TMS664164DGE-8A [ETC]

SDRAM|4X1MX16|CMOS|TSOP|54PIN|PLASTIC ;
TMS664164DGE-8A
型号: TMS664164DGE-8A
厂家: ETC    ETC
描述:

SDRAM|4X1MX16|CMOS|TSOP|54PIN|PLASTIC

动态存储器
文件: 总56页 (文件大小:956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
Organization . . .  
Pipeline Architecture (Single-Cycle  
1048576 x 16 Bits x 4 Banks  
2097152 x 8 Bits x 4 Banks  
4194304 x 4 Bits x 4 Banks  
Architecture)  
Single Write/Read Burst  
Self-Refresh Capability (Every 16 s)  
3.3-V Power Supply (±10% Tolerance)  
Low-Noise, Low-Voltage  
Transistor-Transistor Logic (LVTTL)  
Interface  
Four Banks for On-Chip Interleaving for  
x8/x16 (Gapless Access) Depending on  
Organizations  
Power-Down Mode  
High Bandwidth – Up to 125-MHz Data  
Rates  
Compatible With JEDEC Standards  
16K RAS-Only Refresh (Total for All Banks)  
4K Auto Refresh (Total for All Banks)/64 ms  
Burst Length Programmable to 1, 2, 4, 8  
Programmable Output Sequence – Serial or  
Interleave  
Automatic Precharge and Controlled  
Precharge  
Chip-Select and Clock-Enable for  
Enhanced-System Interfacing  
Burst Interruptions Supported:  
– Read Interruption  
– Write Interruption  
Cycle-by-Cycle DQ Bus Mask Capability  
Only x16 SDRAM Configuration Supports  
Upper-/Lower-Byte Masking Control  
– Precharge Interruption  
Support Clock-Suspend Operation (Hold  
Command)  
Programmable CAS Latency From Column  
Address  
Intel PC100 Compliant (-8 and -8A parts)  
Performance Ranges:  
SYNCHRONOUS  
CLOCK CYLE  
TIME  
ACCESS TIME  
CLOCK TO  
OUTPUT  
REFRESH  
INTERVAL  
t
t
t
t
t
REF  
CK3  
CK2  
AC3  
AC2  
’664xx4-8  
’664xx4-8A  
’664xx4-10  
8 ns  
8 ns  
10 ns  
15 ns  
15 ns  
6 ns  
6 ns  
6 ns  
64 ms  
64 ms  
64 ms  
7.5 ns  
7.5 ns  
10 ns  
7.5 ns  
description  
The TMS664xx4 series are 67108864-bit synchronous dynamic random-access memory (SDRAM) devices  
which are organized as follow:  
Four banks of 1 048 576 words with 16 bits per word  
Four banks of 2097152 words with 8 bits per word  
Four banks of 4194304 words with 4 bits per word  
All inputs and outputs of the TMS664xx4 series are compatible with the LVTTL interface.  
The SDRAM employs state-of-the-art technology for high-performance, reliability, and low power. All inputs and  
outputs are synchronized with the CLK input to simplify system design and to enhance use with high-speed  
microprocessors and caches.  
The TMS664xx4 SDRAM is available in a 400-mil, 54-pin surface-mount thin small-outline package (TSOP)  
(DGE suffix).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
TMS664xx4 (LVTTL)  
DGE PACKAGE  
(TOP VIEW)  
4M x 16  
8M x 8  
16M x 4  
V
V
V
CC  
1
2
54  
53  
V
V
V
CC  
CC  
SS  
SS  
SS  
ROW  
ADDR  
COL  
ADDR  
DQ0  
DQ0  
NC  
NC  
DQ7  
DQ15  
V
V
V
3
4
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
V
V
V
SSQ  
x4  
x8  
A0A13  
A0A13  
A0A13  
A0A9  
A0A8  
A0A7  
CCQ  
DQ1  
CCQ  
NC  
CCQ  
NC  
SSQ  
NC  
SSQ  
NC  
DQ14  
DQ13  
DQ2  
DQ1  
DQ0  
5
DQ3  
DQ6  
x16  
V
SSQ  
DQ3  
V
V
6
V
CCQ  
NC  
V
CCQ  
NC  
V
CCQ  
SSQ  
NC  
SSQ  
NC  
7
DQ12  
DQ11  
A10  
Auto Precharge  
DQ4  
DQ2  
NC  
8
NC  
DQ5  
V
CCQ  
DQ5  
V
CCQ  
NC  
V
CCQ  
NC  
9
V
SSQ  
NC  
V
SSQ  
NC  
V
SSQ  
BANK-SELECT  
ADDRESS  
BANKS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DQ10  
DQ9  
DQ6  
DQ3  
DQ1  
54-Pin  
Plastic  
DQ2  
DQ4  
4
A13A12  
V
SSQ  
DQ7  
V
V
V
V
CCQ  
NC  
V
CCQ  
DQ8  
SSQ  
NC  
SSQ  
NC  
CCQ  
NC  
TSOP–II  
V
V
V
(Pitch = 0.8 mm)  
V
SS  
NC  
V
V
SS  
CC  
CC  
NC  
CC  
NC  
SS  
NC  
DQML  
W
NC  
DQMU  
CLK  
CKE  
NC  
W
W
DQM  
CLK  
CKE  
NC  
A11  
A9  
DQM  
CLK  
CKE  
NC  
A11  
A9  
CAS  
RAS  
CS  
CAS  
RAS  
CS  
CAS  
RAS  
CS  
A13, BS0 A13, BS0 A13, BS0 20  
A12, BS1 A12, BS1 A12, BS1 21  
A11  
A9  
A10, AP  
A0  
A10, AP  
A0  
A10, AP  
A0  
22  
23  
24  
25  
26  
27  
A8  
A8  
A8  
A7  
A7  
A7  
A1  
A1  
A1  
A6  
A6  
A6  
A2  
A2  
A2  
A5  
A5  
A5  
A3  
A3  
A3  
A4  
A4  
A4  
V
V
V
V
V
V
SS  
CC  
CC  
CC  
SS  
SS  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PIN NOMENCLATURE  
A[0:13]  
Address Inputs  
Four Banks  
Column  
A0 –A9 Column Addr (x4)  
A0 –A8 Column Addr (x8)  
A0 –A7 Column Addr (x16)  
A10 Auto Precharge  
A12 – A13 Bank-Select  
Row  
A0 – A11 Row Addrs  
A12 – A13 Bank-Select  
W
Write Enable  
RAS  
Row-Address Strobe  
CAS  
CKE  
Column-Address Strobe  
Clock-Enable  
CLK  
System Clock  
CS  
Chip-Select  
DQ[0:3]  
DQ[0:7]  
DQ[0:15]  
SDRAM Data Input/Data Output (x4)  
SDRAM Data Input/Data Output (x8)  
SDRAM Data Input/Data Output (x16)  
DQMU/DQML  
DQM  
NC  
Data/Output Mask Enables for x16  
Data/Output Mask Enables for x8/x4  
No External Connect  
V
V
V
V
Power Supply (3.3 V Typical)  
Power Supply for Output Drivers (3.3 V Typical)  
Ground  
CC  
CCQ  
SS  
Ground for Output Drivers  
SSQ  
functional block diagram (four banks)  
Array Bank 0  
Array Bank 1  
Array Bank 2  
Array Bank 3  
CLK  
AND  
CKE  
CS  
DQ  
Buffer  
DQ0DQ15 (x16)  
or  
(DQM) DQMx  
Control  
16  
8
RAS  
CAS  
W
DQ0DQ7 (x8)  
or  
4
DQ0DQ3 (x4)  
A0A13  
14  
Mode Register  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
device numbering conventions (SDRAM family nomenclature)  
64  
TMS  
6
xx  
4 –xx  
Prefix:  
TMS = Commercial / MOS  
Product Family:  
Synchronous Dynamic Random-Access Memory  
6
=
Density, Refresh, Interface:  
64 64M 4K Auto-Refresh LVTTL  
Organization/Special Architecture:  
=
41  
81  
16  
=
=
=
x 4 Pipeline  
x 8 Pipeline  
x 16 Pipeline  
Number of Banks:  
4
= Four Banks  
Speed:  
8 t  
8A t  
10 t  
CK3  
=
=
=
8 ns  
8 ns  
10 ns  
CK3  
CK3  
operation  
All inputs to the ’664xx4 SDRAM are latched on the rising edge of the system (synchronous) clock. The outputs  
(DQ0DQ3 for x4, DQ0DQ7 for x8, and DQ0DQ15 for x16) are also referenced to the rising edge of CLK.  
The ’664xx4 has four banks that are accessed independently. A bank must be activated before it can be  
accessed (read from or written to). Refresh cycles refresh all banks alternately.  
Five basic commands or functions control most operations of the ’664xx4:  
Bank activate/row-address entry  
Column-address entry/write operation  
Column-address entry/read operation  
Bank deactivate  
Auto-refresh/self-refresh entry  
Additionally, operations can be controlled by three methods: using chip select (CS) to select/deselect the  
devices, using DQMx to enable/mask the DQ signals on a cycle-by-cycle basis, or using CKE to suspend (or  
gate) the CLK input. The device contains a mode register that must be programmed for proper operation.  
Table 1 through Table 3 show the various operations that are available on the ’664xx4. These truth tables  
identify the command and/or operations and their respective mnemonics. Each truth table is followed by a  
legend that explains the abbreviated symbols. An access operation refers to any READ (READ-P) or WRT  
(WRT-P) command in progress at cycle n. Access operations include the cycle upon which the READ (READ-P)  
or WRT (WRT-P) command is entered and all subsequent cycles through the completion of the access burst.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
operation (continued)  
Automatic  
MRS  
Mode  
Register  
Set  
SLFR  
SLFR Exit  
Self  
Refresh  
IDLE  
CKEPDE  
REFR  
CKE↑  
Automatic  
Auto  
Refresh  
Power  
Down  
ACT  
Active  
Power  
Down  
CKE↑  
CKE↓  
CLK  
Row  
Active  
Suspend  
CKE(HOLD)  
Read  
WRT  
CKE(HOLD)  
CLK  
Suspend  
WRITE  
READ  
Read P  
CKE(HOLD Exit)  
Read  
Write  
CKE(HOLD Exit)  
Read-P  
Write- P  
Write P  
Read-P  
Write- P  
Automatic  
Read P  
CKE(HOLD Exit)  
Precharge  
Automatic  
CKE(HOLD Exit)  
CKE(HOLD)  
CLK  
Suspend  
CKE(HOLD)  
Power On  
CLK  
Suspend  
Automatic  
Figure 1. State Diagram  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
operation (continued)  
†‡  
Table 1. Basic Command Truth Table  
STATE OF  
BANK(S)  
COMMAND  
Mode register set  
CS RAS  
CAS  
W
A13 A12 A11 A10  
A9A0  
MNEMONIC  
All Banks =  
deac  
A9 = V, A8 = 0,  
