CLC1001ISO8 [EXAR]

Operational Amplifier,;
CLC1001ISO8
型号: CLC1001ISO8
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Operational Amplifier,

放大器
文件: 总17页 (文件大小:1229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Comlinear® CLC1001  
Ultra-Low Noise Amplifier  
F E A T U R E S  
General Description  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
0.6 nV/Hz input voltage noise  
The COMLINEAR CLC1001(single) is a high-performance, voltage feedback  
amplifier with ultra-low input voltage noise, 0.6nV/√Hz. The CLC1001  
provides 2.1GHz gain bandwidth product and 410V/μs slew rate making it  
well suited for high-speed data acquisition systems requiring high levels of  
sensitivity and signal integrity. This COMLINEAR high-performance amplifier  
also offers low input offset voltage.  
1mV maximum input offset voltage  
2.1GHz gain bandwidth product  
Minimum stable gain of 10  
410V/μs slew rate  
130mA output current  
-40°C to +125°C operating temperature  
range  
The COMLINEAR CLC1001 is designed to operate from 4V to 12V supplies.  
It consumes only 12.5mA of supply current per channel and offers a power  
saving disable pin that disables the amplifier and decreases the supply  
current to below 225μA. The CLC1001 amplifier operates over the extended  
temperature range of -40°C to +125°C.  
nꢀ  
nꢀ  
Fully specified at 5V and ±5V supplies  
CLC1001: Lead-free SOT23-6, SOIC-8  
A P P L I C A T I O N S  
nꢀ  
Transimpedance amplifiers  
If a lower minimum stable gain is required, the CLC1002 offers a minimum  
stable gain of 5.  
nꢀ  
Pre-amplifier  
nꢀ  
Low noise signal processing  
nꢀ  
Medical instrumentation  
Typical Application - Single Supply Photodiode Amplifier  
nꢀ  
Probe equipment  
nꢀ  
Test equipment  
nꢀ  
Ultrasound channel amplifier  
Ordering Information  
Part Number  
Package  
Pb-Free  
Yes  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CLC1001IST6X  
CLC1001ISO8X  
CLC1001ISO8  
SOT23-6  
SOIC-8  
SOIC-8  
Yes  
Yes  
Yes  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
Reel  
Reel  
Rail  
Yes  
Yes  
Moisture sensitivity level for all parts is MSL-1.  
Exar Corporation  
48720 Kato Road, Fremont CA 94538, USA  
www.exar.com  
Tel. +1 510 668-7000 - Fax. +1 510 668-7001  
Data Sheet  
SOT23 Pin Assignments  
SOT23 Pin Configuration  
Pin No.  
Pin Name  
OUT  
Description  
1
2
3
4
Output  
OUT  
1
2
3
6
5
4
+V  
S
-V  
Negative supply  
S
+IN  
-IN  
Positive input  
-
+
-V  
S
DIS  
-IN  
Negative input  
+IN  
Disable. Enabled if pin is left floating or pulled  
above V , disabled if pin is grounded or pulled  
5
6
DIS  
ON  
below V  
.
OFF  
+V  
Positive supply  
S
SOIC Pin Assignments  
SOIC Pin Configuration  
Pin No.  
Pin Name  
NC  
Description  
1
2
3
4
5
6
7
No connect  
Negative input  
Positive input  
Negative supply  
No connect  
Output  
-IN1  
1
8
7
DIS  
+V  
NC  
+IN1  
2
3
4
-IN1  
S
-V  
S
NC  
6
5
OUT  
NC  
+IN1  
OUT  
-V  
S
+V  
Positive supply  
S
Disable. Enabled if pin is left floating or pulled  
8
DIS  
above V , disabled if pin is grounded or pulled  
ON  
below V  
.
OFF  
©2007-2013 Exar Corporation  
2/17  
Rev 1G  
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
14  
Unit  
Supply Voltage  
V
V
Input Voltage Range  
-V -0.5V  
s
+V +0.5V  
s
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
