SP312ECA-L [EXAR]

Line Driver/Receiver, 2 Driver, PDSO20,;
SP312ECA-L
型号: SP312ECA-L
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Line Driver/Receiver, 2 Driver, PDSO20,

驱动 光电二极管 驱动器
文件: 总15页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP202E/232E/233E/310E/312E  
High-Performance RS-232  
Line Drivers/Receivers  
Operates from Single +5V Power Supply  
C
1
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
Meets All RS-232D and ITU V.28  
Specifications  
V+  
GND  
T1OUT  
C1-  
Operates with 0.1µF to 10µF Capacitors  
High Data Rate – 120Kbps Under Load  
Low Power Shutdown 1µA (Typical)  
3-State TTL/CMOS Receiver Outputs  
Low Power CMOS – 3mA Operation  
Improved ESD Specifications:  
C2+  
R
1
IN  
C2-  
R
1
OUT  
V-  
T1  
IN  
T2  
OUT  
T
2
IN  
R2IN  
R2OUT  
±15kV Human Body Model  
Now Available in Lead Free Packaging  
±15kV IEC1000-4-2 Air Discharge  
±8kV IEC1000-4-2 Contact Discharge  
DESCRIPTION  
The SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs that  
meet the specifications of RS-232 and V.28 serial protocols with enhanced ESD performance.  
The ESD tolerance has been improved on these devices to over ±15KV for both Human Body  
Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compatible with  
Sipex's SP232A/233A/310A/312A devices as well as popular industry standards. As with the  
initial versions, the SP202E/232E/233E/310E/312E devices feature at least 120Kbps data rate  
underload, 0.1µFchargepumpcapacitors, andoverallruggednessforcommercialapplications.  
This family also features Sipex's BiCMOS design allowing low power operation without  
sacrificingperformance. TheseriesisavailableinplasticDIPandSOICpackagesoperatingover  
the commercial and industrial temperature ranges.  
SELECTION TABLE  
Number of RS232  
No. of Receivers  
No. of External  
Model Drivers  
Receivers  
Active in Shutdown 0.1µF Capacitors Shutdown WakeUp TTL Tri–State  
SP202E  
SP232E  
SP233E  
SP310E  
SP312E  
2
2
2
2
2
2
2
2
2
2
0
0
0
0
2
4
4
0
4
4
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operation  
sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods of time may affect  
reliability.  
Vcc ................................................................................................................................................................. +6V  
V+ .................................................................................................................... (Vcc-0.3V) to +11.0V  
V- ............................................................................................................................................................ -11.0V  
Input Voltages  
TIN ......................................................................................................................... -0.3 to (Vcc +0.3V)  
RIN ............................................................................................................................................................ ±15V  
Output Voltages  
Plastic DIP .......................................................................... 375mW  
(derate 7mW/°C above +70°C)  
Small Outline ...................................................................... 375mW  
(derate 7mW/°C above +70°C)  
TOUT .................................................................................................... (V+, +0.3V) to (V-, -0.3V)  
ROUT ................................................................................................................ -0.3V to (Vcc +0.3V)  
Short Circuit Duration  
TOUT ......................................................................................................................................... Continuous  
ELECTRICAL CHARACTERISTICS  
VCC=+5V±10%; 0.1µF charge pump capacitors; TMIN to TMAX unless otherwise noted.  
PARAMETERS  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
TTL INPUT  
Logic Threshold  
LOW  
HIGH  
Logic Pull-Up Current  
0.8  
Volts  
Volts  
µA  
TIN ; EN, SD  
TIN ; EN, SD  
TIN = 0V  
2.0  
15  
200  
TTL OUTPUT  
TTL/CMOS Output  
Voltage, Low  
Voltage, High  
Leakage Current **; TA = +25°  
0.4  
Volts  
Volts  
µA  
IOUT = 3.2mA; Vcc = +5V  
IOUT = -1.0mA  
EN = VCC, 0VVOUT VCC  
3.5  
0.05  
±10  
RS-232 OUTPUT  
Output Voltage Swing  
±5  
±6  
Volts  
All transmitter outputs loaded  