A7 = 0, A6 – A0 = V  
L
L
L
L
X
X
X
X
MRS  
Bank deactivate (precharge)  
Deactivate all banks  
X
X
L
L
L
L
H
H
L
L
BS  
X
BS  
X
X
X
L
X
X
DEAC  
DCAB  
H
Bank activate/row-address  
entry  
SB = deac  
L
L
H
H
BS  
BS  
V
V
L
V
ACTV  
A0 – A7 = V,  
A8 – A9 = X, for x16  
Column-address entry/write  
operation  
SB = actv  
L
H
L
L
BS  
BS  
X
WRT  
A0 – A8 = V,  
A9 = X, for x8  
A0 – A9 = V, for x4  
A0 – A7 = V,  
A8 – A9 = X, for x16  
Column-address entry/write  
operation with auto-deactivate  
SB = actv  
SB = actv  
SB = actv  
L
L
L
H
H
H
L
L
L
L
H
H
BS  
BS  
BS  
BS  
BS  
BS  
X
X
X
H
L
WRT-P  
READ  
A0 – A8 = V,  
A9 = X, for x8  
A0 – A9 = V, for x4  
A0 – A7 = V,  
A8 – A9 = X, for x16  
Column-address entry/read  
operation  
A0 – A8 = V,  
A9 = X, for x8  
A0 – A9 = V, for x4  
A0 – A7 = V,  
A8 – A9 = X, for x16  
Column-address entry/read  
operation with auto-deactivate  
H
READ-P  
A0 – A8 = V,  
A9 = X, for x8  
A0 – A9 = V, for x4  
No operation  
X
X
L
H
X
H
X
H
X
X
X
X
X
X
X
X
X
X
NOOP  
DESL  
Control-input inhibit/no  
operation  
H
X
All banks=  
deac  
§
Auto refresh  
L
L
L
H
X
X
X
X
X
REFR  
For execution of these commands on cycle n, CKE must satisfy requirements for one of the following:  
— CKE (n1) must be high  
— t  
from power-down exit (PDE)  
from clock-suspend (HOLD) exit  
from self-refresh (SLFR) exit.  
CESP  
— t and n  
IS CLE  
CESP  
DQMx (n) is a don’t care  
— t  
and t  
RC  
§
Auto-refresh or self-refresh entry requires that all banks be deactivated or be in an idle state prior to the command entry. An REFR command  
turns on four rows (one from each bank; therefore, 4096 REFR commands fully refresh the memory).  
Legend:  
n
L
=
=
CLK cycle number  
Logic low  
actv  
deac  
BS  
=
=
=
Activated  
Deactivated  
Logic:  
(A12 = 0, A13 = 0) select bank 0  
(A12 = 1, A13 = 0) select bank 1  
(A12 = 0, A13 = 1) select bank 2  
(A12 = 1, A13 = 1) select bank 3  
Select bank by A12 – A13 at cycle n  
H
=
Logic high  
X
V
=
=
Don’t care (either logic high or logic low)  
Valid  
SB  
=
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
operation (continued)  
Table 2. Clock-Enable (CKE) Command Truth Table  
CKE  
(n1)  
CKE  
(n)  
CS  
(n)  
RAS  
(n)  
CAS  
(n)  
W
(n)  
COMMAND  
STATE OF BANK(S)  
MNEMONIC  
SLFR  
Self-refresh entry  
All banks = deac  
All banks = no  
H
H
L
L
L
L
L
H
X
Power-down entry at n + 1  
X
X
X
PDE  
§
access operation  
L
L
H
H
L
H
X
H
X
H
X
All banks =  
self-refresh  
Self-refresh exit  
H
All banks =  
power down  
Power-down exit  
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
HOLD  
All banks = access  
CLK suspend at n+1  
§
operation  
All banks = access  
CLK suspend exit at n+1  
H
§
operation  
§
For execution of these commands, A0A13 (n) and DQMx (n) are don’t care entries.  
On cycle n, the device executes the respective command (listed in Table 1). On cycle (n+1), the device enters the power-down mode.  
A bank is no longer in an access operation one cycle after the last data-out cycle of a READ (READ-P) operation, and two cycles after the last  
data-incycle of a WRT (WRT-P) operation. Neither the PDE nor the HOLD command is allowed on the cycle immediately following the lastdata-in  
cycle of a WRT (WRT-P) operation.  
If setup time from CKE high to the next CLK high satisfies t  
, the device executes the respective command (listed in Table 1). Otherwise,  
CESP  
either the DESL or NOOP command must be applied before any other command.  
Legend:  
n
L
H
X
=
=
=
=
=
CLK cycle number  
Logic low  
Logic high  
Don’t care (either logic high or logic low)  
Deactivated  
deac  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
operation (continued)  
†‡  
Table 3. Data/Output Mask Enable (DQM) Command Truth Table  
D0D3 (x4)  
D0D7 (x8)  
D0D15 (x16)  
(n)  
Q0Q3 (x4)  
Q0Q7 (x8)  
Q0Q15 (x16)  
(n+2)  
DQM  
(DQML/DQMU)  
(n)  
§
COMMAND  
STATE OF BANK(S)  
MNEMONIC  
Any bank = deac  
X
X
N/A  
Hi-Z  
Any bank = actv  
(no access operation)  
N/A  
Hi-Z  
Data-in enable  
Data-in mask  
Any bank = write  
Any bank = write  
Any bank = read  
Any bank = read  
L
H
L
V
N/A  
N/A  
V
ENBL  
MASK  
ENBL  
MASK  
M
Data-out enable  
Data-out mask  
N/A  
N/A  
H
Hi-Z  
For execution of these commands on cycle n, one of the following must be true:  
— CKE (n1) must be high  
— t  
— n  
from power-down exit (PDE)  
from clock-suspend (HOLD) exit  
CESP  
CLE  
— t  
and t  
from self-refresh (SLFR) exit  
CESP  
RC  
§
CS (n), RAS (n), CAS (n), W (n), and A0A13 (n) are don’t care entries.  
DQM is used for x4/x8 (no byte control). DQM (n) operations correspond to D0D7 and Q0Q7 events. DQML/DQMU are used for x16 (for  
byte-control). DQML (n) operations correspond to D0D7 and Q0Q7 events, while DQMU (n) operations correspond to D8D15 and Q8Q15  
events.  
A bank is no longer in an access operation one cycle after the last data-out cycle of a READ (READ-P) operation, and two cycles after the last  
data-incycle of a WRT (WRT-P) operation. Neither the PDE nor the HOLD command is allowed on the cycle immediately following the lastdata-in  
cycle of a WRT (WRT-P) operation.  
Legend:  
n
L
=
CLK cycle number  
Logic low  
actv  
deac  
write  
read  
=
=
=
=
Activated  
=
=
=
=
=
=
=
Deactivated  
H
Logic high  
Activated and accepting data in on cycle n  
Activated and delivering data out on cycle n + 2  
X
Don’t care (either logic high or logic low)  
Valid  
V
M
Masked input data  
Not applicable  
N/A  
Hi-Z  
High impedance  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
burst sequence  
All data for the ’664xx4 is written or read in a burst fashion, that is, a single starting address is entered into the  
device and then the ’664xx4 internally accesses a sequence of locations based on that starting address. Some  
of the subsequent accesses after the first one can be at preceding, as well as succeeding, column addresses  
depending on the starting address entered. This sequence can be programmed to follow either a serial burst  
or an interleave burst (see Table 4 through Table 6). The length of the burst sequence can be user-programmed  
to be 1, 2, 4, or 8. After a read burst is completed (as determined by the programmed burst length), the outputs  
are in the high-impedance state until the next read access is initiated.  
Table 4. 2-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A0  
DECIMAL  
BINARY  
START  
2ND  
START  
2ND  
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
Serial  
Interleave  
Table 5. 4-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A1A0  
DECIMAL BINARY  
START  
2ND  
3RD  
2
4TH  
3
START  
00  
2ND  
3RD  
10  
11  
4TH  
11  
0
1
2
3
0
1
2
3
1
2
3
0
1
0
3
2
01  
10  
11  
00  
01  
00  
11  
10  
3
0
01  
00  
01  
10  
11  
Serial  
0
1
10  
00  
01  
10  
11  
1
2
11  
2
3
00  
3
2
01  
10  
01  
00  
Interleave  
0
1
10  
00  
01  
1
0
11  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
burst sequence (continued)  
Table 6. 8-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A2A0  
DECIMAL  
BINARY  
START 2ND 3RD 4TH 5TH 6TH 7TH 8TH START 2ND 3RD 4TH 5TH 6TH 7TH 8TH  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
001  
010  
011  
100  
101  
110  
111  
000  
001  
000  
011  
010  
101  
100  
111  
110  
010 011 100 101 110 111  
011 100 101 110 111 000  
100 101 110 111 000 001  
101 110 111 000 001 010  
Serial  
110  
111  
111 000 001 010 011  
000 001 010 011 100  
000 001 010 011 100 101  
001 010 011 100 101 110  
010 011 100 101 110 111  
011 010 101 100 111 110  
000 001 110 111 100 101  
001 000 111 110 101 100  
Interleave  
110  
111  
111 000 001 010 011  
110 001 000 011 010  
100 101 010 011 000 001  
101 100 011 010 001 000  
latency  
The beginning data-output cycle of a read burst can be programmed to occur two or three CLK cycles after the  
READ command (see Figure 2 on how to set the mode register.) This feature allows adjustment of the ’664xx4  
to operate in accordance with the system’s capability to latch the data output from the ’664xx4. The delay  