6-Lead SOT23  
150  
150  
260  
°C  
°C  
°C  
177  
100  
°C/W  
°C/W  
8-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
SOT23-6  
Human Body Model (HBM)  
2kV  
2kV  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
Supply Voltage Range  
-40  
4
+125  
12  
°C  
V
©2007-2013 Exar Corporation  
3/17  
Rev 1G  
Data Sheet  
Electrical Characteristics at +5V  
T = 25°C, V = +5V, R = 200Ω, R = 500Ω to V /2, G = 10; unless otherwise noted.  
A
s
f
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
GBWP  
-3dB Gain Bandwidth Product  
-3dB Bandwidth  
G = +40, VOUT = 0.2Vpp  
G = +10, VOUT = 0.2Vpp  
G = +10, VOUT = 2Vpp  
G = +10, VOUT = 0.2Vpp  
G = +10, VOUT = 2Vpp  
2000  
265  
105  
37  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
BWLS  
Large Signal Bandwidth  
BW0.1dBSS  
BW0.1dBLS  
0.1dB Gain Flatness Small Signal  
0.1dB Gain Flatness Large Signal  
36  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
2.4  
11  
6
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 1V step  
%
Slew Rate  
4V step  
360  
V/µs  
Distortion/Noise Response  
HD2  
2nd Harmonic Distortion  
1Vpp, 10MHz  
1Vpp, 10MHz  
1Vpp, 10MHz  
> 100kHz  
-80  
-83  
-79  
0.6  
4.2  
dBc  
dBc  
HD3  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
THD  
dB  
en  
nV/√Hz  
pA/√Hz  
in  
Input Current Noise  
> 100kHz  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage  
Average Drift  
0.1  
2.7  
28  
mV  
µV/°C  
µA  
Input Bias Current  
Average Drift  
dIb  
Io  
45  
nA/°C  
µA  
Input Offset Current  
Power Supply Rejection Ratio  
Open-Loop Gain  
0.5  
83  
PSRR  
AOL  
IS  
DC  
dB  
VOUT = VS / 2  
per channel  
82  
dB  
Supply Current  
12  
mA  
Disable Characteristics  
tON  
Turn On Time  
1V step, 1% settling  
2Vpp, 5MHz  
100  
900  
80  
ns  
ns  
dB  
pF  
tOFF  
Turn Off Time  
OFFISO  
OFFCOUT  
Off Isolation  
Off Output Capacitance  
5.7  
VOFF  
VON  
ISD  
Power Down Voltage  
Enable Voltage  
Disabled if DIS pin is grounded or pulled below VOFF  
Enabled if DIS pin is floating or pulled above VON  
No Load, DIS pin tied to ground  
Disabled if DIS < 1.5  
Enabled if DIS > 3  
130  
V
V
Disable Supply Current  
µA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
2.6  
1.6  
MΩ  
Input Capacitance  
pF  
0.8 to  
5.1  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
V
CMRR  
DC , Vcm=1.5V to 4V  
85  
dB  
Output Characteristics  
RL = 500Ω  
RL = 2kΩ  
0.93 to 4  
V
V
VOUT  
Output Voltage Swing  
0.9 to  
4.1  
IOUT  
ISC  
Output Current  
±130  
±150  
mA  
mA  
Short-Circuit Output Current  
VOUT = VS / 2  
Notes:  
1. 100% tested at 25°C  
©2007-2013 Exar Corporation  
4/17  
Rev 1G  
Data Sheet  
Electrical Characteristics at ±5V  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω , G = 10; unless otherwise noted.  
A
s
f
L
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
GBWP  
-3dB Gain Bandwidth Product  
-3dB Bandwidth  
G = +40, VOUT = 0.2Vpp  
G = +10, VOUT = 0.2Vpp  
G = +10, VOUT = 2Vpp  
G = +10, VOUT = 0.2Vpp  
G = +10, VOUT = 2Vpp  
2100  
284  
117  
42  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
BWLS  
Large Signal Bandwidth  
BW0.1dBSS  
BW0.1dBLS  
0.1dB Gain Flatness Small Signal  
0.1dB Gain Flatness Large Signal  
47  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
2.2  
