EM636165VE-6 [ETRON]

1Mega x 16 Synchronous DRAM (SDRAM); 1Mega ×16同步DRAM (SDRAM)的
EM636165VE-6
型号: EM636165VE-6
厂家: ETRON TECHNOLOGY, INC.    ETRON TECHNOLOGY, INC.
描述:

1Mega x 16 Synchronous DRAM (SDRAM)
1Mega ×16同步DRAM (SDRAM)的

动态存储器
文件: 总74页 (文件大小:767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Et r on Tech  
EM636165  
1Mega x 16 Synchronous DRAM (SDRAM)  
Preliminary (Rev. 1.8, 11/2001)  
Features  
Key Specifications  
Fast access time: 4.5/5/5/5.5/6.5/7.5 ns  
Fast clock rate: 200/183/166/143/125/100 MHz  
Self refresh mode: standard and low power  
Fully synchronous operation  
Internal pipelined architecture  
512K x 16 bit x 2-bank  
EM636165  
-5/55/6/7/7L/8/10  
5/5.5/6/7/7/8/10 ns  
tCK3 Clock Cycle time(min.)  
tRAS Row Active time(max.)  
tAC3 Access time from CLK(max.)  
tRC Row Cycle time(min.)  
30/32/36/42/42/48/60 ns  
4.5/5/5/5.5/5.5/6.5/7.5 ns  
48/48/54/63/63/72/90 ns  
Programmable Mode registers  
- CAS# Latency: 1, 2, or 3  
Ordering Information  
- Burst Length: 1, 2, 4, 8, or full page  
- Burst Type: interleaved or linear burst  
- Burst stop function  
Individual byte controlled by LDQM and UDQM  
Auto Refresh and Self Refresh  
4096 refresh cycles/64ms  
1. Operating temperature : 0~70°C  
Part Number  
Frequency  
200MHz  
183MHz  
166MHz  
143MHz  
143MHz  
125MHz  
100MHz  
Package  
EM636165TS/VE-5  
EM636165TS/VE-55  
EM636165TS/VE -6  
EM636165TS/VE -7  
EM636165TS/VE-7L  
EM636165TS/VE -8  
EM636165TS/VE -10  
TSOP II ,VFBGA  
TSOP II ,VFBGA  
TSOP II ,VFBGA  
TSOP II ,VFBGA  
TSOP II,VFBGA  
TSOP II,VFBGA  
TSOP II,VFBGA  
CKE power down mode  
Single +3.3V 0.3V power supply  
±
Interface: LVTTL  
50-pin 400 mil plastic TSOP II package  
60-Ball, 6.4 mm x 10.1 mm VFBGA package  
(Max total package height=1.0 mm)  
2. Industrial Operating temperature : -40~85°C  
Part Number  
Frequency  
Package  
EM636165TS/VE -10I  
100MHz  
TSOP II,VFBGA  
Pin Assignment (Top View)  
5 0  
4 9  
4 8  
4 7  
4 6  
4 5  
4 4  
4 3  
4 2  
4 1  
4 0  
3 9  
3 8  
3 7  
3 6  
3 5  
3 4  
3 3  
3 2  
3 1  
3 0  
2 9  
2 8  
2 7  
2 6  
VDD  
DQ 0  
DQ 1  
VSSQ  
DQ 2  
DQ 3  
VDDQ  
DQ 4  
DQ 5  
VSSQ  
DQ 6  
DQ 7  
VDDQ  
LD QM  
WE#  
CA S#  
RA S#  
CS #  
A11  
A10  
A 0  
1
2
3
4
5
6
7
8
Vss  
1
2
3
4
5
6
7
DQ15  
DQ14  
VSSQ  
DQ13  
DQ12  
VDDQ  
DQ11  
DQ10  
VSSQ  
DQ 9  
DQ 8  
VDDQ  
NC  
UD QM  
CL K  
CKE  
NC  
A 9  
A 8  
D Q 0  
A
B
C
D
E
F
V D D  
D Q 1  
D Q 2  
D Q 3  
D Q 5  
D Q 6  
D Q 7  
V S S  
D Q 1 5  
D Q 14  
D Q 13  
D Q 12  
D Q 10  
D Q 9  
V D D Q  
V S S Q  
D Q 4  
V S S Q  
V D D Q  
D Q 1 1  
V S S Q  
V D D Q  
9
V D D Q  
V S S Q  
N C  
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
G
H
J
D Q 8  
N C  
N C  
N C  
N C  
N C  
N C  
N C  
L D Q M  
U D Q M  
W E #  
K
L
R A S #  
N C  
N C  
A 0  
C L K  
N C  
A 9  
C A S #  
C S #  
N C  
C K E  
A 11  
A 8  
M
N
A 7  
A 6  
A 5  
A 4  
A 10  
A 7  
A 5  
A 4  
A 1  
A 2  
A 3  
VDD  
P
R
A 2  
A 1  
A 6  
A 3  
V D D  
V S S  
Vss  
Etron Technology, Inc.  
No. 6, Technology Road V, Science-Based Industrial Park, Hsinchu, Taiwan 30077, R.O.C.  
TEL: (886)-3-5782345 FAX: (886)-3-5778671  
Etron Technology, Inc., reserves the right to make changes to its products and specifications without notice.  
Et r on Tech  
Overview  
EM636165  
1M x 16 SDRAM  
The EM636165 SDRAM is a high-speed CMOS synchronous DRAM containing 16 Mbits. It is internally configured  
as a dual 512K x 16 bit DRAM with a synchronous interface (all signals are registered on the positive edge of the clock  
signal, CLK). Each of the 512K x 16 bit bank is organized as 2048 rows by 256 columns by 16 bits. Read and write  
accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number  
of locations in a programmed sequence.  
The EM636165 provides for programmable Read or Write burst lengths of 1, 2, 4, 8, or full page, with a burst  
termination option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at  
the end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use. By having a  
programmable mode register, the system can choose the most suitable modes to maximize its performance. These  
devices are well suited for applications requiring high memory bandwidth and particularly well suited to high performance  
PC applications.  
Block Diagram  
CLK  
CKE  
CLOCK  
BUFFER  
Column Decoder  
2048 X 256 X 16  
CELL ARRAY  
(BANK #0)  
CS#  
CONTROL  
SIGNAL  
GENERATOR  
RAS#  
CAS#  
WE#  
LDQM  
UDQM  
COMMAND  
DECODER  
Sense Amplifier  
COLUMN  
COUNTER  
DQ0  
DQs Buffer  
DQ15  
MODE  
REGISTER  
A0  
ADDRESS  
BUFFER  
A11  
Sense Amplifier  
REFRESH  
COUNTER  
2048 X 256 X 16  
CELL ARRAY  
(BANK #1)  
Column Decoder  
Preliminary  
2
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Pin Descriptions  
Table 1. Pin Details of EM636165  
Description  
Symbol  
Type  
CLK  
Input  
Clock: CLK is driven by the system clock. All SDRAM input signals are sampled  
on the positive edge of CLK. CLK also increments the internal burst counter and  
controls the output registers.  
CKE  
Input  
Clock Enable: CKE activates(HIGH) and deactivates(LOW) the CLK signal. If  
CKE goes low synchronously with clock(set-up and hold time same as other  
inputs), the internal clock is suspended from the next clock cycle and the state of  
output and burst address is frozen as long as the CKE remains low. When both  
banks are in the idle state, deactivating the clock controls the entry to the Power  
Down and Self Refresh modes. CKE is synchronous except after the device  
enters Power Down and Self Refresh modes, where CKE becomes  
asynchronous until exiting the same mode. The input buffers, including CLK, are  
disabled during Power Down and Self Refresh modes, providing low standby  
power.  
A11  
Input  
Input  
Bank Select: A11(BS) defines to which bank the BankActivate, Read, Write, or  
BankPrecharge command is being applied.  
A0-A10  
Address Inputs: A0-A10 are sampled during the BankActivate command (row  
address A0-A10) and Read/Write command (column address A0-A7 with A10  
defining Auto Precharge) to select one location out of the 256K available in the  
respective bank. During a Precharge command, A10 is sampled to determine if  
both banks are to be precharged (A10 = HIGH). The address inputs also provide  
the op-code during a Mode Register Set command.  
CS#  
Input  
Input  
Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the  
command decoder. All commands are masked when CS# is sampled HIGH.  
CS# provides for external bank selection on systems with multiple banks. It is  
considered part of the command code.  
RAS#  
Row Address Strobe: The RAS# signal defines the operation commands in  
conjunction with the CAS# and WE# signals and is latched at the positive edges  
of CLK. When RAS# and CS# are asserted "LOW" and CAS# is asserted  
"HIGH," either the BankActivate command or the Precharge command is  
selected by the WE# signal. When the WE# is asserted "HIGH," the  
BankActivate command is selected and the bank designated by BS is turned on  
to the active state. When the WE# is asserted "LOW," the Precharge command  
is selected and the bank designated by BS is switched to the idle state after the  
precharge operation.  
CAS#  
WE#  
Input  
Column Address Strobe: The CAS# signal defines the operation commands in  
conjunction with the RAS# and WE# signals and is latched at the positive edges  
of CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column  
access is started by asserting CAS# "LOW." Then, the Read or Write command  
is selected by asserting WE# "LOW" or "HIGH."  
Input  
Input  
Write Enable: The WE# signal defines the operation commands in conjunction  
with the RAS# and CAS# signals and is latched at the positive edges of CLK.  
The WE# input is used to select the BankActivate or Precharge command and  
Read or Write command.  
LDQM,  
UDQM  
Data Input/Output Mask: LDQM and UDQM are byte specific, nonpersistent  
I/O buffer controls. The I/O buffers are placed in a high-z state when  
LDQM/UDQM is sampled HIGH. Input data is masked when LDQM/UDQM is  
sampled HIGH during a write cycle. Output data is masked (two-clock latency)  
when LDQM/UDQM is sampled HIGH during a read cycle. UDQM masks DQ15-  
DQ8, and LDQM masks DQ7-DQ0.  
Preliminary  
3
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
Data I/O: The DQ0-15 input and output data are synchronized with the positive  
1M x 16 SDRAM  
DQ0-DQ15 Input/Output  
edges of CLK. The I/Os are byte-maskable during Reads and Writes.  
NC  
-
No Connect: These pins should be left unconnected.  
VDDQ  
Supply  
DQ Power: Provide isolated power to DQs for improved noise immunity.  
( 3.3V 0.3V )  
±
VSSQ  
Supply  
DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
( 0 V )  
VDD  
VSS  
Supply  
Supply  
Power Supply: +3.3V 0.3V  
±
Ground  
Preliminary  
4
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Operation Mode  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 2 shows the truth table for the operation commands.  
Table 2. Truth Table (Note (1), (2) )  
Command  
State CKEn-1 CKEn DQM(6) A11 A10 A0-9 CS# RAS# CAS# WE#  
Idle(3)  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