between the READ command and the beginning of the output burst is known as CAS latency (also known as  
read latency). After the initial output cycle begins, the data burst occurs at the CLK frequency without any  
intervening gaps. Use of minimum CAS latencies is restricted, based on the particular maximum frequency  
rating of the ’664xx4. Once the mode register has been set (see the section on setting the mode register),  
subsequent changes to the CAS latency are prohibited.  
There is no latency for data-in cycles (write latency). The first data-in cycle of a write burst is entered at the same  
rising edge of CLK as the WRT command. The write latency is fixed and is not determined by the mode-register  
contents.  
four-bank operation  
The ’664xx4 contains four independent banks that can be accessed individually or in an interleaved fashion.  
Eachbank must be activated with a row address before it can be accessed. Each bank then must be deactivated  
before it can be activated again with a new row address. The bank-activate/row-address-entry command  
(ACTV) is entered by holding RAS low, CAS high, W high, and A12A13 valid on the rising edge of CLK. A bank  
can be deactivated either automatically during a READ (READ-P) or a WRT (WRT-P) command, or by using  
thebank-deactivate(DEAC)command. AllbankscanbedeactivatedatoncebyusingtheDCABcommand(see  
Table 1 for a description of the bank-deactivation, and Figure 25 and Figure 26 for examples of the operation).  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
four-bank row-access operation  
One of the features of the four-bank operation is access to information on random rows at a higher rate of  
operation than is possible with a standard DRAM. This is accomplished by activating one of the banks with a  
row address and, while the data stream is being accessed to/from that bank, activating one of the other banks  
with other row addresses. When the data stream to/from the first activated bank is complete, the data stream  
to/from the second activated bank can begin without interruption. After the second bank is activated, the first  
bank can be deactivated to allow the entry of a new row address for the next round of accesses or the entry of  
new row addresses for other banks which currently are deactivated. In this manner, operation can continue in  
an interleaved fashion. Figure 29A is an example of four-bank, row-interleaving, read bursts with automatic  
deactivate with a CAS latency of 3 and a burst length of 8. Figure 29B is an example of four-bank,  
row-interleaving, read bursts with automatic deactivate with a CAS latency of 3 and a burst length of 4.  
four-bank column-access operation  
The availability of four banks allows the access of data from random starting columns between banks at a higher  
rate of operation. After activating each bank with a row address (ACTV command), A12A13 for the four-bank  
column-access operation can be used to alternate READ or WRT commands between the banks to provide  
gapless accesses at the CLK frequency, provided all specified timing requirements are met. Figure 30 is an  
example of four-bank, column-interleaving, read bursts with a CAS latency of 3 and a burst length of 2.  
bank deactivation (precharge)  
All banks can be deactivated simultaneously (placed in precharge) by using the DCAB command. A single bank  
can be deactivated by using the DEAC command. The DEAC command is entered identically to the DCAB  
command except that A10 must be low and A12A13 select the bank to be precharged (see Table 1; Figure 27  
and Figure 31 provide examples). A bank can also be deactivated automatically by using A10 during a READ  
or WRT command. If A10 is held high during the entry of a READ or WRT command, the accessed bank,  
selected by A12A13, is automatically deactivated upon completion of the access burst. If A10 is held low  
during READ- or WRT-command entry, that bank remains active following the burst. The READ and WRT  
commands with automatic deactivation are denoted as READ-P and WRT-P. See Figure 29A and Figure 29B  
for examples.  
chip-select  
CS (chip-select) can be used to select or deselect the ’664xx4 for command entries, which might be required  
for multiple-memory-device decoding. If CS is held high on the rising edge of CLK (DESL command), the device  
does not respond to RAS, CAS, or W until the device is selected again by holding CS low on the rising edge  
of CLK. Any other valid command can be entered simultaneously on the same rising CLK edge of the select  
operation. The device can be selected/deselected on a cycle-by-cycle basis (see Table 1 and Table 2). Using  
CS does not affect an access burst that is in progress; the DESL command can restrict only RAS, CAS, and  
W inputs to the ’664xx4.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
data/output mask  
Masking of individual data cycles within a burst sequence can be accomplished by using the MASK command  
(see Table 3). If DQM (or DQML/DQMU of x16) is held high on the rising edge of CLK during a write burst, the  
incident data word (referenced to the same rising edge of CLK) on DQ0DQ7 [or (DQ0–DQ7)/(DQ8DQ15)  
of x16] is ignored. If DQM (or DQML/DQMU of x16) is held high on the rising edge of CLK for a read burst,  
DQ0DQ7 [or (DQ0–DQ7)/(DQ8DQ15) of x16], referenced to the second rising edge of CLK, are in the  
high-impedance state. The application of DQM (DQML/DQMU) to data-output cycles (READ burst) involves a  
latencyoftwoCLKcycles, buttheapplicationofDQMtodata-incycles(WRITEburst)hasnolatency. TheMASK  
command (or itsopposite, theENBLcommand)isperformedonacycle-by-cyclebasis, allowingtheusertogate  
any individual data cycle or cycles within either a read-burst or a write-burst sequence. Figure 14, Figure 38 and  
Figure 39 show examples of data/output masking.  
CLK-suspend/power-down mode  
For normal device operation, CKE should be held high to enable CLK. If CKE goes low during the execution  
of a READ (READ-P) or WRT (WRT-P) operation, the state of the DQ bus occurring at the immediate next rising  
edge of CLK is frozen at its current state and no further inputs are accepted until CKE is returned high. This is  
known as a CLK-suspend operation and its execution is denoted as a HOLD command. The device resumes  
operation from the point at which it was placed in suspension, beginning with the second rising edge of CLK  
after CKE is returned high. See Figure 42 and Figure 43 for examples.  
If CKE is brought low when no READ (READ-P) or WRT (WRT-P) command is in progress, the device enters  
power-down mode. If all banks are deactivated when power-down mode is entered, power consumption is  
reduced to the minimum. Power-down mode can be used during row-active or auto-refresh periods to reduce  
input-buffer power. After power-down mode has been entered, no further inputs are accepted until CKE returns  
high. To ensure that data in the device remains valid during the power-down mode, the self-refresh command  
(SLRF) must be executed concurrently with the power-down entry (PDE) command. When exiting power-down  
mode, new commands can be entered on the first CLK edge after CKE returns high, provided that the setup  
time (t  
) is satisfied. Table 2 shows the command configuration for a CLK-suspend/power-down operation;  
CESP  
Figure 18 and Figure 19 show examples of the procedure.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
setting the mode register  
The ’664xx4 contains a mode register that must be user-programmed with the CAS latency, the burst type, and  
the burst length. This is accomplished by executing an MRS command with the information entered on address  
lines A0A9. A logic 0 must be entered on A7 and A8, but A10A13 are “don’t care” entries for the ’664xx4.  
When A9 = 1, the write burst length is always 1. When A9 = 0, the write burst length is defined by A2A0.  