with 3kto Ground  
Output Resistance  
Output Short Circuit Current  
Maximum Data Rate  
300  
120  
Ohms  
mA  
Kbps  
VCC = 0V; VOUT = ±2V  
Infinite duration  
CL = 2500pF, RL= 3kΩ  
±18  
240  
RS-232 INPUT  
Voltage Range  
Voltage Threshold  
LOW  
HIGH  
Hysteresis  
Resistance  
-15  
0.8  
+15  
Volts  
1.2  
1.7  
0.5  
5
Volts  
Volts  
Volts  
kΩ  
VCC = 5V, TA = +25°C  
VCC = 5V, TA = +25°C  
VCC = 5V, TA = +25°C  
TA = +25°C, -15V VIN +15V  
2.8  
1.0  
7
0.2  
3
DYNAMIC CHARACTERISTICS  
Driver Propagation Delay  
Receiver Propagation Delay  
Instantaneous Slew Rate  
1.5  
0.1  
3.0  
1.0  
30  
µs  
µs  
V/µs  
TTL to RS-232; CL = 50pF  
RS-232 to TTL  
CL = 10pF, RL= 3-7k;  
TA =+25°C  
Transition Region Slew Rate  
10  
V/µs  
CL = 2500pF, RL= 3k;  
measured from +3V to -3V  
or -3V to +3V  
Output Enable Time **  
Output Disable Time **  
400  
250  
ns  
ns  
SP310E and SP312E only  
SP310E and SP312E only  
POWER REQUIREMENTS  
VCC Power Supply Current  
3
15  
5
5
mA  
mA  
No load, TA= +25°C; VCC = 5V  
All transmitters RL = 3k;  
TA = +25°C  
Shutdown Supply Current **  
1
µA  
VCC = 5V, TA = +25°C  
**SP310E and SP312E only  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
2
PERFORMANCE CURVES  
-11  
-10  
-9  
12  
10  
8
30  
25  
20  
15  
10  
5
9.0  
8.5  
V
= 6V  
CC  
8.0  
7.5  
V
= 5V  
CC  
V
= 6V  
CC  
V
= 6V  
-8  
CC  
V
= 4V  
CC  
V
= 5V  
CC  
-7  
6
7.0  
Load current = 0mA  
-6  
V
CC  
= 5V  
= 4V  
T
A
= 25°C  
6.5  
6.0  
4
V
= 4V  
CC  
-5  
V
CC  
2
-4  
5.5  
5.0  
V
= 3V  
CC  
-3  
0
0
2
4
6
8
10 12 14  
0
0
5
10 15 20 25 30 35 40  
Load Current (mA)  
4.5  
4.75  
5.0  
(Volts)  
5.25  
5.5  
-55 -40  
0
25  
70  
85  
125  
Load Current (mA)  
V
CC  
Temperature (°C)  
PINOUTS  
C
1
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
C
1
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
V+  
GND  
OUT  
V+  
GND  
OUT  
C1-  
T
1
C1-  
T1  
C2+  
R
1
IN  
C2+  
R
R
1IN  
C2-  
R
1
OUT  
C2-  
1OUT  
V-  
T1  
IN  
V-  
T
T
1
IN  
IN  
T2  
OUT  
T
2
IN  
T
2
OUT  
2
R2IN  
R2OUT  
R2IN  
R2OUT  
1
20  
R
2
2
OUT  
IN  
T
2
1
IN  
IN  
N.C./EN  
C1+  
1
2
20  
SHDN  
2
3
19  
18  
R
T
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
T2OUT  
R
T
1
1
OUT  
IN  
V+  
3
GND  
4
17 V-  
R
1
C1-  
4
T1OUT  
R1IN  
R1OUT  
N.C.  
5
16  
15  
14  
13  
12  
11  
C
C
C
C
C
C
2
-
OUT  
GND  
C2+  
5
6
2
1
1
2
2
+
+
+
C2-  
6
7
V
CC  
V-  
7
8
V+  
GND  
V–  
T2OUT  
R2IN  
R2OUT  
8
T1IN  
9
9
T2IN  
10  
10  
N.C.  
20-PIN SOIC  
20-PIN SSOP  
18  
17  
16  
15  
14  
13  
12  
11  
10  
18  
17  
16  
15  
14  
13  
12  
11  
10  
1
2
3
4
5
6
7
8
9
ON/OFF  
1
2
3
4
5
6
7
8
9
SHUTDOWN  
NC  
*
EN  
*
VCC  
VCC  
C
1
+
C1  
+
GND  
OUT  
GND  
OUT  
V+  
V+  
T1  
T
1
C1-  
C1-  
R1IN  
R1IN  
C2+  
C2+  
R1OUT  
C2-  
R1OUT  
C2-  
T
1
IN  
IN  
V-  
T1IN  
V-  
T2  
T
2
OUT  
T2IN  
T
2
OUT  
R2OUT  
R2IN  
R2OUT  
R2IN  
* N.C. for SP310E_A, EN for SP312E_A  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
3
FEATURES…  
The SP310E provides identical features as the  
SP232E with a single control line which  
simultaneously shuts down the internal DC/DC  
converter and puts all transmitter and receiver  
outputsintoahighimpedancestate.TheSP312E  
is identical to the SP310E with separate tri-state  
and shutdown control lines.  
The SP202E/232E/233E/310E/312E devices  
are a family of line driver and receiver pairs that  
meet the specifications of RS-232 and V.28  
serial protocols with enhanced ESD perfor-  
mance. The ESD tolerance has been improved  
on these devices to over±15KV for both Human  
Body Model and IEC1000-4-2 Air Discharge  
Method. These devices are pin-to-pin compat-  
ible with Sipex's 232A/233A/310A/312A  
devices as well as popular industry standards.  
As with the initial versions, the SP202E/232E/  
233E/310E/312E devices feature10V/µs slew  
rate, 120Kbps data rate under load, 0.1µF  
charge pump capacitors, overall ruggedness  
forcommercialapplications,andincreaseddrive  
current for longer and more flexible cable  
configurations. ThisfamilyalsofeaturesSipex's  
BiCMOS design allowing low power operation  
without sacrificing performance.  
THEORY OF OPERATION  
The SP232E, SP233E, SP310E and SP312E  
devices are made up of three basic circuit blocks –  