V
X
X
X
X
X
X
V
L
V
X
X
V
V
V
V
V
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
X
H
L
X
H
L
X
X
L
L
H
H
H
L
H
L
BankActivate  
BankPrecharge  
PrechargeAll  
Any  
Any  
H
L
L
L
Active(3)  
Active(3)  
Active(3)  
Active(3)  
Idle  
H
H
H
H
L
L
Write  
Write and AutoPrecharge  
Read  
H
L
L
L
L
H
H
L
Read and Autoprecharge  
Mode Register Set  
No-Operation  
H
V
X
X
X
X
X
X
L
L
Any  
H
H
X
L
H
H
X
L
H
L
Active(4)  
Burst Stop  
Device Deselect  
AutoRefresh  
Any  
X
H
H
X
H
X
X
H
X
X
H
X
X
Idle  
SelfRefresh Entry  
SelfRefresh Exit  
Idle  
L
L
Idle  
H
X
H
X
X
H
X
X
H
X
X
X
H
X
X
H
X
X
H
X
X
(SelfRefresh)  
Clock Suspend Mode Entry  
Power Down Mode Entry  
Active  
Any(5)  
H
H
L
L
X
X
X
X
X
X
X
X
Clock Suspend Mode Exit  
Power Down Mode Exit  
Active  
L
L
H
H
X
X
X
X
X
X
X
X
Any  
(PowerDown)  
Data Write/Output Enable  
Data Mask/Output Disable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
H
Note: 1. V=Valid X=Don't Care L=Low level H=High level  
2. CKEn signal is input level when commands are provided.  
CKEn-1 signal is input level one clock cycle before the commands are provided.  
3. These are states of bank designated by BS signal.  
4. Device state is 1, 2, 4, 8, and full page burst operation.  
5. Power Down Mode can not enter in the burst operation.  
When this command is asserted in the burst cycle, device state is clock suspend mode.  
6. LDQM and UDQM  
Preliminary  
5
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Commands  
1
BankPrecharge command  
(RAS# = "L", CAS# = "H", WE# = "L", A11 = “V”, A10 = "L", A0-A9 = Don't care)  
The BankPrecharge command precharges the bank disignated by A11 signal. The precharged  
bank is switched from the active state to the idle state. This command can be asserted anytime after  
tRAS(min.) is satisfied from the BankActivate command in the desired bank. The maximum time any  
bank can be active is specified by tRAS(max.). Therefore, the precharge function must be performed  
in any active bank within tRAS(max.). At the end of precharge, the precharged bank is still in the idle  
state and is ready to be activated again.  
2
3
PrechargeAll command  
(RAS# = "L", CAS# = "H", WE# = "L", A11 = Don't care, A10 = "H", A0-A9 = Don't care)  
The PrechargeAll command precharges both banks simultaneously and can be issued even if  
both banks are not in the active state. Both banks are then switched to the idle state.  
Read command  
(RAS# = "H", CAS# = "L", WE# = "H", A11= “V”, A9 = "L", A0-A7 = Column Address)  
The Read command is used to read a burst of data on consecutive clock cycles from an active  
row in an active bank. The bank must be active for at least tRCD(min.) before the Read command is  
issued. During read bursts, the valid data-out element from the starting column address will be  
available following the CAS# latency after the issue of the Read command. Each subsequent data-  
out element will be valid by the next positive clock edge (refer to the following figure). The DQs go  
into high-impedance at the end of the burst unless other command is initiated. The burst length,  
burst sequence, and CAS# latency are determined by the mode register, which is already  
programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to  
column 0 and continue).  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
COMMAND  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS# latency=1  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
t
, DQ's  
0
1
2
1
0
CK1  
CAS# latency=2  
, DQ's  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
2
1
t
CK2  
CAS# latency=3  
, DQ's  
DOUT A  
DOUT A  
t
2
3
CK3  
Burst Read Operation  
(Burst Length = 4, CAS# Latency = 1, 2, 3)  
Preliminary  
6
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
The read data appears on the DQs subject to the values on the LDQM/UDQM inputs two clocks  
earlier (i.e. LDQM/UDQM latency is two clocks for output buffers). A read burst without the auto  
precharge function may be interrupted by a subsequent Read or Write command to the same bank  
or the other active bank before the end of the burst length. It may be interrupted by a  
BankPrecharge/ PrechargeAll command to the same bank too. The interrupt coming from the Read  
command can occur on any clock cycle following a previous Read command (refer to the following  
figure).  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
COMMAND  
READ B  
DOUTA  
NOP  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS# latency=1  
DOUTB  
DOUTB  
DOUT B  
DOUT B  
2
0
1
3
0
t
, DQ's  
CK1  
CAS# latency=2  
, DQ's  
DOUTA  
DOUTB  
DOUTB  
DOUT B  
DOUT B  
0
0
1
2
3
t
CK2  
CAS# latency=3  
, DQ's  
DOUTA  
0
DOUTB  
DOUTB  
1
DOUT B  
DOUTB  
0
3
t
2
CK3  
Read Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 1, 2, 3)  
The LDQM/UDQM inputs are used to avoid I/O contention on the DQ pins when the interrupt  
comes from a Write command. The LDQM/UDQM must be asserted (HIGH) at least two clocks prior  
to the Write command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/O  
contention, a single cycle with high-impedance on the DQ pins must occur between the last read  
data and the Write command (refer to the following three figures). If the data output of the burst read  
occurs at the second clock of the burst write, the LDQM/UDQM must be asserted (HIGH) at least  
one clock prior to the Write command to avoid internal bus contention.  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
READ A  
NOP  
NOP  
NOP  
NOP  
WRITE B  
NOP  
NOP  
DINB  
NOP  
COMMAND  
DQ's  
DINB  
DINB  
0
DOUT A  
1
2
0
Must be Hi-Z before  
the Write Command  
: "H" or "L"  
Read to Write Interval  
(Burst Length 4, CAS# Latency = 3)  
Preliminary  
7
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
1 Clk Interval  
DQM  
BANKA  
ACTIVATE  
COMMAND  
NOP  
READ A  
NOP  
NOP  
WRITE A  
NOP  
NOP  
NOP  
CAS# latency=1  
DIN A  
0
DIN A  
DIN A  
DIN A  
3
t
, DQ's  
1
2
CK1  
Must beHi-Z before  
the Write Command  
CAS# latency=2  
DIN A  
0
DIN A  
DIN A  
DIN A  
3
t
, DQ's  
1
2
CK2  
: "H" or "L"  
Read to Write Interval  
(Burst Length 4, CAS# Latency = 1, 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
COMMAND  
NOP  
NOP  
NOP  
WRITE B  
DIN B  
NOP  
NOP  
NOP  
NOP  
READ A  
CAS# latency=1  
DOUT A  
DIN B  
DIN B  
DIN B  
DIN B  
0
0
1
2
3
3
t
, DQ's  
CK1  
Must be Hi-Z before  
the Write Command  
CAS# latency=2  
, DQ's  
DIN B  
DIN B  
1
DIN B  
t
0
2
CK2  
: "H" or "L"  
Read to Write Interval  
(Burst Length 4, CAS# Latency = 1, 2)  
A read burst without the auto precharge function may be interrupted by a BankPrecharge/  
PrechargeAll command to the same bank. The following figure shows the optimum time that  
BankPrecharge/ PrechargeAll command is issued in different CAS# latency.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Bank,  
Col A  
Bank,  
Row  
ADDRESS  
Bank(s)  
tRP  
COMMAND  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge  
NOP  
Activate  
CAS# latency=1  
DOUT A  
DOUT A  
2
DOUT A  
DOUT A  
0
1
3
t
, DQ's  
CK1  
CAS# latency=2  
, DQ's  
DOUT A  
DOUT A  
2
DOUT A  
DOUT A  
0
1
3
t
CK2  
CAS# latency=3  
, DQ's  
DOUT A  
DOUT A  
2
DOUT A  
DOUT A  
0
1
3
t
CK3  
Read to Precharge  
(CAS# Latency = 1, 2, 3)  
Preliminary  
8
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
4
Read and AutoPrecharge command  
(RAS# = "H", CAS# = "L", WE# = "H", A11 = V, A10 = "H", A0-A7 = Column Address)  
The Read and AutoPrecharge command automatically performs the precharge operation after  
the read operation. Once this command is given, any subsequent command cannot occur within a  
time delay of tRP(min.) + burst length . At full-page burst, only the read operation is performed in this  
{
}
command and the auto precharge function is ignored.  
5
Write command  
(RAS# = "H", CAS# = "L", WE# = "L", A11 = V, A10 = "L", A0-A7 = Column Address)  
The Write command is used to write a burst of data on consecutive clock cycles from an active  
row in an active bank. The bank must be active for at least tRCD(min.) before the Write command is  
issued. During write bursts, the first valid data-in element will be registered coincident with the Write  
command. Subsequent data elements will be registered on each successive positive clock edge  
(refer to the following figure). The DQs remain with high-impedance at the end of the burst unless  
another command is initiated. The burst length and burst sequence are determined by the mode  
register, which is already programmed. A full-page burst will continue until terminated (at the end of  
the page it will wrap to column 0 and continue).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
COMMAND  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
DIN  
A
DIN A  
DIN  
A
DIN A  
3
don't care  
DQ0 - DQ3  
0
1
2
The first data element and the write  
are registeredon the same clock edge.  
Extra data is masked.  
Burst Write Operation  
(Burst Length = 4, CAS# Latency = 1, 2, 3)  
A write burst without the auto precharge function may be interrupted by a subsequent Write,  
BankPrecharge/PrechargeAll, or Read command before the end of the burst length. An interrupt  
