EUP8202 [EUTECH]

Switch Mode Li-Ion/Polymer Battery Charger; 开关模式锂离子/聚合物电池充电器
EUP8202
型号: EUP8202
厂家: EUTECH MICROELECTRONICS INC    EUTECH MICROELECTRONICS INC
描述:

Switch Mode Li-Ion/Polymer Battery Charger
开关模式锂离子/聚合物电池充电器

电池 开关
文件: 总21页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EUP8202-4.2/8.4  
Switch Mode Li-Ion/Polymer  
Battery Charger  
DESCRIPTION  
FEATURES  
z
Wide Input Supply Voltage Range:  
4.7V to 20V – 4.2 Version  
8.9V to 20V – 8.4 Version  
500kHz Switching Frequency  
End-of-Charge Current Detection Output  
3 Hour Charge Termination Timer  
The EUP8202 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWM step-down (buck) switching architecture. With a  
500kHz switching frequency, the EUP8202 provides a  
small, simple and efficient solution to fast charge one  
(4.2V) or two (8.4V) cell lithium-ion batteries.  
z
z
z
The EUP8202 charges the battery in three phases:  
conditioning, constant current, and constant voltage. An  
external sense resistor sets the charge current with ±10%  
accuracy. An internal resistor divider and precision  
reference set the final float voltage to 4.2V per cell with ±  
1% accuracy. An internal comparator detects the near  
end-of-charge condition while an internal timer sets the  
total charge time and terminates the charge cycle. The  
EUP8202 automatically re-starts the charge if the battery  
voltage falls below an internal threshold, 4.05V per cell.  
The EUP8202 also automatically enters sleep mode when  
DC supplies are removed.  
z ±1% Charge Voltage Accuracy  
z ±10% Charge Current Accuracy  
z
z
z
Low 10µA Reverse Battery Drain Current  
Automatic Battery Recharge  
Automatic Trickle Charging of Low Voltage  
Batteries  
z
Automatic Sleep Mode for Low Power  
Consumption  
Battery Temperature Sensing  
Stable with Ceramic Output Capacitor  
8-Lead SOP and 10-Lead TDFN Packages  
RoHS Compliant and 100% Lead (Pb)-Free  
z
z
z
z
The EUP8202 is available in the 8-lead SOP and 10-lead  
TDFN packages.  
APPLICATIONS  
z
z
z
Small Notebook Computer  
Portable DVD  
Handheld Instruments  
Typical Operating Performance  
Efficiency vs Input voltage  
Efficiency vs Input voltage  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
(Curves include input diode)  
(Curves include input diode)  
95  
90  
85  
80  
75  
70  
EUP8202-8.4  
EUP8202-4.2  
VBAT=3.8V  
VBAT=4.0V  
VBAT=7.0V  
VBAT=8.0V  
65  
60  
8
10  
12  
14  
16  
18  
20  
5
10  
15  
20  
Input Voltage (V)  
Input Voltage (V)  
DS8202 Ver 1.1 Nov.2007  
1
EUP8202-4.2/8.4  
Typical Application Circuit  
Figure 1. 2A Single/Dual Cells Li-Ion Battery Charger  
Figure 2. 1.5A Single/Dual Cells Li-Ion Battery Charger  
DS8202 Ver 1.1 Nov.2007  
2
EUP8202-4.2/8.4  
Block Diagram  
Figure 3.  
DS8202 Ver 1.1 Nov.2007  
3
EUP8202-4.2/8.4  
Pin Configurations  
Package Type  
Pin Configurations  
Package Type  
Pin Configurations  
TDFN-10  
SOP-8  
Pin Description  
PIN  
TDFN-10 SOP-8  
DESCRIPTION  
Compensation, Soft-Start and Shutdown Control Pin. Charging begins when the  
COMP pin reaches 850mV. The recommended compensation components are a  
2.2µF (or larger) capacitor and a 0.5k series resistor. A 100µA current into the  
compensation capacitor also sets the soft-start slew rate. Pulling the COMP pin  
below 280mV will shut down the charger.  
COMP  
1
1
VCC  
2
3
2
Positive Supply Voltage Input.  
Gate Drive Output. Driver Output for the external P-Channel MOSFET. The  
voltage at this pin is internally clamped to 8V below VCC, allowing a low  
voltage MOSFET with gate-to-source breakdown voltage of 8V or less to be  
used.  
3
GATE  
PGND  
SGND  
GND  
4
5
-
-
-
4
5
IC Ground.  
6
Charge Status Output.  
CHRG  
Battery Sense Input. A bypass capacitor of 22µF is required to minimize ripple  
voltage. When VBAT is within 250mV of VCC, the EUP8202 is forced into sleep  