11  
3
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 1V step  
%
Slew Rate  
4V step  
410  
V/µs  
Distortion/Noise Response  
HD2  
2nd Harmonic Distortion  
2Vpp, 10MHz  
2Vpp, 10MHz  
2Vpp, 5MHz  
> 100kHz  
-81  
-75  
-74  
0.6  
4.2  
dBc  
dBc  
HD3  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
THD  
dB  
en  
nV/√Hz  
pA/√Hz  
in  
Input Current Noise  
> 100kHz  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage(1)  
-1  
0.35  
4.4  
30  
1
60  
6
mV  
µV/°C  
µA  
Average Drift  
Input Bias Current (1)  
Average Drift  
-60  
dIb  
Io  
44  
nA/°C  
µA  
Input Offset Current  
Power Supply Rejection Ratio (1)  
Open-Loop Gain (1)  
Supply Current (1)  
0.8  
83  
PSRR  
AOL  
IS  
DC  
78  
74  
dB  
VOUT = VS / 2  
per channel  
83  
dB  
12.5  
16  
mA  
Disable Characteristics  
tON  
Turn On Time  
1V step, 1% settling  
2Vpp, 5MHz  
125  
840  
80  
ns  
ns  
dB  
pF  
tOFF  
Turn Off Time  
OFFISO  
OFFCOUT  
Off Isolation  
Off Output Capacitance  
5.6  
VOFF  
VON  
ISD  
Power Down Voltage  
Enable Voltage  
Disable Supply Current (1)  
Disabled if DIS pin is grounded or pulled below VOFF  
Enabled if DIS pin is floating or pulled above VON  
No Load, DIS pin tied to ground  
Disabled if DIS < 1.3  
Enabled if DIS > 3  
V
V
180  
225  
µA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
4
MΩ  
Input Capacitance  
1.5  
pF  
-4.3 to  
5.1  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio (1)  
DC , Vcm=-3.5V to 4V  
75  
90  
dB  
Output Characteristics  
RL = 500Ω (1)  
RL = 2kΩ  
-3.8  
±4  
±4  
3.8  
V
VOUT  
Output Voltage Swing  
V
IOUT  
ISC  
Output Current  
±130  
±160  
mA  
mA  
Short-Circuit Output Current  
VOUT = VS / 2  
Notes:  
1. 100% tested at 25°C  
©2007-2013 Exar Corporation  
5/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
3
3
0
0
G = -10  
G = +10  
G = +20  
G = +40  
-3  
-6  
-9  
-3  
-6  
-9  
G = -20  
G = -40  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
3
3
CL = 470pF  
R
s = 4.3Ω  
0
-3  
-6  
0
-3  
-6  
CL = 100pF  
s = 13Ω  
Rl = 1K  
R
Rl = 2K  
CL = 47pF  
Rl = 5K  
R
s = 20Ω  
CL = 22pF  
R
s = 33Ω  
CL = 10pF  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
R
s = 43Ω  
-9  
-9  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
-3dB Bandwidth vs. Output Voltage  
OUT  
1
0
300  
250  
200  
150  
100  
50  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 4Vpp  
VOUT = 3Vpp  
VOUT = 2Vpp  
0
0.1  
1
10  
100  
1000  
0.0  
1.0  
2.0  
3.0  
4.0  
Frequency (MHz)  
VOUT (VPP)  
©2007-2013 Exar Corporation  
6/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
3
3
0
0
G = +10  
G = -10  
-3  
-3  
G = -20  
G = +20  
G = -40  
G = +40  
-6  
-6  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
-9  
-9  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C at V = 5V  
Frequency Response vs. R at V = 5V  
L S  
L
S
3
3
CL = 470pF  
R
s = 5Ω  
0
0
CL = 100pF  
s = 15Ω  
Rl = 1K  
Rl = 2K  
Rl = 5K  
R
-3  
-6  
-9  
-3  
-6  
-9  
CL = 47pF  
R
s = 22Ω  
CL = 22pF  
R
s = 36Ω  
CL = 10pF  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
R
s = 50Ω  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
at V = 5V  
-3dB Bandwidth vs. Output Voltage at V = 5V  
OUT  
S
S
1
0
300  
250  
200  
150  
100  
50  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 2Vpp  