coming from Write command can occur on any clock cycle following the previous Write command  
(refer to the following figure).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
COMMAND  
NOP  
WRITE A  
WRITE B  
NOP  
NOP  
NOP  
1 Clk Interval  
DIN DIN B  
A
DIN B  
DIN B  
DIN B  
3
DQ's  
0
0
1
2
Write Interrupted by a Write  
(Burst Length = 4, CAS# Latency = 1, 2, 3)  
Preliminary  
9
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
The Read command that interrupts a write burst without auto precharge function should be  
issued one cycle after the clock edge in which the last data-in element is registered. In order to avoid  
data contention, input data must be removed from the DQs at least one clock cycle before the first  
read data appears on the outputs (refer to the following figure). Once the Read command is  
registered, the data inputs will be ignored and writes will not be executed.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
COMMAND  
NOP  
WRITE A  
READ B  
NOP  
NOP  
NOP  
CAS# latency=1  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DIN A  
0
2
3
0
1
t
, DQ's  
CK1  
CAS# latency=2  
, DQ's  
DOUT B  
DOUT B  
DIN A  
0
DOUT B  
DOUT B  
1
don't care  
don't care  
2
3
0
t
CK2  
CAS# latency=3  
, DQ's  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
3
DIN A  
0
don't care  
t
0
1
2
CK3  
Input data must be removed from the DQ's at least one clock  
cycle before the Read data appears on the outputs to avoid  
data contention.  
Input data for the write is masked.  
Write Interrupted by a Read  
(Burst Length = 4, CAS# Latency = 1, 2, 3)  
The BankPrecharge/PrechargeAll command that interrupts a write burst without the auto  
precharge function should be issued m cycles after the clock edge in which the last data-in element  
is registered, where m equals tWR/tCK rounded up to the next whole number. In addition, the  
LDQM/UDQM signals must be used to mask input data, starting with the clock edge following the  
last data-in element and ending with the clock edge on which the BankPrecharge/PrechargeAll  
command is entered (refer to the following figure).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
DQM  
t
RP  
COMMAND  
WRITE  
Precharge  
BANK (S)  
NOP  
NOP  
Activate  
ROW  
NOP  
NOP  
BANK  
COL n  
ADDRESS  
DQ  
t
WR  
DIN  
n
DIN  
n + 1  
: don't care  
Note: The LDQM/UDQM can remain low in this example if the length of the write burst is 1 or 2.  
Write to Precharge  
Preliminary  
10  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
6
Write and AutoPrecharge command (refer to the following figure)  
(RAS# = "H", CAS# = "L", WE# = "L", A11 = V, A10 = "H", A0-A7 = Column Address)  
The Write and AutoPrecharge command performs the precharge operation automatically after  
the write operation. Once this command is given, any subsequent command can not occur within a  
time delay of (burst length -1) + tWR + tRP(min.) . At full-page burst, only the write operation is  
{
}
performed in this command and the auto precharge function is ignored.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Bank A  
Activate  
Write A  
COMMAND  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AutoPrecharge  
DAL  
t
CAS# latency=1  
DIN  
DIN  
DIN  
A
A
A
DIN A  
DIN A  
DIN A  
0
0
0
1
1
1
*
*
*
t
, DQ's  
CK1  
DAL  
t
CAS# latency=2  
, DQ's  
t
CK2  
DAL  
t
CAS# latency=3  
, DQ's  
t
CK3  
Begin AutoPrecharge  
Bank can be reactivated at completion of DAL  
DAL= WR + RP  
t
t
t
*
t
Burst Write with Auto-Precharge  
(Burst Length = 2, CAS# Latency = 1, 2, 3)  
7
Mode Register Set command  
(RAS# = "L", CAS# = "L", WE# = "L", A11 = V, A10 = V, A0-A9 = Register Data)  
The mode register stores the data for controlling the various operating modes of SDRAM. The  
Mode Register Set command programs the values of CAS# latency, Addressing Mode and Burst  
Length in the Mode register to make SDRAM useful for a variety of different applications. The default  
values of the Mode Register after power-up are undefined; therefore this command must be issued  
at the power-up sequence. The state of pins A0~A9 and A11 in the same cycle is the data written to  
the mode register. One clock cycle is required to complete the write in the mode register (refer to the  
following figure). The contents of the mode register can be changed using the same command and  
the clock cycle requirements during operation as long as both banks are in the idle state.  
Preliminary  
11  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK  
t
CK2  
CKE  
CS#  
Clock min.  
RAS#  
CAS#  
WE#  
A11  
A10  
Address Key  
A0-A9  
DQM  
RP  
t
Hi-Z  
DQ  
ModeRegister  
Set Command  
PrechargeAll  
Any  
Command  
Mode Register Set Cycle  
(CAS# Latency = 1, 2, 3)  
The mode register is divided into various fields depending on functionality.  
Burst Length Field (A2~A0)  
This field specifies the data length of column access using the A2~A0 pins and selects the  
Burst Length to be 1, 2, 4, 8, or full page.  
A2  
0
A1  
0
A0  
0
Burst Length  
1
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved  
Reserved  
Reserved  
Full Page  
1
0
1
1
1
0
1
1
1
Preliminary  
12  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Addressing Mode Select Field (A3)  
The Addressing Mode can be one of two modes, Interleave Mode or Sequential Mode.  
Sequential Mode supports burst length of 1, 2, 4, 8, or full page, but Interleave Mode only  
supports burst length of 4 and 8.  
A3  
0
Addressing Mode  
Sequential  
1
Interleave  
--- Addressing Sequence of Sequential Mode  
An internal column address is performed by increasing the address from the column  
address which is input to the device. The internal column address is varied by the Burst  
Length as shown in the following table. When the value of column address, (n + m), in  
the table is larger than 255, only the least significant 8 bits are effective.  
Data n  
0
n
1
2
3
4
5
6
7
-
-
255 256 257  
-
-
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n+255  
n
n+1  
Column Address  
Burst Length  
2 words:  
4 words:  
8 words:  
Full Page: Column address is repeated until terminated.  
--- Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting  
the address bits in the sequence shown in the following table.  
Data n  
Column Address  
Burst Length  
Data 0 A7 A6 A5 A4 A3 A2 A1 A0  
Data 1 A7 A6 A5 A4 A3 A2 A1 A0#  
Data 2 A7 A6 A5 A4 A3 A2 A1# A0  
Data 3 A7 A6 A5 A4 A3 A2 A1# A0#  
Data 4 A7 A6 A5 A4 A3 A2# A1 A0  
Data 5 A7 A6 A5 A4 A3 A2# A1 A0#  
Data 6 A7 A6 A5 A4 A3 A2# A1# A0  
Data 7 A7 A6 A5 A4 A3 A2# A1# A0#  
4 words  
8 words  
CAS# Latency Field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to  
the first read data. The minimum whole value of CAS# Latency depends on the frequency  
of CLK. The minimum whole value satisfying the following formula must be programmed  
into this field.  
tCAC(min) CAS# Latency X tCK  
A6  
0
A5  
A4  
0
CAS# Latency  
Reserved  
1 clock  
0
0
1
1
X
0
1
0
0
2 clocks  
0
1
3 clocks  
1
X
Reserved  
Preliminary  
13  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Test Mode field (A8~A7)  
These two bits are used to enter the test mode and must be programmed to "00" in normal  
operation.  
A8  
0
A7  
0
Test Mode  
normal mode  
0
1
Vendor Use Only  
Vendor Use Only  
1
X
Single Write Mode (A9)  
This bit is used to select the write mode. When the BS bit is "0", the Burst-Read-Burst-  
Write mode is selected. When the BS bit is "1", the Burst-Read-Single-Write mode is  
selected.  
A9  
0
Single Write Mode  
Burst-Read-Burst-Write  
Burst-Read-Single-Write  
1
Note: A10 and A11 should stay Lduring mode set cycle.  
8
9
No-Operation command  
(RAS# = "H", CAS# = "H", WE# = "H")  
The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS#  
is Low). This prevents unwanted commands from being registered during idle or wait states.  
Burst Stop command  
(RAS# = "H", CAS# = "H", WE# = "L")  
The Burst Stop command is used to terminate either fixed-length or full-page bursts. This  
command is only effective in a read/write burst without the auto precharge function. The terminated  
read burst ends after a delay equal to the CAS# latency (refer to the following figure). The  
termination of a write burst is shown in the following figure.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
COMMAND  
NOP  
NOP  
Burst Stop  
DOUT A  
NOP  
NOP  
The burst ends after a delay equal to the CAS# latency.  
CAS# latency=1  
DOUT A  
DOUTA  
DOUT A  
0
1
2
3
t
, DQ's  
CK1  
CAS# latency=2  
, DQ's  
DOUT A  
DOUTA  
DOUT A  
2
DOUT A  
3
0
1
t
CK2  
CAS# latency=3  
, DQ's  
DOUT A  
0
DOUTA  
DOUT A  
DOUT A  
3
1
2
t
CK3  
Termination of a Burst Read Operation  
(Burst Length  
4, CAS# Latency = 1, 2, 3)  
Preliminary  
14  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
COMMAND  
NOP  
WRITE A  
NOP  
Burst Stop  
don't care  
NOP  
NOP  
CAS# latency=1, 2, 3  
DQ's  
DIN A  
DIN  
A
DIN A  
2
1
0
Input data for the Write is masked.  
Termination of a Burst Write Operation  
(Burst Length = X, CAS# Latency = 1, 2, 3)  
10 Device Deselect command  
(CS# = "H")  
The Device Deselect command disables the command decoder so that the RAS#, CAS#, WE#  