mode, dropping ICC to 10µA.  
Current Amplifier Sense Input. A sense resistor, RSENSE, must be connected  
between the SENSE and BAT pins. The maximum charge current is equal to  
100mV/RSENSE.  
BAT  
7
8
6
7
SENSE  
NTC (Negative Temperature Coefficient) Thermistor Input. With an external  
10kNTC thermistor to ground, this pin senses the temperature of the battery  
pack and stops the charger when the temperature is out of range. To disable the  
temperature qualification function, ground the NTC pin.  
NTC  
NC  
9
8
-
10  
No Connect.  
DS8202 Ver 1.1 Nov.2007  
4
EUP8202-4.2/8.4  
Ordering Information  
Order Number  
Package Type  
Marking  
Operating Temperature range  
xxxxx  
P8202  
1N  
EUP8202-42JIR1  
EUP8202-84JIR1  
EUP8202-42DIR1  
EUP8202-84DIR1  
TDFN-10  
-40 °C to 85°C  
xxxxx  
P8202  
1P  
TDFN-10  
SOP-8  
-40 °C to 85°C  
-40 °C to 85°C  
-40 °C to 85°C  
xxxxx  
P8202  
1N  
xxxxx  
P8202  
1P  
SOP-8  
EUP8202- □□ □ □ □ □  
Lead Free Code  
1: Lead Free 0: Lead  
Packing  
R: Tape & Reel  
Operating temperature range  
I: Industry Standard  
Package Type  
J: TDFN  
D:SOP  
Output Voltage Option  
DS8202 Ver 1.1 Nov.2007  
5
EUP8202-4.2/8.4  
Absolute Maximum Ratings  
„ Supply Voltage (Vcc) -----------------------------------------------------------------------------------  
22V  
„ GATE ----------------------------------------------------------------------------------------- (Vcc-8V) to Vcc  
„ BAT, SENSE ------------------------------------------------------------------------------------- -0.3V to 14V  
„ CHRG ,NTC ----------------------------------------------------------------------------------------- -0.3V to 8V  
„ Operating Temperature Range ---------------------------------------------------------------- -40to 85℃  
„ Storage Temperature Range ------------------------------------------------------------------ -65to 125℃  
„ Lead Temperature (Soldering, 10sec) -------------------------------------------------------------------- 260℃  
Electrical Characteristics (TA = 25, VCC = 10V, unless otherwise noted.)  
EUP8202-4.2  
Min. Typ. Max.  
Symbol  
Parameter  
Conditions  
Unit  
DC Characteristics  
VCC  
VCC Supply Voltage  
4.7  
20  
5
V
Current Mode  
1.5  
1.5  
10  
mA  
mA  
µA  
V
ICC  
VCC Supply Current  
Shutdown Mode  
5
Sleep Mode  
20  
5VVCC 20V 0TA 85℃  
3VVBAT 4V 0TA 85℃  
VBAT = 1V  
VBAT(FLT) Battery Regulated Float Voltage  
VSNS(CHG) Constant Current Sense Voltage  
VSNS(TRKL) Trickle Current Sense Voltage  
4.158  
90  
4.2  
100  
15  
4.242  
110  
22  
mV  
mV  
8
Trickle Charge Threshold  
VTRKL  
VBAT = Rising  
2.75  
3.9  
2.9  
4.2  
3.05  
4.5  
V
V
Voltage  
VCC Undervoltage Lockout  
VUV  
VCC = Rising  
Threshold Voltage  
VCC Undervoltage Lockout  
VUV  
200  
280  
mV  
mV  
Hysteresis Voltage  
Manual shutdown Threshold  
VMSD  
COMP Pin Falling  
150  
450  
Voltage  
Automatic shutdown Threshold  
VASD  
VCC - VBAT  
250  
100  
mV  
µA  
Voltage  
ICOMP  
ICHRG  
COMP Pin Output Current  
VCOMP = 1.2V  
CHRG Pin Weak Pull-Down  
Current  
VCHRG = 1V  
15  
10  
25  
35  
50  
µA  
CHRG Pin Output Low  
VCHRG  
ICHRG = 1mA  
20  
25  
mV  
Voltage  
REOC  
End-of-Charge Ratio  
Charge time Accuracy  
VSNS(EOC) /VSNS(CHG)  
32  
10  
%
%
tTIMER  
0TA 50℃  
75  
70  
85  
85  
95  
µA  
µA  
mV  
mV  
V
INTC  
NTC Pin Output Current  
VNTC = 0.85V  
-40TA 85℃  
100  
380  
VNTC = Falling  
Hysteresis  
340  
360  
5
NTC Pin Thershold Voltage  
(Hot)  
VNTC-HOT  
VNTC = Rising  
Hysteresis  
2.35  
2.4  
100  
2.45  
NTC Pin Thershold Voltage  
(Cold)  
VNTC-COLD  
mV  
DS8202 Ver 1.1 Nov.2007  
6
EUP8202-4.2/8.4  
Electrical Characteristics (TA = 25, VCC = 10V, unless otherwise noted.)  
EUP8202-4.2  
Unit  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Recharge Battery Voltage Offset  
V
BAT(FULLCHARGD) –VRECHRG, VBAT  
VRECHRG from Full Charged Battery  
