TSL25725 [ETC]

LIGHT-TO-DIGITAL CONVERTER;
TSL25725
型号: TSL25725
厂家: ETC    ETC
描述:

LIGHT-TO-DIGITAL CONVERTER

文件: 总24页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
r
r
TAOS132 − MARCH 2012  
PACKAGE FN  
DUAL FLAT NO-LEAD  
(TOP VIEW)  
Features  
D
Ambient Light Sensing (ALS)  
− Approximates Human Eye Response  
− Programmable Analog Gain and  
Integration Time  
− 45,000,000:1 Dynamic Range  
− Operation to 60,000 lux in Sunlight  
− Very High Sensitivity — Ideally Suited for  
Operation Behind Dark Glass  
6 SDA  
5 INT  
4 NC  
VDD  
1
SCL 2  
GND 3  
Not Actual Size  
− Package UV Rejection Filter  
D
D
Maskable Interrupt  
− Programmable Upper and Lower  
Thresholds with Persistence Filter  
Applications  
D
D
D
D
Display Backlight Control  
Keyboard Illumination Control  
Wait Timer and Power Management  
− Low Power 2.2 mA Sleep State with User-  
Selectable Sleep-After-Interrupt Mode  
− 90 mA Wait State with Programmable Wait  
Time from 2.7 ms to > 8 seconds  
Solid State Lighting Control for Daylight  
Harvesting  
Printer Paper Detection  
2
D
I C Fast Mode Compatible Interface  
− Data Rates up to 400 kbit/s  
− Input Voltage Levels Compatible with V  
or 1.8-V Bus  
End Products and Market Segments  
DD  
D
Mobile Handsets, Tablets, Laptops,  
Monitors and TVs, Portable Media Players  
D
D
Register Set- and Pin-Compatible with the  
TSL2x71 Series  
D
D
D
D
D
D
Medical and Industrial Instrumentation  
White Goods  
Small 2 mm 2 mm Dual Flat No-Lead (FN)  
Package  
Toys  
Industrial/Commercial Lighting  
Digital Signage  
Printers  
Description  
The TSL2572 device family provides ambient light sensing (ALS) that approximates human eye response to  
light intensity under a variety of lighting conditions and through a variety of attenuation materials. Accurate ALS  
measurements are the result of TAOS’ patented dual-diode technology and the UV rejection filter incorporated  
in the package. In addition, the operating range is extended to 60,000 lux in sunlight when the low-gain mode  
is used.  
While useful for general purpose light sensing, the TSL2572 device is particularly useful for display  
management to provide optimum viewing in diverse lighting conditions while extending battery life. The  
TSL2572 device family is ideally suited for use in mobile handsets, TVs, tablets, monitors, and portable media  
players where the display backlight may account for 50% to 70% of the system power consumption.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
Texas Advarnced Optoelectronic Solutions Inc.  
1001 Klein Road S Suite 300 S Plano, TX 75074 S (972) 673-0759  
www.taosinc.com  
1
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Functional Block Diagram  
Interrupt  
INT  
Wait Control  
Upper Limit  
Lower Limit  
CH0  
ADC  
CH0  
Data  
V
DD  
SCL  
SDA  
ALS Control  
CH0  
CH1  
ADC  
CH1  
Data  
GND  
CH1  
Detailed Description  
The TSL2572 light-to-digital device provides on-chip photodiodes, integrating amplifiers, ADCs, accumulators,  
2
clocks, buffers, comparators, a state machine, and an I C interface. Each device combines a Channel 0  
photodiode (CH0), which is responsive to both visible and infrared light, and a channel 1 photodiode (CH1),  
which is responsive primarily to infrared light. Two integrating ADCs simultaneously convert the amplified  
photodiode currents into a digital value providing up to 16 bits of resolution. Upon completion of the conversion  
cycle, the conversion result is transferred to the data registers. This digital output can be read by a  
microprocessor through which the illuminance (ambient light level) in lux is derived using an empirical formula  
to approximate the human eye response.  
2
Communication to the device is accomplished through a fast (up to 400 kHz), two-wire I C serial bus for easy  
connection to a microcontroller or embedded controller. The digital output of the device is inherently more  
immune to noise when compared to an analog interface.  
The device provides a separate pin for level-style interrupts. When interrupts are enabled and a pre-set value  
is exceeded, the interrupt pin is asserted and remains asserted until cleared by the controlling firmware. The  
interrupt feature simplifies and improves system efficiency by eliminating the need to poll a sensor for a light  
intensity value. An interrupt is generated when the value of an ALS conversion exceeds either an upper or lower  
threshold. In addition, a programmable interrupt persistence feature allows the user to determine how many  
consecutive exceeded thresholds are necessary to trigger an interrupt.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
2
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Terminal Functions  
TERMINAL  
TYPE  
DESCRIPTION  
Power supply ground. All voltages are referenced to GND.  
NAME  
GND  
INT  
NO.  
3
5
O
Interrupt — open drain (active low).  
NC  
4
Do not connect.  
2
2
SCL  
SDA  
2
I
I C serial clock input terminal — clock signal for I C serial data.  
2
2
6
I/O  
I C serial data I/O terminal — serial data I/O for I C .  
Supply voltage.  
V
DD  
1
Available Options  
DEVICE  
TSL25721  
TSL25723  
ADDRESS  
PACKAGE − LEADS  
INTERFACE DESCRIPTION  
ORDERING NUMBER  
TSL25721FN  
2
0x39  
0x39  
0x29  
0x29  
FN−6  
FN−6  
FN−6  
FN−6  
I C Vbus = V Interface  
DD  
2
I C Vbus = 1.8 V Interface  
TSL25723FN  
2
TSL25725  
I C Vbus = V Interface  
TSL25725FN  
DD  
2
TSL25727  
I C Vbus = 1.8 V Interface  
TSL25727FN  
Contact TAOS for availability.  
Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage, V (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 V  
DD  
Input terminal voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 3.8 V  
Output terminal voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 3.8 V  
Output terminal current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −1 mA to 20 mA  
Storage temperature range, T  
ESD tolerance, human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
Recommended Operating Conditions  
MIN NOM  
MAX  
3.6  
3.6  
70  
UNIT  
V
2
Supply voltage, V  
Supply voltage, V  
(TSL25721 & TSL25725) (I C V  
= V )  
DD  
2.4  
2.7  
3
3
DD  
bus  
2
(TSL25723 & TSL25727) (I C V  
= 1.8 V)  
V
DD  
bus  
Operating free-air temperature, T  
−30  
°C  
A
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
3
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Operating Characteristics, VDD = 3 V, TA = 25C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
200  
90  
MAX  
UNIT  
Active  
250  
Wait state  
I
Supply current  
μA  
DD  
2
Sleep state — no I C activity  
3 mA sink current  
2.2  
4
0.4  
0.6  
5
0
0
V
I
INT, SDA output low voltage  
V
OL  
6 mA sink current  
Leakage current, SDA, SCL, INT pins  
−5  
μA  
LEAK  
TSL25721, TSL25725  
TSL25723, TSL25727  
TSL25721, TSL25725  
TSL25723, TSL25727  
0.7 V  
DD  
V
SCL, SDA input high voltage  
SCL, SDA input low voltage  
V
V
IH  
1.25  
0.3 V  
DD  
V
IL  
0.54  
ALS Characteristics, VDD = 3 V, TA = 25C, AGAIN = 16, AEN = 1 (unless otherwise noted)  
(Notes 1 ,2, 3)  
PARAMETER  
TEST CONDITIONS  
CHANNEL  
CH0  
MIN  
0
TYP  
1
MAX  
5
UNIT  
E = 0, AGAIN = 120×,  
e
Dark ADC count value  
counts  
ms  
ATIME = 0xDB (100 ms)  
CH1  
0
1
5
ADC integration time step size  
ATIME = 0xFF  
2.58  
2.73  
2.9  
ADC number of integration steps  
(Note 4)  
1
256  
steps  
ADC counts per step (Note 4)  
ADC count value (Note 4)  
ATIME = 0xFF  
ATIME = 0xC0  
0
0
1024 counts  
65535 counts  
6000  
2
CH0  
CH1  
CH0  
CH1  
4000  
5000  
680  
White light, E = 263.9 μW/cm ,  
e
ATIME = 0xF6 (27 ms) (Note 2)  
ADC count value  
counts  
6000  
2
4000  
5000  
2850  
λ = 850 nm, E = 263.4 μW/cm ,  
p
e
ATIME = 0xF6 (27 ms) (Note 3)  
White light, ATIME = 0xF6 (27 ms) (Note 2)  
0.086 0.136  
0.456 0.570  
18.9  
0.186  
0.684  
ADC count value ratio: CH1/CH0  
Irradiance responsivity  
λ = 850 nm, ATIME = 0xF6 (27 ms) (Note 3)  
p
CH0  
White light, ATIME = 0xF6 (27 ms)  
(Note 2)  
counts/  
CH1  
CH0  
CH1  
2.58  
(μW/  
R
e
19.0  
2
λ = 850 nm, ATIME = 0xF6 (27 ms)  
p
cm )  
(Note 3)  
10.8  
AGAIN = 1× and AGL = 1  
AGAIN = 8× and AGL = 0  
AGAIN = 16× and AGL = 0  
AGAIN = 120× and AGL = 0  
0.128  
7.2  
0.16  
8.0  
0.192  
8.8  
×
Gain scaling, relative to 1× gain  
setting  
14.4  
108  
16.0  
120  
17.6  
132  
NOTES: 1. Optical measurements are made using small-angle incident radiation from light-emitting diode optical sources. Visible white LEDs  
and infrared 850 nm LEDs are used for final product testing for compatibility with high-volume production.  
2. The white LED irradiance is supplied by a white light-emitting diode with a nominal color temperature of 4000 K.  
3. The 850 nm irradiance E is supplied by a GaAs light-emitting diode with the following typical characteristics: peak wavelength  
e
λp = 850 nm and spectral halfwidth Δλ½ = 42 nm.  
4. Parameter ensured by design and is not tested.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
4
www.taosinc.com  
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Wait Characteristics, VDD = 3 V, TA = 25C, WEN = 1 (unless otherwise noted)  
PARAMETER  
Wait step size  
Wait number of integration steps (Note 1)  
NOTE 1: Parameter ensured by design and is not tested.  
TEST CONDITIONS  
CHANNEL  
MIN  
2.58  
1
TYP  
MAX  
2.9  
UNIT  
ms  
WTIME = 0xFF  
2.73  
256  
steps  
AC Electrical Characteristics, VDD = 3 V, TA = 25C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
kHz  
μs  
2
f
t
Clock frequency (I C only)  
400  
(SCL)  
Bus free time between start and stop condition  
1.3  
(BUF)  
Hold time after (repeated) start condition. After  
this period, the first clock is generated.  
t
0.6  
μs  
(HDSTA)  
t
t
t
t
t
t
t
t
Repeated start condition setup time  
Stop condition setup time  
Data hold time  
0.6  
0.6  
0
μs  
μs  
μs  
ns  
μs  
μs  
ns  
ns  
pF  
(SUSTA)  
(SUSTO)  
(HDDAT)  
(SUDAT)  
(LOW)  
(HIGH)  
F
Data setup time  
100  
1.3  
0.6  
SCL clock low period  
SCL clock high period  
Clock/data fall time  
300  
300  
10  
Clock/data rise time  
Input pin capacitance  
R
C
i
Specified by design and characterization; not production tested.  
PARAMETER MEASUREMENT INFORMATION  
t
t
(R)  
t
(F)  
(LOW)  
V
IH  
SCL  
SDA  
V
IL  
t
t
t
(HDSTA)  
(HIGH)  
(SUSTA)  
t
t
t
(SUSTO)  
t
(BUF)  
(HDDAT)  
(SUDAT)  
V
V
IH  
IL  
P
S
S
P
Stop  
Condition  
Start  
Condition  
Figure 1. Timing Diagrams  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
5
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
TYPICAL CHARACTERISTICS  
NORMALIZED RESPONSIVITY  
vs.  
SPECTRAL RESPONSIVITY  
ANGULAR DISPLACEMENT  
1
0.8  
0.6  
1.0  
0.8  
Both Axes  
Ch 0  
0.6  
0.4  
0.4  
0.2  
0
Ch 1  
0.2  
0
-Q  
−30  
+Q  
30  
90  
−90  
−60  
0
60  
300 400 500 600 700 800 900 1000 1100  
Q − Angular Displacement − °  
λ − Wavelength − nm  
Figure 2  
Figure 3  
RESPONSE to WHITE LED  
vs.  
NORMALIZED IDD  
vs.  
VDD and TEMPERATURE  
TEMPERATURE  
110%  
115%  
110%  
108%  
106%  
104%  
102%  
105%  
100%  
95%  
0C  
Ch 0  
100%  
98%  
96%  
94%  
92%  
50C  
25C  
75C  
Ch 1  