1)adriver/transmitter,2)areceiverand3)acharge  
pump. Each block is described below.  
Driver/Transmitter  
The drivers are inverting transmitters, which ac-  
cept TTL or CMOS inputs and output the RS-232  
signals with an inverted sense relative to the input  
logic levels. Typically the RS-232output voltage  
swing is ±6V. Even under worst case loading  
conditions of 3kOhms and 2500pF, the output is  
guaranteed to be ±5V, which is consistent with the  
RS-232 standard specifications. The transmitter  
outputsareprotectedagainstinfiniteshort-circuits  
to ground without degradation in reliability.  
The SP202E/232E/233E/310E/312E devices  
have internal charge pump voltage converters  
which allow them to operate from a single +5V  
supply. The charge pumps will operate with  
polarized or non-polarized capacitors ranging  
from 0.1 to 10 µF and will generate the ±6V  
needed to generate the RS-232 output levels.  
Both meet all EIA RS-232 and ITU V.28  
specifications.  
+5V INPUT  
+
10 F 6.3V  
µ
16  
1
0.1 F 6.3V  
+
µ
V
C
C
C
C
+
-
CC  
+
+
1
2
6
0.1  
6.3V  
F
µ
V+  
V-  
*
3
4
1
Charge Pump  
+
-
2
+
0.1  
16V  
F
µ
0.1  
16V  
F
µ
5
2
400k  
400k  
11  
14  
T
T
IN  
T
OUT  
T
1
1
1
10  
12  
7
IN  
T
OUT  
IN  
T
2
2
1
2
13  
R
R
OUT  
OUT  
R
R
1
2
1
5k  
5k  
9
8
R
IN  
R
2
2
SP202E  
SP232E  
GND 15  
*The negative terminal of the V+ storage capacitor can be tied  
to either VCC or GND. Connecting the capacitor to VCC (+5V)  
is recommended.  
Figure 1. Typical Circuit using the SP202E or SP232E.  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
4
+5V INPUT  
7
V
CC  
400k  
2
5
T
IN  
IN  
T
OUT  
T
1
1
1
400k  
1
3
18  
4
T
T
OUT  
IN  
T
2
2
1
2
R
R
OUT  
R
R
1
1
5k  
5k  
20  
19  
OUT  
R
IN  
R
2
2
2
13  
14  
10  
C
C
+
-
Do not make  
connection to  
these pins  
1
12  
C
C
C
C
+
+
-
1
2
2
15  
11  
16  
Internal  
-10V Power  
Supply  
V-  
17  
8
V-  
2
2
SP233ECT  
Internal  
+10V Power  
Supply  
V+  
-
GND  
GND  
6
9
Figure 2. Typical Circuits using the SP233ECP and SP233ECT  
The instantaneous slew rate of the transmitter  
output is internally limited to a maximum of 30V/  
µs in order to meet the standards [EIA RS-232-D  
2.1.7, Paragraph (5)]. However, the transition re-  
gion slew rate of these enhanced products is typi-  
cally 10V/µs. The smooth transition of the loaded  
output from VOL to VOH clearly meets the mono-  
tonicity requirements of the standard [EIA  
RS-232-D 2.1.7, Paragraphs (1) & (2)].  
andsysteminterferencecandegradethesignal,the  
inputs have a typical hysteresis margin of 500mV.  
This ensures that the receiver is virtually immune  
to noisy transmission lines.  
The input thresholds are 0.8V minimum and 2.4V  
maximum, again well within the ±3V RS-232  
requirements. The receiver inputs are also pro-  
tected against voltages up to ±15V. Should an  
input be left unconnected, a 5KOhm pulldown  
resistor to ground will commit the output of the  
receiver to a high state.  
Receivers  
The receivers convert RS-232 input signals to  
inverted TTL signals. Since the input is usually  
from a transmission line, where long cable lengths  
+5V INPUT  
+5V INPUT  
10 F 6.3V  
µ
10 F 6.3V  
µ
+
+
17  
0.1  
16V  
+
F
µ
2
17  
0.1 µF  
16V  
+
V
2
C
C
C
C
+
-
CC  
+
+
V
1
3
7
0.1 F  
µ
C
C
C
C
+
-
CC  
+
+
V+  
V-  
1
3
7
*
0.1  
6.3V  
F
µ
6.3V  
V+  
V-  
4
5
*
1
4
5
1
Charge Pump  
Charge Pump  
+
-
2
+
0.1  
16V  
F
µ
0.1  
F
µ
+
-
2
+
0.1  
16V  
F
µ
16V  
0.1 µF  
16V  
6
2
6
2
400k  
400k  
400k  
12  
11  
15  
8
T
T
IN  
T
T
OUT  
OUT  
T
12  
15  
1
1
2
1
T
T
IN  
T
OUT  
T
1
1
1
400k  
IN  
T
2
11  
13  
8
2
IN  
T
OUT  
IN  
T
2
2
1
2
14  
R
R
OUT  
OUT  
R
R
1
2
1
14  
13  
R
R
OUT  
R
R
IN  
IN  
R
1
2
1
2
1
5k  
5k  
5k  
5k  
10  
9
R
IN  
R
2
9
2
10  
1
OUT  
EN  
R
2
18  
ON/OFF  
18  
SP310E  
SHUTDOWN  
SP312E  
GND 16  
GND 16  
*The negative terminal of the V+ storage capacitor can be tied  
to either VCC or GND. Connecting the capacitor to VCC (+5V)  
is recommended.  
*The negative terminal of the V+ storage capacitor can be tied  
to either VCC or GND. Connecting the capacitor to VCC (+5V)  
is recommended.  
Figure 3. Typical Circuits using the SP310E and SP312E  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
5
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 4. Charge Pump — Phase 1  
