74AC191FCXR [FAIRCHILD]

暂无描述;
74AC191FCXR
型号: 74AC191FCXR
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

暂无描述

计数器 时钟
文件: 总10页 (文件大小:117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
November 1988  
Revised November 1999  
74AC191  
Up/Down Counter with Preset and Ripple Clock  
General Description  
Features  
The AC191 is a reversible modulo 16 binary counter. It fea-  
tures synchronous counting and asynchronous presetting.  
The preset feature allows the AC191 to be used in pro-  
grammable dividers. The Count Enable input, the Terminal  
Count output and the Ripple Clock output make possible a  
variety of methods of implementing multistage counters. In  
the counting modes, state changes are initiated by the ris-  
ing edge of the clock.  
ICC reduced by 50%  
High speed—133 MHz typical count frequency  
Synchronous counting  
Asynchronous parallel load  
Cascadable  
Outputs source/sink 24 mA  
Ordering Code:  
Order Number Package Number  
Package Description  
74AC191SC  
74AC191SJ  
74AC191MTC  
74AC191PC  
M16A  
M16D  
MTC16  
N16E  
16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150Narrow Body  
16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide  
16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  
16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300Wide  
Device also available in Tape and Reel. Specify by appending suffix letter Xto the ordering code.  
Logic Symbols  
Connection Diagram  
IEEE/IEC  
Pin Descriptions  
Pin Names  
Description  
Count Enable Input  
Clock Pulse Input  
CE  
CP  
P0P3  
Parallel Data Inputs  
Asynchronous Parallel Load Input  
Up/Down Count Control Input  
Flip-Flop Outputs  
PL  
U /D  
Q0Q3  
RC  
Ripple Clock Output  
TC  
Terminal Count Output  
FACT is a trademark of Fairchild Semiconductor Corporation.  
© 1999 Fairchild Semiconductor Corporation  
DS009940  
www.fairchildsemi.com  
RC Truth Table  
Inputs  
Outputs  
RC  
PL  
CE  
TC  
CP  
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Immaterial  
= LOW-to-HIGH Transition  
= Clock Pulse  
(Note 1)  
H
H
H
L
L
H
X
X
H
X
L
X
X
X
H
H
H
Note 1: TC is generated internally  
X
Functional Description  
The AC191 is a synchronous up/down counter. The AC191  
is organized as a 4-bit binary counter. It contains four edge-  
triggered flip-flops with internal gating and steering logic to  
provide individual preset, count-up and count-down opera-  
tions.  
ripple through to the last stage before the clock goes HIGH.  
There is no such restriction on the HIGH state duration of  
the clock, since the RC output of any device goes HIGH  
shortly after its CP input goes HIGH.  
The configuration shown in Figure 3 avoids ripple delays  
and their associated restrictions. The CE input for a given  
stage is formed by combining the TC signals from all the  
preceding stages. Note that in order to inhibit counting an  
enable signal must be included in each carry gate. The  
simple inhibit scheme of Figure 1 and Figure 2 doesn't  
apply, because the TC output of a given stage is not  
affected by its own CE.  
Each circuit has an asynchronous parallel load capability  
permitting the counter to be preset to any desired number.  
When the Parallel Load (PL) input is LOW, information  
present on the Parallel Load inputs (P0P3) is loaded into  
the counter and appears on the Q outputs. This operation  
overrides the counting functions, as indicated in the Mode  
Select Table.  
A HIGH signal on the CE input inhibits counting. When CE  
is LOW, internal state changes are initiated synchronously  
by the LOW-to-HIGH transition of the clock input. The  
direction of counting is determined by the U/D input signal,  
as indicated in the Mode Select Table. CE and U/D can be  
changed with the clock in either state, provided only that  
the recommended setup and hold times are observed.  
Mode Select Table  
Inputs  
U/D  
Mode  
PL  
H
CE  
L
CP  
L
H
X
X
Count Up  
Two types of outputs are provided as overflow/underflow  
indicators. The terminal count (TC) output is normally  
LOW. It goes HIGH when the circuits reach zero in the  
count down mode or 15 in the count up mode. The TC out-  
put will then remain HIGH until a state change occurs,  
whether by counting or presetting or until U/D is changed.  
The TC output should not be used as a clock signal  
because it is subject to decoding spikes.  