VOUT = 1.5Vpp  
VOUT = 1Vpp  
0
0.1  
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
Frequency (MHz)  
VOUT (VPP)  
©2007-2013 Exar Corporation  
7/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
Input Voltage Noise  
Input Voltage Noise at V = 5V  
S
2.6  
2.4  
2.2  
2
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
10  
10  
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
Frequency (MHz)  
Frequency (MHz)  
Input Voltage Noise (>10kHz)  
Input Voltage Noise at V = 5V (>10kHz)  
S
0.85  
0.8  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
0.65  
0.6  
0.65  
0.6  
0.55  
0.5  
0.55  
0.5  
10  
10  
0.01  
0.1  
1
0.01  
0.1  
1
Frequency (MHz)  
Frequency (MHz)  
R
vs. Frequency  
OUT  
10  
1
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
Frequency (MHz)  
©2007-2013 Exar Corporation  
8/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-65  
-65  
-75  
-75  
RL = 500Ω  
RL = 500Ω  
-85  
-95  
-85  
-95  
RL = 1kΩ  
RL = 1kΩ  
-105  
-105  
VOUT = 1Vpp  
-115  
VOUT = 1Vpp  
-115  
5
10  
15  
20  
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-65  
-70  
-55  
-60  
20MHz  
20MHz  
-65  
10MHz  
10MHz  
-75  
-70  
-75  
-80  
-85  
-90  
-95  
-80  
-85  
5MHz  
-90  
5MHz  
-95  
-100  
-100  
RL = 500Ω  
RL = 500Ω  
-105  
-105  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
2nd Harmonic Distortion vs. Gain  
3rd Harmonic Distortion vs. Gain  
-50  
-55  
-60  
-50  
-55  
-60  
-65  
-70  
AV+40  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
AV+40  
AV+20  
AV+20  
-75  
-80  
-85  
-90  
AV+10  
15  
AV+10  
VOUT = 1VPP  
RL = 500Ω  
VOUT = 1VPP  
-95  
RL = 500Ω  
-100  
5
10  
15  
20  
5
10  
20  
Frequency (MHz)  
Frequency (MHz)  
©2007-2013 Exar Corporation  
9/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R at V = 5V  
3rd Harmonic Distortion vs. R at V = 5V  
L
S
L
S
-65  
-65  
RL = 500Ω  
RL = 500Ω  
-75  
-75  
-85  
-85  
-95  
-95  
RL = 1kΩ  
RL = 1kΩ  
-105  
-115  
-105  
-115  
VOUT = 1Vpp  
VOUT = 1Vpp  
5
10  
15  
20  
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
at V = 5V  
3rd Harmonic Distortion vs. V at V = 5V  
OUT S  
OUT  
S
-55  
-60  
-65  
-55  
-60  
20MHz  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-70  
-75  
-80  
-85  
-90  
-95  
20MHz  
10MHz  
5MHz  
5MHz  
10MHz  
-100  
RL = 500Ω  
0.5 0.75  
RL = 500Ω  
-105  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
2nd Harmonic Distortion vs. Gain at V = 5V  
3rd Harmonic Distortion vs. Gain at V = 5V  
S
S
-50  
-55  
-60  
-65  
-50  
-55  
AV+40  
-60  
AV+20  
-65  
-70  
-70  
-75  
-80  
AV+20  
-75  
-80  
-85  
-85  
AV+10  
AV+10  
-90  
-95  
AV+40  
-90  
VOUT = 1VPP  
VOUT = 1VPP  
-95  
RL = 500Ω  
RL = 500Ω  
-100  
-100  
5
10  
15  
20  
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
©2007-2013 Exar Corporation  
10/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
Small Signal Pulse Response  
Small Signal Pulse Response at V = 5V  
S
0.15  
2.65  
0.1  
0.05  
0
2.6  
2.55  
2.5  
-0.05  
-0.1  
-0.15  
2.45  
2.4  
2.35  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Time (ns)  
Time (ns)  
Large Signal Pulse Response  
Large Signal Pulse Response at V = 5V  
S
3
4
3.5  
3
2
1
0
2.5  
2
-1  
-2  
-3  
1.5  
1
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Time (ns)  