and Address inputs are ignored, regardless of whether the CLK is enabled. This command is similar  
to the No Operation command.  
11 AutoRefresh command (refer to Figures 3 & 4 in Timing Waveforms)  
(RAS# = "L", CAS# = "L", WE# = "H",CKE = "H", A11 = Dont care, A0-A9 = Don't care)  
The AutoRefresh command is used during normal operation of the SDRAM and is analogous to  
CAS#-before-RAS# (CBR) Refresh in conventional DRAMs. This command is non-persistent, so it  
must be issued each time a refresh is required. The addressing is generated by the internal refresh  
controller. This makes the address bits a "don't care" during an AutoRefresh command. The internal  
refresh counter increments automatically on every auto refresh cycle to all of the rows. The refresh  
operation must be performed 2048 times within 32ms. The time required to complete the auto  
refresh operation is specified by tRC(min.). To provide the AutoRefresh command, both banks need  
to be in the idle state and the device must not be in power down mode (CKE is high in the previous  
cycle). This command must be followed by NOPs until the auto refresh operation is completed. The  
precharge time requirement, tRP(min), must be met before successive auto refresh operations are  
performed.  
12 SelfRefresh Entry command (refer to Figure 5 in Timing Waveforms)  
(RAS# = "L", CAS# = "L", WE# = "H", CKE = "L", A0-A9 = Don't care)  
The SelfRefresh is another refresh mode available in the SDRAM. It is the preferred refresh  
mode for data retention and low power operation. Once the SelfRefresh command is registered, all  
the inputs to the SDRAM become "don't care" with the exception of CKE, which must remain LOW.  
The refresh addressing and timing is internally generated to reduce power consumption. The  
SDRAM may remain in SelfRefresh mode for an indefinite period. The SelfRefresh mode is exited by  
restarting the external clock and then asserting HIGH on CKE (SelfRefresh Exit command).  
13 SelfRefresh Exit command (refer to Figure 5 in Timing Waveforms)  
(CKE = "H", CS# = "H" or CKE = "H", RAS# = "H", CAS# = "H", WE# = "H")  
This command is used to exit from the SelfRefresh mode. Once this command is registered,  
NOP or Device Deselect commands must be issued for tRC(min.) because time is required for the  
completion of any bank currently being internally refreshed. If auto refresh cycles in bursts are  
performed during normal operation, a burst of 4096 auto refresh cycles should be completed just  
prior to entering and just after exiting the SelfRefresh mode.  
Preliminary  
15  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
14 Clock Suspend Mode Entry / PowerDown Mode Entry command (refer to Figures 6, 7, and 8 in  
Timing Waveforms)  
(CKE = "L")  
When the SDRAM is operating the burst cycle, the internal CLK is suspended(masked) from the  
subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held  
intact while CLK is suspended. On the other hand, when both banks are in the idle state, this  
command performs entry into the PowerDown mode. All input and output buffers (except the CKE  
buffer) are turned off in the PowerDown mode. The device may not remain in the Clock Suspend or  
PowerDown state longer than the refresh period (64ms) since the command does not perform any  
refresh operations.  
15 Clock Suspend Mode Exit / PowerDown Mode Exit command (refer to Figures 6, 7, and 8 in Timing  
Waveforms, CKE= "H")  
When the internal CLK has been suspended, the operation of the internal CLK is reinitiated  
from the subsequent cycle by providing this command (asserting CKE "HIGH"). When the device is  
in the PowerDown mode, the device exits this mode and all disabled buffers are turned on to the  
active state. tPDE(min.) is required when the device exits from the PowerDown mode. Any  
subsequent commands can be issued after one clock cycle from the end of this command.  
16 Data Write / Output Enable, Data Mask / Output Disable command (LDQM/UDQM = "L", "H")  
During a write cycle, the LDQM/UDQM signal functions as a Data Mask and can control every  
word of the input data. During a read cycle, the LDQM/UDQM functions as the controller of output  
buffers. LDQM/UDQM is also used for device selection, byte selection and bus control in a memory  
system. LDQM controls DQ0 to DQ7, UDQM controls DQ8 to DQ15.  
Preliminary  
16  
Rev. 1.8  
Nov 2001  
Et r on Tech  
Absolute Maximum Rating  
EM636165  
1M x 16 SDRAM  
Symbol  
Item  
Rating  
-5/55/6/7/7L/8/10  
- 1.0 ~ 4.6  
Unit  
Note  
-10I  
VIN, VOUT  
VDD, VDDQ  
TOPR  
Input, Output Voltage  
Power Supply Voltage  
Operating Temperature  
Storage Temperature  
Power Dissipation  
V
V
1
1
1
1
1
1
-1.0 ~ 4.6  
0 ~ 70  
- 55 ~ 125  
-40 ~ 85  
0.6  
C
C
°
°
TSTG  
PD  
1
W
IOUT  
Short Circuit Output Current  
50  
mA  
Recommended D.C. Operating Conditions (Ta = -40~85 C)  
°
Symbol  
VDD  
Parameter  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
Note  
Power Supply Voltage  
2
2
2
VDDQ  
VIH  
Power Supply Voltage(for I/O Buffer)  
LVTTL Input High Voltage  
3.0  
3.3  
3.6  
V
2.0  
V
DDQ+0.3  
V
VIL  
LVTTL Input Low Voltage  
- 0.3  
0.8  
V
2
Capacitance (VDD = 3.3V, f = 1MHz, Ta = 25 C)  
°
Symbol  
CI  
Parameter  
Min.  
Max.  
Unit  
pF  
Input Capacitance  
2
4
5
7
CI/O  
Input/Output Capacitance  
pF  
Note: These parameters are periodically sampled and are not 100% tested.  
Recommended D.C. Operating Conditions (VDD = 3.3V ± 0.3V)  
1. Ta = 0~70 C  
°
- 5/55/6/7/8/10  
Max.  
- 7L  
Description/Test condition  
Operating Current  
RC tRC(min), Outputs Open, Input  
Symbol  
Unit Note  
1 bank  
operation  
130/125/115/100/95 /85 40  
3
t
IDD1  
signal one transition per one cycle  
Precharge Standby Current in non-power down mode  
tCK = tCK(min), CS# VIH, CKE = VIH  
Input signals are changed once during 30ns.  
Precharge Standby Current in power down mode  
3
3
115/110/90/85/75/60  
15  
IDD2N  
2
0.8  
0.8  
1.5  
20  
IDD2P  
IDD2PS  
IDD3P  
IDD3N  
IDD4  
tCK = tCK(min), CKE VIL(max)  
Precharge Standby Current in power down mode  
2
tCK = CKE VIL(max)  
Active Standby Current in power down mode  
CKE VIL(max), tCK = tCK(min)  
Active Standby Current in non-power down mode  
CKE VIH(min), tCK = tCK(min)  
Operating Current (Burst mode)  
mA  
3
2
105/100/90/80/70/55  
165/160/150/140/130/115 40  
115/110/100/90/90 /80 40  
3, 4  
3
tCK=tCK(min), Outputs Open, Multi-bank interleave,gapless data  
Refresh Current  
IDD5  
t
RC tRC(min)  
Self Refresh Current  
IH VDD - 0.2, 0V VIL 0.2V  
2
0.5  
IDD6  
V
Preliminary  
17  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
2. Industrial Operating temperature : Ta = -40~85 C  
°
EM636165-10I  
Description/Test condition  
Operating Current  
RC tRC(min), Outputs Open, Input  
Symbol  
Max.  
Note  
Unit  
1 bank operation  
IDD1  
80  
3
t
signal one transition per one cycle  
Precharge Standby Current in non-power down mode  
tCK = tCK(min), CS# VIH, CKE = VIH  
Input signals are changed once during 30ns.  
IDD2N  
3
3
35  
Precharge Standby Current in power down mode  
IDD2P  
3
2
tCK = tCK(min), CKE VIL(max)  
Precharge Standby Current in power down mode  
tCK = CKE VIL(max)  
IDD2PS  
mA  
Active Standby Current in power down mode  
CKE VIL(max), tCK = tCK(min)  
Active Standby Current in non-power down mode  
CKE VIH(min), tCK = tCK(min)  
Operating Current (Burst mode)  
tCK=tCK(min), Outputs Open, Multi-bank interleave,gapless data  
IDD3P  
IDD3N  
IDD4  
7
3
51  
100  
80  
3, 4  
3
Refresh Current  
IDD5  
t
RC tRC(min)  
Self Refresh Current  
IH VDD - 0.2, 0V VIL 0.2V  
V
IDD6  
2
Parameter  
Description  
Min.  
Max.  
Unit Note  
IIL  
Input Leakage Current  
( 0V VIN VDD, All other pins not under test = 0V )  
- 10  
10  
µA  
IOL  
VOH  
VOL  
Output Leakage Current  
Output disable, 0V VOUT VDDQ  
- 10  
2.4  
10  
µA  
V
)
LVTTL Output "H" Level Voltage  
( IOUT = -2mA )  
LVTTL Output "L" Level Voltage  
( IOUT = 2mA )  
0.4  
V
Preliminary  
18  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Electrical Characteristics and Recommended A.C. Operating Conditions  
(VDD = 3.3V 0.3V, Ta = -40~85 C) (Note: 5, 6, 7, 8)  
°
- 5/55/6/7/7L/8/10  
Symbol  
A.C. Parameter  
Min.  
Max.  
Unit Note  
tRC  
Row cycle time  
48/48/54/63/63/72/90  
9
(same bank)  
tRCD  
RAS# to CAS# delay  
(same bank)  
15/16/16/16/16/16/30  
9
ns  
9
tRP  
Precharge to refresh/row activate  
command (same bank)  
15/16/16/16/16/16/30  
10/11/12/14/14/16/20  
tRRD  
Row activate to row activate delay  
(different banks)  
9
tRAS  
Row activate to precharge time  
(same bank)  
30/32/36/42/42/48/60  
100,000  
tWR  
Write recovery time  
Cycle  
1
tCK1  
tCK2  
tCK3  
tCH  
CL* = 1  
-/19/20/20/20/20/30  
-/7/7.5/8/8/8/15  
5/5.5/6/7/7/8/10  
2/2/2/2.5/2.5/3/3.5  
2/2/2/2.5/2.5/3/3.5  
10  
Clock cycle time  
CL* = 2  
CL* = 3  
ns  
11  
11  
Clock high time  
Clock low time  
tCL  
tAC1  
tAC2  
tAC3  
tCCD  
tOH  
tLZ  
Access time from CLK  
(positive edge)  
CL* = 1  
CL* = 2  
CL* = 3  
-/7/8/13/13/18/27  
-/5.5/6/6.5/6.5/7/12  
4.5/5/5/5.5/5.5/6.5/7.5  
11  
10  
CAS# to CAS# Delay time  
Data output hold time  
1
Cycle  
1.8/2/2/2/2/2/3  