Figure 2 shows the valid combinations for a successful MRS command. Only valid addresses allow the mode  
register to be changed. If the addresses are not valid, the previous contents of the mode register remain  
unaffected. The MRS command is executed by holding RAS, CAS, and W low and the input-mode word valid  
on A0A9 on the rising edge of CLK (see Table 1). The MRS command can be executed only when all banks  
are deactivated and may not be executed while a burst is active. See Figure 24 and Figure 35 for examples.  
A13  
A12  
A11  
A10  
A9  
A8  
0
A7  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Reserved  
0 = Serial  
1 = Interleave  
(burst type)  
REGISTER  
BITS  
REGISTER  
BITS  
WRITE  
BURST  
LENGTH  
REGISTER  
BIT A9  
CAS  
LATENCY  
BURST LENGTH  
‡§  
A6  
A5  
A4  
A2  
A1  
A0  
0
0
0
0
0
0
1
1
0
1
0
1
1
2
4
8
0
1
A2A0  
1
0
0
1
1
0
1
2
3
§
All other combinations are reserved.  
Refer to timing requirements for minimum valid read latencies based on maximum frequency rating.  
Once the mode register has been set, subsequent changes to the CAS latency is prohibited.  
Figure 2. Mode-Register Programming  
refresh  
The ’664xx4 must be refreshed at intervals not exceeding t  
(see timing requirements) or data cannot be  
REF  
retained. Refresh is accomplished by performing one of the following:  
An ACTV command (RAS-only refresh) to every row in all banks  
4096 auto-refresh (REFR) commands  
Putting the device in self-refresh mode  
Regardless of the method used, refresh must be accomplished before t  
example.  
has expired. See Figure 34 for an  
REF  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
auto refresh  
Before performing an auto refresh, all banks must be deactivated (placed in precharge). To enter a REFR  
command, RAS and CAS must be low and W must be high during the rising edge of CLK (see Table 1). The  
refresh address is generated internally such that after 4096 REFR commands, all banks of the ’664xx4 are  
refreshed. The external address and bank-select A12A13 are ignored. The execution of a REFR command  
automatically deactivates all banks upon completion of the internal auto-refresh cycle. This allows consecutive  
REFR-only commands to be executed, if desired, without any intervening DEAC commands. The REFR  
commands do not necessarily have to be consecutive, but all 4096 must be completed before t  
expires.  
REF  
self-refresh mode  
To enter self-refresh mode, all banks of the ’664xx4 must be deactivated first and an SLFR command must be  
executed (see Table 2). The SLFR command is identical to the REFR command except that CKE is low. For  
proper entry of the SLFR command, CKE is brought low for the same rising edge of CLK when RAS and CAS  
are low and W is high. CKE must be held low to stay in self-refresh mode. In the self-refresh mode, refreshing  
signals are generated internally for all banks with all external signals (except CKE) being ignored. Data can be  
retained by the device automatically for an indefinite period when power is maintained (consumption is reduced  
to a minimum). To exit self-refresh mode, CKE must be brought high. New commands are issued after t  
has  
RC  
expired. If CLK is made inactive during self-refresh, it must be returned to an active and stable condition before  
CKE is brought high to exit self-refresh mode (see Figure 19).  
Prior to entering and upon exiting self-refresh mode, 4096 REFR commands are recommended before  
continuing with normal device operations. This ensures that the SDRAM is fully refreshed.  
interrupted bursts  
Areadorwritecanbeinterruptedbeforetheburstsequenceiscompletewithnoadverseeffectstotheoperation.  
This is accomplished by entering certain superseding commands as listed in Table 7 and Table 8, provided that  
all timing requirements are met. The interruption of READ-P and WRT-P operations is not supported.  
Table 7. Read-Burst Interruption  
INTERRUPTING COMMAND  
EFFECT OR NOTE ON USE DURING READ BURST  
Current output cycles continue until the programmed latency from the superseding READ (READ-P)  
command is met and new output cycles begin (see Figure 3).  
READ, READ-P  
The WRT (WRT-P) command immediately supersedes the read burst in progress. To avoid data contention,  
WRT, WRT-P  
DEAC, DCAB  
DQMxmustbehighbeforetheWRT (WRT-P)commandtomaskoutputofthereadburstoncycles(n –1),  
CCD  
CCD  
n
, and (n  
+1), assuming there is any output on these cycles (see Figure 4).  
CCD  
The DQ bus is in the high-impedance state when n  
burst, whichever occurs first (see Figure 5 and Figure 22).  
cycles are satisfied or upon completion of the read  
HZP  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
interrupted bursts (continued)  
n
CCD  
= 2  
CLK  
Interrupting  
READ Command  
at Column Address C1  
(see Note A)  
READ Command  
at Column Address C0  
(see Note A)  
DQ  
C0  
C0 + 1  
C1  
C1 + 1  
C1 + 2  
First Output Cycle for New  
READ Command Begins Here  
a) INTERRUPTED ON EVEN CYCLES  
= 3  
n
CCD  
CLK  
Interrupting  
READ Command  
at Column Address C1  
(see Note A)  
READ Command  
at Column Address C0  
(see Note A)  
C0  
C0 + 1  
C0 + 2  
C1  
C1 + 1  
DQ  
First Output Cycle for New  
READ Command Begins Here  
b) INTERRUPTED ON ODD CYCLES  
NOTE A: For this example, assume CAS latency = 2 and burst length > 2.  
Figure 3. Read Burst Interrupted by Read Command  
n
CCD  
+ 1  
n
CCD  
– 1  
n
CCD  
= 4  
CLK  
Interrupting  
WRT Command  
at Column Address C1  
(see Note A)  
READ Command  
at Column Address C0  
(see Note A)  
DQ  
C0  
C1  
C1 + 1  
C1 + 2  
First Input Cycle for New WRT  
Command Begins Here  
See Note B  
DQMx  
NOTES: A. For this example, read latency = 2 and burst length > 2.  
B. DQMx must be high to mask output of the read burst on cycles (n  
–1), (n  
CCD  
), and (n +1).  
CCD  
CCD  
Figure 4. Read Burst Interrupted by Write Command  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
interrupted bursts (continued)  
n
CCD  
= 2  
CLK  
n
HZP3  
Interrupting  
DEAC/DCAB  
Command  
READ Command  
at Column Address C0  
(see Note A)  
DQ  
NOTE A: For this example, assume CAS latency = 3 and burst length > 2.  
C0  
C0 + 1  
Figure 5. Read Burst Interrupted by DEAC Command  
Table 8. Write-Burst Interruption  
INTERRUPTING COMMAND  
EFFECT OR NOTE ON USE DURING WRITE BURST  
READ, READ-P  
Data that was input on the previous cycle is written and no further data inputs are accepted (see Figure 6).  
The new WRT (WRT-P) command and data-in immediately supersede the write burst in progress  
(see Figure 7).  
WRT, WRT-P  
The DEAC/DCAB command immediately supersedes the write burst in progress. DQMx must be used to  
DEAC, DCAB  
mask the DQ bus such that the write recovery specification (n  
interrupt (see Figure 8).  
) is not violated by the  
WR  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
interrupted bursts (continued)  
n
CCD  
= 2  
CLK  
WRT Command  
(see Note A)  
READ Command  
(see Note A)  
DQ  
D
D
a) INTERRUPTED ON EVEN CYCLES  
Q
Q
n
CCD  
= 1  
CLK  
WRT  
READ  
Command  
(see Note A)  
Command  
(see Note A)  
DQ  
D
Q
Q
Q
b) INTERRUPTED ON ODD CYCLES  
NOTE A: For this example, assume CAS latency = 2, burst length > 2.  
Figure 6. Write Burst Interrupted by Read Command  
n
CCD  
= 2  
CLK  
Interrupting  
WRT-P Command  
WRT Command  
at Column Address C0  
(see Note A)  
DQ  
C0  
C0 + 1  
C1  
C1 + 1  
C1 + 2  
C1 + 3  
NOTE A: For this example, burst length > 2.  
Figure 7. Write Burst Interrupted by Write Command  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
interrupted bursts (continued)  
n
CCD  
= 2  
CLK  
WRT Command  
(see Note A)  
DEAC or DCAB Command  
(see Note A)  
DQ  
D
D
Ignored  
n
WR  
DQMx  
NOTE A: For the purposes of this example, CAS latency = 2 and burst length > 2.  
Figure 8. Write Burst Interrupted by DEAC/DCAB Command  
power up  
Device initialization should be performed after a power up to the full V  
level. After power is established, a  
CC  
