XRT86VX38IB329-F [EXAR]

OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION; 八路T1 / E1 / J1成帧器/ LIU康贝 - 硬件描述
XRT86VX38IB329-F
型号: XRT86VX38IB329-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
八路T1 / E1 / J1成帧器/ LIU康贝 - 硬件描述

文件: 总61页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
JANUARY 2010  
REV. 1.0.2  
payload content of Receive LAPD Message frames  
from the incoming T1/E1/J1 data stream and write the  
contents into the Receive HDLC buffers. Each framer  
also contains a Transmit and Overhead Data Input  
port, which permits Data Link Terminal Equipment  
direct access to the outbound T1/E1/J1 frames.  
Likewise, a Receive Overhead output data port  
permits Data Link Terminal Equipment direct access  
to the Data Link bits of the inbound T1/E1/J1 frames.  
GENERAL DESCRIPTION  
The XRT86VX38 is an eight-channel 1.544 Mbit/s or  
2.048 Mbit/s DS1/E1/J1 framer and Long-haul/Short-  
hual LIU integrated solution featuring R3 technology  
(Relayless, Reconfigurable, Redundancy) and BITS  
Timing element. The physical interface is optimized  
with internal impedance, and with the patented pad  
structure, the XRT86VX38 provides protection from  
power failures and hot swapping.  
The XRT86VX38 fully meets all of the latest T1/E1/J1  
specifications:  
ANSI T1/E1.107-1988, ANSI T1/  
The XRT86VX38 contains an integrated DS1/E1/J1  
framer and LIU which provide DS1/E1/J1 framing and  
error accumulation in accordance with ANSI/ITU_T  
specifications. Each framer has its own framing  
synchronizer and transmit-receive slip buffers. The  
slip buffers can be independently enabled or disabled  
as required and can be configured to frame to the  
common DS1/E1/J1 signal formats.  
E1.403-1995, ANSI T1/E1.231-1993, ANSI T1/  
E1.408-1990, AT&T TR 62411 (12-90) TR54016, and  
ITU G-703, G.704, G706 and G.733, AT&T Pub.  
43801, and ETS 300 011, 300 233, JT G.703, JT  
G.704, JT G706, I.431. Extensive test and diagnostic  
functions include Loop-backs, Boundary scan,  
Pseudo Random bit sequence (PRBS) test pattern  
generation, Performance Monitor, Bit Error Rate  
(BER) meter, forced error insertion, and LAPD  
unchannelized data payload processing according to  
ITU-T standard Q.921.  
Each Framer block contains its own Transmit and  
Receive T1/E1/J1 Framing function. There are 3  
Transmit HDLC controllers per channel which  
encapsulate contents of the Transmit HDLC buffers  
into LAPD Message frames. There are 3 Receive  
HDLC controllers per channel which extract the  
Applications and Features (next page)  
FIGURE 1. XRT86VX38 8-CHANNEL DS1 (T1/E1/J1) FRAMER/LIU COMBO  
External Data  
Link Controller  
Local PCM  
Highway  
Tx Overhead In  
Rx Overhead Out  
XRT86VX38  
1 of 8-channels  
1:2 Turns Ratio  
1:1 Turns Ratio  
TTIP  
2-Frame  
Slip Buffer  
Elastic Store  
Tx Serial  
Data In  
Tx LIU  
Interface  
Tx Framer  
Rx Framer  
TRING  
Tx Serial  
Clock  
LLB  
LB  
RTIP  
2-Frame  
Slip Buffer  
Elastic Store  
Rx Serial  
Data Out  
Rx LIU  
Interface  
RRING  
Rx Serial  
Clock  
LIU &  
Loopback  
Control  
PRBS  
Generator &  
Analyser  
HDLC/LAPD  
Controllers  
Performance  
Monitor  
RxLOS  
Line Side  
8kHz sync  
OSC  
DMA  
Interface  
Microprocessor  
Interface  
Signaling&  
Alarms  
JTAG  
Back Plane  
1.544-16.384 Mbit/s  
WR  
ALE_AS  
4
3
INT  
D[7:0]  
RD  
A[14:0]  
µP  
Select  
System (Terminal) Side  
RDY_DTACK  
TxON  
Intel/Motorola µP  
Memory  
Configuration, Control &  
Status Monitor  
Exar Corporation 48720 Kato Road, Fremont CA, 94538  
(510) 668-7000  
FAX (510) 668-7017  
www.exar.com  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
APPLICATIONS  
High-Density T1/E1/J1 interfaces for Multiplexers, Switches, LAN Routers and Digital Modems  
SONET/SDH terminal or Add/Drop multiplexers (ADMs)  
T1/E1/J1 add/drop multiplexers (MUX)  
Channel Service Units (CSUs): T1/E1/J1 and Fractional T1/E1/J1  
BITS Timing  
Digital Access Cross-connect System (DACs)  
Digital Cross-connect Systems (DCS)  
Frame Relay Switches and Access Devices (FRADS)  
ISDN Primary Rate Interfaces (PRA)  
PBXs and PCM channel bank  
T3 channelized access concentrators and M13 MUX  
Wireless base stations  
ATM equipment with integrated DS1 interfaces  
Multichannel DS1 Test Equipment  
T1/E1/J1 Performance Monitoring  
Voice over packet gateways  
Routers  
FEATURES  
Supports Section 13 - Synchronization Interface in ITU G.703 for both Transmit and Receive Paths  
Supports SSM Synchronous Messaging Generation (BOC for T1, National Bits for E1) on the Transmit Path  
Supports SSM Synchronous Messaging Extraction (BOC for T1, National Bits for E1) on the Receive Path  
Supports BITS timing generation on the Transmit Outputs  
Supports BITS timing extraction from NRZ data on the Analog Receive Path  
DS-0 Monitoring on both Transmit and Receive Time Slots  
Supports SSM Synchronization Messaging per ANSI T1.101-1999 and ITU G.704  
Supports a Customized Section 13 - Synchronization Interface in G.703 at 1.544MHz  
Independent, full duplex DS1 Tx and Rx Framer/LIUs  
Each channel has full featured Long-haul/Short-haul LIU  
Two 512-bit (two-frame) elastic store, PCM frame slip buffers (FIFO) on TX and Rx provide up to 8.192 MHz  
asynchronous back plane connections with jitter and wander attenuation  
Supports input PCM and signaling data at 1.544, 2.048, 4.096 and 8.192 Mbits. Also supports 2-channel  
multiplexed 12.352/16.384 (HMVIP/H.100) Mbit/s on the back plane bus  
Programmable output clocks for Fractional T1/E1/J1  
Supports Channel Associated Signaling (CAS)  
Supports Common Channel Signalling (CCS)  
Supports ISDN Primary Rate Interface (ISDN PRI) signaling  
2
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
Extracts and inserts robbed bit signaling (RBS)  
3 Integrated HDLC controllers for transmit and receive, each controller having two 96-byte buffers (buffer 0 /  
buffer 1)  
HDLC Controllers Support SS7  
Timeslot assignable HDLC  
V5.1 or V5.2 Interface  
Automatic Performance Report Generation (PMON Status) can be inserted into the transmit LAPD interface  
every 1 second or for a single transmission  
Supports SPRM and NPRM  
Alarm Indication Signal with Customer Installation signature (AIS-CI)  
Remote Alarm Indication with Customer Installation (RAI-CI)  
Gapped Clock interface mode for Transmit and Receive.  
Intel/Motorola and Power PC interfaces for configuration, control and status monitoring  
Parallel search algorithm for fast frame synchronization  
Wide choice of T1 framing structures: SF/D4, ESF, SLC®96, T1DM and N-Frame (non-signaling)  
Direct access to D and E channels for fast transmission of data link information  
Full BERT Controller for generation and detection on system and line side of the chip  
PRBS, QRSS, and Network Loop Code generation and detection  
Seven Independent, simultaneous Loop Code Detectors per Channel  
Programmable Interrupt output pin  
Supports programmed I/O and DMA modes of Read-Write access  
The framer block encodes and decodes the T1/E1/J1 Frame serial data  
Detects and forces Red (SAI), Yellow (RAI) and Blue (AIS) Alarms  
Detects OOF, LOF, LOS errors and COFA conditions  
Loopbacks: Local (LLB) and Line remote (LB)  
Facilitates Inverse Multiplexing for ATM  
Performance monitor with one second polling  
Boundary scan (IEEE 1149.1) JTAG test port  
Accepts external 8kHz Sync reference  
1.8V Inner Core  
3.3V CMOS operation with 5V tolerant inputs  
256-pin fpBGA and 329-pin fpBGA package with -40°C to +85°C operation  
ORDERING INFORMATION  
P
ART  
NUMBER  
P
ACKAGE  
OPERATING TEMPERATURE RANGE  
XRT86VX38IB329  
XRT86VX38IB256  
329 Fine Pitch Ball Grid Array  
256 Fine Pitch Ball Grid Array  
-40  
-40  
°
C to +85  
C to +85  
°
C
C
°
°
3
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
329 BALL - FINE PITCH BALL GRID ARRAY (BOTTOM VIEW - SEE PIN LIST FOR DESCRIPTION)  
19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
O O O O O  
G
H
J
O O O O O O O  
O O O O O O O  
O O O O O O O  
O O O O O O O  
O O O O O O O  
O O O O O O O  
O O O O O O O  
K
L
M
N
P
R
T
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O  
U
V
W
4
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
256 BALL - FINE PITCH BALL GRID ARRAY (BOTTOM VIEW - SEE PIN LIST FOR DESCRIPTION)  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O  
G
H
J
K
L
M
N
P
R
T
5
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
LIST OF PARAGRAPHS  
1.0 PIN LISTS .................................................................................................................................................6  
2.0 PIN DESCRIPTIONS ..............................................................................................................................12  
I
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
LIST OF FIGURES  
Figure 1.: XRT86VX38 8-channel DS1 (T1/E1/J1) Framer/LIU Combo ............................................................................ 1  
Figure 2.: Framer System Transmit Timing Diagram (Base Rate/Non-Mux) ................................................................... 40  
Figure 3.: Framer System Receive Timing Diagram (RxSERCLK as an Output) ............................................................ 41  
Figure 4.: Framer System Receive Timing Diagram (RxSERCLK as an Input) ............................................................... 41  
Figure 5.: Framer System Transmit Timing Diagram (HMVIP and H100 Mode) ............................................................. 42  
Figure 6.: Framer System Receive Timing Diagram (HMVIP/H100 Mode) ..................................................................... 43  
Figure 7.: ITU G.703 Pulse Template .............................................................................................................................. 47  
Figure 8.: ITU G.703 Section 13 Synchronous Interface Pulse Template ....................................................................... 48  
Figure 9.: DSX-1 Pulse Template (normalized amplitude) .............................................................................................. 49  
Figure 10.: Intel µP Interface Timing During Programmed I/O Read and Write Operations When ALE Is Not Tied ’HIGH’ 51  
Figure 11.: Intel µP Interface Timing During Programmed I/O Read and Write Operations When ALE Is Tied ’HIGH’ .. 52  
Figure 12.: Motorola Asychronous Mode Interface Signals During Programmed I/O Read and Write Operations ......... 53  
Figure 13.: Power PC 403 Interface Signals During Programmed I/O Read and Write Operations ............................... 54  
II  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
LIST OF TABLES  
Table 1:: 329 Ball List by Ball Number ...............................................................................................................................6  
Table 2:: 256 Ball List by Ball Number ...............................................................................................................................9  
Table 3:: Pin Description Structure ..................................................................................................................................12  
Table 4:: E1 Receiver Electrical Characteristics ..............................................................................................................44  
Table 5:: T1 Receiver Electrical Characteristics ..............................................................................................................45  
Table 6:: E1 Transmitter Electrical Characteristics ..........................................................................................................45  
Table 7:: E1 Transmit Return Loss Requirement .............................................................................................................46  
Table 8:: T1 Transmitter Electrical Characteristics ..........................................................................................................46  
