ES29DS400E-12RTG [EXCELSEMI]

32Mbit(4M x 8/2M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory; 32兆( 4M ×8 / 2M ×16 )的CMOS 3.0伏只,引导扇区闪存
ES29DS400E-12RTG
型号: ES29DS400E-12RTG
厂家: EXCEL SEMICONDUCTOR INC.    EXCEL SEMICONDUCTOR INC.
描述:

32Mbit(4M x 8/2M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
32兆( 4M ×8 / 2M ×16 )的CMOS 3.0伏只,引导扇区闪存

闪存
文件: 总59页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E S I  
E S I  
Excel Semiconductor inc.  
ES29LV320D  
32Mbit(4M x 8/2M x 16)  
CMOS 3.0 Volt-only, Boot Sector Flash Memory  
• Minimum 100,000 program/erase cycles per sector  
• 20 Year data retention at 125oC  
GENERAL FEATURES  
• Single power supply operation  
- 2.7V -3.6V for read, program and erase operations  
SOFTWARE FEATURES  
• Sector Structure  
- 8Kbyte x 8 boot sectors  
- 64Kbyte x 63 sectors  
- 256byte security sector  
• Erase Suspend / Erase Resume  
• Data# poll and toggle for Program/erase status  
• CFI ( Common Flash Interface) supported  
• Unlock Bypass program  
• Autoselect mode  
• Auto-sleep mode after tACC + 30ns  
• Top or Bottom boot block  
- ES29LV320DT for Top boot block device  
- ES29LV320DB for Bottom boot block device  
• A 256 bytes of extra sector for security code  
- Factory lockable  
HARDWARE FEATURES  
- Customer lockable  
• Hardware reset input pin ( RESET#)  
- Provides a hardware reset to device  
- Any internal device operation is terminated and the  
device returns to read mode by the reset  
• Package Options  
- 48-pin TSOP  
- Pb-free packages  
- All Pb-free products are RoHS-Compliant  
• Ready/Busy# output pin ( RY/BY#)  
- Provides a program or erase operational status  
about whether it is finished for read or still being  
progressed  
• Low Vcc write inhibit  
• Manufactured on 0.18um process technology  
• Compatible with JEDEC standards  
- Pinout and software compatible with single-power  
supply flash standard  
• WP#/ACC input pin  
- Two outermost boot sectors are protected when  
WP# is set to low, regardless of sector protection  
- Program speed is accelerated by raising WP#/ACC  
to a high voltage (12V)  
DEVICE PERFORMANCE  
• Read access time  
• Sector protection / unprotection ( RESET# , A9 )  
- Hardware method of locking a sector to prevent  
any program or erase operation within that sector  
- Two methods are provided :  
- 90ns/120n for normal Vcc range ( 2.7V - 3.6V )  
- 80ns for regulated Vcc range ( 3.0V - 3.6V )  
• Program and erase time  
- In-system method by RESET# pin  
- A9 high-voltage method for PROM programmers  
- Program time : 9us/byte, 11us/word ( typical )  
- Accelerated program time : 8us/word ( typical )  
- Sector erase time : 0.7sec/sector ( typical )  
• Temporary Sector Unprotection ( RESET# )  
- Allows temporary unprotection of previously  
protected sectors to change data in-system  
• Power consumption (typical values)  
- 200nA in standby or automatic sleep mode  
- 10 mA active read current at 5 MHz  
- 15mA active write current during program or erase  
1
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
GENERAL PRODUCT DESCRIPTION  
Extra Security Sector of 256 bytes  
The ES29LV320 is a 32 megabit, 3.0 volt-only flash  
memory device, organized as 4M x 8 bits (Byte  
mode) or 2M x 16 bits (Word mode) which is config-  
urable by BYTE#. Eight boot sectors and sixty three  
main sectors with uniform size are provided :  
8Kbytes x 8 and 64Kbytes x 63. The device is man-  
ufactured with ESI’s proprietary, high performance  
and highly reliable 0.18um CMOS flash technology.  
The device can be programmed or erased in-sys-  
tem with standard 3.0 Volt Vcc supply ( 2.7V-3.6V)  
and can also be programmed in standard EPROM  
programmers. The device offers minimum endur-  
ance of 100,000 program/erase cycles and more  
than 10 years of data retention.  
In the device, an extra security sector of 256 bytes is  
provided to customers. This extra sector can be  
used for various purposes such as storing ESN  
(Electronic Serial Number) or customer’s security  
codes. Once after the extra sector is written, it can  
be permanently locked by the device manufacturer(  
factory-locked) or a customer( customer-lock-  
able). At the same time, a lock indicator bit (DQ7)  
is permanently set to a 1 if the part is factory- locked,  
or set to 0 if it is customer-lockable. Therefore, this  
lock indicator bit (DQ7) can be properly used to  
avoid that any customer-lockable part is used to  
replace a factory-locked part. The extra security  
sector is an extra memory space for customers  
when it is used as a customer-lockable version. So,  
it can be read and written like any other sectors. But  
it should be noted that the number of E/W(Erase and  
Write) cycles is limited to 300 times (maximum) only  
in the Security Sector.  
The ES29LV320 offers access time as fast as 80ns  
or 90ns, allowing operation of high-speed micropro-  
cessors without wait states. Three separate control  
pins are provided to eliminate bus contention : chip  
enable (CE#), write enable (WE#) and output  
enable (OE#).  
Special services such as ESN and factory-lock are  
available to customers ( ESI’s Special-Code ser-  
vice ) The ES29LV320 is completely compatible with  
the JEDEC standard command set of single power  
supply Flash. Commands are written to the internal  
command register using standard write timings of  
microprocessor and data can be read out from the  
cell array in the device with the same way as used in  
other EPROM or flash devices.  
All program and erase operation are automatically  
and internally performed and controlled by embed-  
ded program/erase algorithms built in the device.  
The device automatically generates and times the  
necessary high-voltage pulses to be applied to the  
cells, performs the verification, and counts the num-  
ber of sequences. Some status bits (DQ7, DQ6 and  
DQ5) read by data# polling or toggling between  
consecutive read cycles provide to the users the  
internal status of program/erase operation: whether  
it is successfully done or still being progressed.  
2
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
PRODUCT SELECTOR GUIDE  
Family Part Number  
Voltage Range  
ES29LV320  
3.0 ~ 3.6V  
2.7 ~ 3.6V  
Speed Option  
80R  
80  
90  
90  
90  
40  
120  
120  
120  
50  
Max Access Time (ns)  
CE# Access (ns)  
OE# Access (ns)  
80  
35  
FUNCTION BLOCK DIAGRAM  
RY/BY#  
Timer/  
Counter  
Vcc  
Vss  
Vcc Detector  
DQ0-DQ15(A-1)  
Analog Bias  
Generator  
Input/Output  
Buffers  
Write  
State  
Command  
Register  
WE  
#
Machine  
RESET#  
Data Latch/  
Sense Amps  
Sector Switches  
Y-Decoder  
X-Decoder  
Y-Decoder  
Cell Array  
A<0:20  
>
CE#  
OE#  
Chip Enable  
Output Enable  
Logic  
BYTE#  
3
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
PIN DESCRIPTION  
Pin  
Description  
A0-A20  
21 Addresses  
DQ0-DQ14  
15 Data Inputs/Outputs  
DQ15 (Data Input/Output, Word Mode)  
A-1 (LSB Address Input, Byte Mode)  
DQ15/A-1  
CE#  
OE#  
Chip Enable  
Output Enable  
WE#  
Write Enable  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
Hardware Write Protect/Acceleration Pin  
Hardware Reset Pin, Active Low  
Selects 8-bit or 16-bit mode  
Ready/Busy Output  
3.0 volt-only single power supply  
(see Product Selector Guide for speed options and voltage supply tolerances)  
Vcc  
Vss  
NC  
Device Ground  
Pin Not Connected Internally  
LOGIC SYMBOL  
21  
16 or 8  
A0 ~ A20  
DQ0 ~ DQ15  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
4
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
CONNECTION DIAGRAM  
48  
47  
1
2
3
4
5
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A16  
BYTE#  
Vss  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
46  
45  
44  
48-Pin Standard TSOP  
6
7
8
43  
42  
41  
DQ13  
9
A19  
A20  
WE#  
RESET#  
NC  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
40  
39  
38  
37  
36  
35  
34  
DQ5  
DQ12  
DQ4  
Vcc  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
Vss  
ES29LV320  
33  
32  
31  
30  
A6  
A5  
A4  
A3  
A2  
A1  
29  
28  
27  
26  
25  
CE#  
A0  
5
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
DEVICE BUS OPERATIONS  
on the device address inputs produce valid data on  
the device data outputs. The device stays at the read  
mode until another operation is activated by writing  
commands into the internal command register. Refer  
to the AC read cycle timing diagrams for further  
details ( Fig. 18 ).  
Several device operational modes are provided in  
the ES29LV320 device. Commands are used to ini-  
tiate the device operations. They are latched and  
stored into internal registers with the address and  
data information needed to execute the device  
operation.  
The available device operational modes are listed  
in Table 1 with the required inputs, controls, and the  
resulting outputs. Each operational mode is  
described in further detail in the following subsec-  
tions.  
Word/Byte Mode Configuration ( BYTE# )  
The device data output can be configured by BYTE#  
into one of two modes : word and byte modes. If the  
BYTE# pin is set at logic ‘1’, the device is configured  
in word mode, DQ0 - DQ15 are active and controlled  
by CE# and OE#. If the BYTE# pin is set at logic ‘0’,  
the device is configured in byte mode, and only data  
I/O pins DQ0 - DQ7 are active and controlled by CE#  
and OE#. The data I/O pins DQ8 - DQ14 are tri-  
stated, and the DQ15 pin is used as an input for the  
LSB (A-1) address.  
Read  
The internal state of the device is set for the read  
mode and the device is ready for reading array data  
upon device power-up, or after a hardware reset. To  
read the stored data from the cell array of the  
device, CE# and OE# pins should be driven to V  
IL  
Standby Mode  
while WE# pin remains at V . CE# is the power  
IH  
control and selects the device. OE# is the output  
control and gates array data to the output pins.  
When the device is not selected or activated in a  
system, it needs to stay at the standby mode, in  
which current consumption is greatly reduced with  
outputs in the high impedance state.  
Word or byte mode of output data is determined by  
the BYTE# pin. No additional command is needed  
in this mode to obtain array data. Standard micro-  
processor read cycles that assert valid addresses  
6
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
The device enters the CMOS standby mode when  
CE# and RESET# pins are both held at Vcc 0.3V.  
(Note that this is a more restricted voltage range  
set-up cycle and the last cycle with the program  
data and addresses. In this mode, two unlock  
cycles are saved ( or bypassed ).  
+
than V ) If CE# and RESET# are held at V , but  
IH.  
IH  
Sector Addresses  
not within Vcc+0.3V, the device will be still in the  
standby mode, but the standby current will be  
greater than the CMOS standby current (0.2uA typi-  
cally). When the device is in the standby mode, only  
The entire memory space of cell array is divided  
into a many of small sectors: 8kbytes x 8 boot sec-  
tors and 64Kbytes x 63 main sectors. In erase  
operation, a single sector, multiple sectors, or the  
entire device (chip erase) can be selected for  
erase. The address space that each sector occu-  
pies is shown in detail in the Table 3-4.  
standard access time (t ) is required for read  
CE  
access, before it is ready for read data. And even if  
the device is deselected by CE# pin during erase or  
programming operation, the device draws active cur-  
rent until the operation is completely done. While the  
device stays in the standby mode, the output is  
placed in the high impedance state, independent of  
the OE# input.  
Accelerated Program Mode  
The device offers accelerated program operations  
through the ACC function. This is one of two func-  
tions provided by the WP#/ACC pin. This function  
is primarily intended to allow faster manufacturing  
The device can enter the deep power-down mode  
where current consumption is greatly reduced down  
to less than 0.2uA typically by the following three  
ways:  
throughput at the factory. If the system asserts V  
HH  
(11.5~12.5V) on this pin, the device automatically  
enters the previously mentioned Unlock Bypass  
mode, temporarily unprotects any protected sec-  
tors, and uses the higher voltage on the pin to  
reduce the time required for program operations.  
Only two-cycle program command sequences are  
required because the unlock bypass mode is auto-  
matically activated in this acceleration mode. The  
- CMOS standby ( CE#, RESET# = Vcc + 0.3V )  
- During the device reset ( RESET# = Vss + 0.3V )  
- In Autosleep Mode ( after tACC + 30ns )  
Refer to the CMOS DC characteristics Table11 for  
further current specification.  
device returns to the normal operation when V is  
Autosleep Mode  
HH  
removed from the WP#/ACC pin. It should be  
The device automatically enters a deep power-down  
mode called the autosleep mode when addresses  
noted that the WP#/ACC pin must not be at V for  
HH  
operations other than accelerated programming, or  
device damage may result. In addition, the WP#/  
ACC pin must not be left floating or unconnected;  
inconsistent or undesired behavior of the device  
may result.  