100  
150  
200  
1
mV  
µA  
Falling  
Voltage  
CHRG Pin Leakage Current  
ILEAK  
V
CHRG= 8V, Charging Stops  
Oscillator  
fOSC  
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
DC  
Gate Drive  
tr  
tf  
Rise Time  
Fall Time  
CGATE =2000pF, 10% to 90%  
20  
50  
ns  
ns  
CGATE =2000pF, 10% to 90%  
VCC -VGATE ,  
-40TA 85℃  
VGATE Output Clamp Voltage  
8
V
VCC9V  
VGATEHI Output High Voltage  
VGATELO Output Low Voltage  
VGATEHI= VCC -VGATE , VCC7V  
0.3  
V
V
VGATELO= VCC -VGATE , VCC7V  
4.5  
Electrical Characteristics (TA =25℃,VCC =12V,unlessotherwisenoted.)  
EUP8202-8.4  
Min. Typ. Max.  
Symbol  
Parameter  
Conditions  
Unit  
DC Characteristics  
VCC  
VCC Supply Voltage  
8.9  
20  
5
V
Current Mode  
1.5  
1.5  
10  
mA  
mA  
µA  
V
ICC  
VCC Supply Current  
Shutdown Mode  
5
Sleep Mode  
20  
9VVCC 20V 0TA 85℃  
6VVBAT 8V 0TA 85℃  
VBAT = 1V  
VBAT(FLT) Battery Regulated Float Voltage  
VSNS(CHG) Constant Current Sense Voltage  
VSNS(TRKL) Trickle Current Sense Voltage  
8.316  
90  
8.4  
100  
15  
8.484  
110  
22  
mV  
mV  
8
Trickle Charge Threshold  
VTRKL  
VBAT = Rising  
4.7  
5
5.3  
8.5  
V
V
Voltage  
VCC Undervoltage Lockout  
VUV  
V
CC = Rising  
7.5  
500  
280  
Threshold Voltage  
VCC Undervoltage Lockout  
VUV  
mV  
mV  
Hysteresis Voltage  
Manual shutdown Threshold  
VMSD  
COMP Pin Falling  
150  
15  
450  
35  
Voltage  
Automatic shutdown Threshold  
VASD  
VCC - VBAT  
250  
100  
mV  
µA  
Voltage  
ICOMP  
ICHRG  
COMP Pin Output Current  
VCOMP = 1.2V  
CHRG Pin Weak Pull-Down  
Current  
VCHRG = 1V  
25  
µA  
DS8202 Ver 1.1 Nov.2007  
7
EUP8202-4.2/8.4  
Electrical Characteristics (TA = 25, VCC = 12V, unless otherwise noted.)  
EUP8202-8.4  
Unit  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
CHRG Pin Output Low  
Voltage  
End-of-Charge Ratio  
VCHRG  
ICHRG = 1mA  
VSNS(EOC) /VSNS(CHG)  
20  
15  
50  
mV  
REOC  
5
25  
10  
%
%
tTIMER  
Charge time Accuracy  
0TA 50℃  
75  
70  
85  
85  
95  
µA  
µA  
mV  
mV  
V
INTC  
NTC Pin Output Current  
VNTC = 0.85V  
-40TA 85℃  
100  
380  
VNTC = Falling  
Hysteresis  
340  
360  
5
NTC Pin Thershold Voltage  
(Hot)  
VNTC-HOT  
VNTC = Rising  
Hysteresis  
2.35  
200  
2.4  
100  
2.45  
NTC Pin Thershold Voltage  
(Cold)  
VNTC-COLD  
mV  
Recharge Battery Voltage Offset  
V
BAT(FULLCHARGD) –VRECHRG, VBAT  
VRECHRG from Full Charged Battery  
300  
500  
400  
1
mV  
µA  
Falling  
Voltage  
CHRG Pin Leakage Current  
ILEAK  
VCHRG= 8V, Charging Stops  
Oscillator  
fOSC  
Switching Frequency  
Maximum Duty Cycle  
450  
550  
100  
kHz  
%
DC  
Gate Drive  
tr  
tf  
Rise Time  
Fall Time  
CGATE =2000pF, 10% to 90%  
20  
50  
ns  
ns  
CGATE =2000pF, 10% to 90%  
VCC-VGATE ,  
40TA 85℃  
VGATE Output Clamp Voltage  
8
V
VCC9V  
VGATEHI Output High Voltage  
VGATELO Output Low Voltage  
VGATEHI= VCC -VGATE , VCC7V  
0.3  
V
V
VGATELO= VCC -VGATE , VCC7V  
4.5  
DS8202 Ver 1.1 Nov.2007  
8
EUP8202-4.2/8.4  
Typical Operating Characteristics  
Oscillator Frequency vs Temperature  
Supply Current vs Vcc  
2.0  
(Current mode)  
540  
520  
500  
480  
460  
1.8  
1.6  
1.4  
1.2  
1.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
TEMPERATURE(°C)  
Vcc (V)  
Undervoltage Lockout Threshold vs Temperature  
Supply Current vs Temperature  
9
8
7
6
5
4
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
EUP8202-4.2  
EUP8202-8.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
Oscillator Frequency vs Vcc  
540  
520  
500  
480  
460  
5
10  
15  
20  
Vcc (V)  
DS8202 Ver 1.1 Nov.2007  
9
EUP8202-4.2/8.4  
Typical Operating Characteristics (continued)  
CHRG Pin Weak Pull-Down Current vs Vcc  
CHRG Pin Output Low Voltage vs Vcc  
28  
26  
24  
22  
30  
VCHRG=8V  
Iload=1mA  
25  
20  
15  
10  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
Recharge Voltage Offset from Full Charged  