90%  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
0
10  
20  
30  
40  
50  
60  
70  
Temperature − °C  
V
DD  
— V  
Figure 4  
Figure 5  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
6
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
PRINCIPLES OF OPERATION  
System State Machine  
An internal state machine provides system control of the ALS and wait timer features of the device. At power  
up, an internal power-on-reset initializes the device and puts it in a low-power Sleep state.  
2
When a start condition is detected on the I C bus, the device transitions to the Idle state where it checks the  
Enable register (0x00) PON bit. If PON is disabled, the device will return to the Sleep state to save power.  
Otherwise, the device will remain in the Idle state until the ALS function is enabled. Once enabled, the device  
will execute the Wait and ALS states in sequence as indicated in Figure 6. Upon completion and return to Idle,  
the device will automatically begin a new Wait-ALS cycle as long as PON and AEN remain enabled.  
If the ALS function generates an interrupt and the Sleep-After-Interrupt (SAI) feature is enabled, the device will  
2
transition to the Sleep state and remain in a low-power mode until an I C command is received. See the  
Interrupts section for additional information.  
Sleep  
I2C  
Start  
!PON  
Idle  
WEN &  
AEN  
!WEN  
& AEN  
INT & SAI  
ALS  
Wait  
Figure 6. Simplified State Diagram  
Photodiodes  
Conventional ALS detectors respond strongly to infrared light, which the human eye does not see. This can lead  
to significant error when the infrared content of the ambient light is high (such as with incandescent lighting).  
This problem is overcome through the use of two photodiodes. The Channel 0 photodiode, referred to as the  
CH0 channel, is sensitive to both visible and infrared light, while the Channel 1 photodiode, referred to as CH1,  
is sensitive primarily to infrared light. Two integrating ADCs convert the photodiode currents to digital outputs.  
The ADC digital outputs from the two channels are used in a formula to obtain a value that approximates the  
human eye response in units of lux.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
7
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
ALS Operation  
The ALS engine contains ALS gain control (AGAIN) and two integrating analog-to-digital converters (ADC), one  
for the CH0 and one for the CH1 photodiodes. The ALS integration time (ATIME) impacts both the resolution  
and the sensitivity of the ALS reading. Integration of both channels occurs simultaneously and upon completion  
of the conversion cycle, the results are transferred to the data registers (C0DATA and C1DATA). This data is  
also referred to as channel count. The transfers are double-buffered to ensure data integrity.  
ATIME(r1)  
2.73 ms to 699 ms  
C0DATAH(r0x15), C0DATA(r0x14)  
AGL(r0x0D, b2)  
CH0  
ALS  
CH0  
Data  
ALS Control  
CH0  
CH1  
ADC  
CH1  
Data  
C1DATAH(r0x17), C1DATA(r0x16)  
CH1  
AGAIN(r0x0F, b1:0)  
1, 8, 16, 120Gain  
Figure 7. ALS Operation  
The registers for programming the integration and wait times are 2’s compliment values. The actual time can  
be calculated as follows:  
ATIME = 256 − Integration Time / 2.73 ms  
Inversely, the time can be calculated from the register value as follows:  
Integration Time = 2.73 ms × (256 − ATIME)  
In order to reject the 50/60-Hz ripple present in fluorescent lighting, the integration time needs to  
be programmed in multiples of 10 / 8.3 ms or the half cycle time. Both frequencies can be rejected with a  
programmed value of 50 ms (ATIME = 0xED) or multiples of 50 ms (i.e. 100, 150, 200, 400, 600).  
AGAIN can be programmed to 1×, 8×, 16×, or 120× with the 2-bit AGAIN field in the Control register (0x0F).  
The gain, in terms of amount of gain, will be represented by the value AGAINx, i.e. AGAINx = 1, 8, 16, or 120.  
With the AGL bit set, the 1× and 8× gains are lowered to 1/6× and 8/6×, respectively, to allow for operation up  
to 60k lux. Do not enable AGL when AGAIN is 16× or 120×.  
Lux Equation  
The lux calculation is a function of CH0 channel count (C0DATA), CH1 channel count (C1DATA), ALS gain  
(AGAINx), and ALS integration time in milliseconds (ATIME_ms). If an aperture, glass/plastic, or a light pipe  
attenuates the light equally across the spectrum (300 nm to 1100 nm), then a scaling factor referred to as glass  
attenuation (GA) can be used to compensate for attenuation. For a device in open air with no aperture or  
glass/plastic above the device, GA = 1. If it is not spectrally flat, then a custom lux equation with new coefficients  
should be generated. (See TAOS application note).  
Counts per Lux (CPL) needs to be calculated only when ATIME or AGAIN is changed, otherwise it remains a  
constant. The first segment of the equation (Lux1) covers fluorescent and incandescent light. The second  
segment (Lux2) covers dimmed incandescent light. The final lux is the maximum of Lux1, Lux2, or 0.  
CPL = (ATIME_ms × AGAINx) / (GA × 60)  
Lux1 = (1 × C0DATA − 1.87 × C1DATA) / CPL  
Lux2 = (0.63 × C0DATA − 1 × C1DATA) / CPL  
Lux = MAX(Lux1, Lux2, 0)  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
8
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Interrupts  
The interrupt feature simplifies and improves system efficiency by eliminating the need to poll the sensor for  
light intensity values outside of a user-defined range. While the interrupt function is always enabled and it’s  
status is available in the status register (0x13), the output of the interrupt state can be enabled using the ALS  