In actual system applications, it is quite possible  
for signals to be applied to the receiver inputs  
before power is applied to the receiver circuitry.  
Thisoccurs, forexample, whenaPCuserattempts  
toprint,onlytorealizetheprinterwasn’tturnedon.  
In this case an RS-232 signal from the PC will  
appear on the receiver input at the printer. When  
the printer power is turned on, the receiver will  
operate normally. All of these enhanced devices  
are fully protected.  
Phase 2  
— VSS transfer — Phase two of the clock con-  
nects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of C2  
to ground, and transfers the generated –l0V to  
C3. Simultaneously, the positive side of capaci-  
tor C 1 is switched to +5V and the negative side  
is connected to ground.  
Phase 3  
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –5V in the negative  
terminal of C1, which is applied to the negative  
side of capacitor C2. Since C2 is at +5V, the  
voltage potential across C2 is l0V.  
Charge Pump  
The charge pump is a Sipex–patented design  
(5,306,954) and uses a unique approach com-  
paredtoolderless–efficientdesigns.Thecharge  
pump still requires four external capacitors, but  
uses a four–phase voltage shifting technique to  
attain symmetrical power supplies. There is a  
free–running oscillator that controls the four  
phases of the voltage shifting. A description of  
each phase follows.  
+
Phase 4  
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to ground,  
and transfers the generated l0V across C2 to C4,  
theVDD storagecapacitor.Again,simultaneously  
with this, the positive side of capacitor C1 is  
switched to +5V and the negative side is con-  
nected to ground, and the cycle begins again.  
Phase 1  
— VSS charge storage —During this phase of  
the clock cycle, the positive side of capacitors  
C1 and C2 are initially charged to +5V. Cl+ is  
Since both V+ and Vare separately generated  
from VCC; in a no–load condition V+ and Vwill  
then switched to ground and the charge in C1 is  
+
transferred to C2 . Since C2 is connected to  
+5V, the voltage potential across capacitor C2 is  
now 10V.  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–10V  
3
Figure 5. Charge Pump — Phase 2  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
6
+10V  
a) C2+  
GND  
GND  
b) C2–  
–10V  
Figure 6. Charge Pump Waveforms  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
Shutdown (SD) and Enable (EN) for the  
SP310E and SP312E  
Both the SP310E and SP312E have a shutdown/  
standby mode to conserve power in battery-pow-  
ered systems. To activate the shutdown mode,  
which stops the operation of the charge pump, a  
logic “0” is applied to the appropriate control line.  
For the SP310E, this control line is ON/OFF (pin  
18). Activating the shutdown mode also puts the  
The clock rate for the charge pump typically  
operates at 15kHz. The external capacitors can  
be as low as 0.1µF with a 16V breakdown  
voltage rating.  
V
= +5V  
CC  
C
4
+5V  
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 7. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+10V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
+
3
SS  
C
Figure 8. Charge Pump — Phase 4  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
7
SP310E transmitter and receiver outputs in a high  
impedance condition (tri-stated). The shutdown  
mode is controlled on the SP312E by a logic “0”  
ontheSHUTDOWNcontrolline(pin18);thisalso  
puts the transmitter outputs in a tri–state mode.  
The receiver outputs can be tri–stated separately  
during normal operation or shutdown by a logic  
“1” on the ENABLE line (pin 1).  
Pin Strapping for the SP233ECT  
The SP233E packaged in the 20–pin SOIC pack-  
age (SP233ECT) has a slightly different pinout  
than the SP233E in other package configurations.  
To operate properly, the following pairs of pins  
must be externally wired together:  
the two V– pins (pins 10 and 17)  
the two C2+ pins (pins 12 and 15)  
the two C2– pins (pins 11 and 16)  
Wake–Up Feature for the SP312E  
The SP312E has a wake–up feature that keeps  
all the receivers in an enabled state when the  
device is in the shutdown mode. Table 1 defines  
the truth table for the wake–up function.  
All other connections, features, functions and  