Voltage vs Vcc  
CHRG Pin Output Low Voltage vs Temperature  
25  
20  
15  
10  
5
160  
155  
150  
145  
140  
Iload=1mA  
EUP8202-4.2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
Recharge Voltage Offset from Full Charged  
Voltage vs Vcc  
CHRG Pin Weak Pull-Down Current vs Temperature  
32  
30  
28  
26  
24  
22  
320  
VCHRG=8V  
EUP8202-8.4  
315  
310  
305  
300  
295  
290  
285  
280  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
DS8202 Ver 1.1 Nov.2007  
10  
EUP8202-4.2/8.4  
Typical Operating Characteristics (continued)  
COMP Pin Output Current vs Vcc  
Current Mode Sense Voltage vs Vcc  
104  
102  
100  
98  
102  
VCOMP=1.2V  
VBAT=4.0V  
EUP8202-4.2  
100  
98  
96  
96  
94  
94  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
COMP Pin Output Current vs Temperature  
Current Mode Sense Voltage vs Vcc  
120  
106  
104  
102  
100  
98  
VCOMP=1.2V  
VBAT=8V  
EUP8202-8.4  
118  
116  
114  
112  
110  
108  
106  
104  
102  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
TEMPERATURE(°C)  
Vcc (V)  
Current Mode Sense Voltage vs Temperature  
104  
103  
102  
101  
100  
99  
98  
97  
96  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
DS8202 Ver 1.1 Nov.2007  
11  
EUP8202-4.2/8.4  
Typical Operating Characteristics (continued)  
Trickle Charge Voltage vs Vcc  
Trickle Charge Voltage vs Temperature  
5.2  
5.1  
5.0  
4.9  
4.8  
3.00  
EUP8202-8.4  
EUP8202-4.2  
2.95  
2.90  
2.85  
2.80  
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Vcc (V)  
TEMPERATURE(°C)  
Trickle Charge Sense Voltage vs Temperature  
Trickle Charge Voltage vs Vcc  
20  
3.0  
2.9  
2.8  
VBAT=2.5V  
EUP8202-4.2  
EUP8202-4.2  
18  
16  
14  
12  
10  
8
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
TEMPERATURE(°C)  
Vcc (V)  
Trickle Charge Sense Voltage vs Vcc  
Trickle Charge Voltage vs Temperature  
25  
5.2  
VBAT=2.5V  
EUP8202-4.2V  
EUP8202-8.4  
20  
15  
10  
5
5.1  
5.0  
4.9  
4.8  
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Vcc (V)  
TEMPERATURE(°C)  
DS8202 Ver 1.1 Nov.2007  
12  
EUP8202-4.2/8.4  
Typical Operating Characteristics (continued)  
End-of-Charge Ratio vs Temperature  
Trickle Charge Sense Voltage vs Temperature  
22  
20  
18  
16  
14  
12  
20  
EUP8202-8.4  
VBAT=4V  
EUP8202-8.4  
18  
16  
14  
12  
10  
8
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
End-of-Charge Ratio vs Vcc  
Trickle Charge Sense Voltage vs Vcc  
25  
EUP8202-4.2  
VBAT=4V  
EUP8202-8.4V  
28  
20  
15  
10  
5
26  
24  
22  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
End-of-Charge Ratio vs Vcc  
End-of-Charge Ratio vs Temperature  
22  
20  
18  
16  
14  
30  
28  
26  
24  
22  
20  
EUP8202-8.4  
EUP8202-4.2  
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Vcc (V)  
TEMPERATURE(°C)  
DS8202 Ver 1.1 Nov.2007  
13  
EUP8202-4.2/8.4  
Typical Operating Characteristics (continued)  
NTC Pin Output Current vs Temperature  
NTC Pin Output Current vs Vcc  
94  
88  
86  
84  
VNTC=0V  
92  
VNTC=0V  
90  
88  
86  
84  
82  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
DS8202 Ver 1.1 Nov.2007  
14  
EUP8202-4.2/8.4  
Application Information  
Figure 4. Operational Flow Chart  
DS8202 Ver 1.1 Nov.2007  
15  
EUP8202-4.2/8.4  
OPERATION  
and the CHRG pin is forced high impedance. To restart  
the charge cycle, remove and reapply the input voltage or  
momentarily shut the charger down. Also, a new charge  
cycle will begin if the battery voltage drops below the  
recharge threshold voltage of 4.05V per cell.  
The EUP8202 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWM step-down (buck) switching architecture. The  
charge current is set by an external sense resistor (RSENSE  
across the SENSE and BAT pins. The final battery float  
voltage is internally set to 4.2V per cell. For batteries like  