Time (ns)  
Enable Response  
Disable Response  
5.5  
1.5  
1
5.5  
1.5  
1
Disable  
Enable  
4.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
3.5  
2.5  
1.5  
0.5  
Output  
0.5  
0
0.5  
0
Output  
-0.5  
-50  
-0.5  
-0.5  
0
50  
100  
150  
200  
-100  
0
100 200 300 400 500 600 700 800 900  
Time (ns)  
Time (ns)  
©2007-2013 Exar Corporation  
11/17  
Rev 1G  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 200Ω, R = 500Ω, G = 10; unless otherwise noted.  
A
s
f
L
Enable Response at V = 5V  
Disable Response at V = 5V  
S
S
5.5  
1.5  
1
5.5  
1.5  
1
Disable  
Enable  
4.5  
4.5  
3.5  
2.5  
3.5  
Output  
Output  
0.5  
0
2.5  
1.5  
0.5  
0
1.5  
0.5  
0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-50  
0
50  
100  
150  
200  
-100  
0
100 200 300 400 500 600 700 800 900  
Time (ns)  
Time (ns)  
Off Isolation  
Off Isolation at V = 5V  
S
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
1
-100  
1
10  
100  
10  
100  
Frequency (MHz)  
Frequency (MHz)  
CMRR vs. Frequency  
PSRR vs. Frequency  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
©2007-2013 Exar Corporation  
12/17  
Rev 1G  
Data Sheet  
total input voltage noise (amp+resistors) versus R and  
Application Information  
f
R . As the value of R increases, the total input referred  
g
f
Basic Operation  
noise also increases.  
Figures 1 and 2 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
2.75  
2.5  
G = +11  
2.25  
2
G = +21  
+Vs  
1.75  
6.8μF  
G = +41  
1.5  
1.25  
1
0.1μF  
Input  
+
-
0.75  
0.5  
Output  
RL  
100  
1000  
0.1μF  
6.8μF  
Rf (Ohms)  
Rf  
Figure 3: Input Referred Voltage Noise vs. R and R  
f
g
Rg  
G = 1 + (Rf/Rg)  
-Vs  
The noise caused by a resistor is modeled with either a  
voltage source in series with the resistance:  
Figure 1. Typical Non-Inverting Gain Circuit  
+Vs  
4kTR  
6.8μF  
R1  
Or a current source in parallel with it:  
0.1μF  
+
Output  
Rg  
4kT  
Input  
-
i
=
RL  
R
R
0.1μF  
Rf  
6.8μF  
G = - (Rf/Rg)  
-Vs  
Op amp noise is modeled with three noise sources, e , i  
n
n
For optimum input offset  
voltage set R1 = Rf || Rg  
and i. These three sources are analogous to the DC input  
i
voltage and current errors V , I and I .  
os bn  
bi  
Figure 2. Typical Inverting Gain Circuit  
The noise models must be analyzed in-circuit to determine  
the effect on the op amp output noise.  
Achieving Low Noise in an Application  
Making full use of the low noise of the CLC1001 requires  
careful consideration of resistor values. The feedback and  
Since noise is statistical in nature rather than a continuous  
signal, the set of noise sources in circuit add in an RMS  
(root mean square) fashion rather than in a linear fashion.  
For uncorrelated noise sources, this means you add the  
squares of the noise voltages. A typical non-inverting  
application (see figure 1) results in the following noise at  
the output of the op amp:  
gain set resistors (R and R ) and the non-inverting source  
f
g
impedance (R  
) all contribute noise to the circuit and  
source  
can easily dominate the overall noise if their values are  
too high. The datasheet is specified with an R of 22.1Ω,  
g
at which point the noise from R and R is about equal to  
f
g
the noise from the CLC1001. Lower value resistors could  
be used at the expense of more distortion. Figure 3 shows  
©2007-2013 Exar Corporation  
13/17  
Rev 1G  
Data Sheet  
The effective load resistor (Rload ) will need to include  
the effect of the feedback network. For instance,  
eff  
2
2
R
R
R
R
2
2
2
2
2
2
f
f
f
e = e 1+  
+ in R  
1+  
+ i R  
i
o
n
s
Rload in figure 3 would be calculated as:  
eff  
g
g
op amp noise terms e , i and i  
R || (R + R )  
n
n
i
L
f
g
2
2
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
Rf  
Rf  
+ eR2s 1 +  
+ e2Rg  
+ e2Rf  
Rg  
Rg  
external resistor noise terms for R , R and R  
f
S
g
Here, P can be found from  
D
High source impedances are sometimes unavoidable, but  
they increase noise from the source impedance and also  
make the circuit more sensitive to the op amp current  
noise. Analyze all noise sources in the circuit, not just the  
op amp itself, to achieve low noise in your application.  
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
Quiescent power can be derived from the specified I  
values along with known supply voltage, V  
S
. Load  
Supply  
power can be calculated as above with the desired signal  
amplitudes using:  
Power Dissipation  
(V  
)
)
= V  
/ √2  
LOAD RMS  
PEAK  
Power dissipation should not be a factor when operating  
under the stated 500Ω load condition. However,  
applications with low impedance, DC coupled loads  
should be analyzed to ensure that maximum allowed  
junction temperature is not exceeded. Guidelines listed  
below can be used to verify that the particular application  
will not cause the device to operate beyond it’s intended  
operating range.  
( I  
= ( V  
)
/ Rload  
eff  
LOAD RMS  
LOAD RMS  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
Assuming the load is referenced in the middle of the  
power rails or V /2.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction  
temperature, the package thermal resistance value  
Theta ) is used along with the total die power  
supply  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the packages  
available.  
JA  
JA  
dissipation.  
T
= T + (Ө × P )  
Ambient JA D  
Junction  
2.5  
Where T  
is the temperature of the working environment.  
Ambient  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
D
2
SOIC-8  
1.5  
SOT23-6  
P = P  
- P  
load  
D
supply  
1
0.5  
0
Supply power is calculated by the standard power  
equation.  
P
= V  
× I  
supply  
supply RMS supply  
V
= V - V  
S+ S-  
supply  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (°C)  
Power delivered to a purely resistive load is:  
2
P
= ((V  
)
)/Rload  
eff  
Figure 4. Maximum Power Derating  
load  
LOAD RMS  
©2007-2013 Exar Corporation  
14/17  
Rev 1G  
Data Sheet  
Driving Capacitive Loads  
3
2
6
G = 10  
Increased phase delay at the output due to capacitive  
loading can cause ringing, peaking in the frequency  
response, and possible unstable behavior. Use a series  
4
1
2
Output  
resistance, R , between the amplifier and the load to help  
S
0
0
improve stability and settling performance. Refer to Figure  
5.  
Input  
-1  
-2  
-3  
-2  
-4  
-6  
Input  
+
-
Rs  
Output  
CL  
RL  
Rf  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
Time (us)  
Rg  
Figure 6. Overdrive Recovery  
Figure 5. Addition of R for Driving Capacitive Loads  
S
Layout Considerations  
Table 1 provides the recommended R for various  
S
capacitive loads. The recommended R values result in  
<=1dB peaking in the frequency response. The Frequency  
S
General layout and supply bypassing play major roles in  
high frequency performance. has evaluation boards to  
use as a guide for high frequency layout and as an aid in  
device testing and characterization. Follow the steps below  
as a basis for high frequency layout:  
Response vs. C plots, on page 7, illustrates the response  
L
of the CLC1001.  
C (pF)  
L
R (Ω)  
S
-3dB BW (MHz)  
Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
10  
22  
43  
33  
20  
13  
4.3  
266  
228  
192  
155  
84  
Place the 6.8µF capacitor within 0.75 inches of the power pin  
47  
Place the 0.1µF capacitor within 0.1 inches of the power pin  
100  
470  
Remove the ground plane under and around the part,  
especially near the input and output pins to reduce  
parasitic capacitance  
Table 1: Recommended R vs. C  
S
L
Minimize all trace lengths to reduce series inductances  
For a given load capacitance, adjust R to optimize the  
S
Refer to the evaluation board layouts below for more  
information.  
tradeoff between settling time and bandwidth. In general,  
reducing R will increase bandwidth at the expense of  
S
additional overshoot and ringing.  
Evaluation Board Information  
Overdrive Recovery  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for  
the amplifier to return to its normal or linear operating  
point. The recovery time varies, based on whether the  
input or output is overdriven and by how much the range  
is exceeded. The CLC1001 will typically recover in less  
than 25ns from an overdrive condition. Figure 6 shows the  
CLC1001 in an overdriven condition.  
Evaluation Board #  
CEB002  
CEB003  
Products  
CLC1001 in SOT23-5  
CLC1001 in SOIC-8  
©2007-2013 Exar Corporation  
15/17  
Rev 1G  
Data Sheet  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in  
Figures 7-11. These evaluation boards are built for dual-  
supply operation. Follow these steps to use the board in a  
single-supply application:  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 9. CEB002 Bottom View  
Figure 10. CEB003 Top View  
Figure 11. CEB003 Bottom View  
Figure 7. CEB002/CEB003 Schematic  
Figure 8. CEB002 Top View  
©2007-2013 Exar Corporation  
16/17  
Rev 1G  
Data Sheet  
Mechanical Dimensions  
SOT23-6 Package  
SOIC-8 Package  
For Further Assistance:  
Exar Corporation Headquarters and Sales Offices  
48720 Kato Road  
Fremont, CA 94538 - USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
www.exar.com  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage  
has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
©2007-2013 Exar Corporation  
17/17  
Rev 1G  

相关型号:

CLC1001ISO8MTR

Operational Amplifier,
EXAR

CLC1001ISO8X

Ultra-Low Noise Amplifier
CADEKA

CLC1001ISO8X

Operational Amplifier,
EXAR

CLC1001IST6X

Ultra-Low Noise Amplifier
CADEKA

CLC1002

Ultra-Low Noise Amplifier
CADEKA

CLC1002ASO8

Ultra-Low Noise Amplifier
CADEKA

CLC1002ASO8X

Ultra-Low Noise Amplifier
CADEKA

CLC1002AST6X

Ultra-Low Noise Amplifier
CADEKA

CLC1002ISO8

Ultra-Low Noise Amplifier
CADEKA

CLC1002ISO8X

Ultra-Low Noise Amplifier
CADEKA

CLC1002ISO8X

IC OPAMP VFB 965MHZ 8SOIC
EXAR

CLC1002IST6MTR

IC AMP ULTRA LOW NOISE SOT23-6
EXAR