interrupt enable (AIEN) fields in the enable register (0x00).  
Two 16-bit interrupt threshold registers allow the user to set limits below and above a desired light level. An  
interrupt can be generated when the ALS CH0 data (C0DATA) falls outside of the desired light level range, as  
determined by the values in the ALS interrupt low threshold registers (AILTx) and ALS interrupt high threshold  
registers (AIHTx).  
It is important to note that the thresholds are evaluated in sequence, first the low threshold, then the high  
threshold. As a result, if the low threshold is set above the high threshold, the high threshold is ignored and only  
the low threshold is evaluated.  
To further control when an interrupt occurs, the device provides a persistence filter. The persistence filter allows  
the user to specify the number of consecutive out-of-range ALS occurrences before an interrupt is generated.  
The persistence filter register (0x0C) allows the user to set the ALS persistence filter (APERS) value. See the  
persistence filter register for details on the persistence filter values. Once the persistence filter generates an  
interrupt, it will continue until a special function interrupt clear command is received (see command register).  
AIHTH(r07), AIHTL(r06)  
APERS(r0x0C, b3:0)  
Upper Limit  
ALS Persistence  
CH0  
ADC  
CH0  
Data  
Lower Limit  
CH0  
AILTH(r05), AILTL(r04)  
Figure 8. Programmable Interrupt  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
9
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
System State Machine Timing  
The system state machine shown in Figure 6 provides an overview of the states and state transitions that  
provide system control of the device. This section highlights the programmable features, which affect the state  
machine cycle time, and provides details to determine system level timing.  
When the power management feature is enabled (WEN), the state machine will transition in turn to the Wait  
state. The wait time is determined by WLONG, which extends normal operation by 12× when asserted, and  
WTIME. The formula to determine the wait time is given in the box associated with the Wait state in Figure 9.  
When the ALS feature is enabled (AEN), the state machine will transition through the ALS Init and ALS ADC  
states. The ALS Init state takes 2.73 ms, while the ALS ADC time is dependent on the integration time (ATIME).  
The formula to determine ALS ADC time is given in the associated box in Figure 9. If an interrupt is generated  
as a result of the ALS cycle, it will be asserted at the end of the ALS ADC state and transition to the Sleep state  
if SAI is enabled.  
Sleep  
2
I C Start  
!PON  
WEN  
& AEN  
Idle  
INT & SAI  
!WEN  
& AEN  
ATIME: 1 ~ 256 steps  
Time: 2.73 ms/step  
Range: 2.73 ms ~ 699 ms  
ALS  
ADC  
Wait  
ALS  
Init  
WTIME: 1 ~ 256 steps  
WLONG = 0  
2.73 ms/step  
WLONG = 1  
Time: 2.73 ms  
Time:  
32.8 ms/step  
32.8 ms ~ 8.39s  
Range: 2.73 ms ~ 699 ms  
Note: PON, WEN, AEN, and SAI are fields in the Enable register (0x00).  
Figure 9. Detailed State Diagram  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
10  
www.taosinc.com  
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
I2C Protocol  
2
Interface and control are accomplished through an I C serial compatible interface (standard or fast mode) to  
a set of registers that provide access to device control functions and output data. The devices support the 7-bit  
2
I C addressing protocol.  
2
The I C standard provides for three types of bus transaction: read, write, and a combined protocol (Figure 10).  
During a write operation, the first byte written is a command byte followed by data. In a combined protocol, the  
first byte written is the command byte followed by reading a series of bytes. If a read command is issued, the  
register address from the previous command will be used for data access. Likewise, if the MSB of the command  
is not set, the device will write a series of bytes at the address stored in the last valid command with a register  
address. The command byte contains either control information or a 5-bit register address. The control  
commands can also be used to clear interrupts.  
2
2
The I C bus protocol was developed by Philips (now NXP). For a complete description of the I C protocol, please  
2
review the NXP I C design specification at http://www.i2c−bus.org/references/.  
A
N
P
R
S
Acknowledge (0)  
Not Acknowledged (1)  
Stop Condition  
Read (1)  
Start Condition  
Sr  
W
Repeated Start Condition  
Write (0)  
... Continuation of protocol  
Master-to-Slave  
Slave-to-Master  
1
7
1
1
8
1
8
1
1
...  
...  
S
Slave Address  
W
A
Command Code  
A
Data Byte  
A
P
2
I C Write Protocol  
1
7
1
1
8
1
8
1
1
S
Slave Address  
R
A
Data  
A
Data  
A
P
2
I C Read Protocol  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
W
A
Command Code  
A
Sr  
Slave Address  
R
A
8
1
8
1
1
...  
Data  
A
Data  
A
P
2
I C Read Protocol — Combined Format  
2
Figure 10. I C Protocols  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
11  
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Register Set  
The device is controlled and monitored by data registers and a command register accessed through the serial  
interface. These registers provide for a variety of control functions and can be read to determine results of the  
ADC conversions. The register set is summarized in Table 1.  
Table 1. Register Address  
ADDRESS  
−−  
RESISTER NAME  
COMMAND  
ENABLE  
ATIME  
R/W  
W
REGISTER FUNCTION  