performance are identical to the SP233E as  
specified elsewhere in this data sheet.  
With only the receivers activated, the SP312E  
typically draws less than 5µA supply current.  
In the case of a modem interfaced to a computer  
in power down mode, the Ring Indicator (RI)  
signal from the modem would be used to "wake  
up" the computer, allowing it to accept data  
transmission.  
ESD TOLERANCE  
The SP202E/232E/233E/310E/312E devices  
incorporates ruggedized ESD cells on all driver  
output and receiver input pins. The ESD struc-  
ture is improved over our previous family for  
moreruggedapplicationsandenvironmentssen-  
sitive to electro-static discharges and associated  
transients. The improved ESD tolerance is at  
least ±15KV without damage nor latch-up.  
After the ring indicator signal has propagated  
through the SP312E receiver, it can be used to  
trigger the power management circuitry of the  
computer to power up the microprocessor, and  
bring the SD pin of the SP312E to a logic high,  
takingitoutoftheshutdownmode. Thereceiver  
propagation delay is typically 1µs. The enable  
timeforV+ andVistypically2ms. AfterV+ and  
Vhave settled to their final values, a signal can  
be sent back to the modem on the data terminal  
ready (DTR) pin signifying that the computer is  
ready to accept and transmit data.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
acceptedESDtestingmethodforsemiconductors.  
This method is also specified in MIL-STD-883,  
Method 3015.7 for ESD testing. The premise of  
this ESD test is to simulate the human body’s  
potential to store electro-static energy and  
discharge it to an integrated circuit. The  
simulation is performed by using a test model as  
showninFigure9. ThismethodwilltesttheIC’s  
capability to withstand an ESD transient during  
normal handling such as in manufacturing areas  
where the ICs tend to be handled frequently.  
Power  
Up/Down  
Receiver  
Outputs  
SD  
0
EN  
0
The IEC-1000-4-2, formerly IEC801-2, is  
generallyusedfortestingESDonequipmentand  
systems. For system manufacturers, they must  
guarantee a certain amount of ESD protection  
since the system itself is exposed to the outside  
environment and human presence. The premise  
Down  
Down  
Up  
Enable  
Tri–state  
Enable  
0
1
1
0
1
1
Up  
Tri–state  
Table 1. Wake-up Function Truth Table.  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
8
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 9. ESD Test Circuit for Human Body Model  
with IEC1000-4-2 is that the system is required  
to withstand an amount of static electricity when  
ESD is applied to points and surfaces of the  
equipmentthatareaccessibletopersonnelduring  
normal usage. The transceiver IC receives most  
of the ESD current when the ESD source is  
applied to the connector pins. The test circuit for  
IEC1000-4-2 is shown on Figure 10. There are  
two methods within IEC1000-4-2, the Air  
Discharge method and the Contact Discharge  
method.  
With the Air Discharge Method, an ESD voltage  
is applied to the equipment under test (EUT)  
throughair. Thissimulatesanelectricallycharged  
person ready to connect a cable onto the rear of  
the system only to find an unpleasant zap just  
before the person touches the back panel. The  
high energy potential on the person discharges  
through an arcing path to the rear panel of the  
system before he or she even touches the system.  
This energy, whether discharged directly or  
through air, is predominantly a function of the  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 10. ESD Test Circuit for IEC1000-4-2  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
9
dischargedtotheequipmentfromapersonalready  
holdingtheequipment. Thecurrentistransferred  
ontothekeypadortheserialportoftheequipment  
directly and then travels through the PCB and  
finally to the IC.  
30A  
15A  
0A  
The circuit models in Figures 9 and 10 represent  
the typical ESD testing circuit used for all three  
methods. TheCS isinitiallychargedwiththeDC  
power supply when the first switch (SW1) is on.  
Now that the capacitor is charged, the second  
switch(SW2)isonwhileSW1switchesoff. The  
voltage stored in the capacitor is then applied  
throughRS, thecurrentlimitingresistor, ontothe  
