
----------------  
× Clock Frequency < 0.075 (Approx.)  
RLOAD  
8
REV. 1.0.0 10/7/03  
PRODUCT SPECIFICATIONS  
FAN5340  
For a step-up application, the short circuit current is not lim-  
ited due to a DC current path from inductor and output  
through the diode. For this mode, a protection device such as  
a fuse must be used to limit short-circuit current.  
SEPIC Mode  
From the “Voltage conversion ratio M (D, K) - Buck Converter  
figure, since the duty cycle “D” is limited to 0.75, it is diffi-  
cult to get VOUT VIN > 0.75 for heavy loads.  
Setting the Output Voltage  
Output voltage is given approximately by  
R2  
Similarly, for boost mode from “Voltage conversion ratio  
M (D, K) - Boost Convertfigure, it is difficult to achieve regu-  
lation at light loads if VOUT VIN < 2 .  
VOUT = 0.630 × 1 + -----  
R1  
For the 0.75 < VOUT VIN < 2 conversion range, SEPIC  
mode is recommended. For DCM (Discontinuous Conduc-  
tion Mode) operation:  
R2  
-----  
R2  
or VOUT = –  
(1.235) – 0.630 × 1 + -----  
R1  
R1  
1
The resistor divider R1and R2 from output should be selected  
based on the above relation.  
--------------------------------------------------------------------------------  
L1 <  
× RMIN ----- (4)  
2 × Clock Frequency × (M2 + M)  
1
Application Information  
---------------------------------------------------------------------------  
and L2 <  
× RMIN ---- (5)  
2 × Clock Frequency × (M + 1)  
Capacitor Selection  
VOUT VOUT(NOM)  
The output capacitor type and value affect the voltage ripple.  
Low ESR ceramic capacitors in the range of 10µF to 22µF  
are recommended. Higher output capacitor values are recom-  
mended for lower ripple. However increasing the output  
capacitor can result in a frequency spectrum with compo-  
nents in the audio range. To filter out the high frequency ESR  
spikes additional ESR filter can be used at the output.  
where M = ------------- and RMIN = ----------------------------  
VIN ILOAD(MAX)  
Soft-Start  
The FAN5340 features a built-in independent soft-start func-  
tion for each controller that limits inrush current by ramping  
the reference voltage to the final value in approximately 300  
clock cycles at power-up/enable.  
The input capacitor reduces the current peaks drawn from  
the battery or input power source and lessens switching noise  
in the controller. The impedance of the input capacitor at the  
clock frequency should be less than that of the input source  
so that the high frequency switching currents do not pass  
through the input source. A ceramic capacitor of a minimum  
10µF should be placed close to the switching transistor of  
each power supply.  
However, for the boost mode of operation, even though the  
MOS switch is disabled, the inductor charges the output  
capacitor until VOUT is approximately one diode drop less  
than VIN. The inrush current during that duration depends on  
the inductor and output capacitor values.  
Short-Circuit Protection  
At the end of soft start, if VOUT < 0.1 x VOUT_Nominal at any  
time, the controller disables the pulses to external device. To  
restart the pulses, VIN or enable needs to be recycled.  
To improve the efficiency in a Boost/Sepic configuration, it  
is recommended to connect 500pF capacitor between VOUT  
and FB.  
The FAN5340 has a built-in soft-start with internal capaci-  
tors for each controller. The soft-start interval is 300 clock  
cycles. The Soft-start interval starts, when VIN reaches  
approximately 1.6V. For slow ramping VIN at power-up and  
if the MOSFET threshold is greater than 1.6V, it is recom-  
mended to enable the chip only after VIN has settled to its  
final value to avoid false fault detection. If enable and VIN  
are applied to the chip without delay, placing a RC network  
between VIN and the enable pin will avoid the false fault  
MOSFET Selection  
The peak current through the MOSFET is:  
VIN × DMAX  
IPeak = ------------------------------  
L
3
where DMAX = --  
4
detection for slow ramping VIN  
.
REV. 1.0.0 10/7/03  
9
FAN5340  
PRODUCT SPECIFICATIONS  
The MOSFET should be rated to handle this peak current  
and the MOSFET’s RDS-ON should be as low as possible.  
Small gate capacitances are recommended as they decrease  
the output ripple and increase the efficiency.  
Inductor Selection  
The inductor value should be selected based on equations (1)  
to (5). The inductor should be rated to handle peak currents  
of Ipeak = 3 4 × VIN L . Low DC resistance inductors are  
recommended.  
MOSFET threshold should be lower than the minimum VIN  
as the output swing from the controller is limited to VIN. It is  
recommended to have a VDS MAX = 2 × V, where “V” is the  
Designing a PC Board  
A good PC board layout is important to achieve optimal per-  
formance from the FAN5340. Poor PCB design can cause  
excessive conducted and/or radiated noise, both of which can  
cause instability and/or regulation errors.  
greater of VIN or VOUT  
.
Diode Selection  
Schottky diodes are recommended for low output voltage  
applications because of the low forward-voltage and fast  
recovery time. Schottky diodes exhibit significant leakage at  
high reverse-voltages and high temperatures. Thus, for high-  
voltage, high-temperature applications, use ultra-fast junc-  
tion rectifiers.  
Conductors carrying discontinuous currents (MOSFETS,  
inductor, output capacitors) should be kept as short and as  
wide as possible. The power switch loop and the output recti-  
fier loop should be laid out for minimum length. A separate  
low-noise ground plane containing chip ground and refer-  
ence grounds should connect only to the power-ground plane  
at one point to minimize the effects of power-ground cur-  
rents.  
Snubber Circuit  
A snubber circuit is recommended to protect the MOSFET  
from voltage spikes, for very high boost voltages or inverter  
voltages.  
Boost Converter Precaution  
For slow ramping VIN (dV dt < 50V S ), it is recom-  
mended to connect the Enable pin to VIN via 500Kresistor  
to avoid a high current state at VIN = 1.8V.  
Transient Response  
For improved transient response, it is recommended to have  
a capacitor in parallel with R2. The impedance of capacitor  
should be less than R2 at the transient frequency.  
10  
REV. 1.0.0 10/7/03  
PRODUCT SPECIFICATIONS  
FAN5340  
Mechanical Dimensions  
20-Lead TSSOP Package  
Package MTC20  
6.5 0.1  
A–  
0.20  
20  
11  
C–  
4.16  
7.72  
B–  
6.4  
4.4 0.1  
1.78  
3.2  
0.42  
0.2  
C B A  
0.65  
ALL LEAD TIPS  
10  
1
Pin #1 IDENT.  
LAND PATTERN RECOMMENDATION  
0.1  
C
SEE DETAIL A  
+0.15  
0.90  
ALL LEAD TIPS  
-0.10  
1.2 max  
C–  
0.1 0.05  
0.090.20  
0.65  
0.190.30  
12.00°  
0.10 M  
A B S D S  
R0.09min  
GAGE PLANE  
DIMENSIONS ARE IN MILLIMETERS  
0 8°  
0.25  
Notes:  
SEATING PLANE  
0.6 0.1  
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC,  
REF NOTE 6, DATE 7/93.  
R0.09min  
1.00  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH,  
AND TIE BAR EXTRUSIONS.  
DETAIL A  
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.  
20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  
Package Number MTC20  
REV. 1.0.0 10/7/03  
11  
FAN5340  
PRODUCT SPECIFICATIONS  
Ordering Information  
Product Number  
Package Type  
Order Code  
FAN5340  
20-Lead TSSOP- Tape and reel  
20-Lead TSSOP- Tubes  
FAN5340MTCX  
FAN5340MTC  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
REV. 1.0.0 10/7/03  
2002 Fairchild Semiconductor Corporation  