remain stable for t  
+30ns. In this mode, current  
ACC  
consumption is greatly reduced ( less than 0.2uA  
typical ), regardless of CE#, WE# and OE# control  
signals.  
Autoselect Mode  
Writing Commands  
Flash memories are intended for use in applica-  
tions where the local CPU alters memory contents.  
In such applications, manufacturer and device  
identification (ID) codes must be accessible while  
the device resides in the target system ( the so  
called “in-system program”). On the other hand,  
signature codes have been typically accessed by  
raising A9 pin to a high voltage in PROM program-  
mers. However, multiplexing high voltage onto  
address lines is not the generally desired system  
design practice. Therefore, in the ES29LV320  
device an autoselect command is provided to  
allow the system to access the signature codes  
without any high voltage. The conventional A9  
high-voltage method used in the PROM program-  
ers for signature codes are still supported in this  
device.  
To write a command or command sequences to ini-  
tiate some operations such as program or erase, the  
system must drive WE# and CE# to V , and OE# to  
IL  
V . For program operations, the BYTE# pin deter-  
IH  
mines whether the device accepts program data in  
bytes or words. Refer to “BYTE# timings for Write  
Operations” in the Fig. 21 for more information.  
Unlock Bypass Mode  
To reduce more the programming time, an unlock-  
bypass mode is provided. Once the device enters  
this mode, only two write cycles are required to ini-  
tiate the programming operation instead of four  
cycles in the normal program command sequences  
which are composed of two unlock cycles, program  
7
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
If the system writes the autoselect command  
sequence, the device enters the Autoselect mode.  
The system can then read some useful codes such  
as manufacturer and device ID from the internal reg-  
isters on DQ7 - DQ0. Standard read cycle timings  
apply in this mode. In the Autoselect mode, the fol-  
lowing four informations can be accessed through  
either autoselect command method or A9 high-volt-  
age autoselect method. Refer to the Table 2.  
Flash memory, enabling the system to read the  
boot-up firmware from the Flash memory.Refer to  
the AC Characteristics tables for RESET# parame-  
ters and to Fig. 19 for the timing diagram.  
SECTOR GROUP PROTECTION  
The ES29LV320 features hardware sector group  
protection. A sector group consists of two or more  
adjacent sectors that are protected or unprotected  
at the same time. In the device, sector protection is  
performed on the group of sectors previously  
defined in the Table 3-4. Once after a group of sec-  
tors are protected, any program or erase operation  
is not allowed in the protected sector group. The  
previously protected sectors must be unprotected  
by one of the unprotect methods provided here  
before changing data in those sectors. Sector pro-  
tection can be implemented via two methods.  
-
-
-
-
Manufacturer ID  
Device ID  
Security Sector Lock-indicator  
Sector protection verify  
Hardware Device Reset ( RESET# )  
The RESET# pin provides a hardware method of  
resetting the device to read array data. When the  
RESET# pin is driven low for at least a period of t  
,
RP  
the device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the  
RESET# pulse The device also resets the internal  
state machine to reading array data. The operation  
that was interrupted should be reinitiated once after  
the device is ready to accept another command  
sequence, to ensure data integrity.  
-
-
In-system protection  
A9 High-voltage protection  
To check whether the sector group protection was  
successfully executed or not, another operation  
called “protect verification” needs to be per-  
formed after the protection operation on a group of  
sectors. All protection and protect verifications pro-  
vided in the device are summarized in detail at the  
Table 1.  
CMOS Standby during Device Reset  
Current is reduced for the duration of the RESET#  
In-System Protection  
pulse. When RESET# is held at Vss  
device draws the greatly reduced CMOS standby  
current ( I ). If RESET# is held at V but not  
+ 0.3V, the  
“In-system protection”, the primary method,  
requires V (11.5V~12.5V) on the RESET# with  
CC4  
IL  
ID  
within Vss+0.3V, the standby current will be greater.  
A6=0, A1=1, and A0=0. This method can be imple-  
mented either in-system or via programming equip-  
ment. This method uses standard microprocessor  
bus cycle timing. Refer to Fig. 29 for timing diagram  
and Fig. 3 for the protection algorithm.  
RY/BY# and Terminating Operations  
If RESET# is asserted during a program or erase  
operation, the RY/BY# pin remains a “0” (busy) until  
the internal reset operation is completed, which  
A9 High-Voltage Protection  
requires a time of t  
(during Embedded Algo-  
READY  
rithms). The system can thus monitor RY/BY# to  
determine whether the reset operation is completed.  
If RESET# is asserted when a program or erase  
operation is not executing (RY/BY# pin is “1”), the  
“High-voltage protection”, the alternate method  
intended only for programming equipment, must  
force V (11.5~12.5V) on address pin A9 and con-  
ID  
trol pin OE# with A6=0, A1=1 and A0=0. Refer to  
Fig. 31 for timing diagram and Fig. 5 for the protec-  
tion algorithm.  
reset operation is completed within a time of t  
READY  
(not during Embedded Algorithms). The system can  
read data after the RESET# pin returns to V , which  
IH  
SECTOR UNPROTECTION  
requires a time of t  
RH.  
The previously protected sectors must be unpro-  
tected before modifying any data in the sectors.  
The sector unprotection algorithm unprotects all  
sectors in parallel. All unprotected sectors must first  
RESET# tied to the System Reset  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the  
8
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
be protected prior to the first sector unprotection  
write cycle to avoid any over-erase due to the intrin-  
sic erase characteristics of the protection cell. After  
the unprotection operation, all previously protected  
sectors will need to be individually re-protected.  
Standard microprocessor bus cycle timings are used  
in the unprotection and unprotect verification opera-  
tions. Three unprotect methods are provided in the  
ES29LV320 device. All unprotection and unprotect  
verification cycles are summarized in detail at the  
Table 1.  
If the system asserts V on the WP#/ACC pin, the  
IL  
device disables program and erase functions in the  
two “outermost” 8Kbytes boot sectors indepen-  
dently of whether those sectors were protected or  
unprotected using the method described in “Sector  
Group Protection and Unprotection”. The two outer-  
most of 8 Kbyte boot sectors are the two sectors  
containing the lowest addresses in a bottom-boot-  
configured device, or the two sectors containing the  
highest addresses in a top-boot-configured device.  
If the system asserts V on the WP#/ACC pin, the  
IH  
-
-
-
In-system unprotection  
A9 High-voltage unprotection  
Temporary sector unprotection  
device reverts to whether the two outermost 8  
Kbyte boot sectors were last set to be protected or  
unprotected. That is, sector protection or unprotec-  
tion for these two sectors depends on whether they  
were last protected or unprotected using the  
method described in “Sector Group Protection and  
Unprotection”.  
In-System Unprotection  
“In-system unprotection”, the primary method,  
requires V (11.5V~12.5V) on the RESET# with  
ID  
Note that the WP#/ACC pin must not be left floating  
or unconnected; inconsistent behavior of the device  
may result.  
A6=1, A1=1, and A0=0. This method can be imple-  
mented either in-system or via programming equip-  
ment. This method uses standard microprocessor  
bus cycle timing. Refer to Fig. 29 for timing diagram  
and Fig. 4 for the unprotection algorithm.  
A9 High-Voltage Unprotection  
START  
“High-voltage unprotection”, the alternate method  
intended only for programming equipment, must  
RESET# = VID  
(Note 1)  
force V (11.5~12.5V) on address pin A9 and con-  
ID  
trol pin OE# with A6=1, A1=1 and A0=0. Refer to  
Fig. 32 for timing diagram and Fig. 6 for the unpro-  
tection algorithm.  
Perform Erase or  
Program Operations  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system.  
The Sector Unprotect mode is activated by setting  
RESET# = VIH  
the RESET# pin to V (11.5V-12.5V). During this  
ID  
Temporary Sector  
Unprotect Completed  
(Note 2)  
mode, formerly protected sectors can be pro-  
grammed or erased by selecting the sector  
addresses. Once V is removed from the RESET#  
ID  
pin, all the previously protected sectors are pro-  
tected again. Fig. 1 shows the algorithm, and Fig. 27  
shows the timing diagrams for this feature.  
Notes:  
1. All protected sectors are unprotected (If WP#/ACC = V ,  
IL  
outermost boot sectors will remain protected).  
2. All previously protected sectors are protected once again.  
WRITE PROTECT ( WP# )  
The Write Protect function provides a hardware  
method of protecting certain boot sectors without  
Figure 1. Temporary Sector Unprotect  
Operation  
using V . This function is one of two provided by the  
ID  
WP#/ACC pin.  
9
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
- A random, secure ESN (16 bytes ) only  
- Customer code through the ESI’s Special-Code  
service  
SECURITY SECTOR  
The security sector of the ES29LV320 device pro-  
vides an extra flash memory space that enables  
permanent part identification through an Electronic  
Serial Number (ESN). The security sector uses a  
security lock-Indicator Bit (DQ7) to indicate  
whether or not the security sector is locked when  
shipped from the factory. This bit is permanently set  
at the factory and cannot be changed, which pre-  
vents cloning of a factory locked part. This ensures  
the security of the ESN once the product is shipped  
to the field. Note that the ES29LV320 has a security  
sector size of 256 bytes.  
- Both a random, secure ESN and customer  
code through the ESI’s Special-Code service.  
ESN ( Electronic Serial Number )  
In devices that have an ESN, a Bottom Boot device  
will have the 16-byte (8-word) ESN in sector 0 at  
addresses 000000h-00000Fh in byte mode (or  
000000h-000007h in word mode). In the Top Boot  
device the ESN will be in sector 70 at addresses  
3FFF00h-3FFF0Fh in byte mode (or 1FFF80h-  
1FFF87h in word mode). Note that in upcoming top  
boot versions of this device, the ESN will be located  
in sector 70 at addresses 3FFF00h-3FFF0Fh in byte  
mode (or 1FFF80h-1FFF87h in word mode).  
Security Lock-Indicator Bit (DQ7)  
In the device, the security sector can be provided in  
either factory locked version or customer lockable  
version. The factory-locked version is always pro-  
tected when shipped from the factory, and has the  
security lock-Indicator Bit permanently set to a “1”.  
The customer-lockable version is shipped with  
the security sector unprotected, allowing customers  
to utilize the sector in any manner they choose. The  
customer-lockable version has the security lock-  
Indicator Bit permanently set to a “0”. Thus, the  
security lock-Indicator Bit prevents customer-lock-  
able devices from being used to replace devices  
that are factory locked.  
ESI’s Special-Code Service  
Customers may opt to have their code programmed  
by ESI through the ESI’s Special-Code service. ESI  
programs the customer’s code, with or without the  
random ESN. The devices are then shipped from  
ESI’s factory with the Security Sector permanently  
locked. Contact an ESI representative for details on  
using ESI’s Special-Code service.  
Customer-Lockable Device  
The customer lockable version allows the security  
sector to be freely programmed or erased and then  
permanently locked. Note that the ES29LV320 has  
a security sector size of 256 bytes (128 words). Note  
that the accelerated programming (ACC) and unlock  
bypass functions are not available when program-  
ming the security sector.  
Access to the Security Sector  
The security sector can be accessed through a  
command sequence: Enter security and Exit  
security sector commands. After the system has  
written the Enter security sector command  
sequence, it may read the security sector by using  
the addresses normally occupied by the boot sec-  
tors. This mode of operation continues until the sys-  
tem issues the Exit security sector command  
sequence, or until power is removed from the  
device. On power-up, or following a hardware reset,  
the device returns to read mode in which the nor-  
mal boot sectors can be accessed, instead of the  
security sector.  
Protection of the Security Sector  
The security sector area can be protected using the  
following procedures: Write the three-cycle “Enter  
security sector command” sequence, and then fol-  
lowing the in-system sector protect algorithm as  
shown in Fig. 2, except that RESET# may be at  
either V or V . This allows in-system protection  
IH  
ID  
of the security sector without raising any device pin  