device under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under test  
receives a duration of voltage.  
t=0ns  
t=30ns  
t  
Figure 11. ESD Test Waveform for IEC1000-4-2  
discharge current rather than the discharge  
voltage. Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend to  
change the discharge current. For example, the  
rise time of the discharge current varies with the  
approach speed.  
FortheHumanBodyModel, thecurrentlimiting  
resistor (R ) and the source capacitor (C ) are  
1.5kan 1S00pF, respectively. For IEC-10S00-4-  
2,thecurrentlimitingresistor(RS)andthesource  
capacitor (CS) are 330an 150pF, respectively.  
The higher C value and lower RS value in the  
IEC1000-4-2Smodel are more stringent than the  
HumanBodyModel. Thelargerstoragecapacitor  
injects a higher voltage to the test point when  
SW2 is switched on. The lower current limiting  
resistor increases the current charge onto the test  
point.  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
handheldsystems,theESDchargecanbedirectly  
SP202E  
Family  
HUMAN BODY  
MODEL  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 2. Transceiver ESD Tolerance Levels  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
10  
PACKAGE: 20 PIN SSOP  
D
N
2 NX R R1  
E
A
E1  
Seaing Plane  
L
Ø
A
L1  
DETAIL A  
1
2
INDEX AREA  
D
2
E1  
2
e
x
A2  
A
Seating Plane  
b
A1  
20 PIN SSOP  
JEDEC MO-150  
(AE) Variation  
Dimensions in (mm)  
MIN NOM MAX  
SEE DETAIL “A”  
-
-
2.0  
-
A
0.05  
-
A1  
A2  
b
1.65 1.75  
1.85  
0.38  
0.22  
-
c
0.09  
6.90  
7.40  
5.00  
-
0.25  
D
E
7.20  
7.50  
8.20  
5.60  
7.80  
5.30  
WITH LEAD FINISH  
E1  
L
0.55  
0.75 0.95  
L1  
1.25 REF  
c
0º  
4º  
8º  
Ø
BASE METAL  
(b)  
Section A-A  
20 PIN SSOP  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
11  
PACKAGE: 16 PIN NSOIC  
D
e
E/2  
B
E1  
E1/2  
E
B
SEE VIEW C  
1
b
INDEX AREA  
(D/2 X E1/2)  
Ø1  
TOP VIEW  
b
WITH PLATING  
Gauge Plane  
L2  
Ø
Ø1  
Seating Plane  
L
c
L1  
VIEW C  
BASE METAL  
SECTION B-B  
16 Pin NSOIC  
(JEDEC MS-012,  
AC - VARIATION)  
DIMENSIONS  
in  
(mm)  
SYMBOL  
MIN NOM MAX  
1.75  
0.25  
1.65  
0.51  
A
1.35  
-
-
-
-
-
A1  
A2  
b
0.10  
1.25  
0.31  
A2  
A
c
0.17  
0.25  
Seating Plane  
A1  
D
E
E1  
e
9.90 BSC  
SIDE VIEW  
6.00 BSC  
3.90 BSC  
1.27 BSC  
L
-
0.40  
1.27  
L1  
L2  
Ø
1.04 REF  
0.25 BSC  
-
8º  
0º  
5º  
Ø1  
-
15º  
16 PIN NSOIC  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
12  
PACKAGE: 16 PIN WSOIC  
D
E/2  
B
E1  
E
B
SEE VIEW C  
E1/2  
1
3
2
b
INDEX AREA  
(D/2 X E1/2)  
e
Ø1  
TOP VIEW  
b
WITH PLATING  
Gauge Plane  
L2  
Ø
Ø1  
Seating Plane  
L
c
L1  
VIEW C  
BASE METAL  
SECTION B-B  
16 Pin SOIC (WIDE)  
(JEDEC MS-013,  
AA - VARIATION)  
DIMENSIONS IN  
(mm)  
SYMBOL  
MIN NOM MAX  
-
2.65  
0.30  
2.55  
0.51  
0.33  
A
2.35  
A1  
A2  
b
-
-
-
-
0.10  
2.05  
0.31  
A2  
A
c
0.20  
Seating Plane  
D
E
E1  
e
A1  
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
SIDE VIEW  
L
0.40  
-
1.27  
L1  
L2  
1.40 REF  
0.25 BSC  
0º  
5º  
8º  
-
-
Ø
Ø1  
15º  
16 PIN SOIC WIDE  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
13  
PACKAGE: 18 PIN PDIP  
A1  
D
A
N
INDEX  
AREA  
A2  
D1  
L
E
E1  
b2  
b
e
b3  
1
2
3
N/2  
18 PIN PDIP  
JEDEC MS-001  
(AC) Variation  
Dimensions in inches  
MIN NOM MAX  
E
A
-
-
.210  
-
.015  
-
A1  
A2  
.115  
.130  
.195  
.022  
b
.014 .018  
b2  
b3  
.045  
.030  
.060 .070  
.039 .045  
c
eA  
eB  
.010  
.900  
-
.014  
.920  
-
c
D
.008  
.880  
.005  
.300  
D1  
E
.325  
.280  
.310  
E1  
e
.240 .250  
.100 BSC  
eA  
.300 BSC  
-
-
eB  
L
.430  
b
.115  
.130 .150  
C
18 pin PDIP  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
14  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Topmark  
Package  
SP202ECN.............................0°C to +70°C.................................SP202ECN........................................................................16–pin NSOIC  
SP202ECN/TR.......................0°C to +70°C.................................SP202ECN........................................................................16–pin NSOIC  
SP202ECP.............................0°C to +70°C.................................SP202ECP.........................................................................16–pin PDIP  