相关型号:

FAN5340MTCX

Switching Regulator
ROCHESTER

FAN5340UCX

Synchronous Constant-Current Series Boost LED Driver with PWM Brightness Control and Integrated Load Disconnect
FAIRCHILD

FAN5340UCX

LED 驱动器,同步升压,带 PWM 调光接口
ONSEMI

FAN5341

Series Boost LED Driver with Integrated Schottky Diode and Single-Wire Digital Interface
FAIRCHILD

FAN53418

Synchronous DC-DC MOSFET Driver
FAIRCHILD

FAN53418M

Synchronous DC-DC MOSFET Driver
FAIRCHILD

FAN53418MX

MOSFET Driver, PDSO8,
FAIRCHILD

FAN5341UMPX

Series Boost LED Driver with Integrated Schottky Diode and Single-Wire Digital Interface
FAIRCHILD

FAN5341UMPX

LED 驱动器,串联升压,带集成式肖特基二极管和单线数字接口
ONSEMI

FAN5343

6-LED Series Boost LED Driver with Integrated Schottky Diode and Single-Wire Digital Interface
FAIRCHILD

FAN5343UMPX

6-LED Series Boost LED Driver with Integrated Schottky Diode and Single-Wire Digital Interface
FAIRCHILD

FAN5343UMPX

集成肖特基二极管和单线数字接口的串联升压 LED 驱动器
ONSEMI