to a high voltage. Note that this method is only appli-  
cable to the security sector. To verify the protect/  
unprotect status of the security sector. follow the  
algorithm shown in Fig. 2.  
Factory-Locked Device  
In a factory-locked device, the security sector is  
protected when the device is shipped from the fac-  
tory. The security sector cannot be modified in any  
way. The device is available preprogrammed with  
one of the following:  
10  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
can only occur after successful completion of spe-  
cific command sequences. And several features are  
incorporated to prevent inadvertent write cycles  
resulting from Vcc power-up and power-down transi-  
tion or system noise.  
Start  
If data=00h, security  
sector is unprotected.  
If data=01h, security  
sector is protected  
RESET# =  
VIH or VID  
Low Vcc Write inhibit  
When Vcc is less than V  
, the device does not  
LKO  
Wait 1us  
accept any write cycles. This protects data during  
Vcc power-up and power-down. The command reg-  
ister and all internal program/erase circuits are dis-  
abled, and the device resets to the read mode.  
Subsequent writes are ignored until Vcc is greater  
Remove VIH or VID  
from RESET#  
Write 60h to  
any address  
Write reset  
command  
than V  
. The system must provide proper signals  
LKO  
Write 40h to security  
sector address with  
A6=0, A1=1,A0=0  
to the control pins to prevent unintentional writes  
when Vcc is greater than V  
.
LKO  
Security sector  
Protect Verify  
complete  
Write Pulse “Glitch” Protection  
Read from security  
sector address with  
A6=0,A1=1,A0=0  
Noise pulses of less than 5ns (typical) on OE#, CE#  
or WE# do not initiate a write cycle.  
Logical inhibit  
Write cycles are inhibited by holding any one of  
Figure 2. Security Sector Protect Verify  
Exit from the Security Sector  
OE#=V , CE#=V or WE#=V . To initiate a write  
IL  
IH  
IH  
cycle, CE# and WE# must be a logical zero while  
OE# is a logical one.  
Power-up Write Inhibit  
Once the Security Sector is locked protected and  
verified, the system must write the Exit Security  
Sector Region command sequence to return to  
reading and writing the remainder of the array.  
If WE#=CE#=V and OE#=V during power up, the  
IL  
IH  
device does not accept any commands on the rising  
edge of WE#. The internal state machine is automat-  
ically reset to the read mode on power-up.  
Caution for the Security Sector Protection  
The security sector protection must be used with  
caution since, once protected, there is no proce-  
dure available for unprotecting the security sector  
area and none of the bits in the security sector  
memory space can be modified in any way.  
HARDWARE DATA PROTECTION  
The ES29LV320 device provides some protection  
measures against accidental erasure or program-  
ming caused by spurious system level signals that  
may exist during power transition. During power-  
up, all internal registers and latches in the device  
are cleared and the device automatically resets to  
the read mode. In addition, with its internal state  
machine built-in the device, any alteration of the  
memory contents or any initiation of new operation  
11  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 1. ES29LV320 Device Bus Operations  
DQ0  
~
DQ7  
DQ8~DQ15  
Operation  
CE# OE# WE# RESET# WP#/ACC Addresses  
BYTE#  
= VIH  
BYTE#  
= VIL  
(Note 1)  
Read  
Write  
L
L
L
H
L
L
A
D
D
L
H
H
H
H
H
L/H  
IN  
OUT  
OUT  
DQ8~DQ14 = High-Z,  
DQ15 = A-1  
A
(Note 3)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
IN  
V
A
Accelerated Program  
Standby  
HH  
IN  
Vcc+  
0.3V  
X
X
Vcc+  
0.3V  
H
X
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
X
Sector Protect  
(Note 2)  
SA,A6=L,  
A1=H,A0=L  
V
L
L
X
L
H
H
X
L
L
X
L
L/H  
(Note 4)  
(Note 4)  
(Note 4)  
X
X
X
X
ID  
Sector Unprotect  
(Note 2)  
L/H  
(Note 3)  
SA,A6=H,  
A1=H,A0=L  
In-system  
V
V
ID  
ID  
Temporary Sec-  
tor Unprotect  
H
A
(Note 4)  
High-Z  
IN  
(Note 3)  
SA,A9=V  
A6=L,  
,
ID  
H
Sector protect  
V
H
ID  
ID  
(Note 3)  
A9 High-Volt-  
age Method  
A1=H,A0=L  
(Note 4)  
(Note 4)  
High-Z  
SA,A9=V  
A6=H,  
,
ID  
H
Sector unprotect  
V
H
L
L
(Note 3)  
A1=H,A0=L  
Legend: L=Logic Low=V , H=Logic High=V , V =11.5-12.5V, V =11.5-12.5V, X=Don’t Care, SA=Sector Address,  
IL  
IH  
ID  
HH  
A
=Address In, D =Data In, D  
=Data Out  
IN  
IN  
OUT  
Notes:  
1. Addresses are A20:A0 in word mode (BYTE#=V ) , A20:A-1 in byte mode (BYTE#=V ).  
IH  
IL  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector/Sector  
Block Protection and Unprotection” section.  
3. If WP#/ACC=V , the two outermost boot sectors remain protected. If WP#/ACC=V , the two outermost boot sector protection  
IL  
IH  
depends on whether they were last protected or unprotected using the method described in “Sector/Sector Block Protection and  
Unprotection”. If WP#/ACC=V , all sectors will be unprotected.  
HH  
4. D or D  
as required by command sequence, data polling, or sector protection algorithm.  
OUT  
IN  
Table 2. Autoselect Codes (A9 High-Voltage Method)  
A20 A11  
A8  
A9 to  
A7  
A5  
to  
A2  
DQ8~DQ15  
Description CE# OE# WE# to  
to  
A6  
A1 A0  
DQ7~DQ0  
BYTE# BYTE#  
A12 A10  
= VIH  
= VIL  
L
L
H
H
VID  
VID  
X
X
L
L
X
X
L
L
L
X
ManufactureID:ESI  
L
L
X
X
X
X
X
4Ah  
Device ID:  
ES29LV320  
H
22h  
X
X
X
F6(T),F9h(B)  
Sector Protection  
Verification  
01h(protected)  
00h(unprotected)  
VID  
L
L
L
L
H
H
SA  
X
X
X
X
X
L
L
X
X
H
H
L
Security Sector  
Indicator Bit(DQ7)  
99h(factory-locked),  
19h(customer-lock-  
able)  
VID  
H
X
X
Legend: T= Top Boot Block, B = Bottom Boot Block, L=Logic Low=V , H=Logic High=V , SA=Sector Address, X = Don’t care  
IL  
IH  
12  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 3. Top Boot Sector Addresses (ES29LV320DT)  
Sector address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(X8)  
(X16)  
Group Sector  
Remark  
Address Range  
000000h~00FFFFh  
010000h~01FFFFh  
020000h~02FFFFh  
030000h~03FFFFh  
040000h~04FFFFh  
050000h~05FFFFh  
060000h~06FFFFh  
070000h~07FFFFh  
080000h~08FFFFh  
090000h~09FFFFh  
0A0000h~0AFFFFh  
0B0000h~0BFFFFh  
0C0000h~0CFFFFh  
0D0000h~0DFFFFh  
0E0000h~0EFFFFh  
0F0000h~0FFFFFh  
100000h~10FFFFh  
110000h~11FFFFh  
120000h~12FFFFh  
130000h~13FFFFh  
140000h~14FFFFh  
150000h~15FFFFh  
160000h~16FFFFh  
170000h~17FFFFh  
180000h~18FFFFh  
190000h~19FFFFh  
1A0000h~1AFFFFh  
1B0000h~1BFFFFh  
1C0000h~1CFFFFh  
1D0000h~1DFFFFh  
1E0000h~1EFFFFh  
1F0000h~1FFFFFh  
200000h~20FFFFh  
210000h~21FFFFh  
220000h~22FFFFh  
230000h~23FFFFh  
240000h~24FFFFh  
250000h~25FFFFh  
260000h~26FFFFh  
270000h~27FFFFh  
280000h~28FFFFh  
290000h~29FFFFh  
2A0000h~2AFFFFh  
2B0000h~2BFFFFh  
2C0000h~2CFFFFh  
2D0000h~2DFFFFh  
2E0000h~2EFFFFh  
2F0000h~2FFFFFh  
300000h~30FFFFh  
310000h~31FFFFh  
320000h~32FFFFh  
330000h~33FFFFh  
340000h~34FFFFh  
350000h~35FFFFh  
360000h~36FFFFh  
370000h~37FFFFh  
Address Range  
000000h~07FFFh  
008000h~0FFFFh  
010000h~17FFFh  
018000h~01FFFFh  
020000h~027FFFh  
028000h~02FFFFh  
030000h~037FFFh  
038000h~03FFFFh  
040000h~047FFFh  
048000h~04FFFFh  
050000h~057FFFh  
058000h~05FFFFh  
060000h~067FFFh  
068000h~06FFFFh  
070000h~077FFFh  
078000h~07FFFFh  
080000h~087FFFh  
088000h~08FFFFh  
090000h~097FFFh  
098000h~09FFFFh  
0A0000h~0A7FFFh  
0A8000h~0AFFFFh  
0B0000h~0B7FFFh  
0B8000h~0BFFFFh  
0C0000h~0C7FFFh  
0C8000h~0CFFFFh  
0D0000h~0D7FFFh  
0D8000h~0DFFFFh  
0E0000h~0E7FFFh  
0E8000h~0EFFFFh  
0F0000h~0F7FFFh  
0F8000h~0FFFFFh  
100000h~107FFFh  
108000h~10FFFFh  
110000h~117FFFh  
118000h~11FFFFh  
120000h~127FFFh  
128000h~12FFFFh  
130000h~137FFFh  
138000h~13FFFFh  
140000h~147FFFh  
148000h~14FFFFh  
150000h~157FFFh  
158000h~15FFFFh  
160000h~167FFFh  
168000h~16FFFFh  
170000h~177FFFh  
178000h~17FFFFh  
180000h~187FFFh  
188000h~18FFFFh  
190000h~197FFFh  
198000h~19FFFFh  
1A0000h~1A7FFFh  
1A8000h~1AFFFFh  
1B0000h~1B7FFFh  
1B8000h~1BFFFFh  
SA0  
000000XXX  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
SA1  
SG0  
SA2  
SA3  
SA4  
SA5  
SG1  
SA6  
SA7  
SA8  
SA9  
SG2  
SA10  
SA11  
SA12  
SA13  
SG3  
SA14  
SA15  
SA16  
SA17  
SG4  
SA18  
SA19  
SA20  
SA21  
SG5  
SA22  
SA23  
SA24  
SA25  
SG6  
SA26  
Main  
Sector  
SA27  
SA28  
SA29  
SG7  
SA30  
SA31  
SA32  
SA33  
SG8  
SA34  
SA35  
SA36  
SA37  
SG9  
SA38  
SA39  
SA40  
SA41  
SG10  
SA42  
SA43  
SA44  
SA45  
SG11  
SA46  
SA47  
SA48  
SA49  
SG12  
SA50  
SA51  
SA52  
SA53  
SG13  
SA54  
SA55  
13  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 3. Top Boot Sector Addresses (ES29LV320DT) Continued  
Sector address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
(X8)  
Address Range  
(X16)  
Group  
Sector  
Remark  
Address Range  
1C0000h~1C7FFFh  
1C8000h~1CFFFFh  
1D0000h~1D7FFFh  
1D8000h~1DFFFFh  
1E0000h~1E7FFFh  
1E8000h~1EFFFFh  
1F0000h~1F7FFFh  
1F8000h~1F8FFFh  
1F9000h~1F9FFFh  
1FA000h~1FAFFFh  
1FB000h~1FBFFFh  
1FC000h~1FCFFFh  
1FD000h~1FDFFFh  
1FE000h~1FEFFFh  
1FF000h~1FFFFFh  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
380000h~38FFFFh  
390000h~39FFFFh  
3A0000h~3AFFFFh  
3B0000h~3BFFFFh  
3C0000h~3CFFFFh  
3D0000h~3DFFFFh  
3E0000h~3EFFFFh  
3F0000h~3F1FFFh  
3F2000h~3F3FFFh  
3F4000h~3F5FFFh  
3F6000h~3F7FFFh  
3F8000h~3F9FFFh  
3FA000h~3FBFFFh  
3FC000h~3FDFFFh  
3FE000h~3FFFFFh  
SG14  
Main  
Sector  
SG15  
SG16  
SG17  
SG18  
SG19  
SG20  
SG21  
SG22  
SG23  
8/4  
Boot  
Sector  
8/4  
8/4  
SA69,SA70  
protected  
at WP#/  
8/4  
8/4  
8/4  
ACC=low  
8/4  
bytes/words  
(256/128)  
Security Sector  
111111111  
3FFF00h~3FFFFFh  
1FFF80h~1FFFFFh  
Note:  
The addresses range is A20:A-1 in byte mode (BYTE#=V ) or A20:A0 in word mode (BYTE#=V ).  
IL  
IH  
14  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 4. Bottom Boot Sector Addresses (ES29LV320DB)  
Sector address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
(X8)  
Address Range  
(X16)  
Group  
Sector  
Remark  
Address Range  
000000h~000FFFh  
001000h~001FFFh  
002000h~002FFFh  
003000h~003FFFh  
004000h~004FFFh  
005000h~005FFFh  
006000h~006FFFh  
007000h~007FFFh  
008000h~00FFFFh  
010000h~017FFFh  
018000h~01FFFFh  
020000h~027FFFh  
028000h~02FFFFh  
030000h~037FFFh  
038000h~03FFFFh  
040000h~047FFFh  
048000h~04FFFFh  
050000h~057FFFh  
058000h~05FFFFh  
060000h~067FFFh  
068000h~06FFFFh  
070000h~077FFFh  
078000h~07FFFFh  
080000h~087FFFh  
088000h~08FFFFh  
090000h~097FFFh  
098000h~09FFFFh  
0A0000h~0A7FFFh  
0A8000h~0AFFFFh  
0B0000h~0B7FFFh  
0B8000h~0BFFFFh  
0C0000h~0C7FFFh  
0C8000h~0CFFFFh  
0D0000h~0D7FFFh  
0D8000h~0DFFFFh  
0E0000h~0E7FFFh  
0E8000h~0EFFFFh  
0F0000h~0F7FFFh  
0F8000h~0FFFFFh  
100000h~107FFFh  
108000h~10FFFFh  
110000h~117FFFh  
118000h~11FFFFh  
120000h~127FFFh  
128000h~12FFFFh  
130000h~137FFFh  
138000h~13FFFFh  
140000h~147FFFh  
148000h~14FFFFh  
150000h~157FFFh  
158000h~15FFFFh  
160000h~167FFFh  
168000h~16FFFFh  
170000h~177FFFh  
178000h~17FFFFh  
SG0  
SG1  
SG2  
SG3  
SG4  
SG5  
SG6  
SG7  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
8/4  
000000h~001FFFh  
002000h~003FFFh  
004000h~005FFFh  
006000h~007FFFh  
008000h~009FFFh  
00A000h~00BFFFh  
00C000h~00DFFFh  
00E000h~00FFFFh  
010000h~01FFFFh  
020000h~02FFFFh  
030000h~03FFFFh  
040000h~04FFFFh  
050000h~05FFFFh  
060000h~06FFFFh  
070000h~07FFFFh  
080000h~08FFFFh  
090000h~09FFFFh  
0A0000h~0AFFFFh  
0B0000h~0BFFFFh  
0C0000h~0CFFFFh  
0D0000h~0DFFFFh  
0E0000h~0EFFFFh  
0F0000h~0FFFFFh  
100000h~10FFFFh  
110000h~11FFFFh  
120000h~12FFFFh  
130000h~13FFFFh  
140000h~14FFFFh  
150000h~15FFFFh  
160000h~16FFFFh  
170000h~17FFFFh  
180000h~18FFFFh  
190000h~19FFFFh  
1A0000h~1AFFFFh  
1B0000h~1BFFFFh  
1C0000h~1CFFFFh  
1D0000h~1DFFFFh  
1E0000h~1EFFFFh  
1F0000h~1FFFFFh  
200000h~20FFFFh  
210000h~21FFFFh  
220000h~22FFFFh  
230000h~23FFFFh  
240000h~24FFFFh  
250000h~25FFFFh  
260000h~26FFFFh  
270000h~27FFFFh  
280000h~28FFFFh  
290000h~29FFFFh  
2A0000h~2AFFFFh  
2B0000h~2BFFFFh  
2C0000h~2CFFFFh  
2D0000h~2DFFFFh  
2E0000h~2EFFFFh  
2F0000h~2FFFFFh  
Boot  
Sector  
8/4  
SA2  
8/4  
SA3  
8/4  
SA0,SA1  
protected  
at WP#/  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
ACC=low  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SG8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SG9  
SG10  
SG11  
SG12  
SG13  
SG14  
SG15  
SG16  
SG17  
SG18  
SG19  
Main  
Sector  
15  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 4. Bottom Boot Sector Addresses (ES29LV320DB) Continued  
Sector address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
(X8)  
Address Range  
(X16)  
Group  
Sector  
Remark  
Address Range  
180000h~187FFFh  
188000h~18FFFFh  
190000h~197FFFh  
198000h~19FFFFh  
1A0000h~1A7FFFh  
1A8000h~1AFFFFh  
1B0000h~1B7FFFh  
1B8000h~1BFFFFh  
1C0000h~1C7FFFh  
1C8000h~1CFFFFh  
1D0000h~1D7FFFh  
1D8000h~1DFFFFh  
1E0000h~1E7FFFh  
1E8000h~1EFFFFh  
1F0000h~1F7FFFh  
1F8000h~1FFFFFh  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111XXX  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
300000h~30FFFFh  
310000h~31FFFFh  
320000h~32FFFFh  
330000h~33FFFFh  
340000h~34FFFFh  
350000h~35FFFFh  
360000h~36FFFFh  
370000h~37FFFFh  
380000h~38FFFFh  