Specifies register address  
RESET VALUE  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ID  
0x00  
0x01  
0x03  
0x04  
0x05  
0x06  
0x07  
0x0C  
0x0D  
0x0F  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Enables states and interrupts  
ALS time  
WTIME  
Wait time  
AILTL  
ALS interrupt low threshold low byte  
ALS interrupt low threshold high byte  
ALS interrupt high threshold low byte  
ALS interrupt high threshold high byte  
Interrupt persistence filters  
Configuration  
AILTH  
AIHTL  
AIHTH  
PERS  
CONFIG  
CONTROL  
ID  
Control register  
Device ID  
STATUS  
C0DATA  
C0DATAH  
C1DATA  
C1DATAH  
R
Device status  
0x00  
0x00  
0x00  
0x00  
0x00  
R
CH0 ADC low data register  
CH0 ADC high data register  
CH1 ADC low data register  
CH1 ADC high data register  
R
R
R
2
The mechanics of accessing a specific register depends on the specific protocol used. See the section on I C  
protocols on the previous pages. In general, the COMMAND register is written first to specify the specific  
control/status register for following read/write operations.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
12  
www.taosinc.com  
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Command Register  
The command registers specifies the address of the target register for future write and read operations.  
Table 2. Command Register  
7
6
5
4
3
2
ADD  
1
0
Reset  
0x00  
COMMAND  
COMMAND  
TYPE  
FIELD  
COMMAND  
TYPE  
BITS  
7
DESCRIPTION  
Select Command Register. Must write as 1 when addressing COMMAND register.  
Selects type of transaction to follow in subsequent data transfers:  
6:5  
FIELD VALUE  
DESCRIPTION  
00  
01  
10  
11  
Repeated byte protocol transaction  
Auto-increment protocol transaction  
Reserved — Do not use  
Special function — See description below  
Transaction type 00 will repeatedly read the same register with each data access.  
Transaction type 01 will provide an auto-increment function to read successive register bytes.  
ADD  
4:0  
Address field/special function field. Depending on the transaction type, see above, this field either  
specifies a special function command or selects the specific control-status-register for following write and  
read transactions. The field values listed below apply only to special function commands:  
FIELD VALUE  
00000  
DESCRIPTION  
Normal — no action  
ALS interrupt clear  
00110  
other  
Reserved — Do not write  
The ALS interrupt clear special function clears any pending ALS interrupt and is self clearing.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
13  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Enable Register (0x00)  
The ENABLE register is used to power the device on/off, enable functions, and interrupts.  
Table 3. Enable Register  
7
6
5
4
3
2
1
0
Reset  
0x00  
Reserved  
SAI  
Reserved  
AIEN  
WEN  
Reserved  
AEN  
PON  
ENABLE  
FIELD  
BITS  
DESCRIPTION  
Reserved  
7
Reserved. Write as 0.  
Sleep after interrupt. When asserted, the device will power down at the end of an ALS cycle if an interrupt has  
been generated.  
SAI  
6
Reserved  
AIEN  
5
4
Reserved. Write as 0.  
ALS interrupt mask. When asserted, permits ALS interrupts to be generated.  
Wait Enable. This bit activates the wait feature. Writing a 1 activates the wait timer. Writing a 0 disables the  
wait timer.  
WEN  
3
Reserved  
AEN  
2
1
Reserved. Write as 0.  
ALS Enable. This bit actives the two channel ADC. Writing a 1 activates the ALS. Writing a 0 disables the ALS.  
Power ON. This bit activates the internal oscillator to permit the timers and ADC channels to operate. Writing a  
1 activates the oscillator. Writing a 0 disables the oscillator.  
PON  
0
ALS Time Register (0x01)  
The ALS time register controls the internal integration time of the ALS channel ADCs in 2.73 ms increments.  
Upon power up, the ALS time register is set to 0xFF.  
Table 4. ALS Time Register  
FIELD  
BITS  
DESCRIPTION  
INTEG_CYCLES  
ATIME  
7:0  
VALUE  
0xFF  
0xF6  
TIME  
MAX COUNT  
1024  
1
2.73 ms  
27.3 ms  
101 ms  
175 ms  
699 ms  
10  
37  
64  
256  
10240  
0xDB  
0xC0  
0x00  
37888  
65535  
65535  
Wait Time Register (0x03)  
Wait time is set 2.73 ms increments unless the WLONG bit is asserted in which case the wait times are 12×  
longer. WTIME is programmed as a 2’s complement number. Upon power up, the wait time register is set to  
0xFF.  
Table 5. Wait Time Register  
FIELD  
BITS  
DESCRIPTION  
TIME (WLONG = 0)  
WTIME  
7:0  
REGISTER VALUE  
WAIT TIME  
TIME (WLONG = 1)  
0.033 sec  
0xFF  
0xB6  
0x00  
1
2.73 ms  
202 ms  
699 ms  
74  
2.4 sec  
256  
8.4 sec  
NOTE: The Wait Time Register should be configured before AEN is asserted.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
14  
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
ALS Interrupt Threshold Registers (0x04 − 0x07)  
The ALS interrupt threshold registers provides the values to be used as the high and low trigger points for the  
comparison function for interrupt generation. If C0DATA crosses below the low threshold specified, or above  
the higher threshold, an interrupt is asserted on the interrupt pin.  
Table 6. ALS Interrupt Threshold Registers  
REGISTER  
AILTL  
ADDRESS  
0x04  
BITS  
7:0  
DESCRIPTION  
ALS low threshold lower byte  
ALS low threshold upper byte  
ALS high threshold lower byte  
ALS high threshold upper byte  
AILTH  
0x05  
7:0  
AIHTL  
0x06  
7:0  
AIHTH  
0x07  
7:0  
Persistence Filter Register (0x0C)  
The persistence filter register controls the interrupt capabilities of the device. Configurable filtering is provided  