lithium-ion that require accurate final float voltage, the  
internal 2.4V reference, voltage amplifier and the resistor  
divider provide regulation with ±1% accuracy.  
)
When the input voltage is present, the charger can be shut  
down (ICC =1.5mA) by pulling the COMP pin low. When  
the input voltage is not present, the charger goes into  
sleep mode, dropping ICC to 10µA. This will greatly  
reduce the current drain on the battery and increase the  
standby time.  
A
10kNTC (negative temperature coefficient)  
thermistor can be connected from the NTC pin to ground  
for battery temperature qualification. The charge cycle is  
suspended when the temperature is outside of the 0°C to  
50°C window.  
APPLICATIONS INFORMATION  
Undervoltage Lockout (UVLO)  
An undervoltage lockout circuit monitors the input  
voltage and keeps the charger off until VCC rises above  
the UVLO threshold (4.2V for the 4.2 version, 7.5V for  
the 8.4 version) and at least 250mV above the battery  
voltage. To prevent oscillation around the threshold  
voltage, the UVLO circuit has 200mV per cell of built-in  
hysteresis. When specifying minimum input voltage  
requirements, the voltage drop across the input blocking  
diode must be added to the minimum VCC supply voltage  
specification.  
Figure 5.Typical Charge Profile  
A charge cycle begins when the voltage at the VCC pin  
rises above the UVLO level and is 250mV or more  
greater than the battery voltage. At the beginning of the  
charge cycle, if the battery voltage is less than the trickle  
charge threshold, 2.9V for the 4.2 version and 5V for the  
8.4 version, the charger goes into trickle charge mode.  
The trickle charge current is internally set to 15% of the  
full-scale current. If the battery voltage stays low for 30  
minutes, the battery is considered faulty and the charge  
cycle is terminated.  
When the battery voltage exceeds the trickle charge  
threshold, the charger goes into the full-scale constant  
current charge mode. In constant current mode, the  
charge current is set by the external sense resistor RSENSE  
and an internal 100mV reference;  
Trickle Charge and Defective Battery Detection  
At the beginning of a charge cycle, if the battery voltage  
is below the trickle charge threshold, the charger goes  
into trickle charge mode with the charge current reduced  
to 15% of the full-scale current. If the low-battery  
voltage persists for 30 minutes, the battery is considered  
defective, the charge cycle is terminated and the  
pin is forced high impedance.  
CHRG  
V
15mV  
SNS(TRKL)  
I
=
=
TRKL  
R
R
SENSE  
SENSE  
V
100mV  
SNS(CHG)  
I
=
=
Shutdown  
CHG  
R
R
SENSE  
SENSE  
The EUP8202 can be shut down by pulling the COMP  
pin to ground which pulls the GATE pin high turning off  
the external P-channel MOSFET. When the COMP pin is  
released, the internal timer is reset and a new charge  
When the battery voltage approaches the programmed  
float voltage, the charge current will start to decrease.  
When the current drops to 25% (4.2 version) or 15% (8.4  
version) of the full-scale charge current, an internal  
comparator turns off the internal pull-down N-channel  
cycle starts. In shutdown, the output of the  
pin  
CHRG  
is high impedance and the quiescent current remains at  
1.5mA. Removing the input power supply will put the  
charger into sleep mode. If the voltage at the VCC pin  
drops below (VBAT + 250mV) or below the UVLO level,  
the EUP8202 goes into a low current (ICC = 10µA) sleep  
mode, reducing the battery drain current.  
MOSFET at the  
pin, and connects a weak  
CHRG  
current source to ground to indicate a near end-of-charge  
condition.  
An internal 3 hour timer determines the total charge time.  
After a time out occurs, the charge cycle is terminated  
DS8202 Ver 1.1 Nov.2007  
16  
EUP8202-4.2/8.4  
pin changes to a high impedance state and the 390k  
resistor will then pull the pin high to indicate charging  
has stopped.  
CHRG Status Output Pin  
When a charge cycle starts, the  
pin is pulled to  
CHRG  
ground by an internal N-channel MOSFET which is  
capable of driving an LED. When the charge current  
drops below the End-of-Charge threshold for more than  
120µs, the N-channel MOSFET turns off and a weak  
25µA current source to ground is connected to the  
Gate Drive  
The EUP8202gate driver can provide high transient  
currents to drive the external pass transistor. The rise and  
fall times are typically 20ns and 50ns respectively when  
driving a 2000pF load, which is typical for a P-channel  
MOSFET with RDS(ON) in the range of 50m.  
A voltage clamp is added to limit the gate drive to 8V  
below VCC. For example, if VCC is 10V then the GATE  
output will pull down to 2V max. This allows low  
voltage P-channel MOSFETs with superior RDS(ON) to be  
used as the pass transistor thus increasing efficiency.  
pin. This weak 25µA pull-down remains until  
CHRG  
the timer ends the charge cycle, or the charger is in  
manual shutdown or sleep mode.  
Table1:  
Status Pin Summary  
CHRG  
CHARGE STATE  
Pin  
CHRG  
Trickle Charge in Process  
Constant Current Charge in Process  
Constant Voltage Charge in Process  
Strong On  
Strong On  
Strong On  
Strong On  
(remains the  
same)  
Hi-Z  
Hi-Z  
Weak On  
Weak On  
Stability  
Both the current loop and the voltage loop share a  
common, high impedance, compensation node (COMP  
pin). A series capacitor and resistor on this pin  
compensates both loops. The resistor is included to  
provide a zero in the loop response and boost the phase  
margin. The compensation capacitor also provides a  
soft-start function for the charger. Upon start-up, then  
ramp at a rate set by the internal 100µA pullup current  
source and the external capacitor. Battery charge current  
starts ramping up when the COMP pin voltage reaches  
0.85V and full current is achieved with the COMP pin at  
1.3V. With a 2.2µF capacitor, time to reach full charge  
current is about 10ms. Capacitance can be increased if a  
longer start-up time is needed.  
Charge Suspend (Temperature)  
Timer Fault  
Sleep / Shutdown  
End of Charge  
Battery Disconnected  
After a time out occurs (charge cycle ends), the pin will  
become high impedance. By using two different value  
resistors, a microprocessor can detect three states from  
this pin (charging, end-of-charge and charging stopped)  
see Figure 6.  
Automatic Battery Recharge  
After the 3 hour charge cycle is completed and both the  
battery and the input power supply (wall adapter) are still  
connected, a new charge cycle will begin if the battery  
voltage drops below 4.05V per cell due to self-discharge  
or external loading. This will keep the battery capacity at  
more than 80% at all times without manually restarting  
the charge cycle.  
Battery Temperature Detection  
A negative temperature coefficient (NTC) thermistor  
located close to the battery pack can be used to monitor  
battery temperature and will not allow charging unless  
the battery temperature is within an acceptable range.  
Connect a 10kthermistor from the NTC pin to ground.  
If the temperature rises to 50°C, the resistance of the  
NTC will be approximately 4.2k. With the 85µA  
pull-up current source, the Hot temperature voltage  
threshold is 360mV. For Cold temperature, the voltage  
threshold is set at 2.4V which is equal to 0°C (RNTC  
28k) with 85µA of pull-up current. If the temperature is  
outside the window, the GATE pin will be pulled up to  
VCC and the timer frozen while the output status at the  
Figure 6. Microprocessor Interface  
To detect the charge mode, force the digital output pin,  
OUT, high and measure the voltage at the  
pin.  
CHRG  
The N-channel MOSFET will pull the pin low even with  