1/1/1/1/1/2/2  
Data output low impedance  
Data output high impedance  
tHZ  
3/3.5/4/5/5/6/8  
8
tIS  
Data/Address/Control Input set-up time  
Data/Address/Control Input hold time  
PowerDown Exit set-up time  
Refresh time  
2/2/2/2/2/2.5/3  
1
ns  
11  
11  
tIH  
tPDE  
tREF  
5/5.5/6/7/7/8/10  
64  
ms  
CL is CAS# Latency.  
Note:  
1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device.  
2. All voltages are referenced to VSS.VIH(Max)=4.6 for pulse width5ns.VIL(Min)=-1.5Vfor pulse width5ns.  
3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the  
minimum value of tCK and tRC. Input signals are changed one time during tCK  
.
4. These parameters depend on the output loading. Specified values are obtained with the output open.  
5. Power-up sequence is described in Note 10.  
Preliminary  
19  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
6. A.C. Test Conditions  
LVTTL Interface  
Reference Level of Output Signals  
Output Load  
1.4V / 1.4V  
Reference to the Under Output Load (B)  
Input Signal Levels  
2.4V / 0.4V  
1ns  
Transition Time (Rise and Fall) of Input Signals  
Reference Level of Input Signals  
1.4V  
1.4V  
3.3V  
50  
1.2k  
50Ω  
Z0=  
Output  
Output  
30pF  
30pF  
870Ω  
LVTTL D.C. Test Load (A)  
LVTTL A.C. Test Load (B)  
7. Transition times are measured between VIH and VIL. Transition(rise and fall) of input signals are in a fixed  
slope (1 ns).  
8. tHZ defines the time in which the outputs achieve the open circuit condition and are not at reference levels.  
9. These parameters account for the number of clock cycle and depend on the operating frequency of the  
clock as follows:  
the number of clock cycles = specified value of timing/Clock cycle time  
(count fractions as a whole number)  
10.If clock rising time is longer than 1 ns, ( tR / 2 -0.5) ns should be added to the parameter.  
11.Assumed input rise and fall time tT ( tR & tF ) = 1 ns  
If tR or tF is longer than 1 ns, transient time compensation should be considered, i.e.,  
12. Power up Sequence  
Power up must be performed in the following sequence.  
1) Power must be applied to VDD and VDDQ(simultaneously) when all input signals are held "NOP" state  
and both CKE = "H" and LDQM/UDQM = "H." The CLK signals must be started at the same time.  
2) After power-up, a pause of 200µseconds minimum is required. Then, it is recommended that  
LDQM/UDQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance.  
3) Both banks must be precharged.  
4) Mode Register Set command must be asserted to initialize the Mode register.  
5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the  
device.  
Preliminary  
20  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Timing Waveforms  
Figure 1. AC Parameters for Write Timing  
(Burst Length=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCL  
tCK2  
tCH  
tIS  
tIH  
Begin AutoPrecharge  
Bank B  
Begin AutoPrecharge  
Bank A  
CKE  
CS#  
tIS  
tIS  
RAS#  
CAS#  
WE#  
A11  
tIH  
RAx  
RBx  
RBx  
RAy  
RAy  
RAz  
RAz  
RBy  
RBy  
A10  
tIS  
A0-A9  
CAx  
CBx  
RBx  
CAy  
DQM  
DQ  
tDAL  
tRCD  
tIS  
tWR  
tRC  
tRP  
tRRD  
tIH  
Hi-Z  
Ax0 Ax1 Ax2  
Ax3 Bx0 Bx1 Bx2 Bx3 Ay0 Ay1 Ay2 Ay3  
Activate  
Writewith  
Activate  
Writewith  
Activate  
Write  
Command  
Bank A  
Precharge  
Activate  
Activate  
Command  
Bank B  
Command AutoPrecharge Command AutoPrecharge Command  
Command Command  
Bank A  
Command  
Bank A  
Bank B  
Command  
Bank B  
Bank A  
Bank A  
Bank A  
Preliminary  
21  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 2. AC Parameters for Read Timing  
(Burst Length=2, CAS# Latency=2)  
T0  
T 1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T 11 T12  
T13  
CLK  
CKE  
tCK2  
tIS  
tCH tCL  
Begin AutoPrecharge  
Bank B  
tIH  
tIH  
tIS  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
tIH  
RBx  
RAx  
RAx  
RAy  
RAy  
tIS  
A0-A9  
CAx  
RBx  
CBx  
tRRD  
tRAS  
tRC  
tHZ  
DQM  
DQ  
tAC2  
tLZ  
tAC2  
tRP  
tRCD  
Hi-Z  
Ax0  
Bx0  
Bx1  
Ax1  
tHZ  
tOH  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read with  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Preliminary  
22  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 3. Auto Refresh (CBR)  
(Burst Length=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
CAx  
RAx  
A0-A9  
DQM  
tRC  
tRC  
tRP  
Ax0  
Ax2  
Ax1  
Ax3  
DQ  
Read  
Command  
Bank A  
PrechargeAll AutoRefresh  
AutoRefresh  
Command  
Activate  
Command  
Bank A  
Command  
Command  
Preliminary  
23  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 4. Power on Sequene and Auto Refresh (CBR)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
High level  
Minimum of 2 Refresh Cycles are required  
is reauired  
CS#  
RAS#  
CAS#  
WE#  
BS  
A10  
Address Key  
A0-A9  
DQM  
DQ  
tRP  
tRC  
Hi-Z  
1st AutoRefresh  
Command  
PrechargeALL  
Command  
2nd Auto Refresh  
Command  
Any  
Command  
Mode Register  
Set Command  
Inputs must be  
stable for 200µs  
Preliminary  
24  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 5. Self Refresh Entry & Exit Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
T7  
T8  
T9  
T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
T6  
CLK  
*Note 2  
tRC(min) *Note 7  
*Note 4  
*Note 1  
*Note 3  
CKE  
CS#  
tPDE  
tSRX  
*Note 5  
tIS  
*Note 6  
RAS#  
CAS#  
A11  
*Note 8  
*Note 8  
A0-A9  
WE#  
DQM  
DQ  
Hi-Z  
Hi-Z  
Self Refresh Enter  
SelfRefresh Exit  
AutoRefresh  
Note: To Enter SelfRefresh Mode  
1. CS#, RAS# & CAS# with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE.  
3. The device remains in SelfRefresh mode as long as CKE stays "low".  
Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh.  
To Exit SelfRefresh Mode  
1. System clock restart and be stable before returning CKE high.  
2. Enable CKE and CKE should be set high for minimum time of tSRX  
3. CS# starts from high.  
.
4. Minimum tRC is required after CKE going high to complete SelfRefresh exit.  
5. 2048 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the  
system uses burst refresh.  
Preliminary  
25  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 6.1. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=1)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CK1  
t
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
A0-A9  
RAx  
CAx  
DQM  
DQ  
HZ  
t
Hi-Z  
Ax0  
Ax2  
Ax3  
Ax1  
Clock Suspend  
1 Cycle  
Activate  
Command  
Bank A  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Read  
Command  
Bank A  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
26  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 6.2. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAx  
A0-A9  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0  
Ax3  
Ax1  
Ax2  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
27  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 6.3. Clock Suspension During Burst Read (Using CKE)  
(Burst Length=4, CAS# Latency=3)  
T0 T 1 T 2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK3  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
A0-A9  
DQM  
DQ  
CAx  
RAx  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend Clock Suspend  
Clock Suspend  
3 Cycles  
1 Cycle  
2 Cycles  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
28  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 7.1. Clock Suspension During Burst Write (Using CKE)  
(Burst Length = 4, CAS# Latency = 1)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CK1  
t
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
A0-A8  
DQM  
CAx  
RAx  
DQ Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate Clock Suspend Clock Suspend  
Clock Suspend  
3 Cycles  
Command  
Bank A  
1 Cycle  
2 Cycles  
Write  
Command  
Bank A  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
29  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 7.2. Clock Suspension During Burst Write (Using CKE)  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12  
T14 T15 T16 T17 T18 T19 T20 T21 T22  
T13  
CLK  
tCK2  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
A0-A9  
DQM  
DQ  
RAx  
CAx  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Write  
Command  
Bank A  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
30  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 7.3. Clock Suspension During Burst Write (Using CKE)  
(Burst Length=4, CAS# Latency=3)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK3  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
A0-A9  
RAx  
CAx  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend Clock Suspend  
1 Cycle 2 Cycles  
Write  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Note: CKE to CLK disable/enable = 1 clock  
Preliminary  
31  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 8. Power Down Mode and Clock Mask  
(Burst Lenght=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
tCK2  
tPDE  
tIS  
Valid  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
RAx  
CAx  
A0~A8  
DQM  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DQ  
ACTIVE  
STANDBY  
PRECHARGE  
STANDBY  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Mask  
Start  
Clock Mask  
End  
Precharge  
Command  
Bank A  
Power Down  
Mode Exit  
Any  
Power Down  
ModeEntry  
Power Down  
Mode Exit  
Command  
Power Down  
ModeEntry  
Preliminary  
32  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 9.1. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK1  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAz  
RAz  
RAw  
RAw  
CAw  
CAz  
CAy  
CAx  
A0~A8  
DQM  
Hi-Z  
DQ  
Aw0 Aw1 Aw2  
Ay2 Ay3  
Az1 Az2 Az3  
Aw3  
Ax1 Ay0 Ay1  
Az0  
Ax0  
Activate  
Command  
Bank A  
Read  
Read  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Command Command  
Bank A  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Preliminary  
33  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 9.2. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CK2  
t
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAz  
RAz  
RAw  
RAw  
CAx  
CAy  
CAz  
CAw  
A0~A8  
DQM  
Hi-Z  
Ay0  
Aw0 Aw1 Aw2 Aw3 Ax0 Ax1  
Ay1 Ay2 Ay3  
Precharge  
Az1 Az2 Az3  
DQ  
Az0  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command Command  
Bank A Bank A  
Read  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Command  
Bank A  
Preliminary  
34  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 9.3. Random Column Read (Page within same Bank)  
(Burst Length=4, CAS# Latency=3)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CK3  
t
CS#  
RAS#  
CAS#  
WE#  
A1  
1
RAz  
RAz  
RAw  
RAw  
A10  
A0~A9  
DQM  
CAy  
CAz  
CAw  
CAx  
Hi-Z  
Aw0  
Aw3  
Aw1  
Ax1  
Az0  
Aw2  
Ax0  
Ay0 Ay1 Ay2 Ay3  
Precharge  
DQ  
Read  
Command  
Bank A  
Read  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Command  
Bank A  
Command  
Bank A  
Preliminary  
35  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 10.1. Random Column Write (Page within same Bank)  
(Burst Length=4, CAS# Latency=1)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBz  
RBz  
RBw  
RBw  
CBw  
CBz  
CBx  
CBy  
A0~A9  
DQM  
DQ  
Hi-Z  
DBw3 DBx0  
DBy0 DBy1 DBy2 DBy3  
DBx1  
DBw2  
DBw0 DBw1  
DBz0 DBz1  
DBz2 DBz3  
Precharge  
Activate  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Command  
Bank B  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Preliminary  
36  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 10.2. Random Column Write (Page within same Bank)  
(Burst Length=4, CAS# Latency=2)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBz  
RBz  
RBw  
RBw  
CBy  
CBz  
CBw  
CBx  
A0~A8  
DQM  
Hi-Z  
DBy2  
DBy3  
DBz0 DBz1 DBz2  
DBz3  
DBw0  
Write  
DBx1  
DBw1 DBw2 DBw3 DBx0  
Write  
DBy0 DBy1  
Write  
DQ  
Activate  
Command  
Bank A  
Precharge  
Command Command  
Activate  
Write  
Command  
Bank B  
Command  
Bank B  
Command  
Bank B  
Command  
Bank B  
Bank B  
Bank B  
Preliminary  
37  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 10.3. Random Column Write (Page within same Bank)  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK3  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBw  
RBw  
RBz  
RBz  
CBz  
CBw  
CBx  
CBy  
A0~A9  
DQM  
Hi-Z  
DBz2  
DBz1  
DBy2 DBy3  
DBy1  
DBw0 DBw1 DBw2 DBw3  
Write  
DBx1 DBy0  
Write  
DBz0  
Write  
DQ  
DBx0  
Write  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Command  
Bank B  
Command  
Command  
Bank B  
Command  
Bank B  
Bank B  
Preliminary  
38  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 11.1. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=1)  
T5  
T16  
T19  
T17 T18 T20 T21 T22  
T0 T1 T2 T3 T4  
T6 T7 T8 T9 T10 T11 T12 T13 T14 T15  
CLK  
CKE  
tCK1  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RBy  
RBy  
RAx  
CBy  
RAx CAx  
RBx CBx  
A0~A9  
tRCD  
tAC1  
tRP  
DQM  
DQ  
Hi-Z  
Bx3  
Bx5 Bx6  
Bx7  
By1 By2  
Ax0  
Ax3 Ax4 Ax5  
By0  
Bx0 Bx1 Bx2  
Bx4  
Ax1 Ax2  
Ax6 Ax7  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Read  
Read  
Command  
Bank B  
Command  
Bank B  
Command  
Bank A  
Preliminary  
39  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 11.2. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RBx  
RAx  
RAx  
RBy  
RBy  
A10  
CBx  
A0~A9  
DQM  
CBy  
RBx  
CAx  
tRCD  
tAC2  
tRP  
Hi-Z  
Ax4 Ax5  
By0 By1  
Bx0 Bx1 Bx2 Bx3  
Bx5 Bx6 Bx7  
Ax2 Ax3  
Ax6 Ax7  
Bx4  
Ax0 Ax1  
DQ  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Command  
Bank B  
Read  
Command  
Bank A  
Preliminary  
40  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 11.3. Random Row Read (Interleaving Banks)  
(Burst Length=8, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK3  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RBy  
RBy  
RAx  
RAx  
RBx  
CBy  
CBx  
CAx  
A0~A9  
DQM  
tRCD  
tAC3  
tRP  
Hi-Z  
DQ  
Ax7 By0  
Bx6  
Ax6  
Bx0 Bx1 Bx2 Bx3 Bx4 Bx5  
Bx7 Ax0 Ax1 Ax2 Ax3  
Ax5  
Ax4  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Read  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Command  
Command  
Bank A  
Bank A  
Preliminary  
41  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 12.1. Random Row Write (Interleaving Banks)  
(Burst Length=8, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAy  
RAy  
RAx  
RBx  
RBx  
A0~A9  
DQM  
DQ  
RAx  
CAy  
CBx  
CAx  
tRCD  
tRP  
tWR  
Hi-Z  
DBx7  
DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6  
DAy0 DAy1 DAy2  
DAx6  
DAy3  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Write  
Command  
Bank A  
Write  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Command  
Bank B  
Preliminary  
42  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 12.2. Random Row Write (Interleaving Banks)  
(Burst Length=8, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBx  
RAy  
RAy  
CAy  
RAx  
CAx  
CBx  
A0~A8  
DQM  
tRCD  
tWR*  
tRP  
tWR*  
Hi-Z  
DQ  
DBx7  
DAy3  
DAy4  
DAx6  
DAy0 DAy1 DAy2  
Write  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5  
DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6  
Activate  
Command  
Bank B  
Activate  
Command Command  
Bank A Bank A  
Write  
Write  
Activate  
Command  
Bank A  
Command  
Bank B  
Command  
Bank A  
Precharge  
Precharge  
Command  
Bank B  
Command  
Bank A  
* tWR > tWR(min.)  
Preliminary  
43  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 12.3. Random Row Write (Interleaving Banks)  
(Burst Length=8, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CK3  
t
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
RBx  
RBx  
RAy  
RAy  
A10  
CAy  
RAx  
CAx  
CBx  
A0~A9  
DQM  
RCD  
t
WR*  
t
RP  
t
WR*  
t
Hi-Z  
DAx6  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5  
DAx7 DBx0  
DAy2  
DAy3  
DBx2  
DBx5 DBx6  
Activate  
DAy0 DAy1  
Write  
DBx1  
DBx3 DBx4  
DBx7  
DQ  
Activate  
Command  
Bank A  
Activate  
Write  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Command  
Command  
Command  
Command  
Bank A  
Bank A  
Bank B  
Bank A  
* tWR > tWR(min.)  
Preliminary  
44  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 13.1. Read and Write Cycle  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAx  
CAy  
CAz  
A0~A9  
DQM  
Hi-Z  
DQ  
Az3  
Az1  
Ax3  
DAy3  
Az0  
Ax0 Ax1 Ax2  
DAy1  
DAy0  
The Read Data  
is Masked with a  
TwoClock  
The Write Data  
is Masked with a  
Zero Clock  
Activate  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Read  
Command  
Bank A  
Command  
Bank A  
Latency  
Latency  
Read  
Command  
Bank A  
Preliminary  
45  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 13.2. Read and Write Cycle  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
CAy  
CAx  
CAz  
RAx  
A0~A9  
DQM  
Hi-Z  
DQ  
Az3  
Ax0  
DAy0  
Az0 Az1  
Ax1 Ax2 Ax3  
DAy1  
DAy3  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
TheRead Data  
Activate  
Command  
Bank A  
The Write Data  
is Masked with a  
Zero Clock  
is Masked with a  
TwoClock  
Latency  
Latency  
Preliminary  
46  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 13.3. Read and Write Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK3  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
CAy  
CAx  
CAz  
RAx  
A0~A9  
DQM  
Hi-Z  
DQ  
DAy0 DAy1  
Ax0 Ax1 Ax2 Ax3  
DAy3  
Az0 Az1  
Az3  
Read  
Command  
Bank A  
The Write Data  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
The Read Data  
is Masked with a  
Zero Clock  
Latency  
is Masked with a  
TwoClock  
Latency  
Preliminary  
47  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 14.1. Interleaving Column Read Cycle  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBw  
RBw  
CBz  
CBx  
CBy  
CAy  
CBw  
RAx  
A0~A9  
tRCD tAC1  
DQM  
DQ  
Hi-Z  
Ax0 Ax1 Ax2 Ax3 Bw0 Bw1 Bx0 Bx1  
By0  
Ay0 Ay1 Bz0  
By1  
Bz1 Bz2 Bz3  
Activate  
Activate  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Read  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Command  
Bank B  
Command Command  
Bank B  
Bank A  
Read  
Read  
Command  
Bank B  
Command  
Bank A  
Preliminary  
48  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 14.2. Interleaving Column Read Cycle  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2  
T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
CAy  
RAx  
CBw  
CBx  
CBz  
CBy  
CAy  
RAx  
A0~A9  
DQM  
tRCD  
tAC2  
Hi-Z  
DQ  
Ax0  
Ax2  
Bz2 Bz3  
Ax1  
Ay1  
Bz1  
Ax3  
By0 By1 Ay0  
Bz0  
Bw1  
Bx1  
Bw0  
Bx0  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command Command  
Bank A Bank B  
Read  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
Preliminary  
49  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 14.3. Interleaved Column Read Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21  
T22  
CLK  
CKE  
tCK3  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RAx  
RBx  
CBy  
RAx  
CAx  
CBx  
CBz  
CAy  
A0~A9  
DQM  
DQ  
tAC3  
tRCD  
Hi-Z  
Ay0 Ay1 Ay2 Ay3  
By0  
Ax0  
Ax3  
By1 Bz0 Bz1  
Ax1 Ax2  
Bx0 Bx1  
Read  
Read  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Prechaerge  
Precharge  
Command  
Bank A  
Command  
Bank A  
Command Command  
Command  
Bank B  
Bank B  
Bank B  
Activate  
Command  
Bank B  
Preliminary  
50  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 15.1. Interleaved Column Write Cycle  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBw  
RAx CAx RBw  
CBw  
CBz  
CAy  
CBx  
CBy  
A0~A9  
tRP  
tWR tRP  
tRCD  
tRRD  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBx0  
DAy0  
Write  
DAx0  
DAx2  
DBx1 DBy0 DBy1  
Write  
DAy1  
DBz1 DBz2 DBz3  
DBz0  
DAx1  
DAx3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command Command  
Bank B Bank B  
Write  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Command Command  
Bank B Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Preliminary  
51  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 15.2. Interleaved Column Write Cycle  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CK2  
t
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBw  
RBw  
CBw  
CBx  
CBy  
CBz  
CAx  
CAy  
A0~A9  
DQM  
WR  
t
RCD  
t
RP  
RP  
t
t
RRD  
t
Hi-Z  
DBz2  
DBz3  
DQ  
DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1  
DAx0  
Activate  
Write  
Activate  
Command  
Bank B  
Write  
Command Command  
Bank B Bank B  
Write  
Write  
Command Command  
Bank B Bank A  
Write  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Command Command  
Bank A  
Bank A  
Precharge  
Command  
Bank A  
Preliminary  
52  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 15.3. Interleaved Column Write Cycle  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11  
T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
T12  
CLK  
tCK3  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBw  
CBx  
CAx RBw  
CBy  
CAy  
CBz  
CBw  
A0~A9  
DQM  
tRCD  
tRRD > tRRD(min)  
tWR  
tWR(min)  
tRP  
Hi-Z  
DQ  
DBw0  
Write  
DAx0 DAx1 DAx2 DAx3  
DBw1 DBx0 DBx1  
Write  
DBy1  
DAy1  
DBz2 DBz3  
DBy0  
DAy0  
Write  
DBz0 DBz1  
Write  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Command Command  
Bank B Bank B  
Command  
Bank A  
Command  
Bank B  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Preliminary  
53  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 16.1. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBy  
RBy  
RBz  
RBx  
CAx  
RBx CBx  
CAy  
RBz CBz  
RAx  
CBy  
A0~A9  
DQM  
DQ  
Hi-Z  
Bz0 Bz1  
Ax3  
Ay0  
Bz3  
Bx0 Bx1 Bx2 Bx3  
Ay1 Ay2 Ay3  
By1 By2  
Bz2  
Ax0 Ax1 Ax2  
By0  
By3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Read with  
Activate  
Auto Precharge  
Command  
Bank B  
Command  
Bank B  
Read with  
Read  
Read with  
Read with  
Auto Precharge  
Command  
Bank B  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Auto Precharge  
Command  
Bank A  
Preliminary  
54  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 16.2. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
RAz  
RAz  
CAz  
CAx  
CBx  
RAy  
CBy  
RAx  
A0~A9  
DQM  
DQ  
Hi-Z  
Az0 Az1  
Ax0  
Ay3  
By2  
Ax1  
Bx0  
Ay1  
By1  
Az2  
Ax2 Ax3  
Read with  
Ay0  
Ay2  
By0  
By3  
Bx1 Bx2 Bx3  
Read with  
Activate  
Read  
Activate  
Activate  
Activate  
Read with  
Read with  
Command Command  
Command Auto Precharge  
Auto Precharge Command  
Command Auto Precharge  
Auto Precharge  
Command  
Bank B  
Bank A  
Bank A  
Bank B  
Command  
Bank B  
Command  
Bank A  
Bank B  
Bank A  
Command  
Bank A  
Preliminary  
55  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 16.3. Auto Precharge after Read Burst  
(Burst Length=4, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK3  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBx  
RBy  
RBy  
CBx  
CAy  
CBy  
CAx  
RAx  
A0~A9  
DQM  
Hi-Z  
DQ  
Ay0  
Ax1 Ax2 Ax3 Bx0 Bx1 Bx2 Bx3  
Ay1 Ay2 Ay3  
By0 By1  
By3  
Ax0  
By2  
Activate  
Command  
Bank A  
Activate  
Read with  
Activate  
Command  
Bank B  
Read with  
Command  
Bank B  
Auto Precharge  
Command  
Bank B  
Auto Precharge  
Command  
Bank B  
Read with  
Auto Precharge  
Command  
Read  
Command  
Bank A  
Bank A  
Preliminary  
56  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 17.1. Auto Precharge after Write Burst  
(Burst Length=4, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK1  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBx  
RBx  
RBy  
RBy  
RAz  
RAz  
RAx  
CAz  
RAx  
CBx  
CBy  
CAy  
CAx  
A0~A9  
DQM  
DQ  
Hi-Z  
DAx0  
DAx2  
DBx2  
DAy3 DBy0  
DBy2  
DAz0  
DAz0  
DAx1  
DAx3 DBx0  
DBx3  
DAy1 DAy2  
DBy1  
DBy3  
DAz0  
DAz0  
DBx1  
DAy0  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Writewith  
Auto Precharge  
Command  
Writewith  
Auto Precharge  
Command  
Bank B  
Write  
Command  
Bank A  
Bank B  
Writewith  
Auto Precharge  
Command  
Writewith  
Auto Precharge  
Command  
Bank A  
Bank A  
Preliminary  
57  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 17.2. Auto Precharge after Write Burst  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
RBx  
RBx  
RBy  
RBy  
RAz  
RAz  
A10  
A0~A9  
DQM  
CBy  
CAz  
CBx  
CAy  
CAx  
RAx  
Hi-Z  
DAy0  
DBy2  
DAz3  
DAz2  
DQ  
DBx3  
DBy1  
DBy3  
DAx0 DAx1 DAx2  
DBx0 DBx1 DBx2  
Writewith  
DAy1 DAy2 DAy3  
DBy0  
DAz1  
DAz0  
DAx3  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Writewith  
Auto Precharge  
Command  
Activate  
Writewith  
Activate  
Writewith  
Command Auto Precharge  
Command Auto Precharge Command Auto Precharge  
Bank B  
Command  
Bank B  
Bank B  
Command  
Bank B  
Bank A  
Command  
Bank A  
Bank A  
Preliminary  
58  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 17.3. Auto Precharge after Write Burst  
(Burst Length=4, CAS# Latency=3)  
T11  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10  
T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK3  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
`
A11  
A9  
RBx  
RBx  
RAx  
RBy  
CBy  
RBy  
CAx  
CBx  
CAy  
RAx  
A0~A9  
DQM  
DQ  
Hi-Z  
DAx0  
DAy0  
DAy2 DAy3  
DAy1  
DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3  
DBy0  
DBy2 DBy3  
DBy1  
Writewith  
Activate  
Writewith  
Activate  
Command  
Bank B  
Writewith  
Activate  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Auto Precharge  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Command  
Bank B  
Write  
Command  
Bank A  
Preliminary  
59  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 18.1. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK1  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RBx  
RBx  
RAx  
CAx  
CBx  
A0~A9  
DQM  
RAx  
tRP  
tRRD  
Hi-Z  
DQ  
Ax+2  
Ax Ax+1  
Bx  
Bx+6 Bx+7  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5  
Ax Ax+1  
Ax-2 Ax-1  
Activate  
Activate  
Command  
Bank A  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
Full Page burst operation doesnot  
Burst Stop  
Activate  
Command  
Bank B  
Read  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
Command  
Command  
Bank A  
Preliminary  
60  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 18.2. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
High  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBy  
RBy  
RBx  
RBx  
CBx  
CAx  
RAx  
A0~A9  
DQM  
tRP  
Hi-Z  
DQ  
Bx+6  
Bx+2 Bx+3 Bx+4 Bx+5  
Ax Ax+1 Bx  
Ax  
Ax-2 Ax-1  
Bx+1  
Ax+1 Ax+2  
Activate  
Read  
Activate  
Command  
Bank B  
Read  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Command Command  
Command  
Bank B  
Full Page burst operation doesnot  
Bank A  
Bank A  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
The burst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
Burst Stop  
Command  
Preliminary  
61  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 18.3. Full Page Read Cycle  
(Burst Length=Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK3  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBx  
RBy  
RBy  
CAx  
CBx  
RAx  
A0~A9  
DQM  
tRP  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Bx+5  
Bx+4  
Bx+3  
DQ  
Ax Ax+1  
Bx+1 Bx+2  
Bx  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Full Page burst operation doesnot  
terminate when the burst length is  
satisfied; the burst counter  
increments and continues  
Theburst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
bursting beginning with the  
Burst Stop  
Command  
starting address.  
Preliminary  
62  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 19.1. Full Page Write Cycle  
(Burst Length=Full Page, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK1  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RBx  
RBy  
RBy  
RAx CAx RBx  
CBx  
A0~A9  
DQM  
Hi-Z  
DBx+6  
DBx+7  
DAx+3 DAx-1  
DAx+1  
DAx  
DBx+1 DBx+2 DBx+3 DBx+4  
DBx  
DBx+5  
DAx+2  
DAx+1  
DQ  
DAx  
Activate  
Command  
Bank B  
Data is ignored  
Activate  
Command  
Bank A  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Burst Stop  
Command  
Theburst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
Full Page burst operation does  
not terminate when the burst  
length is satisfied; the burst counter  
increments and continues bursting  
beginning with the starting address.  
Activate  
Command  
Bank B  
Write  
Command  
Bank A  
Preliminary  
63  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 19.2. Full Page Write Cycle  
(Burst Length=Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBy  
RBy  
RAx  
RBx  
RBx  
CAx  
CBx  
RAx  
A0~A9  
DQM  
Hi-Z  
DBx+6  
DAx+1 DAx+2  
DBx+2  
DBx+3 DBx+4 DBx+5  
DAx  
DAx+3 DAx-1 DAx DAx+1 DBx  
DBx+1  
DQ  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank B  
Data is ignored  
Full Page burst operation does  
not terminate when the burst  
length is satisfied; the burst counter  
increments and continues bursting  
beginning with the starting address.  
Burst Stop  
Command  
The burst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
Preliminary  
64  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 19.3. Full Page Write Cycle  
(Burst Length=Full Page, CAS# Latency=3)  
T16  
T15  
T19 T20 T21 T22  
T17  
T18  
T0 T1 T2 T3 T4 T5 T6 T7 T8  
T10 T11 T12 T13 T14  
T9  
CLK  
tCK3  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RBx  
RBy  
RBy  
RAx  
A10  
CAx  
RAx  
RBx  
CBx  
A0~A9  
DQM  
DQ  
Data is ignored  
Hi-Z  
DBx+5  
DBx+4  
DBx+2  
DBx+3  
DAx+2  
DBx+1  
DAx+1  
DAx+3  
DAx-1  
DAx+1  
DBx  
DAx  
DAx  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Burst Stop  
Command  
Theburst counter wraps  
from the highest order  
page address back to zero  
during this timeinterval  
Full Page burst operation does  
not terminate when the burst  
length is satisfied; the burst counter  
increments and continues bursting  
beginning with the starting address.  
Preliminary  
65  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 20. Byte Write Operation  
(Burst Length=4, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
A10  
A0~A9  
LDQM  
CAy  
RAx  
CAx  
CAz  
UDQM  
DQ0 - DQ7  
Ax0 Ax1 Ax2  
DAy1  
DAy1  
Az1  
DAy2  
Az2  
Ax1  
Az1 Az2 Az3  
Ax2 Ax3  
DAy0  
DAy3  
Az0  
DQ8 - DQ15  
Upper 3 Bytes  
are masked  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
Lower Byte  
is masked  
Upper 3 Bytes  
Read  
Lower Byte  
is masked  
Lower Byte  
is masked  
are masked Command  
Bank A  
Preliminary  
66  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 21. Random Row Read (Interleaving Banks)  
(Burst Length=2, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK1  
High  
Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto Begin Auto  
CKE  
CS#  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
RAS#  
CAS#  
WE#  
A11  
RAu  
RAv  
RBw  
RBw  
RAx  
RAx  
RBy  
RAy  
RBz  
RAz  
RBu  
RBx  
RBv  
RAw  
A10  
CAu  
t
RBu CBu RAu  
RAv CAv  
CAw RBx CBx  
CAx RBy CBy RAy CAy RBz CBz RAz  
RBv CBv  
CBw  
t
RAw  
A0~A8  
t
t
t
t
t
t
t
t
RP  
RP  
RP  
RP  
RP  
RP  
RP  
RP  
RP  
RP  
DQM  
DQ  
Bu0 Bu1 Au0 Au1  
Bv1 Av0 Av1 Bw0 Bw1 Aw0 Aw1 Bx0 Bx1  
Ax0 Ax1 By0 By1 Ay0 Ay1 Bz0  
Bv0  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Bank B  
with Auto  
Precharge  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Bank A  
Bank B  
Bank A  
with Auto  
Precharge  
Bank B  
with Auto  
Precharge  
Bank A  
with Auto  
Precharge  
Bank B  
with Auto  
Precharge  
Bank A  
with Auto  
Precharge  
Bank B  
with Auto  
Precharge  
Bank A  
with Auto  
Precharge  
Bank B  
with Auto  
Precharge  
with Auto  
Precharge Precharge  
with Auto  
Preliminary  
67  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 22. Full Page Random Column Read  
(Burst Length=Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK2  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAx  
RAx  
RBx  
RBw  
RBw  
RBx CAx  
CAz  
CBx  
CBy  
CBz  
CAy  
A0~A8  
tRP  
DQM  
DQ  
tRRD  
tRCD  
Ax0  
Ay0  
Az0  
Az2  
Bz1 Bz2  
Bx0  
Ay1  
By1  
Az1  
Bz0  
By0  
Activate  
Read  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Precharge  
Command Bank B  
(Precharge Temination)  
Activate  
Command  
Bank A  
Command  
Bank B  
Command  
Bank B  
Read  
Read  
Activate  
Command  
Bank B  
Command  
Bank A  
Command  
Bank A  
Preliminary  
68  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 23. Full Page Random Column Write  
(Burst Length=Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
tCK2  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RBw  
RBw  
RAx  
RAx  
RBx  
RBx  
CBx CAy  
CBy  
CAz  
CAx  
CBz  
A0~A9  
DQM  
tRP  
tWR  
tRRD  
tRCD  
DQ  
DAx0  
DBx0  
Write  
DAy1  
DBy1 DAz0  
Write  
DAz2  
DAz1  
DAy0  
DBz1 DBz2  
DBy0  
Write  
DBz0  
Write  
Activate  
Command  
Bank B  
Precharge  
Activate  
Command  
Bank A  
Command  
Bank B  
Command  
Bank B  
Command  
Bank A  
Command  
Bank B  
Command Bank B  
(Precharge Temination)  
Write  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Command  
Bank A  
Write Data  
is masked  
Preliminary  
69  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 24.1. Precharge Termination of a Burst  
(Burst Length=Full Page, CAS# Latency=1)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
tCK1  
CS#  
RAS#  
CAS#  
WE#  
A11  
A10  
RAy  
RAx  
RAz  
RAz  
CAz  
Precharge  
Termination of  
a Read Burst.  
RAy CAy  
RAx CAx  
A0~A9  
tWR  
tRP  
tRP  
DQM  
DQ  
DAx0  
Ay2  
Ay0 Ay1  
DAz0 DAz1  
DAz7  
DAx1 DAx2 DAx3 DAx4  
DAz2 DAz3 DAz4 DAz5 DAz6  
Read  
Write  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Precharge  
Command  
Bank A  
Precharge Termination  
of a Write Burst.  
Command  
Bank A  
Write data is masked.  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Command  
Bank A  
Preliminary  
70  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 24.2. Precharge Termination of a Burst  
(Burst Length=8 or Full Page, CAS# Latency=2)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
CS#  
CK2  
t
High  
RAS#  
CAS#  
WE#  
A11  
A10  
RAy  
RAy  
RAz  
RAx  
CAx  
CAy  
RAz  
RAx  
CAz  
A0~A8  
WR  
tRP  
t
RP  
t
RP  
t
DQM  
DQ  
DAx2  
Az0 Az1 Az2  
DAx1  
DAx3  
DAx0  
Write  
Ay0 Ay1 Ay2  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Command  
Bank A  
Precharge Termination  
of a Write Burst.  
Write data is masked.  
Precharge Termination  
of a Read Burst  
Preliminary  
71  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
Figure 24.3. Precharge Termination of a Burst  
(Burst Length=4, 8 or Full Page, CAS# Latency=3)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CK3  
t
High  
CKE  
CS#  
RAS#  
CAS#  
WE#  
A11  
RAx  
RAy  
RAy  
RAz  
RAz  
A10  
CAy  
RAx  
CAx  
A0~A9  
WR  
t
RP  
RP  
t
t
DQM  
DQ  
DAx1  
Ay0 Ay1  
DAx0  
Ay2  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge Termination  
of a Read Burst  
Precharge Termination  
of a Write Burst  
Write Data  
is masked  
Preliminary  
72  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
50 Pin TSOP II Package Outline Drawing Information  
50  
26  
θ°  
L
L1  
1
25  
D
L
L1  
e
S
B
y
Symbol  
Dimension in inch  
Normal  
Dimension in mm  
Normal  
Min  
Max  
Min  
Max  
0.048  
1.20  
A
A1  
A2  
B
0.002  
0.037  
0.012  
0.005  
0.008  
0.042  
0.018  
0.05  
0.94  
0.3  
0.125  
0.20  
1.07  
0.45  
0.015  
0.006  
0.825  
0.400  
0.031  
0.375  
0.155  
20.95  
10.16  
0.80  
c
0.82  
0.395  
0.83  
0.405  
20.82  
10.03  
21.08  
10.29  
D
E
e
0.455  
0.016  
0.463  
0.020  
0.0315  
0.035  
0.471  
0.024  
11.56  
0.40  
11.76  
0.50  
0.80  
0.88  
11.96  
0.60  
HE  
L
L1  
S
0.004  
0.10  
y
θ
0°  
5°  
0°  
5°  
Notes :  
1. Dimension D&E do not include interiead flash.  
2. Dimension B does not include dambar protrusion/intrusion.  
3. Dimension S includes end flash.  
4. Controlling dimension : mm  
Preliminary  
73  
Rev. 1.8  
Nov 2001  
Et r on Tech  
EM636165  
1M x 16 SDRAM  
1Mx16 SDRAM Package Diagrams  
60-Ball (6.4mm x 10.1mm)VFBGA  
Units in mm  
BO TTO M VIE W  
A1 COR NER  
0.08 M  
0.16 M  
C
C
A
B
TO P VIEW  
A1 COR NER  
= 0.30  
1
7
6
5
4
3
2
1
2
3
4
5
6
7
J
K
L
J
K
L
M
N
P
R
M
N
P
R
0.65  
A
3.90  
B
0.10(4X)  
C
0.10  
C
SEATING P LAN E  
C
]
Preliminary  
74  
Rev. 1.8  
Nov 2001  

相关型号:

EM636165VE-7

1Mega x 16 Synchronous DRAM (SDRAM)
ETRON

EM636165VE-7L

1Mega x 16 Synchronous DRAM (SDRAM)
ETRON

EM636165VE-8

1Mega x 16 Synchronous DRAM (SDRAM)
ETRON

EM636165_06

1Mega x 16 Synchronous DRAM (SDRAM)
ETRON

EM636327

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327JT-10

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327JT-8

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327Q-10

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327Q-55

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327Q-6

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327Q-7

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON

EM636327Q-8

512K x 32 High Speed Synchronous Graphics DRAM(SGRAM)
ETRON