SP202ECT.............................0°C to +70°C.................................SP202ECT.........................................................................16–pin WSOIC  
SP202ECT/TR.......................0°C to +70°C.................................SP202ECT.........................................................................16–pin WSOIC  
SP202EEN..........................–40°C to +85°C................................SP202EEN.........................................................................16–pin NSOIC  
SP202EEN/TR....................–40°C to +85°C................................SP202EEN.........................................................................16–pin NSOIC  
SP202EEP..........................–40°C to +85°C................................SP202EEP.........................................................................16–pin PDIP  
SP202EET..........................–40°C to +85°C................................SP202EET..........................................................................16–pin WSOIC  
SP202EET/TR.....................–40°C to +85°C................................SP202EET..........................................................................16–pin WSOIC  
SP232ECN.............................0°C to +70°C................................SP232ECN..........................................................................16–pin NSOIC  
SP232ECN/TR.......................0°C to +70°C................................SP232ECN..........................................................................16–pin NSOIC  
SP232ECP.............................0°C to +70°C.................................SP232ECP.........................................................................16–pin PDIP  
SP232ECT.............................0°C to +70°C.................................SP232ECT..........................................................................16–pin WSOIC  
SP232ECT/TR.......................0°C to +70°C.................................SP232ECT..........................................................................16–pin WSOIC  
SP232EEN..........................–40°C to +85°C................................SP232EEN..........................................................................16–pin NSOIC  
SP232EEN/TR....................–40°C to +85°C................................SP232EEN..........................................................................16–pin NSOIC  
SP232EEP..........................–40°C to +85°C................................SP232EEP..........................................................................16–pin PDIP  
SP232EET..........................–40°C to +85°C................................SP232EET...........................................................................16–pin WSOIC  
SP232EET/TR.....................–40°C to +85°C................................SP232EET...........................................................................16–pin WSOIC  
SP233ECT............................0°C to +70°C.................................SP233ECT...........................................................................20–pin WSOIC  
SP233ECT/TR......................0°C to +70°C.................................SP233ECT...........................................................................20–pin WSOIC  
SP233EET..........................–40°C to +85°C................................SP233EET...........................................................................20–pin WSOIC  
SP233EET/TR.....................–40°C to +85°C................................SP233EET...........................................................................20–pin WSOIC  
SP310ECP............................0°C to +70°C.................................SP310ECP.........................................................................18–pin PDIP  
SP310ECT............................0°C to +70°C.................................SP310ECT..........................................................................18–pin WSOIC  
SP310ECT/TR......................0°C to +70°C.................................SP310ECT..........................................................................18–pin WSOIC  
SP310ECA............................0°C to +70°C.................................SP310ECA..........................................................................20–pin SSOP  