to allow interrupts to be generated after every ADC cycle or if the ADC cycle has produced a result that is outside  
of the values specified by threshold register for some specified amount of time. ALS interrupts are generated  
using C0DATA.  
Table 7. Persistence Filter Register  
7
6
5
4
3
2
1
0
Reset  
0x00  
PERS  
FIELD  
Reserved  
APERS  
DESCRIPTION  
BITS  
7:4  
Reserved  
APERS  
Reserved. Write as 0.  
ALS Interrupt persistence filter. Controls rate of ALS interrupt to the host processor.  
3:0  
FIELD VALUE  
0000  
0001  
0010  
0011  
MEANING  
INTERRUPT PERSISTENCE FUNCTION  
Every ALS cycle generates an interrupt  
Every  
1
1 value outside of threshold range  
2 consecutive values out of range  
3 consecutive values out of range  
5 consecutive values out of range  
10 consecutive values out of range  
15 consecutive values out of range  
20 consecutive values out of range  
25 consecutive values out of range  
30 consecutive values out of range  
35 consecutive values out of range  
40 consecutive values out of range  
45 consecutive values out of range  
50 consecutive values out of range  
55 consecutive values out of range  
60 consecutive values out of range  
2
3
0100  
0101  
0110  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
15  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Configuration Register (0x0D)  
The configuration register sets the wait long time and ALS gain level.  
Table 8. Configuration Register  
7
6
5
4
3
2
1
0
Reset  
0x00  
CONFIG  
FIELD  
AGL  
WLONG  
Reserved  
Reserved  
BITS  
DESCRIPTION  
Reserved  
7:3  
Reserved. Write as 0.  
ALS gain level. When asserted, the 1× and 8× ALS gain (AGAIN) modes are scaled by 0.16. Otherwise,  
AGL  
2
AGAIN is scaled by 1. Do not use with AGAIN greater than 8×.  
Wait Long. When asserted, the wait cycles are increased by a factor 12× from that programmed in the  
WLONG  
1
0
WTIME register.  
Reserved  
Reserved. Write as 0.  
Control Register (0x0F)  
The Control register provides ALS gain control to the analog block.  
Table 9. Control Register  
7
6
5
4
3
2
1
0
Reset  
0x00  
CONTROL  
AGAIN  
Reserved  
FIELD  
Reserved  
AGAIN  
BITS  
7:2  
DESCRIPTION  
Reserved. Write as 0.  
ALS Gain.  
1:0  
FIELD VALUE  
ALS GAIN VALUE  
00  
01  
10  
11  
1× gain  
8× gain  
16× gain  
120× gain  
ID Register (0x12)  
The ID Register provides the value for the part number. The ID register is a read-only register.  
Table 10. ID Register  
7
6
5
4
3
2
1
0
Reset  
ID  
ID  
ID  
FIELD  
BITS  
DESCRIPTION  
0x34= TSL25721 & TSL25725  
0x3D = TSL25723 & TSL25727  
ID  
7:0  
Part number identification  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
16  
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Status Register (0x13)  
The Status Register provides the internal status of the device. This register is read only.  
Table 11. Status Register  
7
6
5
4
3
2
1
0
Reset  
0x00  
STATUS  
FIELD  
Reserved  
AINT  
Reserved  
AVALID  
BIT  
7:5  
4
DESCRIPTION  
Reserved  
AINT  
Reserved. Bits read as 0.  
ALS Interrupt. Indicates that the device is asserting an ALS interrupt.  
Reserved. Bits read as 0.  
Reserved  
3:1  
ALS Valid. Indicates that the ALS channels have completed an integration cycle after AEN has been  
asserted.  
AVALID  
0
ADC Channel Data Registers (0x14 − 0x17)  
2
ALS data is stored as two 16-bit values. To ensure the data is read correctly, a two-byte read I C transaction  
should be used with auto increment protocol bits set in the command register. With this operation, when the  
lower byte register is read, the upper eight bits are stored in a shadow register, which is read by a subsequent  
read to the upper byte. The upper register will read the correct value even if additional ADC integration cycles  
end between the reading of the lower and upper registers.  
Table 12. ADC Channel Data Registers  
REGISTER  
C0DATA  
ADDRESS  
0x14  
BITS  
7:0  
DESCRIPTION  
ALS CH0 data low byte  
C0DATAH  
C1DATA  
0x15  
7:0  
ALS CH0 data high byte  
ALS CH1 data low byte  
ALS CH1 data high byte  
0x16  
7:0  
C1DATAH  
0x17  
7:0  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
17  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
APPLICATION INFORMATION: HARDWARE  
Typical Hardware Application  
A typical hardware application circuit is shown in Figure 11. A 1-μF low-ESR decoupling capacitor should be  
placed as close as possible to the V pin.  
DD  
V
DD  
V
BUS  
V
DD  
R
R
R
PI  
P
P
1 mF  
TSL2572  
INT  
SCL  
GND  
SDA  
Figure 11. Typical Application Hardware Circuit  
2
2
V
BUS  
in Figure 11 refers to the I C bus voltage, which is either V or 1.8 V. Be sure to apply the specified I C  
DD  
bus voltage shown in the Available Options table for the specific device being used.  
2
The I C signals and the Interrupt are open-drain outputs and require pull-up resistors. The pull-up resistor (R )  
P
2
2
value is a function of the I C bus speed, the I C bus voltage, and the capacitive load. The TAOS EVM running  
at 400 kbps, uses 1.5-kΩ resistors. A 10-kΩ pull-up resistor (R ) can be used for the interrupt line.  
PI  
PCB Pad Layout  
Suggested land pattern based on the IPC−7351B Generic Requirements for Surface Mount Design and Land  
Pattern Standard (2010) for the small outline no-lead (SON) package is shown in Figure 12.  
2.70  
1.20  
1.20  
0.35 6  
0.65  
0.65  
TOP VIEW  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
Figure 12. Suggested FN Package PCB Layout  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
18  
www.taosinc.com  
 