H
L
Count Down  
L
X
X
X
Preset (Asyn.)  
No Change (Hold)  
H
H
State Diagram  
The TC signal is also used internally to enable the Ripple  
Clock (RC) output. The RC output is normally HIGH. When  
CE is LOW and TC is HIGH, RC output will go LOW when  
the clock next goes LOW and will stay LOW until the clock  
goes HIGH again. This feature simplifies the design of mul-  
tistage counters, as indicated in Figure 1 and Figure 2. In  
Figure 1, each RC output is used as the clock input for the  
next higher stage. This configuration is particularly advan-  
tageous when the clock source has a limited drive capabil-  
ity, since it drives only the first stage. To prevent counting in  
all stages it is only necessary to inhibit the first stage, since  
a HIGH signal on CE inhibits the RC output pulse, as indi-  
cated in the RC Truth Table. A disadvantage of this config-  
uration, in some applications, is the timing skew between  
state changes in the first and last stages. This represents  
the cumulative delay of the clock as it ripples through the  
preceding stages.  
A method of causing state changes to occur simulta-  
neously in all stages is shown in Figure 2. All clock inputs  
are driven in parallel and the RC outputs propagate the  
carry/borrow signals in ripple fashion. In this configuration  
the LOW state duration of the clock must be long enough to  
allow the negative-going edge of the carry/borrow signal to  
www.fairchildsemi.com  
2
Functional Description (continued)  
FIGURE 1. N-Stage Counter Using Ripple Clock  
FIGURE 2. Synchronous N-Stage Counter Using Ripple Carry/Borrow  
FIGURE 3. Synchronous N-Stage Counter with Parallel Gated Carry/Borrow  
Logic Diagram  
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.  
3
www.fairchildsemi.com  
Absolute Maximum Ratings(Note 2)  
Recommended Operating  
Conditions  
Supply Voltage (VCC  
)
0.5V to +7.0V  
DC Input Diode Current (IIK  
VI = −0.5V  
)
Supply Voltage (VCC  
)
2.0V to 6.0V  
0V to VCC  
20 mA  
+20 mA  
Input Voltage (VI)  
VI = VCC + 0.5V  
Output Voltage (VO)  
0V to VCC  
DC Input Voltage (VI)  
0.5V to VCC + 0.5V  
Operating Temperature (TA)  
40°C to +85°C  
DC Output Diode Current (IOK  
)
Minimum Input Edge Rate (V/t)  
V
V
O = −0.5V  
20 mA  
+20 mA  
V
IN from 30% to 70% of VCC  
O = VCC + 0.5V  
VCC @ 3.3V 4.5V, 5.5V  
125 mV/ns  
DC Output Voltage (VO)  
DC Output Source  
0.5V to VCC + 0.5V  
or Sink Current (IO)  
±50 mA  
DC VCC or Ground Current  
per Output Pin (ICC or IGND  
)
±50 mA  
Note 2: Absolute maximum ratings are those values beyond which dam-  
age to the device may occur. The databook specifications should be met,  
without exception, to ensure that the system design is reliable over its  
power supply, temperature, output/input loading variables. Fairchild does  
not recommend operation of FACT circuits outside databook specifica-  
tions.  
Storage Temperature (TSTG  
Junction Temperature (TJ)  
PDIP  
)
65°C to +150°C  
140°C  
DC Electrical Characteristics  
VCC  
T
A = +25°C  
TA = −40°C to +85°C  
Symbol  
VIH  
Parameter  
Units  
Conditions  
(V)  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
Typ  
Guaranteed Limits  
Minimum HIGH Level  
Input Voltage  
1.5  
2.1  
3.15  
3.85  
0.9  
2.1  
3.15  
3.85  
0.9  
V
OUT = 0.1V  
2.25  
2.75  
1.5  
V
or VCC 0.1V  
VIL  
Maximum LOW Level  
Input Voltage  
V
OUT = 0.1V  
2.25  
2.75  
2.99  
4.49  
5.49  
1.35  
1.65  
2.9  
1.35  
1.65  
2.9  
V
V
V
or VCC 0.1V  
VOH  
Minimum HIGH Level  
Output Voltage  
4.4  
4.4  
IOUT = −50 µA  
5.4  
5.4  
2.56  
3.86  
4.86  
2.46  
3.76  
4.76  
VIN = VIL or VIH  
I
I
I
OH 12 mA  
OH = −24 mA  
OH.= −24 mA (Note 3)  
VOL  
Maximum LOW Level  
Output Voltage  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
0.002  
0.001  
0.001  
0.1  
0.1  
0.1  
0.1  
V
V
I
OUT = 50 µA  
0.1  
0.1  
0.36  
0.36  
0.36  
0.44  
0.44  
0.44  
VIN = VIL or VIH  
I
I
I
OL = 12 mA  
OL = 24 mA  
OL = 24 mA (Note 3)  
IIN  
Maximum Input  
5.5  
±0.1  
±1.0  
µA  
VI = VCC, GND  
(Note 5)  
IOLD  
Leakage Current  
Minimum Dynamic  
Output Current (Note 4)  
Maximum Quiescent  
Supply Current  
5.5  
5.5  
75  
mA  
mA  
VOLD = 1.65V Max  
VOHD = 3.85V Min  
VIN = VCC  
IOHD  
75  
ICC  
5.5  
4.0  
40.0  
µA  
(Note 5)  
or GND  
Note 3: All outputs loaded; thresholds on input associated with output under test.  