SP310ECA/TR......................0°C to +70°C.................................SP310ECA..........................................................................20–pin SSOP  
SP310EEP..........................–40°C to +85°C................................SP310EEP..........................................................................18–pin PDIP  
SP310EET..........................–40°C to +85°C................................SP310EET...........................................................................18–pin WSOIC  
SP310EET/TR.....................–40°C to +85°C................................SP310EET...........................................................................18–pin WSOIC  
SP310EEA..........................–40°C to +85°C................................SP310EEA...........................................................................20–pin SSOP  
SP310EEA/TR.....................–40°C to +85°C................................SP310EEA...........................................................................20–pin SSOP  
SP312ECP............................0°C to +70°C.................................SP312ECP..........................................................................18–pin PDIP  
SP312ECT............................0°C to +70°C.................................SP312ECT...........................................................................18–pin WSOIC  
SP312ECT/TR......................0°C to +70°C.................................SP312ECT...........................................................................18–pin WSOIC  
SP312ECA............................0°C to +70°C.................................SP312ECA...........................................................................20–pin SSOP  
SP312ECA/TR......................0°C to +70°C.................................SP312ECA...........................................................................20–pin SSOP  
SP312EEP..........................–40°C to +85°C................................SP312EEP...........................................................................18–pin PDIP  
SP312EET..........................–40°C to +85°C................................SP312EET............................................................................18–pin WSOIC  
SP312EET/TR.....................–40°C to +85°C................................SP312EET............................................................................18–pin WSOIC  
SP312EEA..........................–40°C to +85°C................................SP312EEA............................................................................20–pin SSOP  
SP312EEA/TR.....................–40°C to +85°C................................SP312EEA............................................................................20–pin SSOP  
Sipex Corporation  
Available in lead free packaging. To order add "-L" suffix to part number.  
Headquarters and  
Sales Office  
Example: SP312EEA/TR = standard; SP312EEA-L/TR = lead free  
233 South Hillview Drive  
/TR = Tape and Reel  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Pack quantity is 1,500 for SSOP or WSOIC and 2,500 for NSOIC.  
REVISION HISTORY  
DATE  
6/2/04  
7/19/04  
REVISION  
DESCRIPTION  
A
A
Incorporated new package drawings with JEDEC reference.  
Added typical output voltage swing value (±6V).  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 7/19/04  
SP202E Series High Performance RS232 Transceivers  
© Copyright 2004 Sipex Corporation  
15  

相关型号:

SP312ECA/TR

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312ECP

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312ECT

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312ECT-L

High Performance RS-232 Line Drivers/Receivers
EXAR

SP312ECT-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO18, LEAD FREE, SOIC-18
SIPEX

SP312ECT-L/TR

High Performance RS-232 Line Drivers/Receivers
EXAR

SP312ECT/TR

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312EEA

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312EEA-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, MS-150AE, SSOP-20
SIPEX

SP312EEA/TR

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312EEP

High-Performance RS-232 Line Drivers/Receivers
SIPEX

SP312EEP-L

暂无描述
EXAR