200-µs interval is required (with no inputs other than CLK). After this interval, all banks of the device must be  
deactivated. Eight REFR commands must be performed, and the mode register must be set to complete the  
device initialization. See Figure 24.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
absolute maximum ratings over operating ambient temperature range (unless otherwise noted)  
Supply voltage range, V  
Supply voltage range for output drivers, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
CCQ  
Voltage range on any input pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
Voltage range on any output pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to V + 0.5 V  
CC  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
3
NOM  
3.3  
3.3  
0
MAX  
3.6  
UNIT  
V
V
V
V
V
V
V
Supply voltage  
CC  
CCQ  
SS  
Supply voltage for output drivers  
3
3.6  
V
Supply voltage  
V
Supply voltage for output drivers  
High-level input voltage  
Low-level input voltage  
Operating ambient temperature  
0
V
SSQ  
IH  
2
– 0.3  
0
V
+ 0.3  
V
CC  
0.8  
70  
V
IL  
T
A
°C  
V
CCQ  
V
0.3 V  
CC  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
electrical characteristics over recommended ranges of supply voltage and operating ambient  
temperature (unless otherwise noted) (see Note 2)  
- 8 (x8/x4)  
- 8 (x16)  
- 8A (x8/x4)  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
High-level output  
voltage  
V
V
I
I
= 2 mA  
= 2 mA  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level output  
voltage  
0.4  
0.4  
0.4  
OL  
OL  
Input current  
(leakage)  
0 V V V  
All other pins = 0 V to V  
+ 0.3 V,  
I
CC  
I
I
±10  
±10  
±10  
µA  
I
CC  
Output current  
(leakage)  
0 V V V  
O CCQ  
Output disabled  
±10  
115  
125  
1
±10  
125  
135  
1
±10  
95  
µA  
mA  
mA  
mA  
O
Burst length = 1,  
CAS latency = 2  
CAS latency = 3  
Operating  
current  
t
I
t
MIN  
RC  
= 0 mA  
RC  
I
CC1  
/I  
OH OL  
125  
1
(see Notes 3, 4, and 5)  
CKE MAX, t  
(see Note 6)  
V
= 15 ns  
CK  
IL  
Precharge  
I
I
CC2P  
standby current  
in power-down  
mode  
CKE and CLK  
(see Note 7)  
V
MAX, t  
= ∞  
CK  
IL  
1
1
1
mA  
mA  
CC2PS  
Precharge  
standby current  
in  
CKE  
(see Note 6)  
V
MIN, t  
= 15 ns  
IH  
CK  
I
40  
40  
40  
CC2N  
non-power-down  
mode  
I
I
I
I
I
t
=
(see Note 7)  
MAX, t  
5
8
5
8
5
8
mA  
mA  
mA  
mA  
mA  
CC2NS  
CK  
CKE  
V
= 15 ns  
IL  
CK  
Active standby  
current in  
power-down  
mode  
CC3P  
(see Notes 3 and 6)  
CKE and CLK  
(see Notes 3 and 7)  
CKE MIN, t  
(see Notes 3 and 6)  
CKE MIN, CLK  
(see Notes 3 and 7)  
Page burst, I /I  
V
MAX, t  
= ∞  
IL  
CK  
8
8
8
CC3PS  
CC3N  
V
= 15 ns  
IH  
CK  
Active standby  
current in  
non-power-down  
mode  
50  
15  
55  
15  
50  
15  
V
V
MAX, t  
= ∞  
CK  
IH  
IL  
CC3NS  
= 0 mA  
CAS latency = 2  
CAS latency = 3  
165  
225  
165  
245  
120  
165  
mA  
mA  
OH OL  
All banks activated,  
(see Notes 8, 9, and 10)  
I
Burst current  
CC4  
CAS latency = 2  
CAS latency = 3  
150  
150  
150  
150  
150  
150  
mA  
mA  
Auto-refresh  
current  
t
t
MIN  
RC  
RC  
(see Notes 4 and 7)  
I
I
CC5  
Self-refresh  
current  
CKE  
V
MAX  
1
1
1
mA  
CC6  
IL  
NOTES: 2. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.  
3. Only one bank is activated.  
4.  
t
t
MIN  
RC  
RC  
5. Control, DQ, and address inputs change state twice during t  
.
RC  
6. Control, DQ, and address inputs change state once every 30 ns.  
7. Control, DQ, and address inputs do not change state (stable).  
8. 4-bank ping-pong, burst length = 4, n  
CCD  
= 4 cycles, data pattern 0011.  
9. Column address and bank address increment every 4 cycles.  
10. A t of 10 ns is used to obtain I for CL3 of the -8A speed grade.  
CK  
CC4  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
electrical characteristics over recommended ranges of supply voltage and operating ambient  
temperature (unless otherwise noted) (see Note 2) (continued)  
– 8A (x16)  
– 10 (x8/x4)  
– 10 (x16)  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
High-level output  
voltage  
V
V
I
I
= 2 mA  
= 2 mA  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level output  
voltage  
0.4  
0.4  
0.4  
OL  
OL  
Input current  
(leakage)  
0 V V V  
All other pins = 0 V to V  
+ 0.3 V,  
I
CC  
I
I
±10  
±10  
±10  
µA  
I
CC  
Output current  
(leakage)  
0 V V V  
O CCQ  
Output disabled  
±10  
105  
135  
1
±10  
95  
±10  
105  
115  
1
µA  
mA  
mA  
mA  
O
Burst length = 1,  
CAS latency = 2  
CAS latency = 3  
Operating  
current  
t
I
t
MIN  
RC  
= 0 mA  
RC  
I
CC1  
/I  
OH OL  
105  
1
(see Notes 3, 4, and 5)  
CKE MAX, t  
(see Note 6)  
V
= 15 ns  
CK  
IL  
Precharge  
I
I
CC2P  
standby current  
in power-down  
mode  
CKE and CLK  
(see Note 7)  
V
MAX, t  
= ∞  
CK  
IL  
1
1
1
mA  
mA  
CC2PS  
Precharge  
standby current  
in  
CKE  
(see Note 6)  
V
MIN, t  
= 15 ns  
IH  
CK  
I
40  
40  
40  
CC2N  
non-power-down  
mode  
I
I
I
I
I
t
=
(see Note 7)  
MAX, t  
5
8
5
8
5
8
mA  
mA  
mA  
mA  
mA  
CC2NS  
CK  
CKE  
V
= 15 ns  
IL  
CK  
Active standby  
current in  
power-down  
mode  
CC3P  
(see Notes 3 and 6)  
CKE and CLK  
(see Notes 3 and 7)  
CKE MIN, t  
(see Notes 3 and 6)  
CKE MIN, CLK  
(see Notes 3 and 7)  
Page burst, I /I  
V
MAX, t  
= ∞  
IL  
CK  
8
8
8
CC3PS  
CC3N  
V
= 15 ns  
IH  
CK  
Active standby  
current in  
non-power-down  
mode  
55  
15  
55  
15  
60  
15  
V
V
MAX, t  
= ∞  
CK  
IH  
IL  
CC3NS  
= 0 mA  
CAS latency = 2  
CAS latency = 3  
140  
165  
120  
175  
140  
200  
mA  
mA  
OH OL  
All banks activated,  
(see Notes 8, 9, and 10)  
I
Burst current  
CC4  
CAS latency = 2  
CAS latency = 3  
150  
150  
150  
150  
150  
150  
mA  
mA  
Auto-refresh  
current  
t
t
MIN  
RC  
RC  
(see Notes 4 and 7)  
I
I
CC5  
Self-refresh  
current  
CKE  
V
MAX  
1
2
2
mA  
CC6  
IL  
NOTES: 2. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.  
3. Only one bank is activated.  
4.  
t
t
MIN  
RC  
RC  
5. Control, DQ, and address inputs change state twice during t  
.
RC  
6. Control, DQ, and address inputs change state once every 30 ns.  
7. Control, DQ, and address inputs do not change state (stable).  
8. 4-bank ping-pong, burst length = 4, n  
CCD  
= 4 cycles, data pattern 0011.  
9. Column address and bank address increment every 4 cycles.  
10. A t of 10 ns is used to obtain I for CL3 of the -8A speed grade.  
CK  
CC4  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
capacitance over recommended ranges of supply voltage and operating ambient temperature  
f = 1 MHz (see Note 11)  
PARAMETER  
MIN  
2.5  
MAX  
4
UNIT  
pF  
C
C
C
C
Input capacitance, CLK input  
i(S)  
i(AC)  
i(E)  
o
Input capacitance, address and control inputs: A0A13, CS, DQMx, RAS, CAS, W  
Input capacitance, CKE input  
2.5  
5
pF  
5
pF  
Output capacitance  
4
6.5  
pF  
NOTE 11: V  
CC  
= 3.3 ± 0.3 V and bias on pins under test is 0 V.  
†‡  
ac timing requirements  
’664xx4-8  
’664xx4-8A  
’664xx4-10  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
t
t
t
t
Cycle time, CLK  
CAS latency = 2  
CAS latency = 3  
10  
8
15  
8
15  
10  
3
ns  
ns  
ns  
ns  
CK2  
CK3  
CH  
Cycle time, CLK  
Pulse duration, CLK high  
Pulse duration, CLK low  
3
3
3
3
3
CL  
Access time, CLK high to data out  
(see Note 12)  
t
t
t
CAS latency = 2  
CAS latency = 3  
CAS latency = 2  
CAS latency = 3  
6
7.5  
7.5  
ns  
ns  
ns  
AC2  
AC3  
OH2  
Access time, CLK high to data out  
(see Note 12)  
6
6
7.5  
Hold time, CLK high to data out with 50-pF  
load  
3
3
3
Hold time, CLK high to data out with 50-pF  
load  
t
t
t
3
1
8
3
1
8
3
ns  
ns  
ns  
OH3  
Delay time, CLK high to DQ in low-impedance state (see Note 13)  
2
LZ  
Delay time, CLK high to DQ in high-impedance state  
(see Note 14)  
10  
HZ  
t
t
t
t
Setup time, address, control, and data input  
Hold time, address, control, and data input  
2
2
2
ns  
ns  
ns  
ns  
IS  
1
1
1
IH  
Power down/self-refresh exit time (see Note 15)  
Delay time, ACTV command to DEAC or DCAB command  