390000h~39FFFFh  
3A0000h~3AFFFFh  
3B0000h~3BFFFFh  
3C0000h~3CFFFFh  
3D0000h~3DFFFFh  
3E0000h~3EFFFFh  
3F0000h~3FFFFFh  
SG20  
SG21  
SG22  
SG23  
Main  
Sector  
bytes/words  
(256/128)  
Security Sector  
000000000  
000000h~0000FFh  
000000h~00007Fh  
Note:  
The addresses range is A20:A-1 in byte mode (BYTE#=V ) or A20:A0 in word mode (BYTE#=V ).  
IL  
IH  
16  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
In-System Protection / Unprotection Method  
START  
START  
Protect all sectors:  
The indicated por-  
tion of the sector  
protect algorithm  
must be performed  
for all unprotected  
sectors prior to  
issuing the first  
sector unprotect  
address  
COUNT = 1  
RESET# = V  
COUNT = 1  
RESET# = V  
ID  
ID  
Wait 1us  
Wait 1us  
No  
No  
Temporary Sector  
Unprotect Mode  
First Write  
First Write  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected ?  
Sector Protect:  
Write 60h to sec-  
tor address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unpro-  
tect:  
Write 60h to sec-  
tor address with  
A6 = 1, A1 = 1,  
Wait 150us  
Verify Sector  
Protect:  
Write 40h to sec-  
tor address with  
A6 = 0, A1 = 1,  
A0 = 0  
Wait 15ms  
Increment  
COUNT  
Reset  
COUNT = 1  
Verify Sector  
Unprotect:  
Write 40h to sec-  
tor address with  
A6 = 1, A1 = 1,  
A0 = 0  
Set up next  
sector address  
Read from sec-  
tor address with  
A6 = 0, A1 = 1,  
A0 = 0  
Increment  
COUNT  
No  
Read from sec-  
tor address with  
A6 = 1, A1 = 1,  
A0 = 0  
No  
COUNT=25?  
Data = 01h?  
Yes  
No  
Yes  
No  
Yes  
COUNT  
=1000?  
Data = 00h?  
Yes  
Protectanother  
sector?  
Device failed  
Yes  
No  
No  
Remove V  
from RESET#  
ID  
Last sector  
verified?  
Device failed  
Yes  
Write reset  
command  
Remove V from  
ID  
RESET#  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 4. In-System Sector  
Unprotect Algorithm  
Figure 3. In-System Sector  
Protect Algorithm  
17  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
A9 High-Voltage Method  
Start  
Note: All sectors must be  
previously protected.  
Start  
COUNT = 1  
COUNT = 1  
SET A9=OE#=V  
ID  
SET A9=OE#=V  
ID  
,
CE#, A0=V  
Set Sector Address  
A<20 :12>  
IL  
RESET#,  
A6, A1=V  
CE#, A6, A0=V  
IL  
IH  
RESET#, A1=V  
IH  
SET WE# = V  
Wait 15ms  
IL  
SET WE# = V  
Wait 150 us  
IL  
SET WE# = V  
IH  
SET WE# = V  
IH  
Increase COUNT  
Increase COUNT  
CE#,OE#, A0=V  
IL  
RESET#, A6, A1=V  
IH  
CE#,OE#,A6,A0=V  
IL  
RESET#, A1 = V  
IH  
Set Sector AddressA<20 :12>  
Read Data  
Read Data  
No  
No  
No  
COUNT= 25?  
Data = 01h?  
Yes  
No  
COUNT=1000?  
Data = 00h?  
Yes  
Increase Sector  
Address  
Yes  
Yes  
Device failed  
Yes  
Protect Another  
Sector ?  
Device failed  
No  
The Last Sector  
Address ?  
No  
Remove V from  
ID  
A9 and Write  
Yes  
Reset Command  
Remove V from A9 and  
ID  
Write Reset Command  
Sector Protection  
Complete  
Sector Unprotection  
Complete  
Figure 5. Sector Protection Algorithm  
(A9 High-Voltage Method)  
Figure 6. Sector Un-Protection Algorithm  
(A9 High-Voltage Method)  
18  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
This device enters the CFI Query mode when the  
system writes the CFI query command, 98h, to  
address 55h in word mode (or address AAh in byte  
mode), any time the device is ready to read array  
data. The system can read CFI information at the  
addresses given in Tables 5-8. To terminate reading  
CFI data, the system must write the reset com-  
mand.The CFI query command can be written to the  
system when the device is in the autoselect mode  
or the erase-suspend-read mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 5-8.  
When the reset command is written, the device  
returns respectively to the read mode or erase-sus-  
pend-read mode.  
Common Flash Memory  
Interface (CFI)  
CFI is supported in the ES29LV320 device. The  
Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their exist-  
ing interfaces for long-term compatibility.  
Table 5. CFI Query Identification String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set(00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 6. System Interface String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
Vcc Min. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
1Bh  
1Ch  
36h  
38h  
0027h  
0036h  
Vcc Max. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
3Ah  
3Ch  
3Eh  
0000h  
0000h  
0004h  
Vpp Min. voltage (00h = no Vpp pin present)  
Vpp Max. voltage (00h = no Vpp pin present)  
Typical timeout per single byte/word write 2N us  
Typical timeout for Min. size buffer write 2N us (00h = not supported)  
Typical timeout per individual block erase 2N ms  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
19  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 7. Device Geometry Definition  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
Device Size = 2N byte  
27h  
4Eh  
0016h  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description  
02 = x8, x16 Asynchronous  
Max. number of bytes multi-byte write = 2N  
(00h = not supported)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
2Ch  
58h  
0002h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
5Ah  
5Ch  
0007h  
0000h  
Erase Block Region 1 Information  
Number of identical size erase block = 0007h+1 =8  
2Fh  
30h  
5Eh  
60h  
0020h  
0000h  
Erase Block Region 1 Information  
Number of identical size erase block = 0020h * 256byte = 8Kbyte  
31h  
32h  
62h  
64h  
003Eh  
0000h  
Erase Block Region 2 Information  
Number of identical size erase block = 003Eh+1 =63  
33h  
34h  
66h  
68h  
0000h  
0001h  
Erase Block Region 2Information  
Number of identical size erase block = 0100h * 256byte = 64Kbyte  
35h  
36h  
6Ah  
6Ch  
0000h  
0000h  
Erase Block Region 3 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
Erase Block Region 4 Information  
37h  
38h  
6Eh  
70h  
0000h  
0000h  
39h  
3Ah  
72h  
74h  
0000h  
0000h  
3Bh  
3Ch  
76h  
78h  
0000h  
0000h  
20  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 8. Primary Vendor-Specific Extended Query  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0031h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not required  
Silicon Revision Number (Bits 7-2)  
45h  
8Ah  
0000h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
0002h  
0004h  
0001h  
0004h  
0000h  
0000h  
0000h  
00B5h  
00C5h  
000Xh  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
04 = In-System Method and A9 High-Voltage Method  
Simultaneous Operation  
00 = Not Supported  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC(Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100mV  
ACC(Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100mV  
Top/Bottom Boot Sector Flag  
02h = Bottom Boot Device, 03h = Top Boot Device  
21  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
COMMAND DEFINITIONS  
Writing specific address and data commands or  
sequences into the command register initiates  
device operations. Table 9 defines the valid register  
command sequences. Note that writing incorrect  
address and data values or writing them in the  
improper sequence may place the device in an  
unknown state. A reset command is required to  
return the device to normal operation.  
the Device Bus Operations section for more informa-  
tion.The Read-Only Operations table provides the  
read parameters, and Fig. 18 shows the timing dia-  
gram  
RESET COMMAND  
Writing the reset command resets the device to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
All addresses are latched on the falling edge of WE#  
or CE#, whichever happens later. All data is latched  
on the rising edge of WE# or CE#, whichever hap-  
pens first. Refer to the AC Characteristics section for  
timing diagrams.  
The reset command may be written between the  
sequence cycles in an erase command sequence  
before erasing begins. This resets the device to  
which the system was writing to the read mode.  
Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
READING ARRAY DATA  
The device is automatically set to reading array data  
after device power-up. No commands are required  
to retrieve data. The device is ready to read array  
data after completing an Embedded Program or  
Embedded Erase algorithm.  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the device  
to which the system was writing to the read mode. If  
the program command sequence is written to a sec-  
tor that is in the Erase Suspend mode, writing the  
reset command returns the device to the erase-sus-  
pend-read mode. Once programming begins, how-  
ever, the device ignores reset commands until the  
operation is complete.  
After the device accepts an Erase Suspend com-  
mand, the device enters the erase-suspend-read  
mode, after which the system can read data from  
any non-erase-suspended sector. After completing a  
programming operation in the Erase Suspend mode,  
the system may once again read array data with the  
same exception. See the Erase Suspend/Erase  
Resume Commands section for more information.  
The reset command may be written between the  
sequence cycles in an autoselect command  
sequence. Once in the autoselect mode, the reset  
command must be written to return to the read  
mode. If the device entered the autoselect mode  
while in the Erase Suspend mode, writing the reset  
command returns the device to the erase-suspend-  
read mode.  
The system must issue the reset command to return  
the device to the read (or erase-suspend-read)  
mode if DQ5 goes high during an active program or  
erase operation, or if the device is in the autoselect  
mode. See the next section, Reset Command, for  
more information.  
If DQ5 goes high during a program or erase opera-  
tion, writing the reset command returns the device to  
the read mode (or erase-suspend-read mode if the  
device was in Erase-Suspend).  
See also Requirements for Reading Array Data in  
22  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Command Definitions  
Table 9. ES29LV320 Command Definitions  
Command  
Bus Cycles (Notes 2~5)  
Fourth  
Sequence  
(Note 1)  
First  
Addr  
RA  
Second  
Third  
Addr  
Fifth  
Addr  
Sixth  
Data  
RD  
F0  
Addr  
Data  
Data  
Addr  
Data  
Data  
Addr  
Data  
Read (Note 6)  
Reset (Note 7)  
1
1
XXX  
555  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
Manufacturer ID  
Device ID  
4
4
4
4
3
4
4
3
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
55  
55  
55  
55  
55  
55  
55  
55  
90  
90  
90  
90  
88  
90  
A0  
20  
X00  
4A  
AAA  
555  
X01  
(See  
Table 2)  
AAA  
555  
AAA  
555  
X02  
X03  
Security Sector Fac  
tory Protect (Note 9)  
99/19  
00/01  
AAA  
555  
AAA  
555  
X06  
(SA)X02  
(SA)X04  
Sector Protect Verify  
(Note 10)  
AAA  
555  
AAA  
555  
Enter Security Sector Region  
Exit Security Sector Region  
Program  
AAA  
555  
AAA  
555  
XXX  
PA  
00  
AAA  
555  
AAA  
555  
PD  
AAA  
555  
AAA  
555  
Unlock Bypass  
AAA  
XXX  
XXX  
555  
AAA  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
2
2
A0  
90  
PD  
00  
XXX  
2AA  
555  
2AA  
555  
Word  
Byte  
Word  
Byte  
555  
555  
2AA  
555  
2AA  
555  
555  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
Sector Erase  
SA  
AAA  
XXX  
XXX  
55  
AAA  
AAA  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
1
1
B0  
30  
Word  
Byte  
CFI Query (Note 15)  
1
98  
AA  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation  
PA = Address of the memory location to be programmed.  
Addresses latch on the falling edge of the WE# or CE# pulse,  
whichever happens later.  
PD = Data to be programmed at location PA. Data latches on the  
rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A20-A12 uniquely select any sector.  
Notes:  
9. The data is 99h for factory locked and 19h for not factory  
locked.  
10. The data is 00h for an unprotected sector and 01h for a  
protected sector.  
11. The Unlock Bypass command is required prior to the Unlock-  
Bypass Program command.  
12. The Unlock Bypass Reset command is required to return  
to the read mode when the device is in the unlock bypass  
mode.  
13. The system may read and program in non-erasing sectors,  
or enter the autoselect mode, when in the Erase Suspend  
mode. The Erase Suspend command is valid only during  
a sector erase operation.  
14. The Erase Resume command is valid only during the Erase  
Suspend mode.  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
4. Data bits DQ15-DQ8 are don’t care in command sequences,  
except for RD and PD  
5. Unless otherwise noted, address bits A20-A11 are don’t cares.  
6. No unlock or command cycles required when device is in  
read mode.  
7. The Reset command is required to return to the read mode  
(or to the erase-suspend-read mode if previously in Erase  
Suspend) when a device is in the autoselect mode, or if DQ5  
goes high (while the device is providing status information).  
8. The fourth cycle of the autoselect command sequence  
is a read cycle. Data bits DQ15-DQ8 are don’t care. See the  
Autoselect Command Sequence section for more information.  
15. Command is valid when device is ready to read array data  
or when device is in autoselect mode.  
23  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AUTOSELECT COMMAND  
SECURITY SECTOR COMMAND  
In the ES29LV320 device, the security sector region  
(256 bytes) provides a secured data area containing  
a random, sixteen-byte electronic serial num-  
ber(ESN) or customer’s security codes. The secu-  
rity sector region can be accessed by issuing the  
three-cycle Enter Security Sector command  
sequence. The device continues to access the  
security sector region until the system issues the  
four-cycle Exit Security Sector command  
sequence. The Exit Security Sector command  
sequence returns the device to normal operation.  
Table 9 shows the address and data requirements  
for both command sequences. Note that the accel-  
erated programming function by WP#ACC and  
unlock bypass mode are not available when the  
device has entered the security sector. Refer to the  
Fig. 7 for the security sector operation.  
The autoselect command sequence allows the host  
system to access the manufacturer and device  
codes, and determine whether or not a sector is  
protected, including information about factory-  
locked or customer lockable version.  
Identifier Code  
Manufacturer ID  
Device ID  
Address  
00h  
Data  
4Ah  
01h  
F6(T),  
F9h(B)  
Security Sector Factory Protect  
Sector Group Protect Verify  
03h  
99 / 19  
00 / 01  
(SA)02h  
Table 9 shows the address and data requirements.  
This method is an alternative to “A9 high-voltage  
method” shown in Table 2, which is intended for  
PROM programmers and requires V on address  
ID  
pin A9. The autoselect command sequence may be  
written to an address within sector that is either in  
the read mode or erase-suspend-read mode. The  
auto-select command may not be written while the  
device is actively programming or erasing. The  
autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the autoselect command.  
The device then enters the autoselect mode. The  
system may read at any address any number of  
times without initiating another autoselect com-  
mand sequence.  
Read Mode  
Enter Security  
Sector Command  
Program, Erase or  
Protection  
Once after the device enters the auto-select mode,  
the manufacture ID code ( 4Ah ) can be accessed  
by one of two ways. Just one read cycle ( with A6,  
A1 and A0 = 0 ) can be used. Or four consecutive  
read cycles ( with A6 = 1 and A1, A0 = 0 ) for con-  
tinuation codes (7Fh) and then another last cycle  
for the code (4Ah) (with A6, A1 and A0 = 0) can be  
used for reading the manufacturer code.  
Exit Security  
Sector Command  
Read Mode  
- 4Ah (one-cycle read)  
- 7Fh 7Fh 7Fh 7Fh 4Ah (Five-cycle read)  
Figure 7. Security Sector Operation  
The system must write the reset command to return  
to the read mode (or erase-suspend-read mode if  
the device was previously in Erase Suspend).  
24  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
BYTE / WORD PROGRAM  
Program Status Bits : DQ7, DQ6 or RY/BY#  
The system may program the device by word or  
byte, depending on the state of the BYTE# pin.  
Programming is a four-bus-cycle operation. The  
program command sequence is initiated by writing  
two unlock write cycles, followed by the program  
set-up command. The program address and data  
are written next, which in turn initiate the Embedded  
Program algorithm. The system is not required to  
provide further controls or timings. The device auto-  
matically provides internally generated program  
pulses and verifies the programmed cell margin.  
Table 9 shows the address and data requirements  
for the byte program command sequence. Note that  
the autoselect, commands related with the security  
sector, and CFI modes are unavailable while a pro-  
gramming operation is in progress.  
When the Embedded Program algorithm is com-  
plete, the device then returns to the read mode and  
addresses are no longer latched. The system can  
determine the status of the program operation by  
using DQ7, DQ6, or RY/BY#. Refer to the Write  
Operation Status section Table 10 for information on  
these status bits.  
Any Commands Ignored during Program-  
ming Operation  
Any commands written to the device during the  
Embedded Program algorithm are ignored. Note that  
a hardware reset can immediately terminates the  
program operation. The program command  
sequence should be reinitiated once the device has  
returned to the read mode, to ensure data integrity.  
Programming from “0” back to “1”  
Programming is allowed in any sequence and  
across sector boundaries. But a bit cannot be pro-  
grammed from “0” back to a ”1”. Attempting to do so  
may cause the device to set DQ5 = 1, or cause the  
DQ7 and DQ6 status bits to indicate the operation  
was successful. However, a succeeding read will  
show that the data is still “0”. Only erase operations  
can convert a “0” to a “1”  
START  
Write Program Com-  
mand Sequence  
Embedded  
Program  
Data Poll  
from System  
Unlock Bypass  
algorithm in  
progress  
In the ES29LV320 device, an unlock bypass pro-  
gram mode is provided for faster programming oper-  
ation. In this mode, two cycles of program command  
sequences can be saved. To enter this mode, an  
unlock bypass enter command should be first written  
to the system. The unlock bypass enter command  
sequence is initiated by first writing two unlock  
cycles. This is followed by a third write cycle contain-  
ing the unlock bypass command, 20h. The device  
then enters the unlock-bypass program mode. A  
two-cycle unlock bypass program command  
sequence is all that is required to program in this  
mode. The first cycle in this sequence contains the  
unlock bypass program set-up command, A0h; the  
second cycle contains the program address and  
data. Additional data is programmed in the same  
manner. This mode dispenses with the initial two  
unlock cycles required in the standard program com-  
mand sequence, resulting in faster total program-  
ming time. Table 9 shows the requirements for the  
command sequence.  
No  
Verify Data  
?
Yes  
No  
Last Address?  
Yes  
Increment Address  
Programming  
Completed  
Note: See Table 9 for program command sequence  
Figure 8. Program Operation  
25  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
During the unlock-bypass mode, only the unlock-  
bypass program and unlock-bypass reset com-  
mands are valid. To exit the unlock-bypass mode,  
the system must issue the two-cycle unlock-bypass  
reset command sequence. The first cycle must con-  
tain the data 90h. The second cycle need to only  
contain the data 00h. The device then returns to the  
read mode.  
Table 9 shows the address and data requirements for  
the chip erase command sequence. Note that the  
autoselect, security sector, and CFI modes are  
unavailable while an erase operation is in progress  
Erase Status Bits : DQ7, DQ6, DQ2, or RY/BY#  
When the Embedded Erase algorithm is complete,  
the device returns to the read mode and addresses  
are no longer latched. The system can determine the  
status of the erase operation by using DQ7, DQ6,  
DQ2, or RY/BY#. Refer to the Write Operation Status  
section Table 10 for information on these status bits.  
- Unlock Bypass Enter Command  
- Unlock Bypass Reset Command  
- Unlock Bypass Program Command  
Unlock Bypass Program during WP#/ACC  
Accelerated Program Mode  
Commands Ignored during Erase Operation  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system  
Any command written during the chip erase opera-  
tion are ignored. However, note that a hardware reset  
immediately terminates the erase operation. If that  
occurs, the chip erase command sequence should  
be reinitiated once the device has returned to reading  
array data. to ensure data integrity. Fig. 9 illustrates  
the algorithm for the erase operation. Refer to the  
Erase and Program Operations tables in the AC  
Characteristics section for parameters, and Fig. 23  
section for timing diagrams.  
asserts V on the WP#/ACC pin, the device auto-  
HH  
matically enters the unlock bypass mode. The sys-  
tem may then write the two-cycle unlock bypass  
program command sequence. The device uses the  
higher voltage on the WP#/ACC pin to accelerate  
the operation. Note that the WP#/ACC pin must not  
be at V  
in any operation other than accelerated  
HH  
programming, or device damage may result. In  
addition, the WP#/ACC pin must not be left floating  
or unconnected; inconsistent behavior of the device  
may result. Fig. 8 illustrates the algorithm for the  
program operation. Refer to the Erase and Program  
Operations table in the AC Characteristics section  
for parameters, and Fig. 22 for timing diagrams.  
SECTOR ERASE COMMAND  
By using a sector erase command, a single sector or  
multiple sectors can be erased. The sector erase  
command is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two  
additional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command. Table 9 shows the  
address and data requirements for the sector erase  
command sequence. Note that the autoselect, secu-  
rity sector, and CFI modes are unavailable while an  
erase operation is in progress.  
CHIP ERASE COMMAND  
To erase the entire memory, a chip erase command  
is used. This command is a six bus cycle operation.  
The chip erase command sequence is initiated by  
writing two unlock cycles, followed by a set-up com-  
mand. Two additional unlock write cycles are then  
followed by the chip erase command, which in turn  
invokes the Embedded Erase algorithm. The chip  
erase command erases the entire memory includ-  
ing all other sectors except the protected sectors,  
but the internal erase operation is performed on a  
single sector base.  
Embedded Sector Erase Algorithm  
The device does not require the system to prepro-  
gram prior to erase. The Embedded Erase algorithm  
automatically programs and verifies the entire mem-  
ory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings these operations.  
Embedded Erase Algorithm  
The device does not require the system to prepro-  
gram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the  
entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to pro-  
vide any controls or timings during these opera-  
tions.  
26  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Sector Erase Time-out Window and DQ3  
Status Bits : DQ7,DQ6,DQ2, or RY/BY#  
After the command sequence is written, a sector  
erase time-out of 50us occurs. During the time-out  
period, additional sector addresses and sector  
erase commands may be written. Loading the sec-  
tor erase buffer may be done in any sequence, and  
the number of sectors may be from one sector to all  
sectors. The time between these additional cycles  
must be less than 50 us, otherwise the last address  
and command may not be accepted, and erasure  
may begin. It is recommended that processor inter-  
rupts be disabled during this time to ensure all com-  
mands are accepted. The interrupts can be re-  
enabled after the last Sector Erase command is  
written. The system can monitor DQ3 to determine  
if the sector erase timer has timed out (See the sec-  
tion on DQ3:Sector Erase Timer.). The time-out  
begins from the rising edge of the final WE# pulse  
in the command sequence.  
When the Sector Erase Embedded Erase algorithm  
is complete, the device returns to reading array data  
and addresses are no longer latched. Note that while  
the Embedded Erase operation is in progress, the  
system can read data from the non-erasing sector.  
The system can determine the status of the erase  
operation by reading DQ7,DQ6,DQ2, or RY/BY# in  
the erasing sector. Refer to the Write Operation Sta-  
tus section Table 10 for information on these status  
bits.  
Valid Command during Sector Erase  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once the device has returned to  
reading array data, to ensure data integrity.  
Any command other than Sector Erase or Erase  
Suspend during the time-out period resets the  
device to the read mode. The system must rewrite  
the command sequence and any additional  
addresses and commands.  
Fig. 9 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations  
tables in the AC Characteristics section for parame-  
ters, and Fig. 23 section for timing diagrams.  
ERASE SUSPEND/ERASE RESUME  
An erase operation is a long-time operation so that  
two useful commands are provided in the  
ES29LV320 device Erase Suspend and Erase  
Resume Commands. Through the two commands,  
erase operation can be suspended for a while and  
the suspended operation can be resumed later when  
it is required. While the erase is suspended, read or  
program operations can be performed by the system.  
START  
Write Erase  
Command Sequence  
(Notes 1,2)  
Data Poll to  
Embedded  
Erase  
algorithm in  
progress  
Erasing Bank  
from System  
Erase Suspend Command, (B0h)  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then  
read data from, or program data to, any sector not  
selected for erasure. This command is valid only dur-  
ing the sector erase operation, including the 50us  
time-out period during the sector erase command  
sequence. The Erase Suspend command is ignored  
if written during the chip erase operation or Embed-  
ded Program algorithm. When the Erase Suspend  
command is written during the sector erase opera-  
tion, the device requires a maximum of 20us to sus-  
pend the erase operation. However, when the Erase  
Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-  
out period and suspends the erase operation.  
No  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 9 for erase command sequence  
2. See the section on DQ3 for information on the sector erase timer  
Figure 9. Erase Operation  
27  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Read and Program during Erase-Suspend-  
Read Mode  
After the erase operation has been suspended, the  
device enters the erase-suspend-read mode. The  
system can read data from or program data to any  
sector not selected for erasure. (The device “erase  
suspends” all sectors selected for erasure.) Reading  
at any address within erase-suspended sectors pro-  
duces status information on DQ7-DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to deter-  
mine if a sector is actively erasing or is erase-sus-  
pended. Refer to the Write Operation Status section  
for information on these status bits (Table 10).  
After an erase-suspended program operation is  
complete, the device returns to the erase-suspend-  
read mode. The system can determine the status for  
the program operation using the DQ7 or DQ6 status  
bits, just as in the standard Byte Program operation.  
Refer to the Write Operation Status section for more  
information.  
Autoselect during Erase-Suspend- Read  
Mode  
In the erase-suspend-read mode, the system can  
also issue the autoselected command sequence.  
Refer to the Autoselect Mode and Autoselect Com-  
mand Sequence section for details (Table 9).  
Erase Resume Command  
To resume the sector erase operation, the system  
must write the Erase Resume command. Further  
writes of the Resume command are ignored.  
Another Erase Suspend command can be written  
after the chip has resumed erasing.  
28  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
COMMAND DIAGRAM  
PA/PD  
Program  
Done  
A0  
20  
AA  
80  
Unlock  
Bypass  
90  
90  
Security  
Sector  
88  
55  
AA  
55  
Auto-  
select  
55  
10  
98  
SA/30  
SA/30  
90  
Chip  
Erase  
AA  
F0  
F0  
00  
Done  
CFI  
Read  
50us  
Done  
Sector  
Erase  
00  
98  
Resume  
30  
B0  
Suspend  
Erase-  
suspend  
Read  
Figure 10. Command Diagram  
29  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
WRITE OPERATION STATUS  
Erase algorithm is complete, or if the device enters  
the Erase Suspend mode, Data# polling produces a  
“1” on DQ7. The system must provide an address  
within any of the sectors selected for erasure to read  
valid status information on DQ7.  
In the ES29LV320 device, several bits are provided  
to determine the status of a program or erase oper-  
ation: DQ2, DQ3, DQ5, DQ6, DQ7 and RY/BY#.  
Table 10 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a  
method for determining whether a program or erase  
operation is complete or in progress. The device  
also provides a hardware-based output signal, RY/  
BY#, to determine whether an Embedded Program  
or Erase operation is in progress or has been com-  
pleted.  
Erase on the Protected Sectors  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data#  
Polling on DQ7 is active for approximately 1.8us,  
then the device returns to the read mode. If not all  
selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and  
ignores the selected sectors that are protected. How-  
ever, if the system reads DQ7 at an address within a  
protected sector, the status may not be valid.  
DQ7 (DATA# POLLING)  
The Data# Polling bit, DQ7, indicates to the host  
system whether an Embedded Program or Erase  
algorithm is in progress or completed, or whether a  
device is in Erase Suspend. Data# Polling is valid  
after the rising edge of the final WE# pulse in the  
command sequence.  
Data# Polling Algorithm  
Just prior to the completion of an Embedded  
Program or Ease operation, DQ7 may change  
asynchronously with DQ0-DQ6 while Output  
Enable(OE#) is asserted low. That is, this device  
may change from providing status information to  
valid data on DQ7. Depending on when the system  
samples the DQ7 output, it may read the status or  
valid data. Even if the device has completed the  
program or erase operation and DQ7 has valid data,  
the data outputs on DQ0-DQ7 will appear on  
successive read cycles.  
During Programming  
During the Embedded Program algorithm, the  
device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also  
applies to programming during Erase Suspend.  
When the Embedded Program algorithm is com-  
plete, the device outputs the datum programmed to  
DQ7. The system must provide the program  
address to read valid status information on DQ7. If  
a program address falls within a protected sector,  
Data# Polling on DQ7 is active for approximately  
250ns, then the device returns to the read mode.  
Table 10 shows the outputs for Data# Polling on  
DQ7. Fig. 11 shows the Data# Polling algorithm. Fig.  
24 in the AC Characteristics section shows the  
Data# Polling timing diagram.  
During Erase  
During the Embedded Erase algorithm, Data# Poll-  
ing produces a “0” on DQ7. When the Embedded  
30  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Erase Suspend mode. Toggle Bit I may be read at  
any address, and is valid after the rising edge of the  
final WE# pulse in the command sequence ( prior to  
the program or erase operation), and during the sec-  
tor erase time-out. During an Embedded Program or  
Erase algorithm operation, successive read cycles to  
any address cause DQ6 to toggle. The system may  
use either OE# or CE# to control the read cycles.  
When the operation is complete, DQ6 stops tog-  
gling.  
START  
Read DQ7-DQ0  
Addr = VA  
Yes  
DQ7 = Data ?  
No  
No  
DQ5 = 1 ?  
The system can use DQ6 and DQ2 together to  
determine whether a sector is actively erasing or is  
erase-suspended. When the device is actively eras-  
ing (that is, the Embedded Erase algorithm is in  
progress), DQ6 toggles. When the device enters the  
Erase Suspend mode, DQ6 stops toggling. How-  
ever, the system must also use DQ2 to determine  
which sectors are erasing or erase-suspended.  
Alternatively, the system can use DQ7(see the sub-  
section on DQ7:Data# Polling). DQ6 also toggles  
during the erase-suspend-program mode, and stops  
toggling once the Embedded Program algorithm is  
complete.  
Yes  
Read DQ7-DQ0  
Addr = VA  
Yes  
DQ7 = Data ?  
No  
FAIL  
PASS  
Notes:  
1. VA = Valid address for programming. During a sector erase  
operation, a valid address is any sector address within the  
sector being erased. During chip erase, a valid address in  
any non-protected sector address.  
Table 10 shows the outputs for Toggle Bit I on DQ6.  
Fig. 12 shows the toggle bit algorithm. Fig. 25 in the  
“AC Characteristics” section shows the toggle bit  
timing diagrams. Fig. 26 shows the differences  
between DQ2 and DQ6 in graphical form. See also  
the subsection on DQ2 : (Toggle Bit II).  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5  
Figure 11. Data# Polling Algorithm  
Toggling on the Protected Sectors  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 1.8us, then returns to reading  
array data. If not all selected sectors are protected,  
the Embedded Erase algorithm erases the unpro-  
tected sectors, and ignores the selected sectors that  
are protected. If a program address falls within a  
protected sector, DQ6 toggles for approximately  
250ns after the program command sequence is writ-  
ten, then returns to reading array data.  
RY/BY# ( READY/BUSY# )  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is  
in progress or complete. The RY/BY# status is valid  
after the rising edge of the final WE# pulse in the  
command sequence. Since RY/BY# is an open-  
drain output, several RY/BY# pins can be tied  
together in parallel with a pull-up resistor to Vcc. If  
the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the  
standby mode, or in the erase-suspend-read mode.  
Table 10 shows the outputs for RY/BY#.  
DQ2 ( TOGGLE BIT II )  
The “Toggle Bit II” on DQ2, when used with DQ6,  
indicates whether a particular sector is actively eras-  
ing (that is, the Embedded Erase algorithm is in  
progress), or whether that sector is erase-sus-  
pended. Toggle Bit II is valid after the rising edge of  
the final WE# pulse in the command sequence DQ2  
DQ6 ( TOGGLE BIT I )  
Toggle Bit I on DQ6 indicates whether an Embed-  
ded Program or Erase algorithm is in progress or  
complete, or whether the device has entered the  
31  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
toggles when the system reads at addresses within  
those sectors that have been selected for erasure.  
(The system may use either OE# or CE# to control  
the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-  
suspended. DQ6, by comparison, indicates  
whether the device is actively erasing, or is in Erase  
Suspend, but cannot distinguish which sectors are  
selected for erasure. Thus, both status bits are  
required for sector and mode information. Refer to  
Table 10 to compare outputs for DQ2 and DQ6. Fig.  
12 shows the toggle bit algorithm in flowchart form,  
and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the DQ6: Toggle Bit I subsec-  
tion. Fig. 25 shows the toggle bit timing diagram.  
Fig. 26 shows how differently DQ2 operates com-  
pared with DQ6.  
START  
Read DQ7-DQ0  
Read DQ7-DQ0  
No  
Toggle Bit  
= Toggle ?  
Yes  
DQ5 = 1 ?  
Yes  
No  
Read DQ7-DQ0  
Twice  
Reading Toggle Bits DQ6/DQ2  
No  
Toggle Bit  
= Toggle ?  
Refer to Fig. 12 for the following discussion. When-  
ever the system initially begins reading toggle bit  
status, it must read DQ7-DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typi-  
cally, the system would note and store the value of  
the toggle bit after the first read. After the second  
read, the system would compare the new value of  
the toggle bit with the first. If the toggle bit is not  
toggling, the device has completed the program or  
erase operation. The system can read array data  
on DQ7-DQ0 on the following read cycle. However,  
if after the initial two read cycles, the system deter-  
mines that the toggle bit is still toggling, the system  
also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped tog-  
gling just as DQ5 went high. If the toggle bit is no  
longer toggling, the device has successfully com-  
pleted the program or erase operation. If it is still  
toggling, the device did not completed the operation  
successfully, and the system must write the reset  
command to return to reading array data. The  
remaining scenario is that the system initially deter-  
mines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read  
cycles, determining the status as described in the  
previous paragraph. Alternatively, it may choose to  
perform other system tasks. In this case, this sys-  
tem must start at the beginning of the algorithm  
when it returns to determine the status of the opera-  
tion (top of Fig. 12).  
Yes  
Program/Erase  
Operation  
Complete  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Note:  
The system should recheck the toggle bit even if DQ5 = “1”  
because the toggle bit may stop toggling as DQ5 changes to “1”.  
See the subsections on DQ6 and DQ2 for more information.  
Figure 12. Toggle Bit Algorithm  
32  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
If additional sectors are selected for erasure, the  
entire time-out also applies after each additional  
sector erase command. When the time-out period is  
complete, DQ3 switches from a “0” to a”1”. If the  
time between additional sector erase commands  
from the system can be assumed to be less than  
50us, the system need not monitor DQ3. See also  
the Sector Erase Command Sequence section. After  
the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or  
DQ6 (Toggle Bit I) to ensure that the device has  
accepted the command sequence, and then read  
DQ3. If DQ3 is “1”, the Embedded Erase algorithm  
has begun; all further commands (except Erase Sus-  
pend) are ignored until the erasure operation is com-  
plete. If DQ3 is “0”, the device will accept additional  
sector erase commands. To ensure the command  
has been accepted, the system software should  
check the status of DQ3 prior to and following each  
subsequent sector erase command. If DQ3 is high  
on the second status check, the last command might  
not have been accepted. In Table 10, DQ3 status  
operation is well defined and summarized with other  
status bits, DQ7, DQ6, DQ5, and DQ2.  
DQ5 ( EXCEEDED TIMING LIMITS )  
DQ5 indicates whether the program or erase time  
has exceeded a specified internal pulse count limit.  
Under these conditions DQ5 produces a “1”, indi-  
cating that the program or erase cycle was not suc-  
cessfully completed. The device may output a “1”  
on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0”  
Only an erase operation can change a “0” back to a  
“1”. Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded,  
DQ5 produces a ”1”. Under both these conditions,  
the system must write the reset command to return  
to the read mode.  
DQ3 ( SECTOR ERASE TIMER )  
After writing a sector erase command sequence,  
the system may read DQ3 to determine whether or  
not erasure has begun. (The sector erase time  
does not apply to the chip erase command.)  
Table 10. Write Operation Status  
DQ7  
DQ5  
(Note 1)  
DQ3  
DQ2  
(Note 2)  
RY/  
BY#  
Status  
DQ6  
(Note 2)  
DQ7#  
0
Embedded Program Algorithm  
Embedded Erase Algorithm  
Toggle  
Toggle  
0
0
N/A  
No toggle  
0
0
Standard  
Mode  
1
Toggle  
Toggle  
Erase Suspended  
Sector  
1
No toggle  
0
N/A  
1
Erase-Suspend-  
Read  
Erase Sus-  
pend Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes :  
1. DQ5 switches to “1” when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
33  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
ABSOLUTE MAXIMUM RATINGS  
20ns  
20ns  
Storage Temperature  
+0.8V  
o
o
Plastic Packages ..............................................-65 C to +150 C  
Vss-0.5V  
Ambient Temperature  
o
o
with Power Applied ...........................................-65 C to +125 C  
Vss-2.0V  
Voltage with Respect to Ground  
20ns  
Vcc (Note 1) ..........................................................-0.5V to +4.0V  
A9, OE#, RESET# and WP#/ACC (Note 2) ......-0.5V to +12.5V  
All other pins (Note 1) ...................................-0.5V to Vcc + 0.5V  
Negative Overshoot  
Output Short Circuit Current (Note 3) ................. 200 mA  
20ns  
20ns  
Notes:  
Vcc+2.0V  
1. Minimum DC voltage on input or I/O pins is -0.5V. During voltage  
transitions, input or I/O pins may overshoot Vss to -2.0V for per-  
iods of up to 20ns. Maximum DC voltage on input or I/O pins is  
Vcc+0.5V. See Fig. 13. During voltage transition, input or I/O pins  
may overshoot to Vcc+2.0V for periods up to 20ns. See Fig. 13.  
Vcc+0.5V  
2.0V  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#  
/ACC is -0.5V. During voltage transitions, A9, OE#, WP#/ACC,  
and RESET# may overshoot Vss to -2.0V for periods of up to  
20ns. See Fig. 13. Maximum DC input voltage on pin A9 is +12.5V  
which may overshoot to +14.0V for periods up to 20ns. Maximum  
DC input voltage on WP#/ACC is +9.5V which may overshoot to  
+12.0V for periods up to 20ns.  
20ns  
Positive Overshoot  
3. No more than one output may be shorted to ground at a time. Du-  
ration of the short circuit should not be greater than one second.  
Figure 13. Maximum Overshoot Waveform  
Stresses above those listed under “Absolute Maximum Ratings” may  
cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions ab-  
ove those indicated in the operational sections of this datasheet is  
not implied. Exposure of the device to absolute maximum rating con-  
ditions for extended periods may affect device reliability.  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA).................................-40oC to +85oC  
Commercial Devices  
Ambient Temperature (TA)....................................0oC to +70oC  
Vcc Supply Voltages  
Vcc for all devices ............................................2.7V to 3.6V  
Vcc for regulated voltage range .....................3.0V to 3.6V  
Operating ranges define those limits between which the functio-  
nality of the device is guaranteed.  
34  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
DC CHARACTERISTICS  
Table 11. CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min Typ  
Max  
Unit  
ILI  
Input Load Current  
VIN=Vss to Vcc  
Vcc=Vcc max  
+ 3.0  
uA  
ILIT  
ILR  
ILO  
A9 Input Load Current  
Vcc=Vcc max; A9=12.5V  
35  
uA  
uA  
uA  
RESET# Input Load Current  
Output Leakage Current  
Vcc=Vcc max; RESET#=12.5V  
35  
Vout=Vss to Vcc,  
Vcc=Vcc max  
+ 1.0  
5MHz  
10  
2
16  
4
CE#=VIL OE#=VIH, Byte  
mode  
1MHz  
ICCI  
Vcc Active Read Current  
(Notes 1,2)  
mA  
CE#=VIL, OE#=VIH, Word  
mode  
5MHz  
1MHz  
10  
2
16  
4
ICC2  
ICC3  
ICC4  
ICC5  
Vcc Active Write Current (Note 2,3)  
Vcc Standby Current (Note 2)  
Vcc Reset Current (Note 2)  
CE#=VIL, OE#=VIH, WE#=VIL  
CE#, RESET#= Vcc+0.3V  
RESET#=Vss + 0.3V  
15  
30  
mA  
uA  
uA  
uA  
0.2  
0.2  
0.2  
10  
10  
10  
Automatic Sleep Mode  
(Notes2,4)  
VIH = Vcc + 0.3V  
VIL = Vss + 0.3V  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
0.7xVcc  
Vcc+0.3  
Voltage for WP#/ACC Sector  
Protect/Unprotect and Program  
Acceleration  
VHH  
Vcc = 3.0V + 10%  
Vcc = 3.0V + 10%  
11.5  
11.5  
12.5  
12.5  
0.45  
V
V
V
VID  
Voltage for Autoselect and  
Temporary Sector Unprotect  
VOL  
Output Low Voltage  
IOL = 4.0 mA, Vcc = Vcc min  
IOH = -2.0mA, Vcc = Vcc min  
IOH = -100 uA, Vcc = Vcc min  
VOH1  
VOH2  
VLKO  
0.85 Vcc  
Vcc - 0.4  
2.3  
Output High Voltage  
V
V
Low Vcc Lock-Out Voltage (Note 5)  
2.5  
Notes:  
1. The Icc current listed is typically less than 2 mA/MHz, with OE# at VIH , Typical condition : 25oC, Vcc = 3V  
2. Maximum ICC specifications are tested with Vcc = Vcc max.  
3. Icc active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30ns. Typical sleep mode current is  
200 nA.  
5. Not 100% tested.  
35  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
DC CHARACTERISTICS  
Zero-Power Flash  
25  
Icc1 (Active Read current)  
20  
Icc5 (Automatic Sleep Mode)  
15  
10  
5
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 14. Icc1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
3.6V  
2.7V  
10  
8
6
4
2
0
1
3
2
4
5
Note: T = 25oC  
Frequency in MHz  
Figure 15. Typical Icc1 vs. Frequency  
36  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
3.3V  
Table 12. Test Specifications  
2.7k  
Test Condition  
80R  
90  
120  
Device  
Under  
Test  
Output Load  
1TTL gate  
30 pF  
C
L
Output Load Capacitance, CL (including jig  
capacitance)  
30 pF  
100 pF  
6.2k  
Input Rise and Fall Times  
5 ns  
0.0 - 3.0 V  
1.5 V  
Input Pulse Levels  
Input timing measurement reference levels  
Output timing measurement reference levels  
Figure 16. Test Setup  
1.5 V  
Note: Diodes are IN3064 or equivalent  
Key To Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0V  
1.5V Output  
Input 1.5V  
Measurement Level  
0.0V  
Figure 17. Input Waveforms and Measurement Levels  
37  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 13. Read-Only Operations  
Parameter  
Speed Options Unit  
Description  
Test Setup  
JEDEC Std.  
80R  
90  
90  
90  
90  
40  
120  
120  
120  
120  
50  
tAVAV  
tRC  
tACC  
tCE  
tOE  
tDF  
Read Cycle Time(Note 1)  
Min 80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tAXQX  
Address to Output Delay  
CE#,OE#=VIL  
OE#=VIL  
Max 80  
Max 80  
Max 35  
Max  
Chip Enable to Output Delay  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
16  
16  
0
tDF  
Max  
tOH  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
Min  
tOEH  
Output Enable Hold  
Time (Note 1)  
Read  
Min  
Min  
0
ns  
ns  
Toggle and Data# Polling  
10  
Note : 1. Not 100% tested  
tRC  
Address  
Address Stable  
tACC  
CE#  
OE#  
WE#  
tRH  
tDF  
tRH  
tOE  
tOEH  
tCE  
tOH  
High-Z  
High-Z  
OUTPUTS  
Output Valid  
RESET#  
RY/BY#  
0V  
Figure 18. Read Operation Timings  
38  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 14. Hardware Reset ( RESET #)  
Parameter  
Description  
All Speed Options Unit  
JEDEC Std.  
tReady  
RESET# Pin Low (During Embedded Algorithms) to Read Mode  
(See Note)  
Max  
Max  
20  
us  
tReady  
RESET# Pin Low (Not During Embedded Algorithms) to Read  
Mode (See Note)  
500  
ns  
tRP  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
us  
ns  
tRH  
tRPD  
tRB  
RESET High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note : Not 100% tested  
RY/BY#  
0V  
CE#,OE#  
RESET#  
tRH  
tRP  
tREADY  
(A) Not During Embedded Algorithm  
tREADY  
RY/BY#  
tRB  
CE#,OE#  
RESET#  
tRP  
(B) During Embedded Algorithm  
Figure 19. Reset Timings  
39  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 15. Word/Byte Configuration (BYTE#)  
Parameter  
Description  
80R 90  
120  
Unit  
JEDEC  
Std.  
tELFL/tELFH  
tFLQZ  
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
5
ns  
ns  
ns  
30  
tFHQV  
80  
90  
120  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ0-DQ14)  
Data Output  
(DQ0-DQ7)  
BYTE# Switching  
Switching from  
word to byte mode  
DQ0-DQ14  
DQ15/A-1  
DQ15  
Output  
Address Input  
tFLQZ  
tELFH  
BYTE#  
BYTE# Switching  
Switching from  
byte to word mode  
Data Output  
(DQ0-DQ7)  
Data Output  
(DQ0-DQ14)  
DQ0-DQ14  
DQ15  
Output  
Address Input  
DQ15/A-1  
tFHQV  
Figure 20. BYTE# Timing for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
tHOLD  
(tAH  
(tAS  
)
)
Note : Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 21. BYTE# Timing for Write Operations  
40  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 16. Erase and Program Operations  
Parameter  
Description  
80R  
90  
120  
Unit  
JEDEC  
tAVAV  
Std.  
tWC  
Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
80  
90  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVWL  
tAS  
Address Setup Time  
0
tASO  
tAH  
tAHT  
tDS  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
tWLAX  
45  
45  
50  
50  
Address Hold Time From CE# or OE# high during toggle bit polling  
Data Setup Time  
0
tDVWH  
tWHDX  
45  
tDH  
Data Hold Time  
0
tOEPH  
tGHWL  
tCS  
Output Enable High during toggle bit polling  
Read Recovery Time Before Write (OE# High to WE# Low)  
CE# Setup Time  
20  
0
tGHWL  
tELWL  
0
tWHEH  
tWLWH  
tWHDL  
tCH  
CE# Hold Time  
0
tWP  
Write Pulse Width  
35  
35  
50  
tWPH  
tSR/W  
Write Pulse Width High  
30  
0
Latency Between Read and Write Operations  
Byte  
Typ  
Typ  
Typ  
9
11  
8
tWHWH1  
tWHWH1  
Programming Operation (Note 2)  
Word  
us  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
tVCS  
Accelerated Programming Operation, Word or Byte (Note 2)  
Sector Erase Operation (Note 2)  
us  
sec  
us  
ns  
ns  
Typ  
Min  
Min  
Max  
0.7  
50  
0
Vcc Setup Time (Note 1)  
tRB  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
41  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data(last two cycles)  
tWC  
tAS  
Address  
555h  
PA  
PA  
PA  
tAH  
CE#  
tCH  
OE#  
WE#  
tCS  
tWP  
tWHWH1  
tWPH  
tDS  
tDH  
Status  
Dout  
A0h  
PD  
tBUSY  
DATA  
tRB  
RY/BY#  
Vcc  
tVCS  
NOTES :  
1. PA = program address, PD = program data, Dout is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 22. Program Operation Timings  
42  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAH  
tWC  
tAS  
SA  
Address  
2AAh  
VA  
VA  
555h for chip erase  
CE#  
tCH  
OE#  
WE#  
tCS  
tWP  
tWHWH2  
tWPH  
tDS  
tDH  
10h for chip erase  
30h  
In  
Complete  
55h  
Progress  
DATA  
tRB  
tBUSY  
RY/BY#  
Vcc  
tVCS  
NOTES :  
1. SA = sector address(for Sector Erase), VA = valid address for reading status data(see “Write Operation Status”).  
2. These waveforms are for the word mode.  
Figure 23. Chip/Sector Erase Operation Timings  
43  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
tRC  
Address  
VA  
VA  
tACC  
VA  
tCE  
CE#  
OE#  
tCH  
tOE  
tOEH  
tDF  
WE#  
tOH  
HIGH-Z  
DQ7  
Complement  
Complement  
Status Data  
True  
Valid Data  
HIGH-Z  
DQ0-DQ6  
Status Data  
True  
Valid Data  
tBUSY  
RY/BY#  
NOTE : VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle  
Figure 24. Data# Polling Timings (During Embedded Algorithms)  
44  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
tAHT  
tAS  
Address  
tASO  
tAHT  
CE#  
tOEH  
tCEPH  
WE#  
OE#  
tOEPH  
tDH  
tOE  
DQ6/DQ2  
RY/BY#  
Valid Data  
Valid Data  
Valid Status  
(first read)  
Valid Status  
(second read)  
Valid Status  
(stops toggling)  
NOTE : VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle.  
Figure 25. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Enter Erase  
Suspend  
Program  
Enter  
Suspend  
Erase  
Resume  
WE#  
Erase  
Erase  
Suspend  
Program  
Erase  
Suspend  
Read  
Erase  
Complete  
Erase  
Suspend  
Read  
Erase  
DQ6  
DQ2  
NOTE : DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle  
DQ2 and DQ6.  
Figure 26. DQ2 vs. DQ6  
45  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 17. Temporary Sector Unprotect  
Parameter  
Description  
All Speed Options  
Unit  
JEDEC Std.  
tVIDR  
tVHH  
tRSP  
tRRB  
VID Rise and Fall Time (See Note)  
Min  
Min  
Min  
Min  
500  
250  
4
ns  
ns  
us  
us  
VHH Rise and Fall Time (See Note)  
RESET# Setup Time for Temporary Sector Unprotect  
RESET# Hold Time from RY/BY# High for Temporary Sector Unprotect  
4
Note: Not 100% tested.  
VID  
RESET#  
Vss,VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 27. Temporary Sector Unprotect Timing Diagram  
VHH  
WP#/ACC  
VIL or VIH  
VIL  
tVHH  
tVHH  
or VIH  
Figure 28. Accelerated Program Timing Diagram  
46  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA,A6,  
A1,A0  
Valid*  
Sector/Sector Group Protect or Unprotect  
Valid*  
Valid*  
Verify  
Status  
DQ  
60h  
60h  
40h  
Sector/Sector Group Protect : 150us,  
Sector/Sector Group Unprotect: 15ms  
1us  
CE#  
WE#  
OE#  
* For sector protect, A6=0,A1=1,A0=0 For sector unprotect, A6=1,A1=1,A0=0  
Figure 29. Sector/Sector Group Protect & Unprotect Timing Diagram  
47  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
Table 18. Alternate CE# Controlled Erase and Program Operations  
Parameter  
Description  
80R 90  
120  
Unit  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Write Cycle Time( Note 1)  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
80  
90  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tGHEL  
tWLEL  
tEHWH  
tELEH  
tELEL  
Address Setup Time  
0
tAH  
Address Hold Time  
45  
45  
45  
45  
50  
50  
tDS  
Data Setup Time  
tDH  
Data Hold Time  
0
0
0
0
tGHEL  
tWS  
tWH  
tCP  
Read Recovery Time Before Write (OE# High to WE# Low)  
WE# Setup Time  
WE# Hold Time  
CE# Pulse Width  
CE# Pulse Width High  
Byte  
45  
45  
50  
tCPH  
30  
Typ  
Typ  
Typ  
9
11  
8
tWHWH1  
tWHWH1  
Programming Operation (Note 2)  
us  
Word  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
Accelerated Programming Operation, Word or Byte (Note 2)  
Sector Erase Operation (Note 2)  
us  
Typ  
0.7  
sec  
Notes :  
1. Not 100% tested  
2. See the “Erase And Programming Performance” section for more information.  
48  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
PD for program  
SA for sector erase  
555 for chip erase  
555 for program  
2AA for erase  
Data Polling  
Address  
PA  
tAH  
tAS  
tWC  
tWH  
WE#  
tGHEL  
OE#  
CE#  
tWHWH1 or 2  
tCP  
tCPH  
tWS  
tDS  
tBUSY  
tDH  
DOUT  
DQ7#  
DATA  
tRH  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
RESET#  
RY/BY#  
NOTES :  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data  
3. DQ7# is the complement of the data written to the device. Dout is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 30. Alternate CE# Controlled  
Write(Erase/Program) Operation Timings  
49  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 19. AC CHARACTERISTICS  
Parameter  
Description  
Value  
Unit  
ns  
tOE  
tVIDR  
tWPP1  
tWPP2  
tOESP  
tCSP  
Output Enable to Output Delay  
Voltage Transition Time  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
35/40/50  
500  
150  
15  
4
ns  
Write Pulse Width for Protection Operation  
Write Pulse Width for Unprotection Operation  
OE# Setup Time to WE# Active  
CE# Setup Time to WE# Active  
Voltage Setup Time  
us  
ms  
us  
4
us  
tST  
4
us  
A<20:12>  
SAy  
SAx  
A<0>  
A
<1>  
<6>  
A
tVIDR  
VID  
tVIDR  
A<9>  
tST  
VID  
OE#  
WE#  
tOESP  
tWPP1  
tST  
tOE  
tCSP  
CE#  
DQ  
0x01  
RESET#  
Vcc  
Figure 31. Sector Protection timings (A9 High-Voltage Method)  
50  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
AC CHARACTERISTICS  
A<20:12>  
SA1  
SA0  
A<0>  
A
<1>  
<6>  
A
tVIDR  
VID  
tVIDR  
A<9>  
tST  
VID  
OE#  
WE#  
tOESP  
tWPP2  
tST  
tOE  
tCSP  
CE#  
DQ  
0x00  
RESET#  
Vcc  
NOTE : It is recommended to verify for all sectors.  
Figure 32. Sector Unprotection timings (A9 High-Voltage Method)  
51  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Table 20. ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2) Unit  
Comments  
Sector Erase Time  
0.7  
112  
9
15  
sec  
sec  
us  
Excludes 00h programming prior to  
erasure (Note 4)  
Chip Erase Time  
Byte Program Time  
300  
210  
360  
108  
72  
Accelerated Byte/Word Program Time  
Word Program Time  
8
us  
Exclude system level overhead (Note 5)  
11  
36  
24  
us  
Byte Mode  
Word Mode  
Chip Program Time (Note 3)  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25oC, 3.0V Vcc, 10,000 cycles. Additionally, programming  
typicals assume checkerboard pattern.  
2. Under worst case conditions of 90oC, Vcc = 2.7V, 100,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two-or-four-bus-cycle sequence for the program command. See  
Table 9 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles  
.
Table 21. LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to Vss on all pins except I/O pins (including A9, OE#, and RESET#)  
- 1.0V  
- 1.0V  
12.5 V  
Input voltage with respect to Vss on all I/O pins  
Vcc Current  
Vcc + 1.0 V  
+100 mA  
- 100 mA  
Note: Includes all pins except Vcc. Test conditions: Vcc = 3.0 V, one pin at a time  
Table 22. TSOP AND BGA PACKAGE CAPACITANCE  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
Max  
Unit  
TSOP  
6
7.5  
pF  
pF  
pF  
CIN  
Input Capacitance  
VIN = 0  
VOUT = 0  
VIN = 0  
TSOP  
TSOP  
8.5  
7.5  
12  
9
COUT  
Output Capacitance  
CIN2  
Control Pin Capacitance  
Notes:  
1. Sampled, not 100% tested  
2. Test conditions TA = 25oC, f=1.0MHz  
.
Table 23. DATA RETENTION  
Parameter Description  
Test conditions  
Min  
Unit  
150oC  
125oC  
10  
20  
Years  
Minimum Pattern Data Retention Time  
Years  
52  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
PHYSICAL DIMENSIONS  
48-Pin Standard TSOP (measured in millimeters)  
0.10  
C
2
A2  
N
1
SEE DETAIL B  
-B-  
-A-  
5
E
e
9
N
2
N
2
---- + 1  
----  
5
4
D1  
A1  
-C-  
D
SEATING  
PLANE  
B
0.08MM (0.0031”)  
b
M
C A-B S  
6
7
A
WITH  
PLATING  
B
SEE DETAIL A  
(c)  
c1  
7
BASE  
METAL  
b1  
R
c
SECTION B-B  
GAUGE  
PLANE  
0.25MM  
(0.0098”) BSC  
e/2  
θ°  
PARALLEL TO  
SEATING PLANE  
L
-X-  
X = A OR B  
DETAIL A  
DETAIL B  
NOTES:  
Package  
TS 48  
JEDEC  
MO-142 (B) DD  
1. Controlling dimensions are in millimeters(mm). (Dimensioning  
and tolerancing conforms to ANSI Y14.5M-1982)  
Symbol  
MIN  
-
NOM  
MAX  
2. Pin 1 identifier for standard pin out (Die up).  
A
A1  
A2  
b1  
b
-
1.20  
0.15  
1.05  
0.23  
3. Pin 1 identifier for reverse pin out (Die down): Ink or Laser mark  
4. To be determined at the seating plane. The seating plane is def-  
ined as the plane of contact that is made when the package lea-  
ds are allowed to rest freely on a flat horizontal surface.  
5. Dimension D1 and E do not include mold protrusion. Allowable  
mold protrusion is 0.15mm (0.0059”) per side.  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
19.80  
18.30  
11.90  
-
1.00  
0.20  
0.22  
0.27  
6. Dimension b does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.0031”) total in excess  
of b dimension at max. material condition. Minimum space  
between protrusion and an adjacent lead to be 0.07mm  
(0.0028”).  
c1  
c
-
0.16  
0.21  
-
20.00  
18.40  
12.00  
0.50 BASIC  
0.60  
D
20.20  
18.50  
12.10  
7. These dimensions apply to the flat section of the lead between  
0.10mm (0.0039”) and 0.25mm (0.0098”) from the lead tip.  
8. Lead coplanarity shall be within 0.10mm (0.004”) as measured  
from the seating plane.  
D1  
E
e
9. Dimension “e” is measured at the centerline of the leads.  
L
0.50  
0°  
0.70  
5°  
θ
3°  
R
N
0.08  
-
0.20  
48  
53  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
54  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
ORDERNG INFORMATION  
Standard Products  
ESI standard products are available in several package and operating ranges. The order number (Valid Combi-  
nation) is formed by a combination of the following:  
ES 29 LV 320 X X - XX  
X
X X X  
TEMPERATURE RANGE  
Blank : Commercial (0oC to + 70oC)  
I
:
Industrial (- 40oC to + 85oC)  
Pb-free  
C
:
Pb product  
G
:
Pb-free product  
PACKAGE TYPE  
T
:
Standard TSOP (48-pin)  
W
:
FBGA (48-ball)  
VOLTAGE RANGE  
Blank : 2.7 ~ 3.6V  
R
: 3.0 ~ 3.6V  
SPEED OPTION  
70 : 70ns 80 : 80ns  
90 : 90ns  
12 : 120ns  
SECTOR ARCHITECTURE  
Blank : Uniform sector  
T
B
:
:
Top sector  
Bottom sector  
TECHNOLOGY  
D : 0.18um E : 0.15um  
F : 0.13um  
DENSITY & ORGANIZATION  
400 : 4M ( x8 / x16)  
160 : 16M ( x8 / x16)  
640 : 64M ( x8 / x16)  
800 : 8M ( x8 / x16)  
320 : 32M ( x8 / x16)  
POWER SUPPLY AND INTERFACE  
F
: 5.0V  
LV : 3.0V  
DL  
: 3.0V, Dual Bank  
DS : 1.8V, Dual Bank  
BDS : 1.8V, Burst mode, Dual Bank  
COMPONENT GROUP  
29 : Flash Memory  
EXCEL SEMICONDUCTOR  
55  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Product Selection Guide  
Industrial Device  
Part No.  
Speed Vcc  
Boot Sector  
Top  
Ball Pitch/Size  
Package  
Pb  
Body Size  
ES29LV320DT-80RTGI  
ES29LV320DT-80RTCI  
ES29LV320DB-80RTGI  
ES29LV320DB-80RTCI  
ES29LV320DT-90TGI  
ES29LV320DT-90TCI  
ES29LV320DB-90TGI  
ES29LV320DB-90TCI  
ES29LV320DT-12TGI  
ES29LV320DT-12TCI  
ES29LV320DB-12TGI  
ES29LV320DB-12TCI  
80ns  
80ns  
80ns  
80ns  
90ns  
90ns  
90ns  
90ns  
3.0 - 3.6V  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
Pb-free  
3.0 - 3.6V  
3.0 - 3.6V  
3.0 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
Top  
-
Bottom  
Bottom  
Top  
Pb-free  
-
Pb-free  
Top  
-
Bottom  
Bottom  
Top  
Pb-free  
-
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
Pb-free  
Top  
-
Bottom  
Bottom  
Pb-free  
-
56  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Product Selection Guide  
Commercial Device  
Part No.  
Speed Vcc  
Boot Sector  
Top  
Ball Pitch/Size  
Package  
Pb  
Body Size  
ES29LV320DT-80RTG  
ES29LV320DT-80RTC  
ES29LV320DB-80RTG  
ES29LV320DB-80RTC  
ES29LV320DT-90TG  
ES29LV320DT-90TC  
ES29LV320DB-90TG  
ES29LV320DB-90TC  
ES29LV320DT-12TG  
ES29LV320DT-12TC  
ES29LV320DB-12TG  
ES29LV320DB-12TC  
80ns  
80ns  
80ns  
80ns  
90ns  
90ns  
90ns  
90ns  
3.0 - 3.6V  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
48-pin TSOP  
Pb-free  
3.0 - 3.6V  
3.0 - 3.6V  
3.0 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
2.7 - 3.6V  
Top  
-
Bottom  
Bottom  
Top  
Pb-free  
-
Pb-free  
Top  
-
Bottom  
Bottom  
Top  
Pb-free  
-
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
120ns 2.7 - 3.6V  
Pb-free  
Top  
-
Bottom  
Bottom  
Pb-free  
-
57  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Document Title  
32M Flash Memory  
Revision History  
Revision Number  
Data  
Items  
Rev. 0A  
Nov. 10, 2003  
Initial Release Version.  
1. The typical program/erase current value changed from 30mA to  
15mA.  
Rev. 0B  
Rev. 0C  
Nov. 26, 2003  
Feb. 4, 2004  
2. The Table 6 for manufacture ID is changed to 4Ah.  
3. The extended temperature range is removed and the commer-  
cial temperature range is added.  
1. E/W cycle number is changed from 1,000,000 to 100,000.  
2. CFI code is changed : 45h : 04h ----> 45h : 00h  
1. The format of datasheet is entirely changed and updated  
2. 70ns product is removed  
3. 80R product ( 80ns : Vcc = 3.0 ~ 3.6V) is newly added.  
4. A command diagram is added.  
5. Sector protection / unprotection algorithm by A9 high-voltage  
method is described.  
Rev. 1A  
Mar. 1, 2004  
6. A limitation to the maximum number of E/W cycles in the Secu-  
rity Sector is described (300 E/W cycles at Max.).  
7. A product selection table is added.  
8. Test condtions for the typical performance of program/erase :  
after 100,000 E/W cycles ----> after 10,000 E/W cycles  
1. The bias condition of RESET# in Table 1 for A9 high-Voltage is  
Rev. 1B  
Apr. 23, 2004  
changed from V to H.  
ID  
2. The bias condition of A9 in Table 1 for A9 high-Voltage method  
is added.  
58  
Rev. 2D Jan 5, 2006  
ES29LV320D  
E S I  
E S I  
Excel Semiconductor inc.  
Document Title  
32M Flash Memory  
Revision History  
Revision Number  
Data  
Items  
1. The preliminary is removed from the datasheet.  
2. The Icc3 (max) is changed from 5uA to 10uA.  
3. The Icc4 (max) is changed from 5uA to 10uA.  
4. The Icc5 (max) is changed from 5uA to 10uA.  
Rev. 2A  
Dec. 1, 2004  
5. The size of FBGA is changed from 8mm x 9mm to 7mm x 8mm.  
6. The overall thickness of FBGA , A (max), is changed from 1.20  
to 1.10. Therefore, ball height (A1) and body thickness (A2)  
also is changed accordingly.  
7. The ball diameter of FBGA, b(min), b(nom), b(max), is changed  
from 0.25, 0.30, and 0.35 to 0.30, 0.35, and 0.40 respectively.  
1. The arrow from Erase Suspend Read to Read is changed to  
Sector Erase.  
Rev. 2B  
Dec. 13, 2004  
2. V  
(min), 2.3V is added  
LKO  
Rev. 2C  
Rev. 2D  
Apr. 1, 2005  
Jan. 5, 2005  
1. Remove FBGA Package Type.  
1. Add RoHS-Compliant Package Option.  
Excel Semiconductor Inc.  
1010 Keumkang Hightech Valley, Sangdaewon1-Dong 133-1, Jungwon-Gu, Seongnam-Si, Kyongki-Do, Rep.  
of Korea. Zip Code : 462-807 Tel : +82-31-777-5060 Fax : +82-31-740-3798 Homepage : www.excelsemi.com  
/
The attached datasheets are provided by Excel Semiconductor.inc (ESI). ESI reserves the right to change the spec-  
ifications and products. ESI will answer to your questions about device. If you have any questions, please contact the  
ESI office.  
59  
Rev. 2D Jan 5, 2006  
ES29LV320D  

相关型号:

ES29DS400E-90RTG

8Mbit(1M x 8/512K x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400E-90RWCI

4Mbit(512Kx 8/256K x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400EB-12TG

16Mbit(2M x 8/1M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400ET-70WC

16Mbit(2M x 8/1M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400ET-90RTGI

4Mbit(512Kx 8/256K x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400ET-90TGI

16Mbit(2M x 8/1M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400F-12RTG

32Mbit(4M x 8/2M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400F-70RTG

4Mbit(512Kx 8/256K x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400F-70WCI

32Mbit(4M x 8/2M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400FB-12RTG

32Mbit(4M x 8/2M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400FB-12TG

16Mbit(2M x 8/1M x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI

ES29DS400FB-70RWCI

4Mbit(512Kx 8/256K x 16) CMOS 3.0 Volt-only, Boot Sector Flash Memory
EXCELSEMI