Note 4: Maximum test duration 2.0 ms, one output loaded at a time.  
Note 5: IIN and ICC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V VCC  
.
www.fairchildsemi.com  
4
AC Electrical Characteristics  
VCC  
C
L = 50 pF  
T
A = −40°C to +85°C  
L = 50 pF  
Max  
Symbol  
Parameter  
T
A = +25°C  
C
Units  
(V)  
(Note 6)  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
Min  
70  
Typ  
105  
133  
8.5  
6.0  
8.5  
6.0  
10.5  
7.5  
10.5  
7.5  
7.5  
5.5  
7.0  
5.0  
7.0  
5.0  
6.5  
5.0  
6.5  
5.0  
7.0  
5.0  
7.0  
5.0  
6.5  
5.0  
8.0  
5.5  
7.5  
5.5  
9.5  
5.5  
8.0  
6.0  
Max  
Min  
fMAX  
Maximum Count  
65  
85  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Frequency  
90  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
Propagation Delay  
CP to Qn  
2.0  
1.5  
2.5  
1.5  
3.5  
2.5  
4.0  
2.5  
2.5  
2.0  
2.5  
1.5  
2.5  
1.5  
2.0  
1.5  
2.5  
1.5  
2.5  
1.5  
2.0  
1.5  
2.0  
1.5  
2.5  
2.0  
2.5  
1.5  
3.5  
2.0  
3.0  
2.0  
15.0  
11.0  
14.5  
10.5  
18.0  
12.0  
17.5  
12.5  
12.0  
9.5  
1.5  
1.5  
2.0  
1.5  
2.5  
1.5  
3.0  
2.0  
2.0  
1.0  
2.0  
1.0  
1.5  
1.0  
1.5  
1.0  
2.0  
1.0  
2.0  
1.0  
1.5  
1.0  
1.5  
1.0  
2.0  
1.0  
1.5  
1.0  
2.5  
1.0  
2.0  
1.5  
16.0  
12.0  
16.0  
11.5  
20.0  
14.0  
19.0  
13.5  
13.5  
10.5  
12.5  
9.5  
Propagation Delay  
CP to Qn  
Propagation Delay  
CP to TC  
Propagation Delay  
CP to TC  
Propagation Delay  
CP to RC  
Propagation Delay  
CP to RC  
11.5  
8.5  
Propagation Delay  
CE to RC  
12.0  
8.5  
13.5  
9.5  
Propagation Delay  
CE to RC  
11.0  
8.0  
12.5  
9.0  
Propagation Delay  
U /D to RC  
12.5  
9.0  
14.5  
10.0  
13.5  
10.0  
13.5  
9.5  
Propagation Delay  
U /D to RC  
12.0  
8.5  
Propagation Delay  
U /D to TC  
11.5  
8.5  
Propagation Delay  
U /D to TC  
11.0  
8.5  
12.5  
9.5  
Propagation Delay  
13.5  
9.5  
15.5  
10.5  
14.5  
10.5  
17.5  
10.5  
15.5  
11.0  
Pn to Qn  
Propagation Delay  
Pn to Qn  
13.0  
9.5  
Propagation Delay  
PL to Qn  
14.5  
9.5  
Propagation Delay  
PL to Qn  
13.5  
10.0  
Note 6: Voltage Range 3.3 is 3.3V ± 0.3V  
Voltage Range 5.0 is 5.0V ± 0.5V  
5
www.fairchildsemi.com  
AC Operating Requirements  
VCC  
T
A = +25°C  
L = 50 pF  
T
A = −40°C to +85°C  
L = 50 pF  
C
C
Symbol  
Parameter  
(V)  
(Note 7)  
3.3  
Units  
Typ  
Guaranteed Minimum  
tS  
tH  
tS  
tH  
tS  
tH  
Setup Time, HIGH or LOW  
1.0  
0.5  
3.0  
2.0  
0.5  
1.0  
6.0  
4.0  
0.5  
0
3.0  
2.5  
1.0  
1.0  
7.0  
4.5  
0.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
Pn to PL  
5.0  
Hold Time, HIGH or LOW  
Pn to PL  
3.3  
1.5  
0.5  
3.0  
5.0  
Setup Time, LOW  
CE to CP  
3.3  
5.0  
1.5  
Hold Time, LOW  
CE to CP  
3.3  
4.0  
2.5  
4.0  
5.0  
Setup Time, HIGH or LOW  
U/D to CP  
3.3  
8.0  
5.5  
0
9.0  
6.5  
0
5.0  
2.5  
Hold Time, HIGH or LOW  
U/D to CP  
3.3  
5.0  
3.0  
5.0  
0.5  
0.5  
tW  
PL Pulse Width, LOW  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
2.0  
1.0  
3.5  
1.0  
3.5  
3.0  
0
4.0  
1.0  
4.0  
4.0  
0
ns  
ns  
ns  
tW  
CP Pulse Width, LOW  
2.0  
2.0  
trec  
Recovery Time  
PL to CP  
0.5  
1.0  
0
0
Note 7: Voltage Range 3.3 is 3.3V ± 0.3V  
Voltage Range 5.0 is 5.0V ± 0.5V  
Capacitance  
Symbol  
Parameter  
Typ  
Units  
Conditions  
CIN  
Input Capacitance  
4.5  
pF  
pF  
V
V
CC = OPEN  
CC = 5.0V  
CPD  
Power Dissipation Capacitance  
75.0  
www.fairchildsemi.com  
6
Physical Dimensions inches (millimeters) unless otherwise noted  
16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow Body  
Package Number M16A  
7
www.fairchildsemi.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide  
Package Number M16D  
www.fairchildsemi.com  
8
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  
Package Number MTC16  
9
www.fairchildsemi.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300Wide  
Package Number N16E  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and  
Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the  
body, or (b) support or sustain life, and (c) whose failure  
to perform when properly used in accordance with  
instructions for use provided in the labeling, can be rea-  
sonably expected to result in a significant injury to the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be rea-  
sonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
www.fairchildsemi.com  
10  