8
8
10  
CESP  
RAS  
48 100000  
48 100000  
50 100000  
Delay time, ACTV, REFR, or SLFR command to ACTV, MRS,  
REFR, or SLFR command  
t
t
t
t
t
68  
20  
20  
16  
16  
68  
20  
20  
16  
16  
80  
30  
30  
20  
20  
ns  
ns  
ns  
ns  
ns  
RC  
Delay time, ACTV command to READ, READ-P, WRT, or  
WRT-P command (see Note 16)  
RCD  
RP  
Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or  
SLFR command  
Delay time, ACTV command in one bank to ACTV command in  
the other bank  
RRD  
RSA  
Delay time, MRS command to ACTV, MRS, REFR, or SLFR  
command  
See Parameter Measurement Information for load circuits (see Figure 9).  
All references are made to the rising transition of CLK, unless otherwise noted.  
NOTES: 12. t  
is referenced from the rising transition of CLK that precedes the data-out cycle. For example, the first data-out t  
is referenced  
AC  
AC  
from the rising transition of CLK that is CAS latency – one cycle after the READ command. An access time is measured at output  
reference level 1.5 V.  
13.  
14.  
t
is measured from the rising transition of CLK that is CAS latency – one cycle after the READ command.  
MAX defines the time at which the outputs are no longer driven and is not referenced to output voltage levels.  
LZ  
t
HZ  
15. See Figure 18 and Figure 19.  
16. For read or write operations with automatic deactivate, t  
must be set to satisfy minimum t .  
RAS  
RCD  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
†‡  
ac timing requirements (continued)  
’664xx4-8  
’664xx4-8A  
’664xx4-10  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Final data out of READ-P operation to ACTV, MRS, SLFR, or REFR  
command  
t
t
t
– (CL –1) t  
* CK  
ns  
ns  
APR  
RP  
Final data in of WRT-P operation to ACTV, MRS, SLFR, or REFR  
command  
t
+ 1 t  
CK  
APW  
RP  
t
t
Transition time  
Refresh interval  
1
1
5
1
5
1
1
5
ns  
T
64  
64  
64  
ms  
REF  
Delay time, final data in of WRT operation to DEAC or DCAB  
command  
n
1
cycle  
WR  
n
CCD  
n
CDD  
n
CLE  
Delay time, READ or WRT command to an interrupting command  
Delay time, CS low or high to input enabled or inhibited  
Delay time, CKE high or low to CLK enabled or disabled  
1
0
1
1
0
1
1
0
1
cycle  
cycle  
cycle  
0
1
0
1
0
1
Delay time, final data in of WRT command to READ, READ-P, WRT, or  
WRT-P command  
n
CWL  
1
1
1
cycle  
n
n
Delay time, ENBL or MASK command to enabled or masked data in  
Delay time, ENBL or MASK command to enabled or masked data out  
0
2
0
2
0
2
0
2
0
2
0
2
cycle  
cycle  
DID  
DOD  
Delay time, DEAC or DCAB command to DQ in  
CAS latency = 2  
n
2
2
2
cycle  
HZP2  
high-impedance state  
Delay time, DEAC or DCAB command to DQ in  
CAS latency = 3  
n
n
3
0
3
0
3
0
cycle  
cycle  
HZP3  
high-impedance state  
Delay time, WRT command to first data in  
0
0
0
WCD  
See Parameter Measurement Information for load circuits (see Figure 9).  
All references are made to the rising transition of CLK, unless otherwise noted.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
general information for ac timing measurements  
The ac timing measurements are based on signal rise and fall times equal to 1 ns (t = 1 ns) and a midpoint  
T
reference level of 1.5 V (INPUT = 2.8 V, 0 V) for LVTTL. For signal rise and fall times greater than 1 ns, the  
reference level should be changed to V MIN and V MAX instead of the midpoint level. All specifications  
IH  
IL  
referring to READ commands are valid for READ-P commands unless otherwise noted. All specifications  
referring to WRT commands are also valid for WRT-P commands unless otherwise noted. All specifications  
referring to consecutive commands are specified as consecutive commands for the same bank unless  
otherwise noted.  
Z = 50Ω  
Output  
Under  
Test  
C
= 50 pF  
L
Figure 9. ac Load Circuit  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
t
CK  
t
CH  
CLK  
t
CL  
t
T
t
T
t
IS  
t
IH  
DQ0DQ15 (x16), DQ0DQ7 (x8),  
DQ0DQ3 (x4), A0A13, CS, RAS,  
CAS, W, DQMx, CKE  
t
T
t
, t  
IS CESP  
t
IH  
DQ0DQ15 (x16), DQ0DQ7 (x8),  
DQ0DQ3 (x4), A0A13, CS, RAS,  
CAS, W, DQMx, CKE  
t
T
Figure 10. Input-Attribute Parameters  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
CAS Latency  
CLK  
t
ACTV  
READ  
AC  
Command  
Command  
t
HZ  
, t  
t
LZ  
t
OH2 OH3  
DQ  
Figure 11. Output Parameters  
ACTV  
ACTV  
DEAC, DCAB  
t
RAS  
READ, WRT  
t
RCD  
t
DEAC, DCAB  
REFR  
ACTV, MRS, REFR, SLFR  
ACTV, MRS, REFR, SLFR  
ACTV, MRS, REFR, SLFR  
ACTV, MRS, REFR, SLFR  
ACTV (of a different bank)  
ACTV, REFR, SLFR, MRS  
STOP, READ, WRT, DEAC, DCAB  
RP  
t
t
t
RC  
RC  
RC  
ACTV  
SELF-REFRESH EXIT  
ACTV  
t
RRD  
(see Note A)  
MRS  
t
RSA  
CCD  
READ, WRT  
DESL  
n
n
CDD  
Command  
Disable  
CLK  
NOTE A: t  
RRD  
is specified for command execution in one bank to command execution in another bank.  
Figure 12. Command-to-Command Parameters  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
n
HZP3  
CLK  
DQ  
DEAC/DCAB  
Command  
t
HZ  
(For CL = 3)  
Final Output of  
Burst  
n
HZP2  
DQ  
(For CL = 2)  
Final Output of  
Burst  
NOTE A: For this example, assume CAS latency = 2, 3 and burst length > 1.  
Figure 13. Final Data Output to DEAC or DCAB Command for CAS Latency = 2, 3  
CAS Latency = 2  
(see Note A)  
n
WR  
n
DOD  
(for ENBL)  
CLK  
n
READ Command  
ENBL Command  
DEAC/DCAB  
Command  
DOD  
(for MASK)  
WRT Command  
t
IH  
t
IS  
DQ  
Q
D
Ignored  
MASK  
Command  
MASK  
DQMx  
Command  
NOTE A: For this example, assume CAS latency = 2 and burst length = 2.  
Figure 14. DQ Masking  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
CAS Latency = 2  
(see Note A)  
t
APR  
CLK  
READ-P Command  
ACTV Command  
DQ  
Q
Q
NOTE A: For this example, assume CAS latency = 2 and burst length = 2.  
Figure 15. Read Automatic-Deactivate (Autoprecharge)  
t
APW  
CLK  
WRT-P Command  
ACTV Command  
D
DQ  
D
NOTE A: For this example, the burst length = 2.  
Figure 16. Write Automatic-Deactivate (Autoprecharge)  
n
CLE  
n
CLE  
CLK  
DQ  
t
IH  
Q
Q
Q
Q
(Assume Final Data Output of Burst)  
t
IH  
t
t
IS  
IS  
CKE  
Figure 17. CLK-Suspend Operation (Assume Burst Length = 4)  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
CLK  
CLK Is Don’t Care, But Must Be  
Stable Before CKE High  
Exit Power-Down  
Mode If t Is  
Last Data-In  
WRT (WRT-P)  
Operation  
CESP  
Satisfied  
(New Command)  
Last Data-out  
READ (READ-P)  
Operation  
Enter  
Power-down  
Mode  
CKE  
t
t
CESP  
IH  
t
IS  
CLK  
DESL or NOOP  
Command Only If  
CLK Is Don’t Care, But Must Be  
Stable Before CKE High  
Last Data-In  
WRT (WRT-P)  
Operation  
t
IsNotSatisfied  
CESP  
Last Data-Out  
READ (READ-P)  
Operation  
Exit Power-Down  
Mode  
(New Command)  
Enter  
Power-Down  
Mode  
CKE  
t
CESP  
t
IH  
t
IS  
Figure 18. Power-Down Operation  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
CLK  
Exit SLFR If t  
CESP  
ACTV, MRS,  
or REFR  
Command  
CLK Is Don’t Care, But Must  
Be Stable Before CKE High  
Is Satisfied  
SLFR  
Command  
DESL or NOOP Only  
Until t Is Satisfied  
Both Banks  
Deactivated  
RC  
t
IS  
CKE  
CLK  
t
RC  
t
IH  
t
CESP  
Exit SLFR  
ACTV, MRS,  
or REFR  
Command  
t
Not  
CLK Is Don’t Care, But Must  
Be Stable Before CKE High  
CESP  
Yet Satisfied  
SLFR  
Command  
DESL or NOOP Only  
Until t Is Satisfied  
Both Banks  
Deactivated  
RC  
t
IS  
CKE  
t
RC  
t
IH  
t
CESP  
NOTES: A. Assume both banks are deactivated before the execution of SLFR.  
B. Before/after self-refresh mode, 4K burst auto-refresh cycles are recommended to ensure that the SDRAM is fully refreshed.  
Figure 19. Self-Refresh Entry/Exit  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
CLK  
DEAC/DCAB  
Command  
READ  
Command  
(CL = 2)  
Final Input of  
Write Burst  
n
HZP2  
(CL = 2) DQ  
D
D
Q
Q
Q
Q
Final Input of  
Write Burst  
READ  
Command  
(CL = 3)  
n
HZP3  
(CL = 3) DQ  
D
Q
Q
Q
Q
Q
NOTE A: Assume burst length = 8.  
Figure 20. Write Burst Followed by DEAC/DCAB-Interrupted Read  