Table 9:: Transmit Pulse Mask Specification ...................................................................................................................47  
Table 10:: E1 Synchronous Interface Transmit Pulse Mask Specification .......................................................................48  
Table 11:: DSX1 Interface Isolated pulse mask and corner points ..................................................................................49  
Table 12:: AC Electrical Characteristics ...........................................................................................................................50  
Table 13:: Intel Microprocessor Interface Timing Specifications ......................................................................................51  
Table 14:: Intel Microprocessor Interface Timing Specifications ......................................................................................52  
Table 15:: Motorola Asychronous Mode Microprocessor Interface Timing Specifications ...............................................53  
Table 16:: Power PC 403 Microprocessor Interface Timing Specifications .....................................................................54  
III  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
1.0 PIN LISTS  
TABLE 1: 329 BALL  
L
IST  
TABLE 1: 329 BALL  
LIST  
TABLE 1: 329 BALL  
LIST  
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
T
ABLE 1: 329 BALL  
LIST  
P
IN  
P
IN  
N
AME  
P
IN  
P
IN  
N
AME  
P
IN  
PIN NAME  
BY ALL UMBER  
B
N
B13  
B14  
B15  
B16  
B17  
B18  
B19  
C1  
RXLOS1  
D7  
D8  
TDO  
RXSER0  
F1  
F2  
RRING1  
VSS  
P
IN  
PIN NAME  
TXMSYNC1  
TXSIG1  
A1  
A2  
VDD  
D9  
RXSERCLK0  
RXCRCSYNC0  
TXSER0  
RXCRCSYNC1  
VDD18  
F3  
TTIP1  
TRING1  
VDD  
VDDPLL18  
VSS  
RXSERCLK2  
RXSER2  
TXSIG2  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
E1  
F4  
A3  
F5  
A4  
DGND  
F15  
F16  
F17  
F18  
F19  
G1  
VDD18  
A5  
TDI  
RXSER3  
RTIP0  
RXSERCLK3  
RxSCLK3  
TXSERCLK3  
TXSER3  
RVDD2  
RGND1  
TGND1  
TVDD1  
VDD18  
VDD18  
VSS  
A6  
VSS  
TXSERCLK1  
RXLOS2  
TXSYNC2  
TXSER2  
RXSIG3  
A7  
RXSIG0  
RXSYNC0  
TXSYNC0  
TXSIG0  
C2  
RVDD0  
A8  
C3  
GNDPLL  
VDDPLL18  
VSS  
A9  
C4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
B1  
C5  
G2  
RXSERCLK1  
VDD  
C6  
AGND  
RXCASYNC3  
RTIP1  
G3  
C7  
aTEST  
G4  
TXSYNC1  
TXSER1  
VSS  
C8  
MCLKIN  
TRST  
E2  
RVDD1  
G5  
C9  
E3  
TRING0  
G7  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
D1  
TCK  
E4  
TGND0  
G8  
RXCASYNC2  
RXCRCSYNC2  
RxSCLK2  
VDD  
RxSCLK0  
RXSER1  
RXSYNC1  
RXCASYNC1  
RXSYNC2  
RXSIG2  
E5  
ANALOG  
VDD18  
G9  
VDD18  
VSS  
E6  
G10  
G11  
G12  
G13  
G15  
G16  
G17  
G18  
G19  
H1  
E7  
VSS  
VDD18  
VSS  
E8  
VDD18  
GNDPLL  
VDDPLL18  
VDDPLL18  
DVDD18  
RXTSEL  
VDD  
E9  
VDD18  
VDD18  
DATA7  
B2  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
RXCASYNC0  
VDD18  
B3  
TXSERCLK2  
TXMSYNC2  
RXCRCSYNC3  
RRING0  
RGND0  
TXMSYNC3  
WR / R/W  
TXSIG3  
CS  
B4  
VDD18  
B5  
VDD18  
B6  
RxSCLK1  
VDD18  
B7  
TMS  
D2  
RTIP2  
B8  
RXLOS0  
VDD  
D3  
TTIP0  
VDD  
H2  
RGND2  
TRING2  
TTIP2  
B9  
D4  
TVDD0  
RXSYNC3  
RXLOS3  
TXSYNC3  
H3  
B10  
B11  
B12  
TXMSYNC0  
TXSERCLK0  
RXSIG1  
D5  
GNDPLL  
AVDD18  
H4  
D6  
H5  
VSS  
6
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
TABLE 1: 329 BALL  
L
IST  
TABLE 1: 329 BALL  
L
IST  
TABLE 1: 329 BALL  
LIST  
TABLE 1: 329 BALL  
LIST  
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
P
IN  
P
IN  
NAME  
P
IN  
P
IN  
N
AME  
P
IN  
P
IN  
NAME  
P
IN  
PIN NAME  
H7  
H8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K4  
K5  
TTIP3  
M2  
M3  
RGND4  
TGND4  
TVDD4  
VDD18  
VSS  
N19  
P1  
ADDR0  
RTIP5  
VSS  
TVDD3  
VSS  
H9  
K7  
M4  
P2  
H10  
H11  
H12  
H13  
H15  
H16  
H17  
H18  
H19  
J1  
K8  
VSS  
M5  
P3  
TGND5  
RVDD6  
TGND6  
VDD18  
VDD  
K9  
VSS  
M7  
P4  
K10  
K11  
K12  
K13  
K15  
K16  
K17  
K18  
K19  
L1  
VSS  
M8  
VSS  
P5  
VSS  
M9  
VSS  
P15  
P16  
P17  
P18  
P19  
R1  
ADDR12  
DATA6  
ADDR14  
DATA5  
ADDR13  
RRING2  
RVDD3  
TGND2  
TVDD2  
VDD18  
VDD18  
VSS  
VSS  
M10  
M11  
M12  
M13  
M15  
M16  
M17  
M18  
M19  
N1  
VSS  
VSS  
VSS  
PTYPE0  
PCLK  
ADDR8  
DATA2  
VSS  
VSS  
DATA1  
RRING5  
RGND5  
TVDD6  
TRING6  
TTIP6  
ALE / AS  
ADDR10  
PTYPE2  
RRING3  
RVDD4  
TTIP4  
ADDR3  
RDY / DTACK  
ADDR1  
ADDR2  
ADDR5  
RRING4  
RVDD5  
TTIP5  
R2  
J2  
R3  
J3  
R4  
J4  
L2  
R5  
J5  
L3  
R6  
VSS  
J7  
L4  
TRING4  
TGND3  
VDD18  
VSS  
N2  
R7  
RXCRCSYNC7  
TXMSYNC6  
VDD18  
VDD18  
VDD  
J8  
L5  
N3  
R8  
J9  
VSS  
L7  
N4  
TRING5  
TVDD5  
VDD18  
VSS  
R9  
J10  
J11  
J12  
J13  
J15  
J16  
J17  
J18  
J19  
K1  
VSS  
L8  
N5  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
T1  
VSS  
L9  
VSS  
N7  
VSS  
L10  
L11  
L12  
L13  
L15  
L16  
L17  
L18  
L19  
M1  
VSS  
N8  
VDD18  
VDD  
VDD18  
ADDR11  
ADDR9  
VDD  
VSS  
N9  
VDD18  
VSS  
VSS  
N10  
N11  
N12  
N13  
N15  
N16  
N17  
N18  
VDD18  
VDD  
VDD18  
VDD18  
ADDR4  
ADDR6  
DATA3  
ADDR7  
RTIP4  
VDD18  
VSS  
REQ1  
INT  
VDD18  
VSS  
RXSERCLK4  
VDD  
DATA4  
RTIP3  
RGND3  
TRING3  
DATA0  
RD / DS / WE  
PTYPE1  
ACK1  
K2  
RTIP6  
K3  
T2  
RGND6  
7
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TABLE 1: 329 BALL  
L
IST  
TABLE 1: 329 BALL  
L
IST  
TABLE 1: 329 BALL  
LIST  
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
P
IN  
P
IN  
NAME  
P
IN  
P
IN  
N
AME  
P
IN  
PIN NAME  
T3  
T4  
TTIP7  
TVDD7  
U16  
U17  
U18  
U19  
V1  
TXMSYNC4  
RXCASYNC4  
RXSIG4  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
RXCASYNC6  
VDD  
T5  
8KEXTOSC  
VDD18  
RXSER6  
TXSIG5  
RXSIG5  
VDD  
T6  
RXLOS4  
T7  
VDD  
VDD  
T8  
RXSYNC7  
RXCASYNC7  
RXSYNC6  
TXSERCLK5  
RXSERCLK6  
TXMSYNC5  
RxSCLK5  
RXSERCLK5  
TXSYNC4  
RXSYNC4  
ACK0  
V2  
TGND7  
T9  
V3  
RGND7  
RXCRCSYNC5  
TXSER4  
RxSCLK4  
VSS  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
U1  
V4  
RESET  
V5  
E1OSCCLK  
TXMSYNC7  
RXLOS7  
V6  
V7  
V8  
RXSER7  
TXSYNC6  
RXCRCSYNC6  
RXLOS6  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RXSIG6  
REQ0  
TXSER5  
RRING6  
RXSER5  
RXCASYNC5  
TXSIG4  
U2  
RVDD7  
U3  
TRING7  
U4  
VDD  
TXSERCLK4  
RXSER4  
RXCRCSYNC4  
VSS  
U5  
TXSERCLK7  
TXSIG7  
U6  
U7  
RXSERCLK7  
RxSCLK7  
RXSIG7  
U8  
RTIP7  
U9  
RRING7  
U10  
U11  
U12  
U13  
U14  
U15  
TXSIG6  
TXON  
RxSCLK6  
VSS  
T1OSCCLK  
TXSER7  
TXSYNC5  
RXSYNC5  
RXLOS5  
TXSYNC7  
TXSERCLK6  
TXSER6  
8
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
TABLE 2: 256 BALL  
L
IST  
TABLE 2: 256 BALL  
LIST  
TABLE 2: 256 BALL  
LIST  
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
TABLE 2: 256 BALL  
LIST  
BY ALL UMBER  
B
N
P
IN  
P
IN  
N
AME  
P
IN  
P
IN  
NAME  
P
IN  
PIN NAME  
P
IN  
P
IN  
N
AME  
B16  
C1  
RXSER3  
RRING0  
RGND0  
TTIP0  
D16  
E1  
RXLOS3  
RRING1  
RGND1  
TTIP1  
F16  
G1  
ADDR13  
RRING2  
RGND2  
TTIP2  
TRING2  
TGND2  
VDD18  
VSS  
A1  
A2  
GNDPLL  
GNDPLL  
C2  
E2  
G2  
A3  
VDDPLL18  
VDDPLL18  
RxTSEL  
TMS  
C3  
E3  
G3  
A4  
C4  
GNDPLL  
AVDD18  
DVDD18  
aTEST  
TDI  
E4  
TRING1  
TGND0  
MCLKIN  
VSS  
G4  
A5  
C5  
E5  
G5  
A6  
C6  
E6  
G6  
A7  
RXLOS0  
C7  
E7  
G7  
A8  
RXCRCSYNC0  
RXCASYNC0  
RXSERCLK1  
RXSYNC1  
TXMSYNC1  
RXSYNC2  
TXSYNC2  
RxSCLK2  
VDD  
C8  
E8  
VDD  
G8  
VSS  
A9  
C9  
TXSYNC0  
E9  
VSS  
G9  
VSS  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
RXCRCSYNC1  
RXLOS1  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
TXSER0  
VDD  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
VSS  
ADDR14  
DATA6  
DATA7  
DATA5  
VDD  
TXSER1  
RXCRCSYNC3  
RXCASYNC3  
TXMSYNC3  
TXSYNC3  
TXSERCLK3  
RTIP2  
RXSERCLK2  
RXCRCSYNC2  
TXMSYNC2  
RXSYNC3  
RTIP1  
ADDR12  
RTIP3  
RVDD3  
TTIP3  
TRING3  
TVDD3  
VDD18  
VSS  
RTIP0  
B2  
RVDD0  
D2  
RVDD1  
F2  
RVDD2  
H2  
B3  
VDDPLL18  
ANALOG  
AGND  
D3  
TRING0  
F3  
TGND1  
H3  
B4  
D4  
TVDD0  
F4  
TVDD1  
H4  
B5  
D5  
VDDPLL18  
DGND  
F5  
TVDD2  
H5  
B6  
TDO  
D6  
F6  
VSS  
H6  
B7  
RXSER0  
D7  
TRST  
F7  
VSS  
H7  
B8  
RXSERCLK0  
RXSYNC0  
RxSCLK0  
RXSER1  
D8  
TCK  
F8  
VDD18  
H8  
VSS  
B9  
D9  
TXMSYNC0  
TXSERCLK0  
RXCASYNC1  
RxSCLK1  
RXCASYNC2  
TXSER2  
F9  
VDD18  
H9  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
D10  
D11  
D12  
D13  
D14  
D15  
F10  
F11  
F12  
F13  
F14  
F15  
VDD18  
H10  
H11  
H12  
H13  
H14  
H15  
VSS  
RXLOS2  
RxSCLK3  
WR / R/W  
CS  
VDD18  
PTYPE2  
DATA4  
ADDR10  
INT  
TXSYNC1  
TXSERCLK1  
RXSER2  
TXSERCLK2  
RXSERCLK3  
TXSER3  
9
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TABLE 2: 256 BALL  
L
IST  
TABLE 2: 256 BALL  
L
IST  
TABLE 2: 256 BALL  
LIST  
TABLE 2: 256 BALL  
LIST  
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
BY ALL UMBER  
B
N
P
IN  
P
IN  
NAME  
P
IN  
P
IN  
N
AME  
P
IN  
P
IN  
NAME  
P
IN  
PIN NAME  
H16  
J1  
ADDR11  
RRING3  
RGND3  
TTIP4  
K16  
L1  
ADDR5  
M16  
N1  
PCLK  
P16  
R1  
RXLOS4  
RRING6  
RGND6  
RGND7  
RESET  
RRING4  
RGND4  
TTIP5  
RRING5  
RGND5  
TGND6  
TVDD7  
TGND7  
J2  
L2  
N2  
R2  
J3  
L3  
N3  
R3  
J4  
TRING4  
TGND3  
VDD18  
VSS  
L4  
TRING5  
TGND5  
N4  
R4  
J5  
L5  
N5  
R5  
E1OSCCLK  
RXSERCLK7  
RXSYNC7  
TXMSYNC6  
RXCRCSYNC6  
RXLOS6  
J6  
L6  
8KEXTOSC  
VDD18  
N6  
TXMSYNC7  
RXCRCSYNC7  
TXSYNC6  
RXCASYNC6  
TXSERCLK5  
RXSYNC5  
TXSER4  
R6  
J7  
L7  
N7  
R7  
J8  
VSS  
L8  
VDD18  
N8  
R8  
J9  
VSS  
L9  
VDD18  
N9  
R9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
VSS  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
VDD18  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
VDD18  
DATA3  
ADDR9  
ADDR8  
ADDR7  
ALE / AS  
RTIP4  
RVDD4  
TGND4  
TVDD4  
TVDD5  
VDD18  
VSS  
ADDR3  
TXMSYNC5  
RXCASYNC5  
RXCRCSYNC5  
RXCASYNC4  
RXCRCSYNC4  
REQ1  
DATA1  
ADDR0  
RXSYNC4  
VDD  
ADDR1  
RD / DS / WE  
RDY / DTACK  
RTIP5  
ACK0  
REQ0  
RTIP6  
RVDD7  
K2  
RVDD5  
P2  
RVDD6  
T2  
RTIP7  
K3  
TTIP6  
P3  
TTIP7  
T3  
RRING7  
K4  
TRING6  
TVDD6  
P4  
TRING7  
T4  
TXON  
K5  
P5  
TXSER7  
T5  
T1OSCCLK  
TXSYNC7  
TXSERCLK6  
TXSER6  
K6  
VDD  
P6  
TXSERCLK7  
RXLOS7  
RXSER7  
RxSCLK6  
TXSER5  
T6  
K7  
RxSCLK7  
RXCASYNC7  
VDD  
P7  
T7  
K8  
VSS  
P8  
T8  
K9  
VSS  
P9  
T9  
RXSYNC6  
RXSER6  
K10  
K11  
K12  
K13  
K14  
K15  
VSS  
RXSERCLK6  
TXSYNC5  
PTYPE1  
PTYPE0  
DATA0  
P10  
P11  
P12  
P13  
P14  
P15  
T10  
T11  
T12  
T13  
T14  
T15  
VDD18  
DATA2  
ADDR4  
ADDR6  
ADDR2  
RXSER5  
RXLOS5  
TXMSYNC4  
RXSERCLK4  
RXSER4  
RxSCLK5  
RXSERCLK5  
TXSYNC4  
TXSERCLK4  
RxSCLK4  
ACK1  
10  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
TABLE 2: 256 BALL  
LIST  
BY ALL UMBER  
B
N
P
IN  
PIN NAME  
T16  
VDD  
11  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
2.0 PIN DESCRIPTIONS  
There are six types of pins defined throughout this pin description and the corresponding symbol is presented  
in table below. The per-channel pin is indicated by the channel number or the letter ’n’ which is appended at the  
end of the signal name, for example, TxSERn, where "n" indicates channels 0 to 7. All output pins are "tri-  
stated" upon hardware RESET.  
S
YMBOL  
I
PIN TYPE  
Input  
O
Output  
Bidirectional  
Ground  
I/O  
GND  
PWR  
NC  
Power  
No Connect  
The structure of the pin description is divided into eleven groups, as presented in the table below  
TABLE 3: PIN  
D
ESCRIPTION  
STRUCTURE  
S
ECTION  
P
AGE UMBER  
N
Transmit System Side Inter-  
face  
page 13  
Receive System Side Inter-  
face  
page 18  
Receive Line Interface  
Transmit Line Interface  
Timing Interface  
page 23  
page 24  
page 25  
page 26  
page 26  
page 35  
page 36  
page 37  
page 38  
JTAG Interface  
Microprocessor Interface  
Power Pins (3.3V)  
Power Pins (1.8V)  
Ground Pins  
No Connect Pins  
12  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
TRANSMIT SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
OUTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL  
#
DRIVE(MA)  
TxSER0/  
TxPOS0  
TxSER1/  
TxPOS1  
TxSER2/  
TxPOS2  
TxSER3/  
TxPOS3  
TxSER4/  
TxPOS4  
TxSER5/  
TxPOS5  
TxSER6/  
TxPOS6  
TxSER7/  
TxPOS7  
D11  
A14  
E10  
C12  
D14  
F15  
N12  
P10  
T8  
I
-
Transmit Serial Data Input (TxSERn)/Transmit Positive  
Digital Input (TxPOSn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
DS1/E1 Mode - TxSERn  
D17  
F19  
W17  
V13  
W9  
These pins function as the transmit serial data input on the  
system side interface, which are latched on the rising edge of  
the TxSERCLKn pin. Any payload data applied to this pin will  
be inserted into an outbound DS1/E1 frame and output to the  
line. In DS1 mode, the framing alignment bits, facility data link  
bits, CRC-6 bits, and signaling information can also be  
inserted from this input pin if configured appropriately. In E1  
mode, all data intended to be transported via Time Slots 1  
through 15 and Time slots 17 through 31 must be applied to  
this input pin. Data intended for Time Slots 0 and 16 can also  
be applied to this input pin If configured accordingly.  
W6  
P5  
DS1 or E1 High-Speed Multiplexed Mode* - TxSERn  
In this mode, these pins are used as the high-speed multi-  
plexed data input pin on the system side. High-speed multi-  
plexed data of channels 0-3 must be applied to TxSER0 and  
high-speed multiplexed data of channels 4-7 must be applied  
to TxSER4 in a byte or bit-interleaved way. The framer latches  
in the multiplexed data on TxSER0 and TxSER4 using TxM-  
SYNC/TxINCLK and demultiplexes this data into 4 serial  
streams. The LIU block will then output the data to the line  
interface using TxSERCLKn.  
DS1 or E1 Framer Bypass Mode - TxPOSn  
In this mode, TxSERn is used for the positive digital input pin  
(TxPOSn) to the LIU.  
NOTE:  
1. *High-speed multiplexed modes include (For T1/E1)  
16.384MHz HMVIP, H.100, Bit-multiplexed modes,  
and (For T1 only) 12.352MHz Bit-multiplexed mode.  
2. In DS1 high-speed modes, the DS-0 data is mapped  
into an E1 frame by ignoring every fourth time slot  
(don’t care).  
3. These 8 pins are internally pulled “High” for each  
channel.  
13  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TRANSMIT SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL  
#
DRIVE(MA)  
TxSERCLK0/  
TxLINECLK0  
TxSERCLK1/  
TxLINECLK1  
TxSERCLK2/  
TxLINECLK2  
TxSERCLK3/  
TxLINECLK3  
TxSERCLK4/  
TxLINECLK4  
TxSERCLK5/  
TxLINECLK5  
TxSERCLK6/  
TxLINECLK6  
TxSERCLK7/  
TxLINECLK7  
B11  
D10  
B13  
B15  
E16  
T14  
N10  
T7  
I/O  
12  
Transmit Serial Clock (TxSERCLKn)/Transmit Line Clock  
(TxSERCLKn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
D14  
C17  
F18  
V17  
T11  
W8  
In Base-Rate Mode (1.544MHz/2.048MHz) - TxSERCLKn:  
This clock signal is used by the transmit serial interface to  
latch the contents on the TxSERn pins into the T1/E1 framer  
on the rising edge of the TxSERCLKn. These pins can be con-  
figured as input or output as described below.  
When TxSERCLKn is configured as Input:  
These pins will be inputs if the TxSERCLK is chosen as the  
timing source for the transmit framer. Users must provide a  
1.544MHz clock rate to this input pin for T1 mode of operation,  
and 2.048MHz clock rate in E1 mode.  
When TxSERCLKn is configured as Output:  
These pins will be outputs if either the recovered line clock or  
the MCLK PLL is chosen as the timing source for the T1/E1  
transmit framer. The transmit framer will output a 1.544MHz  
clock rate in T1 mode of operation, and a 2.048MHz clock rate  
in E1 mode.  
U5  
P6  
DS1/E1 High-Speed Backplane Modes* - TxSERCLKn as  
INPUT ONLY  
In this mode, TxSERCLK is an optional clock signal input  
which is used as the timing source for the transmit line inter-  
face, and is only required if TxSERCLK is chosen as the tim-  
ing source for the transmit framer. If TxSERCLK is chosen as  
the timing source, system equipment should provide  
1.544MHz (For T1 mode) or 2.048MHz (For E1 mode) to the  
TxSERCLKn pins on each channel. TxSERCLK is not  
required if either the recovered clock or MCLK PLL is chosen  
as the timing source of the device.  
High speed or multiplexed data is latched into the device using  
the TxMSYNC/TxINCLK high-speed clock signal.  
DS1 or E1 Framer Bypass Mode - TxLINECLKn  
In this mode, TxSERCLKn is used as the transmit line clock  
(TxLINECLK) to the LIU.  
NOTE  
:
*High-speed backplane modes include (For T1/E1)  
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz  
HMVIP, H.100, Bit-multiplexed modes, and (For T1  
only) 12.352MHz Bit-multiplexed mode.  
N
OTE: In DS1 high-speed modes, the DS-0 data is mapped  
into an E1 frame by ignoring every fourth time slot  
(don’t care).  
NOTE  
:
These 8 pins are internally pulled “High” for each  
channel.  
14  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TRANSMIT SYSTEM SIDE INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL  
#
DRIVE(MA)  
TxSYNC0/  
TxNEG0  
A9  
C9  
I/O  
12  
Transmit Single Frame Sync Pulse (TxSYNCn) / Transmit  
Negative Digital Input (TxNEGn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
TxSYNC1/  
TxNEG1  
A13  
B12  
A14  
E15  
T13  
M11  
N8  
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) - TxSYNCn:  
TxSYNC2/  
TxNEG2  
D16  
E19  
T16  
U13  
V9  
These TxSYNCn pins are used to indicate the single frame  
boundary within an outbound T1/E1 frame. In both DS1 or E1  
mode, the single frame boundary repeats every 125 microsec-  
onds (8kHz).  
TxSYNC3/  
TxNEG3  
TxSYNC4/  
TxNEG4  
In DS1/E1 base rate, TxSYNCn can be configured as either  
input or output as described below.  
TxSYNC5/  
TxNEG5  
When TxSYNCn is configured as an Input:  
Users must provide a signal which must pulse "High" for one  
period of TxSERCLK during the first bit of an outbound DS1/  
E1 frame. It is imperative that the TxSYNC input signal be syn-  
chronized with the TxSERCLK input signal.  
TxSYNC6/  
TxNEG6  
TxSYNC7/  
TxNEG7  
W7  
T6  
When TxSYNCn is configured as an Output:  
The transmit T1/E1 framer will output a signal which pulses  
"High" for one period of TxSERCLK during the first bit of an  
outbound DS1/E1 frame.  
DS1/E1 High-Speed Backplane Modes* - TxSYNCn as  
INPUT ONLY:  
In this mode, TxSYNCn must be an input regardless of the  
clock source that is chosen to be the timing source for the  
transmit framer. In 2.048MVIP/4.096/8.192MHz high-speed  
modes, TxSYNCn pins must be pulsed ’High’ for one period of  
TxSERCLK during the first bit of the outbound T1/E1 frame. In  
HMVIP mode, TxSYNC0 and TxSYNC4 must be pulsed ’High’  
for 4 clock cycles of the TxMSYNC/TxINCLK signal in the  
position of the first two and the last two bits of a multiplexed  
frame. In H.100 mode, TxSYNC0 and TxSYNC4 must be  
pulsed ’High’ for 2 clock cycles of the TxMSYNC/TxINCLK sig-  
nal in the position of the first and the last bit of a multiplexed  
frame.  
DS1 or E1 Framer Bypass Mode - TxNEGn  
In this mode, TxSYNCn is used as the negative digital input  
pin (TxNEG) to the LIU.  
NOTE  
:
*High-speed backplane modes include (For T1/E1)  
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz  
HMVIP, H.100, Bit-multiplexed modes, and (For T1  
only) 12.352MHz Bit-multiplexed mode.  
N
OTE: In DS1 high-speed modes, the DS-0 data is mapped  
into an E1 frame by ignoring every fourth time slot  
(don’t care).  
NOTE  
:
These 8 pins are internally pulled “Low” for each  
channel.  
15  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TRANSMIT SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL  
#
DRIVE(MA)  
TxMSYNC0/  
TxINCLK0  
B10  
B14  
C18  
G16  
U16  
T13  
R8  
D9  
I/O  
12  
Multiframe Sync Pulse (TxMSYNCn) / Transmit Input  
Clock (TxINCLKn)  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
TxMSYNC1/  
TxINCLK1  
A12  
C15  
E14  
P13  
R11  
R8  
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) - TxM-  
SYNCn  
TxMSYNC2/  
TxINCLK2  
In this mode, these pins are used to indicate the multi-frame  
boundary within an outbound DS1/E1 frame.  
TxMSYNC3/  
TxINCLK3  
In DS1 ESF mode, TxMSYNCn repeats every 3ms.  
In DS1 SF mode, TxMSYNCn repeats every 1.5ms.  
In E1 mode, TxMSYNCn repeats every 2ms.  
TxMSYNC4/  
TxINCLK4  
TxMSYNC5/  
TxINCLK5  
If TxMSYNCn is configured as an input, TxMSYNCn must  
pulse "High" for one period of TxSERCLK during the first bit of  
an outbound DS1/E1 multi-frame. It is imperative that the  
TxMSYNC input signal be synchronized with the TxSERCLK  
input signal.  
TxMSYNC6/  
TxINCLK6  
TxMSYNC7/  
TxINCLK7  
V6  
N6  
If TxMSYNCn is configured as an output, the transmit section  
of the T1/E1 framer will output and pulse TxMSYNC "High" for  
one period of TxSERCLK during the first bit of an outbound  
DS1/E1 frame.  
DS1/E1 High-Speed Backplane Modes* - (TxINCLKn as  
INPUT ONLY)  
In this mode, this pin must be used as the high-speed input  
clock pin (TxINCLKn) for the backplane interface to latch in  
high-speed or multiplexed data on the TxSERn pin. The fre-  
quency of TxINCLK is presented in the table below.  
F
REQUENCY OF  
OPERATION MODE  
T
X
INCLK(MH  
Z)  
2.048MVIP non-multiplexed  
4.096MHz non-multiplexed  
8.192MHz non-multiplexed  
2.048  
4.096  
8.192  
12.352MHz Bit-multiplexed  
(DS1 ONLY)  
12.352  
16.384MHz Bit-multiplexed  
16.384 HMVIP Byte-multiplexed  
16.384 H.100 Byte-multiplexed  
16.384  
16.384  
16.384  
NOTES:  
1. *High-speed backplane modes include (For T1/E1)  
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz  
HMVIP, H.100, Bit-multiplexed modes, and (For T1  
only) 12.352MHz Bit-multiplexed mode.  
2. In DS1 high-speed modes, the DS-0 data is mapped  
into an E1 frame by ignoring every fourth time slot  
(don’t care).  
3. These 8 pins are internally pulled “Low” for each  
channel.  
16  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TRANSMIT SYSTEM SIDE INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
OUTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL  
#
DRIVE(MA)  
TxSIG0  
TxSIG1  
TxSIG2  
TxSIG3  
TxSIG4  
TxSIG5  
TxSIG6  
TxSIG7  
A10  
B15  
B18  
I/O  
8
Transmit Time Slot Octet Identifier Output 0 (TxCHNn_0) /  
Transmit Serial Signaling Input (TxSIGn):  
The exact function of these pins depends on whether or not  
the transmit framer enables the transmit fractional/signaling  
interface, as described below:  
G18  
V16  
W13  
U10  
U6  
If transmit fractional/signaling interface is disabled -  
- No function  
If transmit fractional/signaling interface is enabled -  
TxSIGn:  
These pins can be used to input robbed-bit signaling data to  
be inserted within an outbound DS1 frame or to input Channel  
Associated Signaling (CAS) data within an outbound E1  
frame, as described below.  
T1 Mode: Signaling data (A,B,C,D) of each channel must be  
provided on bit 4,5,6,7 of each time slot on the TxSIG pin if 16-  
code signaling is used. If 4-code signaling is selected, signal-  
ing data (A,B) of each channel must be provided on bit 4, 5 of  
each time slot on the TxSIG pin. If 2-code signaling is  
selected, signaling data (A) of each channel must be provided  
on bit 4 of each time slot on the TxSIG pin.  
E1 Mode: Signaling data in E1 mode can be provided on the  
TxSIGn pins on a time-slot-basis as in T1 mode, or it can be  
provided on time slot 16 only via the TxSIGn input pins. In the  
latter case, signaling data (A,B,C,D) of channel 1 and channel  
17 must be inserted on the TxSIGn pin during time slot 16 of  
frame 1, signaling data (A,B,C,D) of channel 2 and channel 18  
must be inserted on the TxSIGn pin during time slot 16 of  
frame 2...etc. The CAS multiframe Alignments bits (0000 bits)  
and the extra bits/alarm bit (xyxx) must be inserted on the  
TxSIGn pin during time slot 16 of frame 0.  
NOTE  
:
Transmit fractional interface can be enabled by  
programming to bit 4 - TxFr1544/TxFr2048 bit from  
register 0xn120 to ‘1’.  
NOTE  
:
These 8 pins are internally pulled “Low” for each  
channel.  
17  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxSYNC0/  
RxNEG0  
A8  
B9  
I/O  
12  
Receive Single Frame Sync Pulse (RxSYNCn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
RxSYNC1/  
RxNEG1  
C13  
C15  
E17  
T17  
U14  
T10  
T8  
A11  
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) -  
RxSYNCn:  
RxSYNC2/  
RxNEG2  
A13  
C16  
N13  
N11  
T9  
These RxSYNCn pins are used to indicate the single  
frame boundary within an inbound T1/E1 frame. In both  
DS1 or E1 mode, the single frame boundary repeats  
every 125 microseconds (8kHz).  
RxSYNC3/  
RxNEG3  
RxSYNC4/  
RxNEG4  
In DS1/E1 base rate, RxSYNCn can be configured as  
either input or output depending on the slip buffer configu-  
ration as described below.  
RxSYNC5/  
RxNEG5  
When RxSYNCn is configured as an Input:  
Users must provide a signal which must pulse "High" for  
one period of RxSERCLK and repeats every 125µS. The  
receive serial Interface will output the first bit of an  
inbound DS1/E1 frame during the provided RxSYNC  
pulse.  
RxSYNC6/  
RxNEG6  
RxSYNC7/  
RxNEG7  
R7  
NOTE: It is imperative that the RxSYNC input signal be  
synchronized with the RxSERCLK input signal.  
When RxSYNCn is configured as an Output:  
The receive T1/E1 framer will output a signal which  
pulses "High" for one period of RxSERCLK during the first  
bit of an inbound DS1/E1 frame.  
DS1/E1 High-Speed Backplane Modes* - RxSYNCn as  
INPUT ONLY:  
In this mode, RxSYNCn must be an input regardless of  
the slip buffer configuration. In 2.048MVIP/4.096/  
8.192MHz high-speed modes, RxSYNCn pins must be  
pulsed ’High’ for one period of RxSERCLK during the first  
bit of the inbound T1/E1 frame. In HMVIP mode,  
RxSYNCn must be pulsed ’High’ for 4 clock cycles of the  
RxSERCLK signal in the position of the first two and the  
last two bits of a multiplexed frame. In H.100 mode,  
RxSYNCn must be pulsed ’High’ for 2 clock cycles of the  
RxSERCLK signal in the position of the first and the last  
bit of a multiplexed frame.  
DS1 or E1 Framer Bypass Mode - RxNEGn  
In this mode, RxSYNCn is used as the Receive negative  
digital output pin (RxNEG) from the LIU.  
N
OTE  
:
:
*High-speed backplane modes include (For T1/  
E1) 2.048MVIP, 4.096MHz, 8.192MHz,  
16.384MHz HMVIP, H.100, Bit-multiplexed  
modes, and (For T1 only) 12.352MHz Bit-  
multiplexed mode.  
N
N
OTE  
In DS1 high-speed modes, the DS-0 data is  
mapped into an E1 frame by ignoring every fourth  
time slot (don’t care).  
OTE: These 8 pins are internally pulled “Low” for each  
channel.  
18  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE SYSTEM SIDE INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxCRCSYNC0  
RxCRCSYNC1  
RxCRCSYNC2  
RxCRCSYNC3  
RxCRCSYNC4  
RxCRCSYNC5  
RxCRCSYNC6  
RxCRCSYNC7  
D10  
D12  
A17  
C19  
V19  
W16  
V10  
R7  
A8  
O
12  
Receive Multiframe Sync Pulse (RxCRCSYNCn):  
C10  
C14  
E12  
R15  
R13  
R9  
The RxCRCSYNCn pins are used to indicate the receive  
multi-frame boundary. These pins pulse "High" for one  
period of RxSERCLK when the first bit of an inbound  
DS1/E1 Multi-frame is being output on the RxCRCSYNCn  
pin.  
In DS1 ESF mode, RxCRCSYNCn repeats every 3ms  
In DS1 SF mode, RxCRCSYNCn repeats every 1.5ms  
In E1 mode, RxCRCSYNCn repeats every 2ms.  
N7  
RxCASYNC0  
RxCASYNC1  
RxCASYNC2  
RxCASYNC3  
RxCASYNC4  
RxCASYNC5  
RxCASYNC6  
RxCASYNC7  
E10  
C14  
A16  
D19  
U17  
V15  
W10  
T9  
A9  
D11  
D13  
E13  
R14  
R12  
N9  
O
12  
Receive CAS Multiframe Sync Pulse (RxCASYNCn):  
- E1 Mode Only  
The RxCASYNCn pins are used to indicate the E1 CAS  
Multif-frame boundary. These pins pulse "High" for one  
period of RxSERCLK when the first bit of an E1 CAS  
Multi-frame is being output on the RxCASYNCn pin.  
M8  
19  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxSERCLK0/  
RxLINECLK0  
RxSERCLK1/  
RxLINECLK1  
RxSERCLK2/  
RxLINECLK2  
RxSERCLK3/  
RxLINECLK3  
RxSERCLK4/  
RxLINECLK4  
RxSERCLK5/  
RxLINECLK5  
RxSERCLK6/  
RxLINECLK6  
RxSERCLK7/  
RxLINECLK7  
D9  
B8  
I/O  
12  
Receive Serial Clock Signal (RxSERCLKn) / Receive  
Line Clock (RxLINECLKn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
A11  
A10  
C13  
D15  
P14  
T12  
M10  
R6  
In Base-Rate Mode (1.544MHz/2.048MHz) - RxSER-  
CLKn:  
B16  
F16  
R17  
T15  
T12  
U7  
These pins are used as the receive serial clock on the  
system side interface which can be configured as either  
input or output. The receive serial interface outputs data  
on RxSERn on the rising edge of RxSERCLKn.  
When RxSERCLKn is configured as Input:  
These pins will be inputs if the slip buffer on the Receive  
path is enabled. System side equipment must provide a  
1.544MHz clock rate to this input pin for T1 mode of oper-  
ation, and 2.048MHz clock rate in E1 mode.  
When RxSERCLKn is configured as Output:  
These pins will be outputs if slip buffer is bypassed. The  
receive framer will output a 1.544MHz clock rate in T1  
mode of operation, and a 2.048MHz clock rate in E1  
mode.  
DS1/E1 High-Speed Backplane Modes* - (RxSERCLK  
as INPUT ONLY)  
In this mode, this pin must be used as the high-speed  
input clock for the backplane interface to output high-  
speed or multiplexed data on the RxSERn pin. The fre-  
quency of RxSERCLK is presented in the table below.  
F
REQUENCY OF  
OPERATION MODE  
R
X
SERCLK(MH  
Z)  
2.048MVIP non-multiplexed  
4.096MHz non-multiplexed  
8.192MHz non-multiplexed  
2.048  
4.096  
8.192  
12.352MHz Bit-multiplexed  
(DS1 ONLY)  
12.352  
16.384MHz Bit-multiplexed  
16.384 HMVIP Byte-multiplexed  
16.384 H.100 Byte-multiplexed  
16.384  
16.384  
16.384  
NOTES:  
1. *High-speed backplane modes include (For T1/  
E1) 2.048MVIP, 4.096MHz, 8.192MHz,  
16.384MHz HMVIP, H.100, Bit-multiplexed  
modes, and (For T1 only) 12.352MHz Bit-  
multiplexed mode.  
2. For DS1 high-speed modes, the DS-0 data is  
mapped into an E1 frame by ignoring every  
fourth time slot (don’t care).  
20  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE SYSTEM SIDE INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxSERCLK0/  
RxLINECLK0  
RxSERCLK1/  
RxLINECLK1  
RxSERCLK2/  
RxLINECLK2  
RxSERCLK3/  
RxLINECLK3  
RxSERCLK4/  
RxLINECLK4  
RxSERCLK5/  
RxLINECLK5  
RxSERCLK6/  
RxLINECLK6  
RxSERCLK7/  
RxLINECLK7  
D9  
B8  
I/O  
12  
(Continued)  
DS1 or E1 Framer Bypass Mode - RxLINECLKn  
A11  
A10  
C13  
D15  
P14  
T12  
M10  
R6  
In this mode, RxSERCLKn is used as the Receive Line  
Clock output pin (RxLineClk) from the LIU.  
B16  
F16  
R17  
T15  
T12  
U7  
NOTE: These 8 pins are internally pulled “High” for each  
channel.  
RxSER0/  
RxPOS0  
RxSER1/  
RxPOS1  
RxSER2/  
RxPOS2  
RxSER3/  
RxPOS3  
RxSER4/  
RxPOS4  
RxSER5/  
RxPOS5  
RxSER6/  
RxPOS6  
RxSER7/  
RxPOS7  
D8  
C12  
B17  
B19  
V18  
V14  
W12  
V8  
B7  
O
12  
Receive Serial Data Output (RxSERn):  
The exact function of these pins depends on the mode of  
operation selected, as described below.  
B11  
B14  
B16  
P15  
P11  
T10  
P8  
DS1/E1 Mode - RxSERn  
These pins function as the receive serial data output on  
the system side interface, which are updated on the rising  
edge of the RxSERCLKn pin. All the framing alignment  
bits, facility data link bits, CRC bits, and signaling informa-  
tion will also be extracted to this output pin.  
DS1 or E1 High-Speed Multiplexed Mode* - RxSERn  
In this mode, these pins are used as the high-speed multi-  
plexed data output pin on the system side. High-speed  
multiplexed data of channels 0-3 will output on RxSER0  
and high-speed multiplexed data of channels 4-7 will out-  
put on RxSER4 in a byte or bit-interleaved way. The  
framer outputs the multiplexed data on RxSER0 and  
RxSER4 using the high-speed input clock (RxSERCLKn).  
DS1 or E1 Framer Bypass Mode  
In this mode, RxSERn is used as the positive digital out-  
put pin (RxPOSn) from the LIU.  
N
OTE: *High-speed multiplexed modes include (For T1/  
E1) 16.384MHz HMVIP, H.100, Bit-multiplexed  
modes, and (For T1 only) 12.352MHz Bit-  
multiplexed mode.  
NOTE  
:
In DS1 high-speed modes, the DS-0 data is  
mapped into an E1 frame by ignoring every fourth  
time slot (don’t care).  
21  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE SYSTEM SIDE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxSig0  
RxSig1  
RxSig2  
RxSig3  
RxSig4  
RxSig5  
RxSig6  
RxSig7  
A7  
O
8
Receive Serial Signaling Output (RxSIGn):  
B12  
C16  
D18  
U18  
W14  
V12  
U9  
The exact function of these pins depends on whether or  
not the receive framer enables the receive fractional/sig-  
naling interface, as described below:  
If receive fractional/signaling interface is disabled :  
-No function  
If receive fractional/signaling interface is enabled -  
RxSIGn:  
These pins can be used to output robbed-bit signaling  
data within an inbound DS1 frame or to output Channel  
Associated Signaling (CAS) data within an inbound E1  
frame, as described below.  
T1 Mode: Signaling data (A,B,C,D) of each channel will  
be output on bit 4,5,6,7 of each time slot on the RxSIG pin  
if 16-code signaling is used. If 4-code signaling is  
selected, signaling data (A,B) of each channel will be out-  
put on bit 4, 5 of each time slot on the RxSIG pin. If 2-  
code signaling is selected, signaling data (A) of each  
channel will be output on bit 4 of each time slot on the  
RxSIG pin.  
E1 Mode: Signaling data in E1 mode will be output on the  
RxSIGn pins on a time-slot-basis as in T1 mode, or it can  
be output on time slot 16 only via the RxSIGn output pins.  
In the latter case, signaling data (A,B,C,D) of channel 1  
and channel 17 will be output on the RxSIGn pin during  
time slot 16 of frame 1, signaling data (A,B,C,D) of chan-  
nel 2 and channel 18 will be output on the RxSIGn pin  
during time slot 16 of frame 2...etc. The CAS multiframe  
Alignments bits (0000 bits) and the extra bits/alarm bit  
(xyxx) will be output on the RxSIGn pin during time slot 16  
of frame 0.  
NOTE  
:
Receive Fractional/signaling interface can be  
enabled by programming to bit 4 - RxFr1544/  
RxFr2048 bit from register 0xn122 to ‘1’.  
RxSCLK0  
RxSCLK1  
RxSCLK2  
RxSCLK3  
RxSCLK4  
RxSCLK5  
RxSCLK6  
RxSCLK7  
C11  
E14  
A18  
F17  
W18  
T14  
U11  
U8  
B10  
D12  
A15  
F12  
T15  
T11  
P9  
O
8
Receive Recovered Line Clock Output (RxSCLKn):  
The exact function of these pins depends on whether or  
not the receive framer enables the receive fractional/sig-  
naling interface, as described below:  
If receive fractional/signaling interface is disabled -  
-No function  
If receive fractional/signaling interface is enabled -  
Receive Recovered Line Clock Output (RxSCLKn):  
M7  
These pins output the recovered T1/E1 line clock  
(1.544MHz in T1 mode and 2.048MHz in E1 mode) for  
each channel.  
NOTE  
:
Receive Fractional/Signaling interface can be  
enabled by programming to bit 4 - RxFr1544/  
RxFr2048 bit from register 0xn122 to ‘1’.  
22  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
RECEIVE LINE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RTIP0  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
C1  
E1  
H1  
K1  
M1  
P1  
T1  
B1  
D1  
F1  
H1  
K1  
M1  
P1  
T2  
I
-
Receive Positive Analog Input (RTIPn):  
RTIP is the positive differential input from the line inter-  
face. This input pin, along with the RRING input pin, func-  
tions as the “Receive DS1/E1 Line Signal” input for the  
XRT86VX38 device.  
The user is expected to connect this signal and the  
RRING input signal to a 1:1 transformer for proper opera-  
tion. The center tap of the receive transformer should have  
a bypass capacitor of 0.1µF to ground (Chip Side) to  
improve long haul application receive capabilities.  
W2  
RRING0  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
D1  
F1  
J1  
C1  
E1  
G1  
J1  
I
-
Receive Negative Analog Input (RRINGn):  
RRING is the negative differential input from the line inter-  
face. This input pin, along with the RTIP input pin, func-  
tions as the “Receive DS1/E1 Line Signal” input for the  
XRT86VX38 device.  
L1  
N1  
R1  
U1  
W3  
L1  
The user is expected to connect this signal and the RTIP  
input signal to a 1:1 transformer for proper operation. The  
center tap of the receive transformer should have a  
bypass capacitor of 0.1µF to ground (Chip Side) to  
improve long haul application receive capabilities.  
N1  
R1  
T3  
RxLOS0  
RxLOS1  
RxLOS2  
RxLOS3  
RxLOS4  
RxLOS5  
RxLOS6  
RxLOS7  
B8  
A7  
O
4
Receive Loss of Signal Output Indicator (RLOSn):  
B13  
D15  
E18  
U19  
U15  
V11  
V7  
C11  
F11  
D16  
P16  
P12  
R10  
P7  
The XRT86VX38 device will assert this output pin (i.e.,  
toggle it “high”) anytime (and for the duration that) the  
Receive DS1/E1 Framer or LIU block declares the LOS  
defect condition.  
Conversely, the XRT86VX38 will "TRI-State" this pin any-  
time (and for the duration that) the Receive DS1/E1  
Framer or LIU block is NOT declaring the LOS defect con-  
dition.  
NOTE  
:
Since the XRT86VX38 tri-states this output pin  
(anytime the channel is not declaring the LOS  
defect condition), the user MUST connect a "pull-  
down" resistor (ranging from 1K to 10K) to each  
RxLOS output pin, to pull this output pin to the  
logic "LOW" condition, whenever the Channel is  
NOT declaring the LOS defect condition.  
This output pin will toggle “High” (declare LOS) if the  
Receive Framer or the Receive LIU block associated with  
Channel N determines that an RLOS condition occurs. In  
other words, this pin is OR-ed with the LIU RLOS and the  
Framer RLOS bit. If either the LIU RLOS or the Framer  
RLOS bit associated with channel N pulses high, the cor-  
responding RLOS pin of that particular channel will be set  
to “High”.  
23  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
RECEIVE LINE INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
RxTSEL  
B5  
A5  
I
-
Receive Termination Control (RxTSEL):  
Upon power up, the receivers are in "High" impedance.  
Switching to internal termination can be selected through  
the microprocessor interface by programming the appro-  
priate channel register. However, to switch control to the  
hardware pin, RxTCNTL must be programmed to "1" in the  
appropriate global register (0x0FE2). Once control has  
been granted to the hardware pin, it must be pulled "High"  
to switch to internal termination.  
NOTE: Internally pulled "Low" with a 50kresistor.  
RxTSEL (pin)  
Rx Termination  
External  
0
1
Internal  
Note: RxTCNTL (bit) must be set to "1"  
TRANSMIT LINE INTERFACE  
329 PKG 256 PKG  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL #  
TTIP0  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
D3  
F3  
H4  
K4  
L3  
N3  
R5  
T3  
C3  
E3  
G3  
H3  
J3  
O
Transmit Positive Analog Output (TTIPn):  
TTIP is the positive differential output to the line interface. This out-  
put pin, along with the corresponding TRING output pin, function as  
the Transmit DS1/E1 output signal drivers for the XRT86VX38  
device.  
The user is expected to connect this signal and the corresponding  
TRING output signal to a 1:2 step up transformer for proper opera-  
tion.  
L3  
M3  
P3  
This output pin will be tri-stated whenever the user sets the “TxON”  
input pin or register bit (0xnF02, bit 3) to “0”.  
NOTE: This pin should have a series line capacitor of 0.68µF for DC  
blocking purposes.  
TRING0  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
E3  
F4  
H3  
K3  
L4  
D3  
E4  
G4  
H4  
J4  
O
Transmit Negative Analog Output (TRINGn):  
TRING is the negative differential output to the line interface. This  
output pin, along with the corresponding TTIP output pin, function as  
the Transmit DS1/E1 output signal drivers for the XRT86VX38  
device.  
The user is expected to connect this signal and the corresponding  
TRING output signal to a 1:2 step up transformer for proper opera-  
tion.  
N4  
R4  
U3  
L4  
M4  
P4  
NOTE: This output pin will be tri-stated whenever the user sets the  
“TxON” input pin or register bit (0xnF02, bit 3) to “0”.  
24  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
TRANSMIT LINE INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
BALL  
#
BALL #  
TxON  
W4  
T4  
I
Transmitter On  
This input pin permits the user to either enable or disable the Trans-  
mit Output Driver within the Transmit DS1/E1 LIU Block. If the TxON  
pin is pulled “Low”, all 8 Channels are tri-stated. When this pin is  
pulled ‘High’, turning on or off the transmitters will be determined by  
the appropriate channel registers (address 0x0Fn2, bit 3)  
LOW = Disables the Transmit Output Driver within the Transmit DS1/  
E1 LIU Block. In this setting, the TTIP and TRING output pins of all 8  
channels will be tri-stated.  
HIGH = Enables the Transmit Output Driver within the Transmit DS1/  
E1 LIU Block. In this setting, the corresponding TTIP and TRING out-  
put pins will be enabled or disabled by programming the appropriate  
channel register. (address 0x0Fn2, bit 3)  
NOTE  
:
Whenever the transmitters are turned off, the TTIP and  
TRING output pins will be tri-stated.  
TIMING INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
MCLKIN  
C8  
E6  
I
-
Master Clock Input:  
This pin is used to provide the timing reference for the inter-  
nal master clock of the device. The frequency of this clock  
is programmable from 8kHz to 16.384MHz in register  
0x0FE9.  
E1OSCCLK  
T1OSCCLK  
8KEXTOSC  
V5  
R5  
T5  
L6  
O
O
I
8
8
-
Framer E1 Output Clock Reference  
This output pin is defaulted to 2.048MHz, but can be pro-  
grammed to 65.536MHz in register 0x011E.  
W5  
T5  
Framer T1 Output Clock Reference  
This output pin is defaulted to 1.544MHz, but can be pro-  
grammed to output 49.408MHz in register 0x011E.  
External Oscillator Select  
For normal operation, this pin should not be used, or pulled  
“Low”.  
This pin is internally pulled “Low” with a 50kresistor.  
ANALOG  
E5  
B4  
O
Factory Test Mode Pin  
NOTE: For Internal Use Only  
25  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
JTAG INTERFACE  
The XRT86VX38 device’s JTAG features comply with the IEEE 1149.1 standard. Please refer to the industry  
specification for additional information on boundary scan operations.  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
TCK  
C10  
D8  
I
I
-
Test clock: Boundary Scan Test clock input:  
The TCLK signal is the clock for the TAP controller, and it  
generates the boundary scan data register clocking. The  
data on TMS and TDI is loaded on the positive edge of  
TCK. Data is observed at TDO on the falling edge of TCK.  
TMS  
B7  
A6  
C8  
-
-
Test Mode Select: Boundary Scan Test Mode Select  
input.  
The TMS signal controls the transitions of the TAP con-  
troller in conjunction with the rising edge of the test clock  
(TCK).  
NOTE: This pin is internally pulled ’high’  
TDI  
A5  
I
Test Data In: Boundary Scan Test data input  
The TDI signal is the serial test data input.  
NOTE: This pin is internally pulled ’high’.  
TDO  
D7  
C9  
B6  
D7  
O
I
8
-
Test Data Out: Boundary Scan Test data output  
The TDO signal is the serial test data output.  
TRST  
Test Reset Input:  
The TRST signal (Active Low) asynchronously resets the  
TAP controller to the Test-Logic-Reset state.  
NOTE  
:
This pin is internally pulled ’high’  
aTEST  
C7  
C7  
I
-
Factory Test Mode Pin  
NOTE  
:
This pin is internally pulled ’low’, and should be  
pulled ’low’ for normal operation.  
MICROPROCESSOR INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
N16  
P19  
K16  
L18  
J19  
M14  
L12  
K12  
J12  
I/O  
8
Bidirectional Microprocessor Data Bus  
These pins are used to drive and receive data over the bi-  
directional data bus, whenever the Microprocessor per-  
forms READ or WRITE operations with the Microprocessor  
Interface of the XRT86VX38 device.  
H13  
G14  
G12  
G13  
When DMA interface is enabled, these 8-bit bidirectional  
data bus is also used by the T1/E1 Framer or the external  
DMA Controller for storing and retrieving information.  
H18  
H16  
G15  
26  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
REQ0  
T19  
N16  
O
8
DMA Cycle Request Output—DMA Controller 0 (Write):  
These output pins are used to indicate that DMA transfers  
(Write) are requested by the T1/E1 Framer.  
On the transmit side (i.e., To transmit data from external  
DMA controller to HDLC buffers within the XRT86VX38),  
DMA transfers are only requested when the transmit buffer  
status bits indicate that there is space for a complete mes-  
sage or cell.  
The DMA Write cycle starts by T1/E1 Framer asserting the  
DMA Request (REQ0) ‘low’, then the external DMA control-  
ler should drive the DMA Acknowledge (ACK0) ‘low’ to indi-  
cate that it is ready to start the transfer. The external DMA  
controller should place new data on the Microprocessor  
data bus each time the Write Signal is Strobed low if the  
WR is configured as a Write Strobe. If WR is configured as  
a direction signal, then the external DMA controller would  
place new data on the Microprocessor data bus each time  
the Read Signal (RD) is Strobed low.  
The Framer asserts this output pin (toggles it "Low") when  
at least one of the Transmit HDLC buffers are empty and  
can receive one more HDLC message.  
The Framer negates this output pin (toggles it “High”) when  
the HDLC buffer can no longer receive another HDLC mes-  
sage.  
REQ1  
R16  
R16  
O
8
DMA Cycle Request Output—DMA Controller 1 (Read):  
These output pins are used to indicate that DMA transfers  
(Read) are requested by the T1/E1 Framer.  
On the receive side (i.e., To transmit data from HDLC buff-  
ers within the XRT86VX38 to external DMA Controller),  
DMA transfers are only requested when the receive buffer  
contains a complete message or cell.  
The DMA Read cycle starts by T1/E1 Framer asserting the  
DMA Request (REQ1) ‘low’, then the external DMA control-  
ler should drive the DMA Acknowledge (ACK1) ‘low’ to indi-  
cate that it is ready to receive the data. The T1/E1 Framer  
should place new data on the Microprocessor data bus  
each time the Read Signal is Strobed low if the RD is con-  
figured as a Read Strobe. If RD is configured as a direction  
signal, then the T1/E1 Framer would place new data on the  
Microprocessor data bus each time the Write Signal (WR)  
is Strobed low.  
The Framer asserts this output pin (toggles it "Low") when  
one of the Receive HDLC buffer contains a complete  
HDLC message that needs to be read by the µC/µP.  
The Framer negates this output pin (toggles it “High”) when  
the Receive HDLC buffers are depleted.  
27  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
BALL  
#
BALL #  
INT  
J18  
H15  
O
8
Interrupt Request Output:  
This active-low output signal will be asserted when the  
XRT86VX38 device is requesting interrupt service from the  
Microprocessor. This output pin should typically be con-  
nected to the “Interrupt Request” input of the Microproces-  
sor.  
The Framer will assert this active "Low" output (toggles it  
"Low"), to the local µP, anytime it requires interrupt service.  
PCLK  
P18  
M16  
I
-
Microprocessor Clock Input:  
This clock input signal is only used if the Microprocessor  
Interface has been configured to operate in the Synchro-  
nous Modes (e.g., Power PC 403 Mode). If the Micropro-  
cessor Interface is configured to operate in this mode, then  
it will use this clock signal to do the following.  
1. To sample the CS, WR/R/W, A[14:0], D[7:0], RD/DS  