a 2k pull-up resistor. Once the charge current drops  
below the End-of-Charge threshold, the N-channel  
MOSFET is turned off and a 25µA current source is  
connected to the  
pin. The IN pin will then be  
CHRG  
pulled high by the 2k resistor connected to OUT. Now  
force the OUT pin into a high impedance state, the  
current source will pull the pin low through the 390k  
pin remains the same. The charge cycle begins  
CHRG  
resistor. When the internal timer has expired, the  
CHRG  
or resumes once the temperature is within the acceptable  
DS8202 Ver 1.1 Nov.2007  
17  
EUP8202-4.2/8.4  
range. Short the NTC pin to ground to disable the  
temperature qualification feature. However the user may  
modify these thresholds by adding two external resistor.  
See figure 8.  
for filtering and has the necessary RMS current rating.  
Switching ripple current splits between the battery and  
the output capacitor depending on the ESR of the output  
capacitor and the battery impedance. EMI considerations  
usually make it desirable to minimize ripple current in  
the battery leads. Ferrite beads or an inductor may be  
added to increase battery impedance at the 500kHz  
switching frequency. If the ESR of the output capacitor is  
0.2and the battery impedance is raised to 4with a  
bead or inductor, only 5% of the current ripple will flow  
in the battery.  
Design Example  
As a design example, take a charger with the following  
specifications:  
Figure 7. Temperature Sensing Configuration  
For single cell charge, VIN = 5V to 20V, VBAT = 4V  
nominal, IBAT =1.5A, fOSC = 500kHz, IEOC=0.375A, see  
Figure 2.  
First, calculate the SENSE resistor :  
100mV  
R
=
= 68m  
SENSE  
1.5A  
Choose the inductor for about 65% ripple current at the  
maximum VIN:  
4V  
500kHz)(0.65)(1.5A  
4V  
20V  
L =  
1 −  
= 6.56µH  
Figure 8. Temperature Sensing Thresholds  
Input and Output Capacitors  
(
)
Selecting a standard value of 6.8µH results in a  
maximum ripple current of :  
Since the input capacitor is assumed to absorb all input  
switching ripple current in the converter, it must have an  
adequate ripple current rating. Worst-case RMS ripple  
current is approximately one-half of output charge  
current. Actual capacitance value is not critical. Solid  
tantalum capacitors have a high ripple current rating in a  
relatively small surface mount package, but caution must  
be used when tantalum capacitors are used for input  
bypass. High input surge currents can be created when  
the adapter is hot-plugged to the charger and solid  
tantalum capacitors have a known failure mechanism  
when subjected to very high turn-on surge currents.  
Selecting the highest possible voltage rating on the  
capacitor will minimize problems. Consult with the  
manufacturer before use.  
4V  
4V  
20V  
I  
=
1 −  
= 941.2mA  
L
(
500kHz)(6.8µH  
)
I  
941.2mA  
2
L
ILPK = I  
+
= 1.5A +  
1.975A  
CHG  
2
Next, choose the P-channel MOSFET. For example, a  
TSSOP-8 package with RDS(ON) = 42m(nom), 55mΩ  
(max) offers a small solution. The maximum power  
dissipation with VIN = 5V and VBAT = 4V at 50℃  
ambient temperature is:  
2
(
1.5A) (55m)(4V  
)
The selection of output capacitor COUT is primarily  
determined by the ESR required to minimize ripple  
voltage and load step transients. The output ripple VOUT  
is approximately bounded by:  
P
=
= 0.099W  
D
5V  
TJ = 50+ (0.099W)(65/W) = 56.5℃  
C
IN is chosen for an RMS current rating of about 0.8A at  
85. The output capacitor is chosen for an ESR similar  
to the battery impedance of about 100mThe ripple  
voltage on the BAT pin is:  
1
V I ESR +  
OUT  
L
8f  
C
OSC  
OUT  
Since IL increases with input voltage, the output ripple  
is highest at maximum input voltage. Typically, once the  
ESR requirement is satisfied, the capacitance is adequate  
DS8202 Ver 1.1 Nov.2007  
18  
EUP8202-4.2/8.4  
Board Layout Suggestions  
I  
(
ESR  
)
)
When laying out the printed circuit board, the following  
considerations should be taken to ensure proper operation  
of the EUP8202.  
L
(
max  
2
V
=
=
OUT(RIPPLE)  
GATE pin rise and fall times are 20ns and 50ns  
respectively (with CGATE = 2000pF). To minimize  
radiation, the catch diode, pass transistor and the input  
bypass capacitor traces should be kept as short as  
possible. The positive side of the input capacitor should  
be close to the source of the P-channel MOSFET; it  
provides the AC current to the pass transistor. The  
connection between the catch diode and the pass  
transistor should also be kept as short as possible. The  
SENSE and BAT pins should be connected directly to the  
sense resistor (Kelvin sensing) for best charge current  
accuracy. Avoid routing the NTC PC board trace near the  
MOSFET switch to minimize coupling switching noise  
into the NTC pin.  
(0.94A)(0.1)  
= 47mV  
2
For dual cells charge,  
VIN = 5V to 20V, VBAT = 8V nominal, IBAT =3A,  
fOSC = 500kHz, IEOC=0.45A,  
100mV  
R
=
= 33m  
SENSE  
3A  
Choose the inductor for about 50% ripple current at the  
maximum VIN:  
8V  
500kHz)(0.5)(3A  
8V  
20V  
L =  
1 −  
= 6.4µH  
(
)
The compensation capacitor connected at the COMP pin  
should return to the ground pin of the IC or as close to it  
as possible. This will prevent ground noise from  
disrupting the loop stability. The ground pin also works  
as a heat sink, therefore use a generous amount of copper  
around the ground pin. This is especially important for  
high VCC and/or high gate capacitance applications.  
Selecting a standard value of 6.8µH results in a  
maximum ripple current of :  
8V  
8V  
20V  
I  
=
1 −  
= 1.441A  
L
(
500kHz)(6.8µH  
)
I  
1.441A  
2
L
ILPK = I  
+
= 3A +  
3.720A  
CHG  
2
The maximum power dissipation with VIN = 9V and VBAT  
= 8V at 50ambient temperature is:  
2
(
3A) (55m)(8V  
)
P
=
= 0.44W  
D
9V  
TJ = 50+ (0.44W)(65/W) = 78.6℃  
I  
(
ESR)  
)
L
(
max  
2
V
=
=
OUT(RIPPLE)  
1.441A
)(
0.1Ω  
( )  
= 72mV  
2
The Schottky diode D2 shown in Figure 2 conducts  
current when the pass transistor is off. In a low duty  
cycle case, the current rating should be the same or  
higher than the charge current. Also it should withstand  
reverse voltage as high as VIN.  
DS8202 Ver 1.1 Nov.2007  
19  
EUP8202-4.2/8.4  
Packaging Information  
TDFN-10  
MILLIMETERS  
INCHES  
SYMBOLS  
MIN.  
0.70  
0.00  
2.90  
MAX.  
0.80  
0.05  
3.10  
MIN.  
MAX.  
0.031  
0.002  
0.122  
A
A1  
D
0.028  
0.000  
0.114  
E1  
1.70  
0.067  
E
L
b
2.90  
0.30  
0.18  
3.10  
0.50  
0.30  
0.114  
0.012  
0.007  
0.122  
0.020  
0.012  
e
D1  
0.50  
2.40  
0.020  
0.094  
DS8202 Ver 1.1 Nov.2007  
20  
EUP8202-4.2/8.4  
SOP-8  
MILLIMETERS  
INCHES  
MIN.  
0.053  
0.004  
SYMBOLS  
MIN.  
1.35  
0.10  
MAX.  
1.75  
0.25  
MAX.  
0.069  
0.010  
A
A1  
D
E
E1  
L
4.90  
3.90  
0.193  
0.153  
5.80  
6.20  
0.228  
0.244  
0.40  
0.31  
1.27  
0.51  
0.016  
0.012  
0.050  
0.020  
b
e
1.27  
0.050  
DS8202 Ver 1.1 Nov.2007  
21  

相关型号:

EUP8202-42DIR1

Switch Mode Li-Ion/Polymer Battery Charger
EUTECH

EUP8202-42JIR1

Switch Mode Li-Ion/Polymer Battery Charger
EUTECH

EUP8202-84DIR1

Switch Mode Li-Ion/Polymer Battery Charger
EUTECH

EUP8202-84JIR1

Switch Mode Li-Ion/Polymer Battery Charger
EUTECH

EUP8207-4.2

Switch Mode Li-Ion/Polymer Battery Charger
EUTECH

EUP9232

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232AAQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232ABQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232ACQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232ADQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232AEQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH

EUP9232AFQIR1

LI-ION/POLYMER TWO CELL PROTECTOR
EUTECH