相关型号:

74AC191LC

AC SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, CQCC20, CERAMIC, LCC-20
TI

74AC191LCQR

AC SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, CQCC20, CERAMIC, LCC-20
TI

74AC191LCX

Binary Counter, AC Series, Synchronous, Positive Edge Triggered, 4-Bit, Bidirectional, CMOS, CQCC20, CERAMIC, LCC-20
FAIRCHILD

74AC191LCXR

Binary Counter, AC Series, Synchronous, Positive Edge Triggered, 4-Bit, Bidirectional, CMOS, CQCC20, CERAMIC, LCC-20
FAIRCHILD

74AC191MTC

Up/Down Counter with Preset and Ripple Clock
FAIRCHILD

74AC191MTCX

Asynchronous Up/Down Counter
FAIRCHILD

74AC191PC

Up/Down Counter with Preset and Ripple Clock
FAIRCHILD

74AC191PC

AC SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, PDIP16, PLASTIC, DIP-16
TI

74AC191PCQR

AC SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, PDIP16, PLASTIC, DIP-16
TI

74AC191SC

Up/Down Counter with Preset and Ripple Clock
FAIRCHILD

74AC191SCQR

Binary Counter, AC Series, Synchronous, Positive Edge Triggered, 4-Bit, Bidirectional, CMOS, PDSO16, SOIC-16
FAIRCHILD

74AC191SCT

暂无描述
FAIRCHILD