and DBEN input pins, and  
2. To update the state of the D[7:0] and the RDY/  
DTACK output signals.  
NOTES:  
1. This pin is inactive if the user has configured the  
Microprocessor Interface to operate in either the  
Intel-Asynchronous  
or  
the  
Motorola-  
Asynchronous Modes. In this case, the user  
should tie this pin to GND.  
When DMA interface is enabled, the PCLK input pin is also  
used by the T1/E1 Framer to latch in or latch out receive or  
output data respectively.  
PTYPE0  
PTYPE1  
PTYPE2  
P17  
M13  
M12  
H12  
I
-
Microprocessor Type Input:  
N18  
K19  
These input pins permit the user to specify which type of  
Microprocessor/Microcontroller to be interfaced to the  
XRT86VX38 device. The following table presents the three  
different microprocessor types that the XRT86VX38 sup-  
ports.  
MICROPROCESSOR  
TYPE  
0
0
1
0
0
0
0
1
1
68HC11, 8051, 80C188  
MOTOROLA 68K  
IBM POWER PC 403  
NOTE  
:
These pins are internally pulled “Low” with a 50k  
resistor.  
28  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
B
ALL #  
RDY/DTACK  
M16  
L16  
O
12  
Ready/Data Transfer Acknowledge Output:  
The exact behavior of this pin depends upon the type of  
Microprocessor/Microcontroller the XRT86VX38 has been  
configured to operate in, as defined by the PTYPE[2:0]  
pins.  
Intel Asynchronous Mode - RDY - Ready Output  
Tis output pin will function as the “active-low” READY out-  
put.  
During a READ or WRITE cycle, the Microprocessor Inter-  
face block will toggle this output pin to the logic low level,  
ONLY when the Microprocessor Interface is ready to com-  
plete or terminate the current READ or WRITE cycle. Once  
the Microprocessor has determined that this input pin has  
toggled to the logic “low” level, then it is now safe for it to  
move on and execute the next READ or WRITE cycle.  
If (during a READ or WRITE cycle) the Microprocessor  
Interface block is holding this output pin at a logic “high”  
level, then the Microprocessor is expected to extend this  
READ or WRITE cycle, until it detects this output pin being  
toggled to the logic low level.  
Motorola Asynchronous Mode - DTACK - Data Transfer  
Acknowledge Output  
Tis output pin will function as the “active-low” DTACK out-  
put.  
During a READ or WRITE cycle, the Microprocessor Inter-  
face block will toggle this output pin to the logic low level,  
ONLY when the Microprocessor Interface is ready to com-  
plete or terminate the current READ or WRITE cycle. Once  
the Microprocessor has determined that this input pin has  
toggled to the logic “low” level, then it is now safe for it to  
move on and execute the next READ or WRITE cycle.  
If (during a READ or WRITE cycle) the Microprocessor  
Interface block is holding this output pin at a logic “high”  
level, then the Microprocessor is expected to extend this  
READ or WRITE cycle, until it detects this output pin being  
toggled to the logic low level.  
29  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
B
ALL #  
RDY/DTACK  
M16  
L16  
O
12  
(Con’t)  
Power PC 403 Mode - RDY Ready Output:  
This output pin will function as the “active-high” READY  
output.  
During a READ or WRITE cycle, the Microprocessor Inter-  
face block will toggle this output pin to the logic high level,  
ONLY when the Microprocessor Interface is ready to com-  
plete or terminate the current READ or WRITE cycle. Once  
the Microprocessor has sampled this signal being at the  
logic “high” level upon the rising edge of PCLK, then it is  
now safe for it to move on and execute the next READ or  
WRITE cycle.  
If (during a READ or WRITE cycle) the Microprocessor  
Interface block is holding this output pin at a logic “low”  
level, then the Microprocessor is expected to extend this  
READ or WRITE cycle, until it samples this output pin  
being at the logic low level.  
NOTE  
:
The Microprocessor Interface will update the state  
of this output pin upon the rising edge of PCLK.  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
N19  
M17  
M18  
M15  
L16  
M19  
L17  
L19  
K15  
J16  
L13  
L14  
I
-
Microprocessor Interface Address Bus Input  
These pins permit the Microprocessor to identify on-chip  
registers and Buffer/Memory locations within the  
XRT86VX38 device whenever it performs READ and  
WRITE operations with the XRT86VX38 device.  
K15  
L11  
K13  
K16  
K14  
J15  
J14  
J13  
H14  
H16  
G16  
F16  
G11  
NOTE  
:
These pins are internally pulled “Low” with a 50k  
resistor, except ADDR[8:14].  
K18  
J15  
H15  
H19  
H17  
30  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
B
ALL #  
ALE / AS  
K17  
J16  
I
-
Address Latch Enable Input Address Strobe  
The exact behavior of this pin depends upon the type of  
Microprocessor/Microcontroller the XRT86VX38 has been  
configured to operate in, as defined by the PTYPE[2:0]  
pins.  
Intel-Asynchronous Mode - ALE  
This active-high input pin is used to latch the address  
(present at the Microprocessor Interface Address Bus pins  
(A[14:0]) into the XRT86VX38 Microprocessor Interface  
block and to indicate the start of a READ or WRITE cycle.  
Pulling this input pin “high” enables the input bus drivers for  
the Address Bus input pins (A[14:0]). The contents of the  
Address Bus will be latched into the XRT86VX38 Micropro-  
cessor Interface circuitry, upon the falling edge of this input  
signal.  
Motorola-Asynchronous (68K) Mode - AS  
This active-low input pin is used to latch the data residing  
on the Address Bus, A[14:0] into the Microprocessor Inter-  
face circuitry of the XRT86VX38 device.  
Pulling this input pin “low” enables the input bus drivers for  
the Address Bus input pins. The contents of the Address  
Bus will be latched into the Microprocessor Interface cir-  
cuitry, upon the falling edge of this signal.  
Power PC 403 Mode - No Function -Tie to GND:  
This input pin has no role nor function and should be tied to  
GND.  
CS  
G19  
F14  
I
-
Microprocessor Interface—Chip Select Input:  
The user must assert this active low signal in order to  
select the Microprocessor Interface for READ and WRITE  
operations between the Microprocessor and the  
XRT86VX38 on-chip registers and buffer/memory loca-  
tions.  
31  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
B
ALL #  
RD/DS/WE  
N17  
L15  
I
-
Microprocessor Interface—Read Strobe Input:  
The exact behavior of this pin depends upon the type of  
Microprocessor/Microcontroller the Framer has been con-  
figured to operate in, as defined by the PTYPE[2:0] pins.  
Intel-Asynchronous Mode - RD - READ Strobe Input:  
This input pin will function as the RD (Active Low Read  
Strobe) input signal from the Microprocessor. Once this  
active-low signal is asserted, then the XRT86VX38 device  
will place the contents of the addressed register (or buffer  
location) on the  
Microprocessor Interface Bi-directional data bus (D[7:0]).  
When this signal is negated, then the Data Bus will be tri-  
stated.  
Motorola-Asynchronous (68K) Mode - DS - Data  
Strobe:  
This input pin will function as the DS (Data Strobe) input  
signal.  
Power PC 403 Mode - WE - Write Enable Input:  
This input pin will function as the WE (Write Enable) input  
pin.  
Anytime the Microprocessor Interface samples this active-  
low input signal (along with CS and WR/R/W) also being  
asserted (at a logic low level) upon the rising edge of  
PCLK, then the Microprocessor Interface will (upon the  
very same rising edge of PCLK) latch the  
contents on the Bi-Directional Data Bus (D[7:0]) into the  
“target” on-chip register or buffer location within the  
XRT86VX38 device.  
WR / R/W  
G17  
F13  
I
-
Microprocessor Interface—Write Strobe Input  
The exact behavior of this pin depends upon the type of  
Microprocessor/Microcontroller the XRT86VX38 has been  
configured to operate in, as defined by the PTYPE[2:0]  
pins.  
Intel-Asynchronous Mode - WR - Write Strobe Input:  
This input pin functions as the WR (Active Low WRITE  
Strobe) input signal from the Microprocessor. Once this  
active-low signal is asserted, then the input buffers (associ-  
ated with the Bi-Directional Data Bus pin, D[7:0]) will be  
enabled.  
The Microprocessor Interface will latch the contents on the  
Bi-Directional Data Bus (into the “target” register or  
address location, within the XRT86VX38) upon the rising  
edge of this input pin.  
Motorola-Asynchronous Mode - R/W - Read/Write  
Operation Identification Input Pin:  
This pin is functionally equivalent to the “R/W” input pin. In  
the Motorola Mode, a “READ” operation occurs if this pin is  
held at a logic “1”, coincident to a falling edge of the RD/DS  
(Data Strobe) input pin. Similarly a WRITE operation  
occurs if this pin is at a logic “0”, coincident to a falling edge  
of the RD/DS (Data Strobe) input pin.  
32  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
REV. 1.0.2  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
B
ALL #  
WR / R/W  
G17  
F13  
I
-
(Con’t)  
Power PC 403 Mode - R/W - Read/Write Operation Iden-  
tification Input:  
This input pin will function as the “Read/Write Operation  
Identification Input” pin.  
Anytime the Microprocessor Interface samples this input  
signal at a logic "High" (while also sampling the CS input  
pin “Low”) upon the rising edge of PCLK, then the Micro-  
processor Interface will (upon the very same rising edge of  
PCLK) latch the contents of the Address Bus (A[14:0]) into  
the Microprocessor Interface circuitry, in preparation for this  
forthcoming READ operation. At some point (later in this  
READ operation) the Microprocessor will also assert the  
DBEN/OE input pin, and the Microprocessor Interface will  
then place the contents of the “target” register (or address  
location within the XRT86VX38 device) upon the Bi-Direc-  
tional Data Bus pins (D[7:0]), where it can be read by the  
Microprocessor.  
Anytime the Microprocessor Interface samples this input  
signal at a logic "Low" (while also sampling the CS input  
pin a logic “Low”) upon the rising edge of PCLK, then the  
Microprocessor Interface will (upon the very same rising  
edge of PCLK) latch the contents of the Address Bus  
(A[14:0]) into the Microprocessor Interface circuitry, in  
preparation for the forthcoming WRITE operation. At some  
point (later in this WRITE operation) the Microprocessor  
will also assert the RD/DS/WE input pin, and the Micropro-  
cessor Interface will then latch the contents of the Bi-Direc-  
tional Data Bus (D[7:0]) into the contents of the “target”  
register or buffer location (within the XRT86VX38).  
33  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
MICROPROCESSOR INTERFACE  
329 PKG 256 PKG  
O
UTPUT  
S
IGNAL  
NAME  
TYPE  
DESCRIPTION  
D
RIVE (MA)  
B
ALL  
#
BALL #  
ACK0  
T18  
N15  
I
-
DMA Cycle Acknowledge Input—DMA Controller 0  
(Write):  
The external DMA Controller will assert this input pin “Low”  
when the following two conditions are met:  
1. After the DMA Controller, within the Framer has  
asserted (toggled “Low”), the Req_0 output signal.  
2. When the external DMA Controller is ready to  
transfer data from external memory to the selected  
Transmit HDLC buffer.  
At this point, the DMA transfer between the external mem-  
ory and the selected Transmit HDLC buffer may begin.  
After completion of the DMA cycle, the external DMA Con-  
troller will negate this input pin after the DMA Controller  
within the Framer has negated the Req_0 output pin. The  
external DMA Controller must do this in order to acknowl-  
edge the end of the DMA cycle.  
ACK1  
R19  
M15  
DMA Cycle Acknowledge Input—DMA Controller 1  
(Read):  
The external DMA Controller asserts this input pin “Low”  
when the following two conditions are met:  
1. After the DMA Controller, within the Framer has  
asserted (toggled "Low"), the Req_1 output signal.  
2. When the external DMA Controller is ready to  
transfer data from the selected Receive HDLC buffer  
to external memory.  
At this point, the DMA transfer between the selected  
Receive HDLC buffer and the external memory may begin.  
After completion of the DMA cycle, the external DMA Con-  
troller will negate this input pin after the DMA Controller  
within the Framer has negated the Req_1 output pin. The  
external DMA Controller will do this in order to acknowl-  
edge the end of the DMA cycle.  
NOTE  
:
This pin is internally pulled “High” with a 50k  
resistor.  
RESET  
V4  
R4  
I
-
Hardware Reset Input  
Reset is an active low input. If this pin is pulled “Low” for  
more than 10µS, the device will be reset. When this occurs,  
all output will be ‘tri-stated’, and all internal registers will be  
reset to their default values.  
34  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
POWER SUPPLY PINS (3.3V)  
329 PKG 256 PKG  
S
IGNAL  
N
AME  
TYPE  
DESCRIPTION  
B
ALL#  
BALL #  
VDD  
A1  
A16  
E8  
PWR  
Framer Block Power Supply (I/O)  
A12  
A19  
B6  
E11  
G15  
M6  
B9  
E16  
F5  
M9  
N14  
T16  
J17  
P16  
R11  
R13  
R15  
R18  
T7  
U4  
V1  
W11  
W15  
RVDD  
C2  
E2  
G1  
J2  
B2  
D2  
F2  
H2  
K2  
M2  
P2  
T1  
PWR  
Receiver Analog Power Supply for LIU Section  
L2  
N2  
P4  
U2  
TVDD  
D4  
G4  
J4  
D4  
F4  
F5  
H5  
K4  
K5  
M5  
N4  
PWR  
Transmitter Analog Power Supply for LIU Section  
K5  
M4  
N5  
R3  
T4  
35  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
POWER SUPPLY PINS (1.8V)  
329 PKG 256 PKG  
S
IGNAL  
N
AME  
TYPE  
DESCRIPTION  
B
ALL  
#
B
ALL #  
VDD18  
D13  
E6  
F8  
F9  
PWR Framer Block Power Supply  
E8  
F10  
G6  
H6  
E9  
E11  
E12  
E13  
E15  
F15  
G5  
H11  
J6  
J11  
K6  
K11  
L7  
G7  
G9  
L8  
G11  
G13  
J5  
L9  
L10  
J7  
J13  
L7  
L13  
L15  
M5  
N7  
N9  
N11  
N13  
P15  
R9  
R10  
R12  
R14  
T6  
DVDD18  
AVDD18  
B4  
D6  
C6  
C5  
PWR Digital Power Supply for LIU Section  
PWR Analog Power Supply for LIU Section  
PWR Analog Power Supply for PLL  
VDDPLL18  
A2  
B2  
B3  
C4  
A3  
A4  
B3  
D5  
36  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
GROUND PINS  
329 PKG 256 PKG  
S
IGNAL  
N
AME  
TYPE  
DESCRIPTION  
B
ALL  
#
B
ALL #  
VSS  
A3, A6  
A15, C5  
E7, F2  
E7  
E9  
F6  
F7  
G7  
G8  
G9  
GND  
Framer Block Ground  
G8, G10  
G12, H5  
H7, H8  
H9, H10  
H11, H12  
H13, J8  
J9, J10  
G10  
H7  
H8  
H9  
H10  
J7  
J11, J12  
K7, K8  
K9, K10  
K11, K12  
K13, L8  
L9, L10  
L11, L12  
M7, M8  
M9, M10  
M11, M12  
M13, N8  
N10, N12  
N15, P2  
R6, U12  
W1, W19  
J8  
J9  
J10  
K7  
K8  
K9  
K10  
DGND  
AGND  
RGND  
A4  
C6  
D6  
B5  
GND  
GND  
GND  
Digital Ground for LIU Section  
Analog Ground for LIU Section  
Receiver Analog Ground for LIU Section  
D2  
G2  
H2  
K2  
M2  
R2  
T2  
V3  
C2  
E2  
G2  
J2  
L2  
N2  
R2  
R3  
TGND  
E4  
G3  
J3  
E5  
F3  
G5  
J5  
GND  
Transmitter Analog Ground for LIU Section  
L5  
M3  
P3  
P5  
V2  
K3  
L5  
N3  
N5  
37  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
GROUND PINS  
329 PKG 256 PKG  
S
IGNAL  
N
AME  
TYPE  
DESCRIPTION  
B
ALL#  
B
ALL #  
GNDPLL  
B1  
C3  
D5  
A1  
A2  
C4  
GND  
Analog Ground for PLL  
NO CONNECT PINS  
329 PKG 256 PKG  
S
IGNAL  
N
AME  
TYPE  
DESCRIPTION  
B
ALL  
#
BALL #  
NC  
F6  
F7  
F8  
F9  
NC  
No Connection  
F10  
F11  
F12  
F13  
F14  
G6  
G14  
H6  
H14  
J6  
J14  
K6  
K14  
L6  
L14  
M6  
M14  
N6  
N14  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
38  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
ELECTRICAL CHARACTERISTICS  
Absolute Maximums  
PowerSupply.....................................................................  
VDD .. ................................................ -0.5V to +3.465V  
Power Rating fpBGA Package.................. 2.4  
IO  
VDD  
-0.5V to +1.890V  
CORE...............................................  
Storage Temperature ...............................-65°C to 150°C  
Operating Temperature Range.................-40°C t o 85°C  
Supply Voltage ...................... GND-0.5V to +VDD + 0.5V  
Input Logic Signal Voltage (Any Pin) .........-0.5V to + 5.5V  
ESD Protection (HBM)......................... ..................>2000V  
Input Current (Any Pin) ...................................... + 100mA  
DC ELECTRICAL CHARACTERISTICS  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% , VDD  
= 1.8V + 5% unless otherwise specified  
CORE  
IO  
ARAMETER  
S
YMBOL  
P
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
C
ONDITIONS  
I
Data Bus Tri-State Bus Leakage Current  
Input Low voltage  
-10  
+10  
0.8  
µA  
V
LL  
V
IL  
IH  
V
Input High Voltage  
2.0  
0.0  
2.4  
VDD  
0.4  
V
V
Output Low Voltage  
V
I
= -1.6mA  
OL  
OL  
VOH  
Output High Voltage  
VDD  
V
I
= 40µA  
OH  
I
Open Drain Output Leakage Current  
Input High Voltage Current  
Input Low Voltage Current  
µA  
µA  
µA  
OC  
I
-10  
-10  
10  
10  
V
V
= VDD  
= GND  
IH  
IH  
I
IL  
IL  
XRT86VX38 POWER CONSUMPTION  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% , VDD  
= 1.8V + 5%, Internal termination, unless otherwise  
CORE  
IO  
specified  
MODE  
I
MPEDANCE  
MIN  
.
TYP  
.
MAX  
.
U
NITS  
CONDITIONS  
T1  
2.02  
1.54  
W
All ones Pattern  
PRBS Pattern  
100Ω  
E1  
E1  
1.95  
1.57  
W
W
All ones Pattern  
PRBS Pattern  
75  
1.77  
1.44  
All ones Pattern  
PRBS Pattern  
120  
NOTE  
:
There are NO power sequence requirements on this device. The VDD or VDD  
are independent and do not  
CORE  
IO  
have any special timing restrictions.  
39  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
AC ELECTRICAL CHARACTERISTICS TRANSMIT FRAMER (BASE RATE/NON-MUX)  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified  
S
YMBOL  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
CONDITIONS  
t1  
TxSERCLK to TxMSYNC delay  
TxSERCLK to TxSYNC delay  
TxSERCLK to TxSER data delay  
234  
230  
230  
13  
nS  
nS  
nS  
nS  
t2  
t3  
t4  
Rising Edge of TxSERCLK to Rising Edge of TxCH-  
CLK  
t5  
TxSERCLK to TxSIG delay  
230  
nS  
FIGURE 2. FRAMER  
SYSTEM  
TRANSMIT  
TIMING  
D
IAGRAM (BASE RATE/NON-MUX)  
1
TxMSYNC  
TxSYNC  
t
2
TxSERCLK  
t
3
TxSER  
t
4
TxCHCLK  
(Output)  
t
5
TxCHN_0  
(TxSIG)  
B
A
C
D
AC ELECTRICAL CHARACTERISTICS RECEIVE FRAMER (BASE RATE/NON-MUX)  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified  
S
YMBOL  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
CONDITIONS  
RxSERCLK as an Output  
t8  
Rising Edge of RxSERCLK to Rising Edge of  
RxCASYNC  
4
4
4
6
nS  
nS  
nS  
nS  
t9  
Rising Edge of RxSERCLK to Rising Edge of  
RxCRCSYNC  
t10  
Rising Edge of RxSERCLK to Rising Edge of  
RxSYNC (RxSYNC as Output)  
t11  
Rising Edge of RxSERCLK to Rising Edge of  
RxSER  
RxSERCLK as an Input  
40  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
AC ELECTRICAL CHARACTERISTICS RECEIVE FRAMER (BASE RATE/NON-MUX)  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified  
REV. 1.0.2  
S
YMBOL  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
CONDITIONS  
t13  
Rising Edge of RxSERCLK to Rising Edge of  
RxCASYNC  
8
nS  
nS  
nS  
nS  
nS  
t14  
t15  
t15  
t16  
Rising Edge of RxSERCLK to Rising Edge of  
RxCRCSYNC  
8
Rising Edge of RxSERCLK to Rising Edge of  
RxSYNC (RxSYNC as Output)  
10  
Rising Edge of RxSERCLK to Rising Edge of  
RxSYNC (RxSYNC as Input)  
230  
10  
Rising Edge of RxSERCLK to Rising Edge of  
RxSER  
FIGURE 3. FRAMER  
SYSTEM  
R
ECEIVE  
TIMING  
DIAGRAM (R  
X
SERCLK AS AN  
O
UTPUT)  
RxCRCSYNC  
RxCASYNC  
RxSYNC  
t
9
t
10  
RxSERCLK  
(Output)  
t
11  
RxSER  
FIGURE 4. FRAMER  
SYSTEM  
R
ECEIVE TIMING DIAGRAM (RXSERCLK AS AN INPUT)  
RxCRCSYNC  
RxCASYNC  
RxSYNC  
t
14  
t
15  
RxSERCLK  
(Input)  
t
16  
RxSER  
41  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
AC ELECTRICAL CHARACTERISTICS TRANSMIT FRAMER (HMVIP/H100 MODE)  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified  
S
YMBOL  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
C
ONDITIONS  
t1  
TxSYNC Setup Time - HMVIP Mode  
TxSYNC Hold Time - HMVIP Mode  
7
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
4
7
4
6
3
6
3
TxSYNC Setup Time - H100 Mode  
TxSYNC Hold Time - H100 Mode  
TxSER Setup Time - HMVIP and H100 Mode  
TxSER Hold Time - HMVIP and H100 Mode  
TxSIG Setup Time - HMVIP and H100 Mode  
TxSIG Hold Time - HMVIP and H100 Mode  
F
IGURE 5. FRAMER  
S
YSTEM  
TRANSMIT  
TIMING  
D
IAGRAM (HMVIP AND H100 MODE)  
TxInClk  
(16MHz)  
TxSYNC  
(HMVIP Mode)  
t2  
t1  
t4  
TxSYNC  
(H100 Mode)  
t3  
TxSERCLK  
TxSER  
t5  
t6  
t8  
TxCHN_0  
(TxSIG)  
t7  
B
A
C
D
NOTE: Setup and Hold time is not valid from TxInClk to TxSERCLK as TxInClk is used as the timing source for the back  
plane interface and TxSERCLK is used as the timing source on the line side.  
42  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
AC ELECTRICAL CHARACTERISTICS RECEIVE FRAMER (HMVIP/H100 MODE)  
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified  
S
YMBOL  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NITS  
CONDITIONS  
t1  
RxSYNC Setup Time - HMVIP Mode  
RxSYNC Hold Time - HMVIP Mode  
RxSYNC Setup Time - H100 Mode  
RxSYNC Hold Time - H100 Mode  
4
nS  
nS  
nS  
nS  
nS  
t2  
t3  
t4  
t5  
3
5
3
Rising Edge of RxSERCLK to Rising Edge of  
RxSER delay  
11  
NOTE  
:
Both RxSERCLK and RxSYNC are inputs  
F
IGURE 6. FRAMER  
S
YSTEM  
R
ECEIVE  
TIMING  
D
IAGRAM (HMVIP/H100 MODE)  
RxSERCLK  
(16MHz)  
RxSYNC  
(HMVIP Mode)  
t2  
t1  
t4  
RxSYNC  
(H100 Mode)  
t3  
t5  
RxSER  
43  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
T
ABLE 4: E1 RECEIVER  
= 1.8V + 5%, TA= -40°to 85°C, unless otherwise specified  
CORE  
ELECTRICAL CHARACTERISTICS  
VDD = 3.3V + 5% , VDD  
IO  
P
ARAMETER  
M
IN  
.
TYP  
.
MAX  
.
U
NIT  
TEST CONDITIONS  
Receiver loss of signal:  
Cable attenuation @1024kHz  
Number of consecutive zeros before  
RLOS is set  
32  
20  
Input signal level at RLOS  
RLOS De-asserted  
15  
dB  
ITU-G.775, ETSI 300 233  
12.5  
11  
% ones  
dB  
Receiver Sensitivity  
With nominal pulse amplitude of 3.0V  
for 120  
tion.  
and 2.37V for 75applica-  
(Short Haul with cable loss)  
Receiver Sensitivity  
0
43  
dB  
With nominal pulse amplitude of 3.0V  
for 120  
tion.  
and 2.37V for 75applica-  
(Long Haul with cable loss)  
Input Impedance  
15  
20  
k
Input Jitter Tolerance:  
1 Hz  
37  
UIpp  
UIpp  
ITU G.823  
ITU G.736  
ITU G.736  
ITU-G.703  
10kHz-100kHz  
0.3  
Recovered Clock Jitter  
Transfer Corner Frequency  
Peaking Amplitude  
-
-
kHz  
dB  
0.5  
-
Jitter Attenuator Corner Fre-  
quency (-3dB curve) (JABW=0)  
10  
Hz  
Hz  
(JABW=1)  
1.5  
Return Loss:  
51kHz - 102kHz  
102kHz - 2048kHz  
2048kHz - 3072kHz  
12  
8
-
-
dB  
dB  
dB  
8
44  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
T
ABLE 5: T1 RECEIVER  
= 1.8V + 5%, TA=-40°to 85°C, unless otherwise specified  
CORE  
ELECTRICAL CHARACTERISTICS  
VDD = 3.3V + 5% , VDD  
IO  
P
ARAMETER  
M
IN.  
TYP  
.
MAX  
.
U
NIT  
TEST CONDITIONS  
Receiver loss of signal:  
Number of consecutive zeros before  
RLOS is set  
175  
20  
Input signal level at RLOS  
RLOS Clear  
15  
-
-
dB  
Cable attenuation @772kHz  
12.5  
12  
-
-
% ones ITU-G.775, ETSI 300 233  
Receiver Sensitivity  
dB  
With nominal pulse amplitude of 3.0V  
for 100 termination  
(Short Haul with cable loss)  
Receiver Sensitivity  
(Long Haul with cable loss)  
Normal  
-
With nominal pulse amplitude of 3.0V  
for 100 termination  
0
0
36  
dB  
dB  
Extended  
45  
Input Impedance  
15  
-
kΩ  
Jitter Tolerance:  
1Hz  
138  
0.4  
-
-
-
-
UIpp  
AT&T Pub 62411  
10kHz - 100kHz  
Recovered Clock Jitter  
Transfer Corner Frequency  
Peaking Amplitude  
-
-
10  
6
-
KHz  
dB  
TR-TSY-000499  
AT&T Pub 62411  
0.1  
Jitter Attenuator Corner Frequency  
(-3dB curve)  
-
Hz  
Return Loss:  
51kHz - 102kHz  
102kHz - 2048kHz  
2048kHz - 3072kHz  
-
-
-
14  
20  
16  
-
-
-
dB  
dB  
dB  
T
ABLE 6: E1 TRANSMITTER  
= 1.8V + 5%, TA=-40°to 85°C, unless otherwise specified  
CORE  
ELECTRICAL CHARACTERISTICS  
VDD = 3.3V + 5% , VDD  
IO  
P
ARAMETER  
M
IN.  
TYP  
.
MAX  
.
U
NIT  
TEST CONDITIONS  
AMI Output Pulse Amplitude:  
75 Application  
120 Application  
1:2 transformer  
2.13  
2.70  
2.37  
3.00  
2.60  
3.30  
V
V
Output Pulse Width  
224  
0.95  
0.95  
244  
264  
1.05  
1.05  
ns  
-
Output Pulse Width Ratio  
Output Pulse Amplitude Ratio  
-
-
ITU-G.703  
ITU-G.703  
-
45  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
T
ABLE 6: E1 TRANSMITTER  
= 1.8V + 5%, TA=-40°to 85°C, unless otherwise specified  
CORE  
ELECTRICAL CHARACTERISTICS  
VDD = 3.3V + 5% , VDD  
IO  
P
ARAMETER  
M
IN.  
TYP  
.
MAX  
.
U
NIT  
TEST CONDITIONS  
Jitter Added by the Transmitter Output  
-
0.025  
0.05  
UIpp Broad Band with jitter free TCLK  
applied to the input.  
Output Return Loss:  
51kHz -102kHz  
15  
9
-
-
-
-
-
-
dB  
dB  
dB  
ETSI 300 166  
102kHz-2048kHz  
2048kHz-3072kHz  
8
TABLE 7: E1 TRANSMIT  
R
ETURN  
L
OSS  
REQUIREMENT  
R
ETURN  
L
OSS  
F
REQUENCY  
ETS 300166  
51-102kHz  
6dB  
102-2048kHz  
2048-3072kHz  
8dB  
8dB  
T
ABLE 8: T1 TRANSMITTER  
= 1.8V + 5%, TA=-40°to 85°C, unless otherwise specified  
CORE  
ELECTRICAL CHARACTERISTICS  
VDD = 3.3V + 5% , VDD  
IO  
P
ARAMETER  
M
IN.  
TYP  
.
MAX  
.
U
NIT  
TEST CONDITIONS  
AMI Output Pulse Amplitude:  
Output Pulse Width  
2.4  
3.0  
350  
-
3.60  
362  
20  
V
ns  
-
1:2 transformer measured at DSX-1.  
ANSI T1.102  
338  
Output Pulse Width Imbalance  
Output Pulse Amplitude Imbalance  
Jitter Added by the Transmitter Output  
-
-
-
ANSI T1.102  
-
+200  
0.05  
mV  
ANSI T1.102  
0.025  
UIpp Broad Band with jitter free TCLK  
applied to the input.  
Output Return Loss:  
51kHz -102kHz  
-
-
-
17  
12  
10  
-
-
-
dB  
dB  
dB  
102kHz-2048kHz  
2048kHz-3072kHz  
46  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
FIGURE 7. ITU G.703 PULSE TEMPLATE  
269 ns  
(244 + 25)  
V = 100%  
194 ns  
(244 – 50)  
Nominal pulse  
50%  
244 ns  
219 ns  
(244 – 25)  
0%  
488 ns  
(244 + 244)  
Note  
– V corresponds to the nominal peak value.  
TABLE 9: TRANSMIT PULSE MASK SPECIFICATION  
Test Load Impedance  
75  
Resistive (Coax)  
2.37V  
120  
Resistive (twisted Pair)  
3.0V  
Nominal Peak Voltage of a Mark  
Peak voltage of a Space (no Mark)  
Nominal Pulse width  
0 + 0.237V  
244ns  
0 + 0.3V  
244ns  
Ratio of Positive and Negative Pulses Imbalance  
0.95 to 1.05  
0.95 to 1.05  
47  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
FIGURE 8. ITU G.703 SECTION 13 SYNCHRONOUS  
INTERFACE  
PULSE TEMPLATE  
T
T
T
T
T
T
30 30  
30 30  
30 30  
+V  
+V1  
0
–V1  
–V  
T
4
T
4
T
4
T
4
T
T1818900-92  
Shaded area in which  
signal should be  
monotonic  
T Average period of  
synchronizing signal  
TABLE 10: E1 SYNCHRONOUS  
I
NTERFACE TRANSMIT PULSE MASK SPECIFICATION  
Test Load Impedance  
75  
Resistive (Coax)  
1.5V  
120  
Resistive (twisted Pair)  
Maximum Peak Voltage of a Mark  
Minimum Peak Voltage of a Mark  
Nominal Pulse width  
1.9V  
1.0V  
0.75V  
244ns  
244ns  
48  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
FIGURE 9. DSX-1 PULSE  
TEMPLATE  
(
NORMALIZED AMPLITUDE  
)
TABLE 11: DSX1 INTERFACE  
ISOLATED PULSE MASK AND CORNER POINTS  
MINIMUM CURVE  
MAXIMUM CURVE  
T
IME (UI)  
-0.77  
-0.23  
-0.23  
-0.15  
0.0  
N
ORMALIZED AMPLITUDE  
T
IME (UI)  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.0  
N
ORMALIZED AMPLITUDE  
-.05V  
-.05V  
0.5V  
.05V  
.05V  
.8V  
0.95V  
0.95V  
0.9V  
1.15V  
1.15V  
1.05V  
1.05V  
-0.07V  
0.05V  
0.05V  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
0.5V  
0.27  
-0.45V  
-0.45V  
-0.2V  
-0.05V  
-0.05V  
0.35  
0.93  
1.16  
49  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
T
ABLE 12: AC ELECTRICAL  
C
HARACTERISTICS  
=25°C, UNLESS OTHERWISE SPECIFIED  
YP AX  
VDD = 3.3V + 5% , VDD  
= 1.8V + 5%, TA  
IO  
CORE  
P
ARAMETER  
S
YMBOL  
MIN  
.
T
.
M
.
U
NITS  
MCLKIN Clock Duty Cycle  
MCLKIN Clock Tolerance  
40  
-
-
60  
%
±50  
-
ppm  
50  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
MICROPROCESSOR INTERFACE I/O TIMING  
I
NTEL INTERFACE TIMING - ASYNCHRONOUS  
The signals used for the Intel microprocessor interface are: Address Latch Enable (ALE), Read Enable (RD),  
Write Enable (WR), Chip Select (CS), Address and Data bits. The microprocessor interface uses minimum  
external glue logic and is compatible with the timings of the 8051 or 80188 family of microprocessors. The ALE  
signal can be tied ’HIGH’ if this signal is not available, and the corresponding timing interface is shown in  
Figure 11 and Table 14.  
FIGURE 10. INTEL µP INTERFACE  
TIMING  
D
URING  
PROGRAMMED I/O READ AND WRITE OPERATIONS WHEN ALE IS  
N
OT IED ’HIGH’  
T
t 5  
t 5  
READ OPERATION  
WRITE OPERATION  
ALE  
ADDR[14:0]  
CS  
t 0  
t0  
Valid Address  
Valid Address  
Valid Data for Readback  
DATA[7:0]  
RD  
Data Available to Write Into the LIU  
t1  
t3  
WR  
t2  
t4  
RDY  
TABLE 13: INTEL  
MICROPROCESSOR  
I
NTERFACE  
TIMING  
SPECIFICATIONS  
S
YMBOL  
P
ARAMETER  
MIN  
M
AX  
U
NITS  
t
Valid Address to CS Falling Edge and ALE Rising  
Edge  
0
-
ns  
0
t
t
ALE Falling Edge to RD Assert  
RD Assert to RDY Assert  
5
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
320  
NA  
RD Pulse Width (t )  
320  
5
-
2
t
t
ALE Falling Edge to WR Assert  
WR Assert to RDY Assert  
-
320  
-
3
4
-
NA  
WR Pulse Width (t )  
320  
10  
4
t
ALE Pulse Width(t )  
5
5
51  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
F
T
IGURE 11. INTEL µP INTERFACE  
IED ’HIGH’  
TIMING DURING PROGRAMMED I/O READ AND WRITE OPERATIONS WHEN ALE IS  
READ OPERATION  
WRITE OPERATION  
ALE  
t
0
t
0
ADDR[14:0]  
CS  
Valid Address  
Valid Address  
Valid Data for Readback  
DATA[7:0]  
RD  
Data Available to Write Into the LIU  
t1  
t3  
WR  
t2  
t4  
RDY  
TABLE 14: INTEL  
MICROPROCESSOR  
I
NTERFACE  
TIMING SPECIFICATIONS  
S
YMBOL  
P
ARAMETER  
MIN  
M
AX  
U
NITS  
t
t
t
Valid Address to CS Falling Edge  
CS Falling Edge to RD Assert  
RD Assert to RDY Assert  
0
-
ns  
0
1
2
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
320  
NA  
RD Pulse Width (t )  
320  
0
-
2
t
t
CS Falling Edge to WR Assert  
WR Assert to RDY Assert  
-
320  
-
3
4
-
NA  
WR Pulse Width (t )  
320  
4
52  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
M
OTOROLA ASYCHRONOUS INTERFACE TIMING  
The signals used in the Motorola microprocessor interface mode are: Address Strobe (AS), Data Strobe (DS),  
Read/Write Enable (R/W), Chip Select (CS), Address and Data bits. The interface is compatible with the timing  
of a Motorola 68000 microprocessor family. The interface timing is shown in Figure 12. The I/O specifications  
are shown in Table 15.  
FIGURE 12. MOTOROLA  
A
SYCHRONOUS  
M
ODE  
I
NTERFACE  
S
IGNALS  
DURING  
PROGRAMMED I/O READ AND WRITE  
OPERATIONS  
READ OPERATION  
W RITE OPERATION  
ALE_AS  
t0  
t0  
Valid Address  
Valid Address  
ADDR[6:0]  
CS  
t3  
t3  
Valid Data for Readback  
DATA[7:0]  
RD_DS  
Data Available to Write Into the LIU  
t1  
t1  
WR_R/W  
t2  
RDY_DTACK  
t2  
TABLE 15: MOTOROLA  
A
SYCHRONOUS  
M
ODE  
M
ICROPROCESSOR  
I
NTERFACE  
TIMING SPECIFICATIONS  
S
YMBOL  
P
ARAMETER  
MIN  
M
AX  
U
NITS  
t
t
t
Valid Address to CS Falling Edge  
0
-
ns  
0
1
2
CS Falling Edge to DS (Pin RD_DS) Assert  
DS Assert to DTACK Assert  
0
-
-
ns  
ns  
ns  
ns  
320  
NA  
DS Pulse Width (t )  
320  
0
-
-
2
t
CS Falling Edge to AS (Pin ALE_AS) Falling Edge  
3
53  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
POWER PC 403 SYCHRONOUS INTERFACE TIMING  
The signals used in the Power PC 403 Synchronus microprocessor interface mode are: Address Strobe (AS),  
Microprocessor Clock (uPCLK), Data Strobe (DS), Read/Write Enable (R/W), Chip Select (CS), Address and  
Data bits. The interface timing is shown in Figure 13. The I/O specifications are shown in Table 16.  
FIGURE 13. POWER PC 403 INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS  
READ OPERATION  
WRITE OPERATION  
TS  
tdc  
uPCLK  
tcp  
t0  
t0  
Valid Address  
Valid Address  
ADDR[14:0]  
CS  
t3  
t3  
Valid Data for Readback  
DATA[7:0]  
WE  
Data Available to Write Into the LIU  
t1  
R/W  
TA  
t2  
T
ABLE 16: POWER PC 403 MICROPROCESSOR  
I
NTERFACE  
IN  
TIMING  
S
PECIFICATIONS  
S
YMBOL  
P
ARAMETER  
M
M
AX  
UNITS  
t
t
t
Valid Address to CS Falling Edge  
CS Falling Edge to WE Assert  
WE Assert to TA Assert  
0
-
ns  
ns  
ns  
ns  
0
1
2
0
-
-
320  
NA  
WE Pulse Width (t )  
320  
0
-
-
2
t
CS Falling Edge to TS Falling Edge  
3
t
µ
PCLK Duty Cycle  
40  
20  
60  
-
%
dc  
cp  
t
µPCLK Clock Period  
ns  
54  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
86VX38  
ORDERING INFORMATION  
P
RODUCT  
N
UMBER  
P
ACKAGE  
O
PERATING  
TEMPERATURE  
R
ANGE  
XRT86VX38IB329  
XRT86VX38IB256  
329 Fine Pitch Ball Grid Array  
256 Fine Pitch Ball Grid Array  
-40  
°
°
C to +85  
C to +85  
°
C
C
-40  
°
PACKAGE DIMENSIONS FOR 329 FINE PITCH BALL GRID ARRAY  
329 Fine Pitch Ball Grid Array  
(17.0 mm x 17.0 mm, fpBGA)  
Rev. 1.00  
19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A1 corner  
A
B
C
D
E
F
G
H
J
K
L
D
D1  
M
N
P
R
T
U
V
W
D1  
D
(A1 corner feature is mfger option)  
Seating  
Plane  
b
A2  
e
A
A1  
Note: The control dimension is in millimeter.  
INCHES MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.067  
0.014  
0.053  
0.675  
MIN  
1.43  
0.26  
1.17  
16.85  
MAX  
1.71  
0.36  
1.35  
17.15  
A
A1  
A2  
D
0.056  
0.010  
0.046  
0.663  
D1  
b
0.567 BSC  
14.40 BSC  
0.014  
0.018  
0.36  
0.46  
e
0.031 BSC  
0.80 BSC  
55  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
4
PACKAGE DIMENSIONS FOR 256 FINE PITCH BALL GRID ARRAY  
256 Fine Pitch Ball Grid Array  
(17.0 mm x 17.0 mm, fpBGA)  
Rev. 1.00  
10  
9
8
7
6
5
4
3
2
1
16 15 14 13 12 11  
A1 corner  
A
B
C
D
E
F
G
H
J
D
D1  
K
L
M
N
P
R
T
D1  
D
(A1 corner feature is mfger option)  
Seating  
Plane  
b
A2  
e
A
A1  
Note: The control dimension is in millimeter.  
INCHES  
MIN  
0.058  
0.013  
0.045  
0.661  
MILLIMETERS  
SYMBOL  
MAX  
0.070  
0.017  
0.053  
0.677  
MIN  
1.48  
0.33  
1.15  
16.80  
MAX  
A
A1  
A2  
D
1.78  
0.43  
1.35  
17.20  
D1  
b
0.591 BSC  
15.00 BSC  
0.020  
0.024  
0.50  
0.60  
e
0.039 BSC  
1.00 BSC  
56  
XRT86VX38  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
REV. 1.0.2  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2010 EXAR Corporation  
Datasheet January 2010.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
57  
XRT86VX38  
REV. 1.0.2  
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION  
P4.  
REVISION HISTORY  
R
EVISION  
1.0.0  
#
D
ATE  
DESCRIPTION  
May. 01, 2009  
June 15, 2009  
Initial release of Hardware Description  
1.0.1  
Update packaging name to fpBGA, add BITS functionality to general description,  
updated features and applications and updates to eletrical tables  
1.0.2  
January 29, 2010 Added timing diagrams, microprocessor timing, and general edits.  
58  

相关型号:

XRT86VX38_09

8-CHANNEL T1/E1/J1 FRAMER/LIU COMBO - T1 REGISTER DESCRIPTION
EXAR

XRT86VX38_0906

OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
EXAR

XRT91L30

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L306

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L30IQ

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L30IQ-F

Transceiver, 1-Func, PQFP64, 10 X 10 MM, 2 MM HEIGHT, ROHS COMPLIANT, PLASTIC, QFP-64
EXAR

XRT91L30_0611

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L30_10

STS12-STM4 OR STS3-STM1 SONET-SDH Transceiver
EXAR

XRT91L31

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L31IQ

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L31IQ-F

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR

XRT91L31_08

STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
EXAR