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
PACKAGE INFORMATION  
PACKAGE FN  
TOP VIEW  
Dual Flat No-Lead  
398 10  
PIN OUT  
TOP VIEW  
PIN 1  
VDD  
1
6 SDA  
5 INT  
4 NC  
355  
10  
2000 100  
SCL 2  
GND 3  
2000  
100  
Photodiode Array Area  
END VIEW  
SIDE VIEW  
295  
Nominal  
650 50  
203 8  
650  
BSC  
300  
50  
BOTTOM VIEW  
C
of Photodiode Array Area  
(Note B)  
C
L of Solder Contacts  
L
1 Nominal  
144 Nominal  
C
L of Solder Contacts  
of Photodiode Array Area (Note B)  
C
L
PIN 1  
Pb  
750 150  
Lead Free  
NOTES: A. All linear dimensions are in micrometers.  
B. The die is centered within the package within a tolerance of 75 μm.  
C. Package top surface is molded with an electrically nonconductive clear plastic compound having an index of refraction of 1.55.  
D. Contact finish is copper alloy A194 with pre-plated NiPdAu lead finish.  
E. This package contains no lead (Pb).  
F. This drawing is subject to change without notice.  
Figure 13. Package FN — Dual Flat No-Lead Packaging Configuration  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
19  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
CARRIER TAPE AND REEL INFORMATION  
TOP VIEW  
2.00 0.05  
1.75  
1.50  
4.00  
4.00  
B
+ 0.30  
8.00  
− 0.10  
3.50 0.05  
1.00  
0.25  
A
A
B
DETAIL A  
DETAIL B  
5Max  
5Max  
0.254  
2.18 0.05  
2.18 0.05  
0
.
0
2
0.83 0.05  
B
o
A
o
K
o
NOTES: A. All linear dimensions are in millimeters. Dimension tolerance is 0.10 mm unless otherwise noted.  
B. The dimensions on this drawing are for illustrative purposes only. Dimensions of an actual carrier may vary slightly.  
C. Symbols on drawing A , B , and K are defined in ANSI EIA Standard 481−B 2001.  
o
o
o
D. Each reel is 178 millimeters in diameter and contains 3500 parts.  
E. TAOS packaging tape and reel conform to the requirements of EIA Standard 481−B.  
F. In accordance with EIA standard, device pin 1 is located next to the sprocket holes in the tape.  
G. This drawing is subject to change without notice.  
Figure 14. Package FN Carrier Tape  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
20  
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
SOLDERING INFORMATION  
The FN package has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate.  
The solder reflow profile describes the expected maximum heat exposure of components during the solder  
reflow process of product on a PCB. Temperature is measured on top of component. The components should  
be limited to a maximum of three passes through this solder reflow profile.  
Table 13. Solder Reflow Profile  
PARAMETER  
Average temperature gradient in preheating  
Soak time  
REFERENCE  
DEVICE  
2.5°C/sec  
t
2 to 3 minutes  
Max 60 sec  
Max 50 sec  
Max 10 sec  
260°C  
soak  
Time above 217°C (T1)  
t
1
Time above 230°C (T2)  
t
2
Time above T  
−10°C (T3)  
t
3
peak  
Peak temperature in reflow  
T
peak  
Temperature gradient in cooling  
Max −5°C/sec  
Not to scale — for reference only  
T
peak  
T
3
T
T
2
1
Time (sec)  
t
t
t
3
2
1
t
soak  
Figure 15. Solder Reflow Profile Graph  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
21  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
STORAGE INFORMATION  
Moisture Sensitivity  
Optical characteristics of the device can be adversely affected during the soldering process by the release and  
vaporization of moisture that has been previously absorbed into the package. To ensure the package contains  
the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping.  
Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect  
them from ambient moisture during shipping, handling, and storage before use.  
Shelf Life  
The calculated shelf life of the device in an unopened moisture barrier bag is 12 months from the date code on  
the bag when stored under the following conditions:  
Shelf Life: 12 months  
Ambient Temperature: < 40°C  
Relative Humidity: < 90%  
Rebaking of the devices will be required if the devices exceed the 12 month shelf life or the Humidity Indicator  
Card shows that the devices were exposed to conditions beyond the allowable moisture region.  
Floor Life  
The FN package has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices  
removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices  
are stored under the following conditions:  
Floor Life: 168 hours  
Ambient Temperature: < 30°C  
Relative Humidity: < 60%  
If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior  
to solder reflow or dry packing.  
Rebaking Instructions  
When the shelf life or floor life limits have been exceeded, rebake at 50°C for 12 hours.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
22  
www.taosinc.com  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
PRODUCTION DATA — information in this document is current at publication date. Products conform to  
specifications in accordance with the terms of Texas Advanced Optoelectronic Solutions, Inc. standard  
warranty. Production processing does not necessarily include testing of all parameters.  
LEAD-FREE (Pb-FREE) and GREEN STATEMENT  
Pb-Free (RoHS) TAOS’ terms Lead-Free or Pb-Free mean semiconductor products that are compatible with the current  
RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous  
materials. Where designed to be soldered at high temperatures, TAOS Pb-Free products are suitable for use in specified  
lead-free processes.  
Green (RoHS & no Sb/Br) TAOS defines Green to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and  
Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).  
Important Information and Disclaimer The information provided in this statement represents TAOS’ knowledge and  
belief as of the date that it is provided. TAOS bases its knowledge and belief on information provided by third parties,  
and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate  
information from third parties. TAOS has taken and continues to take reasonable steps to provide representative  
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and  
chemicals. TAOS and TAOS suppliers consider certain information to be proprietary, and thus CAS numbers and other  
limited information may not be available for release.  
NOTICE  
Texas Advanced Optoelectronic Solutions, Inc. (TAOS) reserves the right to make changes to the products contained in this  
document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised  
to contact TAOS to obtain the latest product information before placing orders or designing TAOS products into systems.  
TAOS assumes no responsibility for the use of any products or circuits described in this document or customer product  
design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. TAOS further makes no claim as to the suitability of its products for any particular  
purpose, nor does TAOS assume any liability arising out of the use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages.  
TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS, INC. PRODUCTS ARE NOT DESIGNED OR INTENDED FOR  
USE IN CRITICAL APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF THE TAOS PRODUCT MAY  
RESULT IN PERSONAL INJURY OR DEATH. USE OF TAOS PRODUCTS IN LIFE SUPPORT SYSTEMS IS EXPRESSLY  
UNAUTHORIZED AND ANY SUCH USE BY A CUSTOMER IS COMPLETELY AT THE CUSTOMER’S RISK.  
LUMENOLOGY, TAOS, the TAOS logo, and Texas Advanced Optoelectronic Solutions are registered trademarks of Texas Advanced  
Optoelectronic Solutions Incorporated.  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
www.taosinc.com  
23  
TSL2572  
LIGHT-TO-DIGITAL CONVERTER  
TAOS132 − MARCH 2012  
Copyright E 2012, TAOS Inc.  
The LUMENOLOGY r Company  
r
r
24  
www.taosinc.com  

相关型号:

TSL25727

LIGHT-TO-DIGITAL CONVERTER
ETC

TSL257S

HIGH-SENSITIVITY LIGHT-TO-VOLTAGE CONVERTER
AMSCO

TSL257SM-LF

HIGH-SENSITIVITY LIGHT-TO-VOLTAGE CONVERTER
TAOS

TSL257T

HIGH-SENSITIVITY LIGHT-TO-VOLTAGE CONVERTER
TAOS

TSL257T

HIGH-SENSITIVITY LIGHT-TO-VOLTAGE CONVERTER
AMSCO

TSL2580

LIGHT-TO-DIGITAL CONVERTER
TAOS

TSL2580

LIGHT-TO-DIGITAL CONVERTER
AMSCO

TSL2581

LIGHT-TO-DIGITAL CONVERTER
TAOS

TSL2581

LIGHT-TO-DIGITAL CONVERTER
AMSCO

TSL2583

LIGHT-TO-DIGITAL CONVERTER
TAOS

TSL2583

LIGHT-TO-DIGITAL CONVERTER
AMSCO

TSL2591

very-high sensitivity light-to-digital
AMSCO