n
CWL  
n
WR  
CLK  
WRT  
Command  
WRT  
Command  
DEAC/DCAB  
Command  
D
D
DQ  
NOTE A: For this example, assume burst length = 1.  
Figure 21. Write Followed by Deactivate  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
n
HZP3  
CLK  
READ Command  
DEAC or DCAB Command  
t
HZ  
Q
Q
Q
DQ  
NOTE A: For this example, assume CAS latency = 3, and burst length = 4.  
Figure 22. Read Followed by Deactivate  
t
APR  
CLK  
ACTV, MRS, REFR, or SLFR Command  
READ-P Command  
Final Data Out  
Q
DQ  
NOTE A: For this example, assume CAS latency = 3, and burst length = 1.  
Figure 23. Read With Auto-Deactivate  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
DCAB  
Command  
REFR #1  
Command  
REFR #8  
Command  
MRS  
Command  
New Command  
Can Start Entering Here  
CLK  
t
CK  
t
RC  
200 µs  
t
RSA  
V
CCQ  
CC  
V
t
IS  
RAS  
CAS  
W
t
IH  
A10  
A11A13  
A0A9  
Mode  
A9 = V  
A7, A8 = V  
A0A6 = V  
(see Note A)  
Hi–Z  
DQ  
DQMx  
CS  
CKE  
Time Lapse  
NOTE A: Refer to the section titled “Setting the Mode Register”.  
Time Lapse  
Time Lapse  
Figure 24. Power-Up Sequence  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_0  
READ_0  
DEAC_0  
CLK  
t
RCD  
a
c
DQ  
DQMx  
RAS  
CAS  
W
b
d
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
ROW  
BURST CYCLE  
(D/Q)  
(03)  
ADDR  
a
b
c
d
C0  
Q
0
R0  
C0 + 1  
C0 + 2  
C0 + 3  
Column-address sequence depends on programmed burst type and starting address C0 (see Table 5).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 25. Read Burst (CAS latency = 3, burst length = 4)  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_3  
WRT_3  
DEAC_3  
CLK  
t
RCD  
n
WR  
g
a
c
e
DQ  
DQMx  
RAS  
CAS  
W
b
d
f
h
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
a
b
c
d
e
f
g
h
C0  
D
3
R0  
C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
Column-address sequence depends on programmed burst type and starting address C0 (see Table 6).  
and n for the ’664xx4 at 125 MHz.  
NOTE A: This example illustrates minimum t  
RCD  
WR  
Figure 26. Write Burst (burst length = 8)  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_1  
WRT_1  
READ_1  
DEAC_1  
CLK  
t
RCD  
a
c
DQ  
DQMx  
RAS  
CAS  
W
b
d
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
D
a
b
c
d
1
1
R0  
R0  
C0  
C0+1  
Q
C1  
C1+1  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 4).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 27. Write-Read Burst (CAS latency = 3, burst length = 2)  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ACTV_2  
READ_2  
WRT-P_2  
CLK  
DQ  
t
RCD  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C1  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
BURST CYCLE  
(D/Q)  
Q
(03) ADDR  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
C0  
2
2
R0  
R0  
C0+1 C0+2  
C0+3 C0+4 C0+5 C0+6 C0+7  
D
C1  
C1+1 C1+2 C1+3 C1+4 C1+5 C1+6 C1+7  
Column-address sequence depends on programmed burst type and starting address C0 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 28. Read-Write Burst With Automatic Deactivate (CAS latency = 3, burst length = 8)  
ACTV_0  
READ-P_0  
ACTV_1  
READ-P_1  
ACTV_2  
READ-P_2  
ACTV_3  
CLK  
DQ  
t
t
t
RCD  
RCD  
RCD  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
R2  
R2  
R2  
R3  
R3  
R3  
A11  
A10  
C0  
C1  
C2  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
ROW  
BURST CYCLE  
(D/Q)  
Q
(03) ADDR  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
. . .  
0
1
2
R0  
R1  
R2  
C0  
C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
Q
C1 C1+1 C1+2 C1+3 C1+4 C1+5 C1+6 C1+7  
Q
C2 C2+1 C2+2 . . .  
Column-address sequence depends on programmed burst type and starting addresses C0, C1, and C2 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 29. [A] Four-Bank Row-Interleaving Burst Length of 8 With Automatic Deactivate (CAS latency = 3, burst length = 8)  
READ-P_0  
ACTV_1  
READ-P_1  
ACTV_2  
READ-P_2  
ACTV_3  
READ-P_3  
ACTV_0  
READ-P_0  
ACTV_1  
READ-P_1  
ACTV_0  
CLK  
DQ  
t
t
t
t
t
t
RCD  
RCD  
RCD  
RCD  
RCD  
RCD  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
DQMx  
RAS  
CAS  
W
A13  
A12  
A11  
R0  
R0  
R0  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
A10  
A0A9  
C0 R1  
C1 R2  
C2 R3  
C3 R4  
C4 R5  
C5  
CS  
CKE  
BURST  
TYPE  
BANK  
ROW  
BURST CYCLE  
(D/Q)  
Q
(03) ADDR  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
. . .  
0
1
2
3
0
R0  
R1  
R2  
R3  
R4  
C0  
C0+1 C0+2 C0+3  
Q
C1 C1+1 C1+2 C1+3  
Q
C2 C2+1 C2+2 C2+3  
Q
C3 C3+1 C3+2 C3+3  
Q
C4 C4+1 C4+2 . . .  
Column-address sequence depends on programmed burst type and starting addresses C0, C1, and C2 (see Table 5).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 29. [B] Four-Bank Row-Interleaving Burst Length of 4 With Automatic Deactivate (CAS latency = 3, burst length = 4) (Cont’d)  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_0  
ACTV_1  
ACTV_2  
ACTV_3 READ_0  
READ_1  
READ_2  
READ_3  
READ_0  
CLK  
DQ  
a
c
e
b
d
f
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
R2  
R2  
R2  
R3  
R3  
A11  
A10  
R3  
C0  
C1  
C2  
C3  
C4  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
ROW  
BURST CYCLE  
(D/Q)  
Q
(03)  
ADDR  
R0  
a
b
c
d
e
f
g
h
. . .  
. . .  
0
1
C0  
C0+1  
Q
R1  
C1  
C1+1  
Q
2
R2  
C2  
C2+1  
Q
3
R3  
C3  
C3+1  
. . .  
. . .  
. . .  
. . .  
. . .  
Column-address sequence depends on programmed burst type and starting addresses C0, C1, and C2 (see Table 4).  
Figure 30. Four-Bank Column-Interleaving Read Bursts (CAS latency = 3, burst length = 2)  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
READ_0  
ACTV_0  
ACTV_2  
DEAC_0  
WRT_2  
DEAC_2  
CLK  
DQ  
t
RCD  
a
b
c
d
e
f
g
h
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
A0A9  
C0  
C1  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
0
2
R0  
R1  
C0  
C0+1 C0+2 C0+3  
D
C1  
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 31. Read-Burst Bank 0, Write-Burst Bank 1 (CAS latency = 3, burst length = 4)  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_3  
ACTV_0 WRT-P_3  
READ-P_0  
CLK  
t
RRD  
n
CWL  
g
a
c
e
DQ  
DQMx  
RAS  
CAS  
W
b
d
f
t
RCD  
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
D
a
b
c
d
e
f
g
h
3
0
R0  
R1  
C0  
C0+1 C0+2 C0+3  
Q
C1  
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum n and t for the ’664xx4 at 125 MHz.  
t
CWL, RRD,  
RCD  
Figure 32. Write-Burst Bank 3, Read-Burst Bank 0 With Automatic Deactivate  
(CAS latency = 3, burst length = 4)  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
READ_1  
ACTV_1  
ACTV_0  
WRT_0  
e
DCAB  
CLK  
DQ  
g
t
RCD  
b
a
c
d
f
h
n
DOD  
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
1
0
R0  
R1  
C0  
C0+1 C0+2 C0+3  
D
C1  
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 100 MHz.  
RCD  
Figure 33. Use of DQM for Output and Data-In Cycle Masking (Read-Burst Bank 1, Write-Burst Bank 0,  
Deactivate All Banks) (CAS latency = 2, burst length = 4)  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
REFR  
REFR  
ACTV_3  
READ_3  
DEAC_3  
REFR  
CLK  
t
t
RCD  
RC  
t
RP  
t
RC  
a
b
c
d
e
f
g
h
DQ  
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
a
b
c
d
e
f
g
h
C0  
Q
3
R0  
C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
Column-address sequence depends on programmed burst type and starting address C0 (see Table 6).  
NOTE A: This example illustrates minimum t , t , and t for the ’664xx4 at 100 MHz.  
RC RCD  
RP  
Figure 34. Refresh Cycles (Refreshes Followed by Read Burst, Followed by Refresh)  
(CAS latency = 2, burst length = 8)  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
DCAB  
MRS  
ACTV_0  
WRT-P_0  
CLK  
DQ  
t
RCD  
t
RSA  
a
b
c
d
DQMx  
RAS  
CAS  
W
See Note A  
See Note A  
See Note A  
See Note A  
See Note A  
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
a
b
c
d
C0  
D
0
R0  
C0+1 C0+2 C0+3  
Column-address sequence depends on programmed burst type and starting address C0 (see Table 5).  
NOTES: A. Refer to Figure 2 (for setting mode registers)  
B. This example illustrates minimum t and t  
for the ’664xx4 at 125 MHz.  
RSA  
RCD  
Figure 35. Mode-Register Programming  
(Deactivate All, Mode Program, Write Burst With Automatic Deactivate)  
(CAS latency = 3, burst length = 4)  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_3 READ-P_3  
HOLD  
ACTV_0  
WRT-P_0  
CLK  
DQ  
n
CLE  
t
RCD  
a
b
c
d
e
f
g
h
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
R0  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
3
0
R0  
R1  
C0  
C0+1 C0+2 C0+3  
C1  
D
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTES: A. This example illustrates minimum t and t for the ’664xx4 at 100 MHz.  
RCD  
APW  
B. If entering the PDE command with violation of short t  
banks are deactivated (still in power-down mode).  
, the device is still entering the power-down mode and then both  
APW  
Figure 36. Use of CKE for Clock Gating (Hold) and Standby Mode  
(Read-Burst Bank 3 With Hold, Write-Burst Bank 0, Standby Mode)  
(CAS latency = 2, burst length = 4)  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
READ_0  
ACTV_0  
ACTV_1  
DEAC_0  
WRT_1  
DEAC_1  
CLK  
t
n
RCD  
WR  
n
HZP3  
DQ0DQ7  
e
f
g
h
DQ8DQ15  
a
b
c
d
DQMU  
DQML  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
0
1
R0  
R1  
C0  
C0+1 C0+2 C0+3  
C1  
D
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t  
125 MHz.  
read burst, and a minimum n write burst for the ’664xx4 at  
WR  
RCD  
Figure 37. Read-Burst Bank 0, Write-Burst Bank 1 (With Lower Bytes Masked Out During the READ  
Cycles and Upper Bytes Masked Out During the WRITE Cycles) (Only for x16)  
(CAS latency = 3, burst length = 4)  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
READ_1  
ACTV_1  
ACTV_0  
WRT_0  
DCAB  
CLK  
n
WR  
t
RCD  
b
a
a
c
c
d
d
f
f
h
h
DQ0DQ7  
DQML  
DQ8DQ15  
DQMU  
RAS  
b
e
g
CAS  
W
A13  
A12  
R0  
R0  
R0  
R1  
R1  
R1  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
1
0
R0  
R1  
C0  
C0+1 C0+2 C0+3  
C1  
D
C1+1 C1+2 C1+3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t and a minimum n write burst for the ’664xx4 at 100 MHz.  
RCD  
WR  
Figure 38. Use of DQM for Output and Data-In Cycle Masking (Read-Burst Bank 1, Write-Burst Bank 0,  
Deactivate All Banks) [Only Masked Out the Lower Bytes (Random Bits)] for x16  
(CAS latency = 2, burst length = 4)  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A – APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_0  
ACTV_2  
ACTV_3  
ACT1  
READ_0 READ_2  
READ_3  
READ_1  
READ_0  
CLK  
DQ0DQ7  
DQ8DQ15  
DQMU  
DQML  
RAS  
t
RCD  
a
c
e
b
d
f
h
t
RRD  
Hi-Z  
CAS  
W
A13  
A12  
R0  
R0  
R0  
R2  
R2  
R2  
R3  
R3  
R3  
R1  
R1  
R1  
A11  
A10  
A0A9  
CS  
C0  
C2  
C3  
C1  
C4  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
0
2
3
1
R0  
R2  
R3  
R1  
C0  
C0+1  
Q
C2  
C2+1  
Q
C3  
C3+1  
Q
C1  
C1+1  
Column-address sequence depends on programmed burst type and starting addresses C0, C1, C2, and C3 (see Table 4).  
NOTE A: This example illustrates minimum t and minimum t for the ’664xx4 at 125 MHz.  
RCD  
RRD  
Figure 39. Four-Bank Column-Interleaving Read Bursts (With Upper Bytes to be Masked) (Only for x16)  
(CAS latency = 3, burst length = 2)  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ACTV_1  
READ_1  
WRT-P_1  
i
CLK  
DQ  
t
RCD  
a
c
e
g
b
d
f
h
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
(03) ADDR  
BURST CYCLE  
(D/Q)  
Q
a
b
c
d
e
f
g
h
i
1
1
R0  
R0  
C0  
C0+1 C0+2  
C0+3 C0+4 C0+5 C0+6 C0+7  
D
C1  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 40. Read Burst — Single Write With Automatic Deactivate (CAS latency = 3, burst length = 8)  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A– APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_0  
READ-P_0  
CLK  
DQ  
t
RCD  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
DQMx  
RAS  
CAS  
W
A13  
A12  
R0  
R0  
R0  
A11  
A10  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK ROW  
BURST CYCLE  
(D/Q)  
(03) ADDR  
R0  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
Q
0
C0  
C0+1 C0+2  
C0+3 C0+4 C0+5 C0+6 C0+7  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’664xx4 at 125 MHz.  
RCD  
Figure 41. Read Bursts With Automatic Deactivate (read latency = 3, burst length = 8) (for x16)  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A– APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_1 READ-P_1  
HOLD  
b
ACTV_0  
WRT-P_0  
CLK  
DQ  
t
RCD  
a
c
d
e
f
g
h
DQMx  
RAS  
CAS  
W
See Note A  
A13  
A12  
R0  
R0  
R0  
R0  
R1  
R1  
R1  
R1  
A11  
A10  
A0A9  
CS  
C0  
C1  
CKE  
BURST BANK  
ROW  
BURST CYCLE  
TYPE  
(D/Q)  
Q
(01)  
ADDR  
a
b
c
d
e
f
g
h
1
0
R0  
C0  
C0 + 1  
C0 + 2  
C0 + 3  
D
R1  
C1  
C1 + 1  
C1 + 2  
C1 + 3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTES: A. These rising clocks during output “c” with DQMx = Hi do not mask out the output “d” due to CKE inserted low to suspend  
those rising clocks at cycle DQMx = Hi.  
B. This example illustrates minimum t  
for the ’664xx4 at 100 MHz.  
RCD  
Figure 42. Use of CKE for Clock Gating (Hold/Suspend) and DQM = Hi Showed No Effect  
(CAS latency = 2, burst length = 4, two banks)  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A– APRIL 1998 – REVISED JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
ACTV_1  
READ-P_1  
HOLD  
CLK  
DQ  
t
RCD  
a
b
d
c
DQMx  
RAS  
CAS  
See Note A  
W
A13  
A12  
A11  
R0  
R0  
R0  
R0  
A10  
A0A9  
CS  
C0  
CKE  
BURST BANK  
ROW  
BURST CYCLE  
TYPE  
(D/Q)  
Q
(01)  
ADDR  
a
b
c
d
1
R0  
C0  
C0 + 1  
C0 + 2  
C0 + 3  
Column-address sequence depends on programmed burst type and starting addresses C0 and C1 (see Table 5).  
NOTES: A. This example illustrates that the DQM mask is also delayed when a HOLD/Suspend is in progress.  
B. This example illustrates minimum t for the ’664xx4 at 100 MHz.  
RCD  
Figure 43. DQMx Mask Delay As the Hold/Suspend In Progress  
(CAS latency = 2, burst length = 4)  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A– APRIL 1998 – REVISED JULY 1998  
device symbolization  
TI  
-SS  
Speed Code (-8, -8A, -10)  
Package Code  
TMS664xx4 DGE  
W
B
Y
M
LLLL  
P
Assembly Site Code  
Lot Traceability Code  
Month Code  
Year Code  
Die Revision Code  
Wafer Fab Code  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS664414, TMS664814, TMS664164  
4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES  
SMOS695A– APRIL 1998 – REVISED JULY 1998  
MECHANICAL DATA  
DGE (R-PDSO-G54)  
PLASTIC SMALL-OUTLINE PACKAGE  
0.018 (0,45)  
0.031 (0,80)  
54  
0.006 (0,16)  
M
0.012 (0,30)  
28  
0.471 (11,96)  
0.455 (11,56)  
0.404 (10,26)  
0.396 (10,06)  
1
27  
0.006 (0,15) NOM  
0.879 (22,32)  
0.871 (22,12)  
Gage Plane  
0.010 (0,25)  
0°5°  
0.024 (0,60)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.047 (1,20) MAX  
0.000 (0,00) MIN  
4040070-6/C 12/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TMS664414

4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414-10DGE

16MX4 SYNCHRONOUS DRAM, 7.5ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414-10DGER

16MX4 SYNCHRONOUS DRAM, 7.5ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414-8ADGE

16MX4 SYNCHRONOUS DRAM, 6ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS66441410

4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS6644148

4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS6644148A

4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414DGE-10

16MX4 SYNCHRONOUS DRAM, 7.5ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414DGE-8

16MX4 SYNCHRONOUS DRAM, 6ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664414DGE-8A

16MX4 SYNCHRONOUS DRAM, 6ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664814

4 194 304 BY 4-BIT/2 097 152 BY 8-BIT/1 048 576 BY 16-BIT BY 4-BANK SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORIES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS664814-8ADGE

8MX8 SYNCHRONOUS DRAM, 6ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI