SOC-3000 [ETC]

Scale-On-Chip ASIC Technical Specification Rev.B1; 尺度片ASIC技术规格Rev.B1
SOC-3000
型号: SOC-3000
厂家: ETC    ETC
描述:

Scale-On-Chip ASIC Technical Specification Rev.B1
尺度片ASIC技术规格Rev.B1

文件: 总98页 (文件大小:1070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SOC-3000/i  
Scale-On-Chip ASIC  
Technical Specification Rev.B1  
July 2002  
Document order number: SOC-3000-0001-SP  
2001 CybraTech (1998) Ltd. All rights reserved.  
CybraTech (1998) Ltd. reserves the right to alter the equipment specifications and descriptions in this publication  
without prior notice. No part of this publication shall be deemed to be part of any contract or warranty unless  
specifically incorporated by reference into such contract or warranty.  
The information contained herein is merely descriptive in nature, and does not constitute a binding offer for the sale of  
the product described herein.  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE OF CONTENTS  
LIST OF FIGURES .................................................................................................................................. IV  
LIST OF TABLES ......................................................................................................................................V  
GENERAL....................................................................................................................................................1  
GENERAL DESCRIPTION ............................................................................................................................2  
ADVANTAGES............................................................................................................................................2  
SPECIFICATIONS......................................................................................................................................3  
ANALOG-TO-DIGITAL CONVERTER (ADC)...............................................................................................3  
ADC Converter Main Channel – Wheatstone Bridge (Load Cell)........................................................3  
ADC Converter Auxiliary Channel .......................................................................................................3  
REFERENCE INPUTS ...................................................................................................................................4  
DIGITAL INPUT ..........................................................................................................................................4  
DIGITAL OUTPUT.......................................................................................................................................4  
FLASH MEMORY........................................................................................................................................4  
CPU...........................................................................................................................................................5  
FREQUENCY SOURCE INPUT......................................................................................................................5  
POWER SUPPLY AND MONITOR.................................................................................................................5  
ENVIRONMENTAL CONDITIONS.................................................................................................................5  
ABSOLUTE MAXIMUM RATING* ...............................................................................................................6  
OUTLINE DIMENSIONS...............................................................................................................................6  
SCALE MAIN BOARD LAYOUT AND ASSEMBLY PROCESS PARAMETERS FOR SOC-3000........................7  
PIN CONFIGURATION.............................................................................................................................9  
CPU 80C51TBO .........................................................................................................................................21  
MEMORY ORGANIZATION .......................................................................................................................22  
Flash (Program & Non-Volatile Data) Memory Mapping and Usage ...............................................22  
Application Program Start Address ....................................................................................................23  
Serial Downloading (In-Circuit Programming)..................................................................................23  
Using the Flash for Data Memory ......................................................................................................24  
Data Memory Mapping.......................................................................................................................25  
Memory Bank Select Register .............................................................................................................25  
CPU SFRs and Configuration Registers (CFR)..................................................................................25  
INSTRUCTION SET....................................................................................................................................25  
RESET ......................................................................................................................................................26  
INTERRUPT VECTORS ..............................................................................................................................26  
ADC CONTROLLER INTERFACE .......................................................................................................27  
CONTROLLER REGISTERS........................................................................................................................27  
Semaphore Register.............................................................................................................................27  
Control Register..................................................................................................................................27  
Revision B  
Page i  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Status/Data Registers ..........................................................................................................................28  
OPERATION ..............................................................................................................................................29  
KEYBOARD CONTROLLER................................................................................................................. 31  
CONTROLLER REGISTERS ........................................................................................................................32  
REGISTERS DESCRIPTION.........................................................................................................................32  
Control Register ..................................................................................................................................32  
Data Registers .....................................................................................................................................32  
OPERATION ..............................................................................................................................................33  
LCD CONTROLLER/DRIVER .............................................................................................................. 35  
LCD Bias Generator............................................................................................................................36  
Drive Mode Waveforms.......................................................................................................................36  
REGISTERS DESCRIPTION.........................................................................................................................42  
Control Register ..................................................................................................................................42  
Data Registers .....................................................................................................................................43  
OPERATION ..............................................................................................................................................44  
LED PARALLEL DISPLAY CONTROLLER ...................................................................................... 45  
REGISTERS DESCRIPTION.........................................................................................................................46  
Semaphore Register.............................................................................................................................47  
Data Registers .....................................................................................................................................47  
OPERATION ..............................................................................................................................................48  
LED SERIAL INTERFACE DISPLAY CONTROLLER..................................................................... 49  
REGISTERS DESCRIPTION.........................................................................................................................50  
Control Register ..................................................................................................................................51  
Semaphore Register.............................................................................................................................51  
Data Registers .....................................................................................................................................52  
OPERATION ..............................................................................................................................................53  
PROGRAMMABLE FREQUENCY CONTROLLER.......................................................................... 55  
OPERATION ..............................................................................................................................................56  
CONTROL REGISTERS DESCRIPTION........................................................................................................56  
WATCHDOG TIMER.............................................................................................................................. 57  
OPERATION ..............................................................................................................................................57  
CONTROL REGISTERS DESCRIPTION........................................................................................................57  
LOW VOLTAGE DETECTOR............................................................................................................... 59  
INTERRUPT REGISTER..............................................................................................................................59  
CONFIGURATION REGISTERS (CFR)............................................................................................... 61  
SPECIAL FUNCTION REGISTERS (SFR) .......................................................................................... 65  
GLOBAL CONFIGURATION REGISTER ......................................................................................................65  
Operation.............................................................................................................................................65  
CONTROLLERS CLOCK ENABLE REGISTER..............................................................................................66  
CONTROLLERS RESET REGISTERS .........................................................................................................67  
Revision B  
Page ii  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
I/O OPERATION.......................................................................................................................................69  
8051-COMPATIBLE ON-CHIP PERIPHERALS..................................................................................71  
PARALLEL I/O PORTS ..............................................................................................................................71  
Timers/Counters..................................................................................................................................71  
SOC-3000 INITIALIZATION ..................................................................................................................73  
SOC-3000 HARDWARE DESIGN CONSIDERATIONS AND PERIPHERAL INTERFACE  
CONNECTIONS........................................................................................................................................75  
LOAD CELL INTERFACE...........................................................................................................................75  
4-Wire and 6-Wire Interfaces..............................................................................................................75  
Load Cells Connected in Parallel .......................................................................................................77  
Load Cell Impedance ..........................................................................................................................78  
KEYBOARD INTERFACE ...........................................................................................................................78  
LCD DISPLAY INTERFACE ......................................................................................................................79  
LED DISPLAY INTERFACE.......................................................................................................................80  
EXTERNAL INTERRUPT SOURCES ............................................................................................................80  
Using the Vdet input:...........................................................................................................................80  
Using Timer0 and Timer1 inputs: .......................................................................................................81  
I2C-COMPATIBLE INTERFACE..................................................................................................................81  
POWER SAVING SCHEMES .......................................................................................................................81  
GROUNDING AND BOARD LAYOUT RECOMMENDATIONS.......................................................................82  
IN-CIRCUIT EMULATOR (ICE) SYSTEM..........................................................................................83  
EXAMPLES OF PIN CONFIGURATION PROGRAMMING............................................................85  
EXAMPLE 1: CONFIGURING A 20-DIGIT LCD DISPLAY AND AN 8X8 KEYBOARD...................................85  
EXAMPLE 2: CONFIGURING A 16-DIGIT LCD DISPLAY, AN 8X4 KEYBOARD, 8 OUTPUT AND 4 I/O  
PORTS ......................................................................................................................................................86  
EXAMPLE 3: CONFIGURING A 21-DIGIT LED PARALLEL DISPLAY, AN 8X8 KEYBOARD AND 13  
OUTPUT PORTS........................................................................................................................................87  
EXAMPLE 4: OUTPUTS AND I/O PORTS PROGRAMMING .........................................................................88  
Revision B  
Page iii  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LIST OF FIGURES  
FIGURE 1:  
FIGURE 2:  
FIGURE 3:  
FIGURE 4:  
FIGURE 5:  
FIGURE 6:  
FIGURE 7:  
FIGURE 8:  
FIGURE 9:  
FIGURE 10:  
FIGURE 11:  
FIGURE 12:  
FIGURE 13:  
FIGURE 14:  
FIGURE 15:  
FIGURE 16:  
FIGURE 17:  
FIGURE 18:  
FIGURE 19:  
FIGURE 20:  
FIGURE 21:  
FIGURE 22:  
FIGURE 23:  
FIGURE 24:  
FIGURE 25:  
FIGURE 26:  
FIGURE 27:  
FIGURE 28:  
FIGURE 29:  
FIGURE 30:  
FIGURE 31:  
SOC-3000 TYPICAL APPLICATION ........................................................................................ 1  
SOC-3000 BLOCK DIAGRAM................................................................................................. 2  
MECHANICAL OUTLINE DRAWING ........................................................................................ 6  
MAIN BOARD PADS DIMENSIONS RECOMMENDATION ........................................................ 7  
SOC-3000 PIN ARRANGEMENT ........................................................................................... 15  
SOC-3000 LCD DISPLAY PIN CONFIGURATION ................................................................. 16  
SOC-3000 LED DISPLAY PIN CONFIGURATION ................................................................. 17  
CPU BLOCK DIAGRAM........................................................................................................ 21  
SOC-3000 PROGRAM MEMORY MAP.................................................................................. 22  
SOC-3000/I STARTUP PROCEDURE .................................................................................... 24  
SOC-3000 DATA MEMORY MAP......................................................................................... 25  
KEYBOARD MATRIX CONFIGURATION ................................................................................ 31  
LCD CONTROLLER/DRIVER BLOCK DIAGRAM ................................................................... 35  
STATIC DRIVE MODE WAVEFORMS..................................................................................... 37  
1:2 MULTIPLEX DRIVE RATIO–1/2 BIAS WAVEFORMS....................................................... 38  
1:2 MULTIPLEX DRIVE RATIO–1/3 BIAS WAVEFORMS....................................................... 39  
1:3 MULTIPLEX DRIVE RATIO WAVEFORMS....................................................................... 40  
1:4 MULTIPLEX DRIVE RATIO WAVEFORMS....................................................................... 41  
BACKPLANE OUTPUTS PER LCD DIGIT ............................................................................... 43  
LED PARALLEL DISPLAY CONTROLLER BLOCK DIAGRAM ................................................ 45  
LED PARALLEL DISPLAY CONTROLLER TIMING DIAGRAM ............................................... 46  
LED SERIAL INTERFACE DISPLAY BLOCK DIAGRAM ......................................................... 49  
LED SERIAL INTERFACE CONTROLLER TIMING DIAGRAM................................................. 50  
CLOCK GENERATOR BLOCK DIAGRAM ............................................................................... 55  
LOW VOLTAGE DETECTOR .................................................................................................. 59  
4-WIRE LOAD-CELL CONNECTION ...................................................................................... 76  
6-WIRE LOAD-CELL CONNECTION ...................................................................................... 76  
MULTIPLE LOAD-CELL CONNECTION.................................................................................. 77  
KEYBOARD INTERFACE ....................................................................................................... 78  
LCD DISPLAY INTERFACE................................................................................................... 79  
LED PARALLEL DISPLAY INTERFACE ................................................................................. 80  
Revision B  
Page iv  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LIST OF TABLES  
TABLE 1: SOC-3000 PIN CONFIGURATION FOR LCD DISPLAY.................................................................9  
TABLE 2: SOC-3000 PIN CONFIGURATION FOR LED DISPLAY...............................................................12  
TABLE 3: NOTES ON SOC-3000 PIN CONFIGURATION.............................................................................15  
TABLE 4: SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LCD DISPLAY ...............................18  
TABLE 5: SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LED DISPLAY ...............................19  
TABLE 6: INTERRUPT VECTORS DESCRIPTION.........................................................................................26  
TABLE 7: ADC CONTROLLER REGISTERS DESCRIPTION .........................................................................27  
TABLE 8: ADC CONTROLLER INTERFACE SEMAPHORE REGISTER BIT DEFINITIONS .............................27  
TABLE 9: ADC CONTROLLER INTERFACE CONTROL REGISTER BIT FUNCTIONS....................................28  
TABLE 10:  
TABLE 11:  
TABLE 12:  
TABLE 13:  
TABLE 14:  
TABLE 15:  
TABLE 16:  
TABLE 17:  
TABLE 18:  
TABLE 19:  
TABLE 20:  
TABLE 21:  
TABLE 22:  
TABLE 23:  
TABLE 24:  
TABLE 25:  
TABLE 26:  
TABLE 27:  
TABLE 28:  
TABLE 29:  
TABLE 30:  
TABLE 31:  
TABLE 32:  
TABLE 33:  
TABLE 34:  
TABLE 35:  
TABLE 36:  
TABLE 37:  
TABLE 38:  
TABLE 39:  
TABLE 40:  
TABLE 41:  
TABLE 42:  
TABLE 43:  
TABLE 44:  
ADC CONTROLLER INTERFACE DATA REGISTER BIT DEFINITIONS....................................28  
ADC CONTROLLER INTERFACE DATA REGISTER BIT FUNCTIONS ......................................28  
ADC OUTPUT COUNTS VS. ADC SETTINGS ......................................................................30  
KEYBOARD CONTROLLER REGISTERS DESCRIPTION ...........................................................32  
KEYBOARD CONTROLLER CONTROL REGISTER BIT FUNCTIONS.........................................32  
KEYBOARD CONTROLLER DATA REGISTER BIT DEFINITIONS.............................................33  
MAXIMUM DISPLAY CAPACITY PER DISPLAY CONFIGURATION..........................................36  
LCD BIAS CONFIGURATIONS...............................................................................................36  
LCD CONTROLLER/DRIVER REGISTERS DESCRIPTION........................................................42  
LCD CONTROLLER CONTROL REGISTER BIT FUNCTIONS ...................................................42  
LCD CONTROLLER DATA REGISTER BIT DEFINITIONS – 20-DIGIT DISPLAY......................43  
LED PARALLEL DISPLAY CONTROLLER DRIVER REGISTERS DESCRIPTION .......................46  
LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT DEFINITIONS ............47  
LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT FUNCTIONS ..............47  
LED PARALLEL CONTROLLER DATA REGISTER BIT DEFINITIONS......................................47  
LED SERIAL CONTROLLER DRIVER REGISTERS DESCRIPTION............................................50  
LED SERIAL INTERFACE DISPLAY CONTROL REGISTER BIT FUNCTIONS ...........................51  
LED SERIAL INTERFACE DISPLAY DATA REGISTER BIT DEFINITIONS................................52  
CLOCK FREQUENCY CONTROL REGISTER BIT SETTINGS.....................................................56  
WATCHDOG TIMER OPERATING PARAMETERS ....................................................................57  
WATCHDOG TIMER COMMAND SEQUENCE..........................................................................57  
POWER-FAILURE INTERRUPT REGISTER BIT SETTINGS .......................................................59  
CFR BIT ASSIGNMENT .........................................................................................................62  
GLOBAL CFR REGISTER.......................................................................................................65  
CLOCK ENABLE REGISTER ...................................................................................................66  
CONTROLLERS CLOCK ENABLE REGISTER BIT FUNCTIONS.................................................67  
CONTROLLERS RESET REGISTER........................................................................................67  
BIT-ORIENTED I/O PORTS ADDRESSES, PIN AND BIT ASSIGNMENT....................................69  
BYTE-ORIENTED OUTPUT PORTS ADDRESSES AND PIN ASSIGNMENT ................................69  
AVAILABLE PINS ON THE 80C51 I/O PORT ..........................................................................71  
I2C-COMPATIBLE INTERFACE HARDWARE INTERFACE.......................................................81  
EXAMPLE 1: 20-DIGIT LCD DISPLAY, 8×8 KEYBOARD ......................................................85  
EXAMPLE 2: 16-DIGIT LCD DISPLAY, 8×4 KEYBOARD, 8 OUTPUT, 4 I/O..........................86  
EXAMPLE 3: 21-DIGIT LED DISPLAY, 8×8 KEYBOARD, 13 OUTPUT ..................................87  
OUTPUT AND I/O PORTS PROGRAMMING.............................................................................88  
Revision B  
Page v  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
GENERAL  
4 cycles/instruction  
Features  
Scale-On-Chip System  
Single-Chip Scale electronics  
Full OIML R-76 compliance  
SOC-3000 - 3000 d  
120KByte, field-programmable Flash program  
and data memory  
4KByte RAM  
4KByte non-volatile Data Flash  
Analog–to–Digital Converter  
Resolution-20 bits  
Sample rate-5, 10, 20 samples per second  
Programmable gain-0.5, 0.75, 1, 1.5, 2  
SOC-3000i - 6000 d  
Up to eight load cells  
6-wire load cell connection (including Sense  
inputs)  
Power  
Peripherals  
5/3.3V operation, 15mA  
Battery operation support  
Power failure detector  
Supports LCD and LED displays:  
LCD: Up to 20 digits (160 segments, 4×40)  
LED: Up to 24 digits  
Keyboard: Up to 64 keys  
Applications  
Serial communication: RS-232/485  
I/O (set-points): Up to 40 lines  
Temperature sensor input  
Price computing scales  
Weighing indicators  
Counting scales  
Checkout scales  
CPU  
Enhanced 80C51TBO  
LCD (20 digits)  
LED (21 digits)  
LED/LCD Module  
+5V  
8 . . . . . 888  
SEN+  
SIG+  
S 0-39  
BP 0-3  
RS-232  
Printer  
RS-485  
TxD  
RxD  
SEN–  
SIG–  
Load Cell  
(Up to 8)  
SOC-3000  
I/O  
Set Point  
8
VIN  
KB 1-8 KBI 1-8  
VInp  
Buzzer  
5V +  
3.3V  
Up to 64  
keys  
FIGURE 1: SOC-3000 TYPICAL APPLICATION  
Revision B  
Page 1  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
General Description  
The SOC-3000 ASIC is an 84-pin, single-chip scale intended to replace present-day,  
multiple-component weighing scale electronic circuitry designs. It includes the  
pre-amplifier, ADC converter, display drivers, keyboard controller, serial  
communication, embedded CPU and field-programmable program and data memory.  
As a "stand-alone" unit it incorporates all scale hardware functions and represents a true  
breakthrough in scale manufacturing. It eliminates the risks, costs and inventory needs  
associated with discrete components.  
The SOC-3000 comes with a comprehensive software library, which implements  
hardware drivers, such as the display and keyboard, as well as most of the standard  
weighing functions. A complete development environment is available, enabling youto  
tailor and customize the application according to specific needs.  
The general SOC-3000 block diagram is presented in Figure 2.  
Advantages  
Generic OIML R-76 approval  
Minimize hardware and software development  
Significantly cuts time-to-market  
Reduces inventory needs  
Display  
Ref+ Ref-  
. . . .  
Display Controllers / Drivers  
LCD / LED  
20 - 24 Digits  
MicroController Core And  
Peripherals  
Load  
Cell  
Delta - Sigma  
ADC  
PGA  
Serial  
Communication  
20 Bits  
80C51TBO  
120Kx8 Program/Data Flash  
4K x 8 RAM  
MUX  
Aux.  
Channel  
Watchdog Timer  
3x16-Bit Timers  
Power Supply Monitor  
I2C Compatible  
I/O  
Power-Down  
Detector  
8
VDET  
SPI Like Serial Interfaces  
UART  
Internal  
Bandgap  
Reference  
Keyboard Controller  
8 x 8  
Frequency Controller  
8
8
Oscillator/  
Resonator  
Keyboard  
FIGURE 2: SOC-3000 BLOCK DIAGRAM  
Revision B  
Page 2  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
SPECIFICATIONS  
Analog-to-Digital Converter (ADC)  
ADC Converter Main Channel – Wheatstone Bridge (Load Cell)  
PARAMETER  
Differential Input Voltage  
Programmable Gain  
Offset Drift vs. Temperature  
Gain Drift vs. Temperature  
Integral Non-linearity  
Common-Mode Rejection (CMR)  
Power Supply Rejection  
Output Noise  
MIN TYP MAX  
UNIT  
COMMENTS  
0
+10 mV  
0.5  
2
20  
Up to 8 load cell  
ppm/ºC  
ppm/ºC  
%
4
0.004  
Of full scale  
±1 count  
120  
120  
dB  
dB  
200  
10  
nVp-t-p  
bit  
Resolution  
20  
20  
Sample Rate  
5
Samples/s  
ADC Converter Auxiliary Channel  
PARAMETER  
Analog Input Voltage  
Offset Drift  
MIN  
0
TYP  
MAX  
UNIT  
COMMENTS  
0.8  
20  
V
ppm/ºC  
Gain Drift  
4
ppm/ºC  
Resolution  
20  
20  
Bit  
Sample Rate  
5
10  
Samples/s  
Revision B  
Page 3  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Reference Inputs  
PARAMETER  
Reference Input  
MIN  
TYP  
MAX  
5
UNIT  
V
COMMENTS  
Ratiometric  
Digital Input  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
COMMENTS  
VIH (Input High Voltage)  
VIL (Input Low Voltage)  
2
5
V
V
TTL Level excluding XTAL  
TTL Level excluding XTAL  
0.0  
0.8  
XTAL Input  
VIH (Input High Voltage)  
VIL (Input Low Voltage)  
2.5  
V
V
VDD = 3.3V  
VDD = 3.3V  
0.4  
Digital Output  
For LCD Display mode:  
PARAMETER  
MIN TYP MAX UNIT  
COMMENTS  
VOH (Output High Voltage)  
5
V
V
LCD Output set by user by external resistors  
LCD Output set by user by external resistors  
VOL (Output Low Voltage) 0.0  
VLCD  
For I/O mode:  
PARAMETER  
MIN TYP MAX UNIT  
COMMENTS  
VOH (Output High Voltage)  
VOL (Output Low Voltage) 0.0  
3.3  
0.8  
V
V
Flash Memory  
PARAMETER  
Endurance  
MIN  
10,000  
100  
TYP  
MAX  
UNIT  
Cycles  
Years  
100,000  
Data Retention  
Erase  
Full Memory  
Single Block (4kByte)  
100  
25  
ms  
ms  
Program Byte  
20  
us  
Revision B  
Page 4  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
COMMENTS  
SOC-3000/i Scale-On-Chip ASIC  
MIN TYP MAX UNIT  
CPU  
PARAMETER  
Enhanced 80C51TBO  
Reset Signal Threshold  
Start-Up Time  
3.98  
V
500  
1
ms  
ms  
From Power On  
From Idle Mode  
From Power Down  
1
ms Oscillator power-down not through OSCEN bit.  
500  
ms Oscillator power-down through OSCEN bit.  
1
ms  
From Watchdog Reset  
Frequency Source Input  
PARAMETER  
Frequency Level  
MIN  
TYP  
MAX  
16  
UNIT  
COMMENTS  
MHz Crystal oscillator or  
resonator  
Power Supply and Monitor  
PARAMETER  
Input Voltage Monitor  
MIN  
TYP MAX UNIT  
COMMENTS  
4.50  
4.75  
2.21  
5.25  
3.60  
V
V
V
V
Power Fail Input Monitor Level  
Set by external resistors  
Analog Voltage Input (AVCC  
)
4.75  
3.00  
5.00  
3.30  
Digital Voltage Input (VCC  
)
Power Supply Current (IIN)  
CPU Freq. = 16 MHz  
CPU Freq. = 8 MHz  
CPU Freq. = 4 MHz  
CPU Freq. = 2 MHz  
CPU Freq. = 1 MHz  
CPU Freq. = 0.5 MHz  
5V and 3.3V .  
21  
15  
12  
11  
10  
10  
mA Without connected I/O ports  
mA All controllers operating.  
mA Depends on the software  
program and the Flash memory  
utilization.  
mA  
mA  
mA  
Environmental Conditions  
PARAMETER  
Temperature  
MIN  
-10  
-20  
0
TYP  
20  
MAX  
UNIT  
COMMENTS  
Full performance  
40  
70  
95  
ºC  
ºC  
%
20  
Operation  
Humidity  
Non-condensing  
Revision B  
Page 5  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Absolute Maximum Rating*  
PARAMETER  
MIN  
TYP  
MAX  
6
UNIT  
V
COMMENTS  
Analog power  
Digital power  
Power  
AVCC  
VDD  
4
V
VCC  
6
V
Input Signal Voltage  
Operating Temperature  
Storage Temperature  
3.6  
+70  
+85  
V
–20  
–20  
ºC  
ºC  
Lead Temperature  
Manual soldering  
Reflow soldering  
300  
225  
ºC  
ºC  
Soldering for 10 seconds  
60 seconds  
*
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a  
stress rating only. The functional operation of the device under these or any other conditions outside of the range listed in  
the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect the reliability of the device.  
Outline Dimensions  
The outline dimensions of the SOC-3000 PLCC-84 case is shown in Figure 3.  
0.045  
X 45º  
(1.143)  
PIN 1  
Indicates relative  
locations of Pin 1  
1.150 (29.20)  
Sq.  
1.158 (29.41)  
1.185 (30.09)  
Sq.  
1.155 (30.35)  
FIGURE 3: MECHANICAL OUTLINE DRAWING  
Revision B  
Page 6  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Scale Main Board Layout And Assembly Process  
Parameters For SOC-3000  
1. Pad definition will be according to Figure 4.  
2. Solder mask opening should be 3mil (total 6 mil).  
3. Board finish may be HAL (hot air leveling), immersion gold over nickel or  
immersion.  
4. Verify that the SOC-3000 components are packaged in hermetically sealed package.  
If the packaging is damaged or has been opened, perform the following drying  
procedure to assure that SOC-3000 components are completely dry:  
Components drying procedure:  
Place the SOC-3000 components in their tray and put them into a baking oven  
to dry at a temperature of 105ºC for a minimum of 6 hours.  
5. Reflow temperature profile should be set according to the paste parameters.  
6. Maximum reflow temperature should be less than 225 ºC.  
7. Recommended paste: Koki, AIM, Multicore  
a.  
b.  
c.  
Type 3  
NC  
RMA or equivalent  
FIGURE 4: PCB BOARD LAYOUT  
(Dimensions are in milli inches (mil))  
Revision B  
Page 7  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PIN CONFIGURATION  
The SOC-3000 pin configuration for LCD and LED displays is presented in Table 1 and  
Table 2, respectively, followed by a glossary of terms used in the tables.  
General notes on SOC-3000 pin configuration are presented in Table 3, page 15.  
The physical pin arrangement is shown in Figure 5, page 15.  
The physical pin configuration for an LCD display is shown in Figure 6, page 16,  
followed by a quick reference table in Table 4, page 18.  
The physical pin configuration for a LED display is shown in Figure 7, page 17,  
followed by a quick reference table in Table 5, page 19.  
TABLE 1: SOC-3000 PIN CONFIGURATION FOR LCD DISPLAY  
PIN  
NAME  
DESCRIPTION  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
1
2
3
4
5
6
7
KIN4  
Keyboard Controller Input  
I.O 15.3  
I.O 15.4  
I.O 15.5  
I.O 15.6  
I.O 15.7  
I/O, See “I/O  
Operation”, page  
65  
50k  
See “Keyboard Controller”, page 31  
KIN3  
KIN2  
KIN1  
KIN0  
VDD  
Digital Power Supply  
Buzzer  
BUZZER /  
P1.7 (CPU)  
25k  
10k  
8
9
P1.5 (CPU) CPU I/O Port  
See Note 11  
P1.4 (CPU)  
10  
11  
12  
13  
14  
XTAL OUT Frequency Clock Source  
XTAL IN  
TXD  
RXD  
Serial Communication Tx  
Serial Communication Rx  
100k  
PWR_OFF / Power Off Control  
P3.4/Timer 0  
P3.4 (CPU) CPU I/O Ports, or: 50k  
P3.4 – Timer 0  
15  
16  
MAIN_DET / Battery/AC power supply detector input P3.5 (CPU)  
P3.5 /Timer1  
EL /  
Electro-luminescent light control  
P1.6 (CPU)  
P1.6 (CPU) See Note 11  
17  
18  
19  
20  
21  
VLCD  
BP1  
BP2  
BP3  
BP4  
LCD Display voltage  
LCD Display Multiplexer Backplanes, OUT 4.0  
I/O See “I/O  
Operation”, page  
69  
See “LCD Controller/Driver”, page 35  
OUT 4.1  
OUT 4.2  
OUT 4.3  
Revision B  
Page 9  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PIN  
22  
NAME  
DESCRIPTION  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
LCD Display Segment  
OUT 5.0  
OUT 5.1  
OUT 5.2  
OUT 6.0  
OUT 6.1  
OUT 6.2  
OUT 6.3  
OUT 7.0  
OUT 7.1  
OUT 7.2  
OUT 7.3  
OUT 8.0  
OUT 8.1  
OUT 8.2  
OUT 8.3  
OUT 9.0  
OUT 9.1  
OUT 9.2  
I/O See “I/O  
Operation”, page  
69  
See “LCD Controller/Driver”, page 35  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
OUT 10.0  
OUT 11.0  
OUT 11.1  
OUT 11.2  
OUT 11.3  
OUT 12.0  
OUT 12.1  
OUT 12.2  
OUT 12.3  
OUT 12.4  
OUT 13.0  
Revision B  
Page 10  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PIN  
59  
NAME  
S38  
DESCRIPTION  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
OUT 13.1  
OUT 13.2  
OUT 13.3  
60  
61  
S39  
S40  
62  
63  
64  
65  
VCC  
Power Supply  
RESET  
GND  
Reset  
50k  
Digital Ground  
VDET/  
INT0~  
Power voltage detector input /  
Interrupt 0 Input  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
SIG2+  
SIG2–  
AGND  
SEN–  
2nd AD channel input signal +  
2nd AD channel input signal –  
Analog Ground  
Load cell sense input –  
Load cell signal input –  
Load cell signal input +  
Load cell sense input +  
Analog power supply  
SIG1–  
SIG1+  
SEN+  
AVCC  
KOUT7  
KOUT6  
KOUT5  
KOUT4  
KOUT3  
KOUT2  
KOUT1  
KOUT0  
KIN7  
Keyboard Controller Inputs  
I.O 14.0  
I.O 14.1  
I.O 14.2  
I.O 14.3  
I.O 14.4  
I.O 14.5  
I.O 14.6  
I.O 14.7  
I.O 15.0  
I.O 15.1  
I.O 15.2  
I/O See “I/O  
Operation”, page  
69  
50k  
See “Keyboard Controller”, page 31  
Keyboard Controller Inputs  
See “Keyboard Controller”, page 31  
KIN6  
KIN5  
Revision B  
Page 11  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 2: SOC-3000 PIN CONFIGURATION FOR LED DISPLAY  
PIN  
NAME  
DESCRIPTION  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
1
2
3
4
5
6
7
KIN4  
Keyboard Controller Input  
I.O 15.3  
I.O 15.4  
I.O 15.5  
I.O 15.6  
I.O 15.7  
I/O See “I/O  
Operation”, page  
69  
50k  
See “Keyboard Controller”, page 31  
KIN3  
KIN2  
KIN1  
KIN0  
VDD  
Digital Power Supply  
Buzzer  
BUZZER /  
P1.7 (CPU)  
25k  
10k  
P1.7=’1’ – ON  
P1.7=’0’ – OFF  
See Note 10, 11  
8
9
P1.5 (CPU)  
P1.4 (CPU)  
CPU I/O Port.  
See Note 11  
10 XTAL OUT  
11 XTAL IN  
12 TXD  
Frequency Clock Source  
Serial Communication Tx  
Serial Communication Rx  
Power Off Control  
13 RXD  
100k  
50k  
14 PWR_OFF /  
P3.4 / Timer 0  
P3.4 (CPU) CPU I/O port, or:  
P3.4 – Timer 0  
P3.5 – Timer 1  
See Note 11  
15 MAIN_DET /  
P3.5 / Timer 1  
Battery/AC power supply detector input P3.5 (CPU)  
16 EL  
Electro-luminescent light control  
P1.6 (CPU) See Note 11  
17 NC  
Not Used  
Outputs.  
18 OUT 4.0  
19 OUT 4.1  
20 OUT 4.2  
21 OUT 4.3  
22 SEG A1  
23 SEG B1  
24 SEG C1  
25 SEG D1  
26 SEG E1  
27 SEG F1  
28 SEG G1  
29 SEG DP1  
30 SEG A2  
31 SEG B2  
32 SEG C2  
33 SEG D2  
OUT 4.0  
OUT 4.1  
OUT 4.2  
OUT 4.3  
OUT 5.0  
OUT 5.1  
OUT 5.2  
OUT 6.0  
OUT 6.1  
OUT 6.2  
OUT 6.3  
OUT 7.0  
OUT 7.1  
OUT 7.2  
OUT 7.3  
OUT 8.0  
I/O See “I/O  
Operation”, page  
69  
Display Segment Out,  
see “LED Parallel Display Controller  
Block Diagram”, page 45  
Revision B  
Page 12  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PIN  
NAME  
DESCRIPTION  
Display Segment Out,  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
Output, I/O See  
“I/O Operation”,  
page 69  
34 SEG E2  
35 SEG F2  
36 SEG G2  
37 SEG DP2  
38 SEG A3  
39 SEG B3  
40 SEG C3  
41 SEG D3  
42 SEG E3  
43 SEG F3  
44 SEG G3  
45 SEG DP3  
46 DIG 1  
OUT 8.1  
OUT 8.2  
OUT 8.3  
OUT 9.0  
OUT 9.1  
OUT 9.2  
see “LED Parallel Display Controller  
Block Diagram”, page 45.  
Display Digit Mux Control  
See “LED Parallel Display Controller”,  
page 45  
47 DIG 2  
48 DIG 3  
OUT 10.0  
OUT 11.0  
OUT 11.1  
OUT 11.2  
OUT 11.3  
I/O See “I/O  
Operation”, page  
69  
49 DIG 4  
50 DIG 5  
51 DIG 6  
52 DIG 7  
53 OUT 12.0  
54 OUT 12.1  
55 OUT 12.2  
56 OUT 12.3  
57 OUT 12.4  
Output  
See “I/O Operation”, page 69  
58 LED_SI_CLK LED Serial Interface Display Module  
Clock, Data, Strobe and Blank  
OUT 13.0  
OUT 13.1  
OUT 13.2  
OUT 13.3  
I/O See “I/O  
Operation”, page  
69  
59 LED_SI_Data  
See “LED Serial Interface Display  
Controller”, page 49.  
60 LED_SI_ST  
61 LED_SI_BL  
62 VCC  
Power Supply  
Reset  
63 RESET  
64 GND  
50k  
Digital Ground  
65 VDET/  
INT0~  
Power voltage detector input /  
Interrupt 0 Input  
2nd ADC channel input signal +  
2nd ADC channel input signal –  
Analog Ground  
66 SIG2+  
67 SIG2–  
68 AGND  
69 SEN–  
Load cell sense input –  
Revision B  
Page 13  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PIN  
NAME  
DESCRIPTION  
Load cell signal input –  
2nd  
DESCRIPTION PULL-UP  
RESISTOR  
FUNCTION  
70 SIG1–  
71 SIG1+  
72 SEN+  
73 AVCC  
74 KOUT7  
75 KOUT6  
76 KOUT5  
77 KOUT4  
78 KOUT3  
79 KOUT2  
80 KOUT1  
81 KOUT0  
82 KIN7  
Load cell signal input +  
Load cell sense input +  
Analog power supply  
Keyboard Controller Output, See  
“Keyboard Controller”, page 31  
I.O 14.0  
I.O 14.1  
I.O 14.2  
I.O 14.3  
I.O 14.4  
I.O 14.5  
I.O 14.6  
I.O 14.7  
I.O 15.0  
I.O 15.1  
I.O 15.2  
I/O See “I/O  
Operation”, page  
69  
50k  
Keyboard Controller Input, See  
“Keyboard Controller”, page 31  
83 KIN6  
84 KIN5  
GLOSSARY OF TERMS  
TERM DEFINITION  
BP  
Backplane  
Clock  
CLK  
DIG  
I.O  
Digit  
Input/Output  
Keyboard In  
Keyboard Out  
KIN  
KOUT  
P/PWR Power  
REG  
RX  
Register  
Receive  
SEG  
SI  
Segment  
Serial Interface  
Transmit  
TX  
Revision B  
Page 14  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 3: NOTES ON SOC-3000 PIN CONFIGURATION  
#
COMPONENT  
LCD Controller/Driver  
LED Controller  
REMARKS  
1
2
Bit programmable  
oh @ Io = 1.5mA  
Bit programmable  
V
3
4
5
Output Pins  
Input Pins  
VDET  
CMOS–3.3V  
CMOS–3.3V  
Less than 5V  
Threshold level – 2.1V.  
The input (on the analog chip) tolerates input voltage  
applied while the SOC-3000 is powered off.  
6
7
8
9
VDD  
3.3V ±5%  
VCC  
5V ±5%  
AVCC  
5V ±5%  
Keyboard Controller  
Bit programmable  
10 Buzzer  
P1.7 is used as the BUZZER control pin. During power-up  
the SOC-3000 asserts 3 pulses on this line.  
11 Port 1.x  
Manipulation of this pin should be made using BIT mapping  
of the port, since bits P1.0-P1.1 are allocated to the bank  
select register.  
P11  
P1 P84  
P75  
P12  
P32  
P74  
PIN 1  
IDENTIFIER  
SOC3000  
PLCC84  
P54  
P33  
P53  
FIGURE 5: SOC-3000 PIN ARRANGEMENT  
Revision B  
Page 15  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
FIGURE 6: SOC-3000 LCD DISPLAY PIN CONFIGURATION  
Revision B  
Page 16  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
FIGURE 7: SOC-3000 LED DISPLAY PIN CONFIGURATION  
Revision B  
Page 17  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 4: SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LCD DISPLAY  
PIN  
1
NAME  
KIN4 / I.O 15.3  
KIN3 / I.O 15.4  
KIN2 / I.O 15.5  
KIN1 / I.O 15.6  
KIN0 / I.O 15.7  
VDD  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
22 S1 / OUT 5.0  
23 S2 / OUT 5.1  
24 S3 / OUT 5.2  
25 S4 / OUT 6.0  
26 S5 / OUT 6.1  
27 S6 / OUT 6.2  
28 S7 / OUT 6.3  
29 S8 / OUT 7.0  
30 S9 / OUT 7.1  
31 S10 / OUT 7.2  
32 S11 / OUT 7.3  
33 S12 / OUT 8.0  
34 S13 / OUT 8.1  
35 S14 / OUT 8.2  
36 S15 / OUT 8.3  
37 S16 / OUT 9.0  
38 S17 / OUT 9.1  
39 S18 / OUT 9.2  
40 S19  
43 S22  
44 S23  
45 S24  
46 S25  
47 S26  
64 GND  
2
65 VDET / INT 0~  
66 SIG2+  
3
4
67 SIG2–  
5
68 AGND  
6
48 S27 / OUT 10.0  
49 S28 / OUT 11.0  
50 S29 / OUT 11.1  
51 S30 / OUT 11.2  
52 S31 / OUT 11.3  
53 S32 / OUT 12.0  
54 S33 / OUT 12.1  
55 S34 / OUT 12.2  
56 S35 / OUT 12.3  
57 S36 / OUT 12.4  
58 S37 / OUT 13.0  
59 S38 / OUT 13.1  
60 S39 / OUT 13.2  
61 S40 / OUT 13.3  
62 VCC  
69 SEN–  
7
BUZZER / P1.7  
P1.5 (CPU)  
70 SIG1–  
8
71 SIG1+  
9
P1.4 (CPU)  
72 SEN+  
10 XTAL OUT  
11 XTAL IN  
12 TXD  
73 AVCC  
74 KOUT7 / I.O 14.0  
75 KOUT6 / I.O 14.1  
76 KOUT5 / I.O 14.2  
77 KOUT4 / I.O 14.3  
78 KOUT3 / I.O 14.4  
79 KOUT2 / I.O 14.5  
80 KOUT1 / I.O 14.6  
81 KOUT0 / I.O 14.7  
82 KIN7 / I.O 15.0  
83 KIN6 / I.O 15.1  
84 KIN5 / I.O 15.2  
13 RXD  
14 PWR_OFF / P3.4 (CPU) /  
Timer 0  
15 MAIN_DET / P3.5 (CPU)  
/ Timer 1  
16 EL / P1.6 (CPU)  
17 VLCD  
18 BP1 / OUT 4.0  
19 BP2 / OUT 4.1  
20 BP3 / OUT 4.2  
21 BP4 / OUT 4.3  
41 S20  
42 S21  
63 RESET  
Revision B  
Page 18  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 5: SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LED DISPLAY  
PIN  
1
NAME  
KIN4 / I.O 15.3  
KIN3 / I.O 15.4  
KIN2 / I.O 15.5  
KIN1 / I.O 15.6  
KIN0 / I.O 15.7  
VDD  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
22 SEG A1 / OUT 5.0  
23 SEG B1 / OUT 5.1  
24 SEG C1 / OUT 5.2  
25 SEG D1 / OUT 6.0  
26 SEG E1 / OUT 6.1  
27 SEG F1 / OUT 6.2  
28 SEG G1 / OUT 6.3  
43 SEG F3  
64 GND  
2
44 SEG G3  
65 VDET / INT 0 ~  
66 SIG2+  
3
45 SEG DP3  
46 DIG 1  
4
67 SIG2–  
5
47 DIG 2  
68 AGND  
6
48 DIG 3 / OUT 10.0  
49 DIG 4 / OUT 11.0  
69 SEN–  
7
BUZZER / P1.7  
P1.5 (CPU)  
70 SIG1–  
8
29 SEG DP1 / OUT 7.0 50 DIG 5 / OUT 11.1  
71 SIG1+  
9
P1.4 (CPU)  
30 SEG A2 / OUT 7.1  
31 SEG B2 / OUT 7.2  
32 SEG C2 / OUT 7.3  
33 SEG D2 / OUT 8.0  
34 SEG E2 / OUT 8.1  
35 SEG F2 / OUT 8.2  
36 SEG G2 / OUT 8.3  
51 DIG 6 / OUT 11.2  
52 DIG 7 / OUT 11.3  
53 OUT 12.0  
72 SEN+  
10 XTAL OUT  
11 XTAL IN  
12 TXD  
73 AVCC  
74 KOUT7/I.O 14.0  
75 KOUT6/I.O 14.1  
76 KOUT5/I.O 14.2  
77 KOUT4/I.O 14.3  
78 KOUT3/I.O 14.4  
79 KOUT2/I.O 14.5  
80 KOUT1/I.O 14.6  
81 KOUT0/I.O 14.7  
82 KIN7/I.O 15.0  
83 KIN6/I.O 15.1  
84 KIN5/I.O 15.2  
54 OUT 12.1  
13 RXD  
55 OUT 12.2  
14 PWR_OFF / P3.4 /  
Timer 0  
56 OUT 12.3  
57 OUT 12.4  
15 MAIN_DET / P3.5 /  
Timer 1  
37 SEG DP2 / OUT 9.0 58 OUT 13.0  
38 SEG A3 / OUT 9.1  
39 SEG B3 / OUT 9.2  
40 SEG C3  
59 OUT 13.1  
60 OUT 13.2  
61 OUT 13.3  
62 VCC  
16 EL / P1.6  
17 Not Connected  
18 OUT / OUT 4.0  
19 OUT / OUT 4.1  
20 OUT / OUT 4.2  
21 OUT / OUT 4.3  
41 SEG D3  
42 SEG E3  
63 RESET  
Revision B  
Page 19  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
Revision B  
Page 20  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
CPU 80C51TBO  
The reference source for data given here is “M8051TBO Technical Specifications”, Virtual IP Group,  
Inc., Version M8051TS97DF01. Refer to this manual for complete CPU specification.  
Features  
Advantages  
8-bit CPU  
Fast running and improved performance  
No wasted clock and memory cycles  
Compatible with standard 80C31  
Four 8-bit I/O ports  
Three 16-bit timers  
On-chip oscillator and clock circuitry  
256-byte on-chip, 8051-compatible SFR RAM  
64Kbyte program memory with bank switching  
4Kbyte XDATA RAM for data memory  
High-speed architecture of 4 cycles/instruction  
Dual data pointers  
Works efficiently with all types of peripheral  
devices  
Improved power consumption characteristics  
On-chip Power-On/Reset  
Architecture  
The CPU block diagram is presented in Figure 8.  
Accumulator  
B Register  
ALU Reg. 2  
ALU Reg. 1  
PSW  
Stack Pointer  
ALU  
Interrupt  
Logic  
DPTR1  
PC Address Reg.  
Address Bus  
Buffer  
PCIncrement  
256 Bytes  
SFR 8 RAM  
Program Counter  
DPTR0  
Interrupt Reg.  
Instruction  
Decoder  
Clocks and  
Memory Control  
Power Control  
Register  
Reset  
Control  
Oscillator  
DataBus  
FIGURE 8: CPU BLOCK DIAGRAM  
Revision B  
Page 21  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
Memory Organization  
The SOC-3000 is an 8051-compatible device with an 80C310 memory chip. As with all such  
devices, the SOC-3000 has separate address spaces for Program and Data memory. They are:  
Flash memory – memory space containing non-volatile, in-circuit re-programmable code  
and data (such as calibration data). The code in the Flash memory may be in-circuit  
programmed at a byte level, although it must first be erased, the erasing being performed  
in page blocks. The program memory space can be in-circuit programmed through the  
serial port.  
RAM memory – Random Access memory used as “scratchpad memory” for the software.  
Flash (Program & Non-Volatile Data) Memory Mapping and Usage  
The 8051-compatible SOC-3000 supports a maximum code space of 64K. Programs larger  
than 64K are handled by bank switching to select one of a number of code banks residing at  
one physical address.  
In the SOC-3000, there is one 32K Common-Program Area mapped from address 0000H to  
7FFFH (Figure 9) and three 32K code banks mapped from code address 8000H to FFFFH  
(Figure 9). The code banks are selected using bits in a memory-mapped address.  
The Flash memory may be dynamically allocated between the Program and the Non-Volatile  
Data memory. This eliminates the need of external EEPROM usually used for storing  
calibration parameters and other non-volatile variable data.  
The Flash memory is built of 4K Bytes of erasable blocks whose boundary is located at 4k  
address (multiples of 1000H).  
FFFFH  
Flash Data  
Memory  
F800H  
ROM  
Bank 1  
32K  
ROM  
Bank 2  
32K  
ROM  
Bank 3  
32K  
8000H  
7FFFH  
ROM  
Common  
Area  
32K  
FFFH  
4K  
Reserved by  
System  
0000H  
FIGURE 9: SOC-3000 PROGRAM MEMORY MAP  
Revision B  
Page 22  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Application Program Start Address  
The start address of the application program should be located at 1000H, as the first 4kBytes  
are reserved for the SOC-3000/I system.  
Serial Downloading (In-Circuit Programming)  
As part of its embedded boot software the SOC-3000 facilitates serial code and data  
download via the standard UART serial port. Serial download mode is automatically entered  
upon power-up or reset if one of the following conditions exist:  
1. No valid program is programmed in the Flash memory.  
2. A request for download process was initiated via the UART during the first 200 ms after  
power-up/reset.  
Once in this mode, you can download code or data files into the Flash memory, while the  
device is located on its target board. The is the PC serial download utility, CybraTech  
Cloader executable, is provided together with the device and its documentation and software  
library.  
The SOC-3000/I may be programmed only if, within 200ms after power-up or RESET, it  
establishes communication with the Cloader executable, or if the application program is not  
available or not valid (checksum error). Figure 10describes the startup procedure of the  
SOC-3000.  
Revision B  
Page 23  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
Power-Up /  
Reset  
Is  
Cloader  
Communicating  
?
Start  
Programming  
mode  
Yes  
No  
200 ms  
elapsed  
?
No  
Yes  
Is the  
Application  
Program  
OK?  
No  
Yes  
Start Application  
Program  
FIGURE 10: SOC-3000/I STARTUP PROCEDURE  
Using the Flash for Data Memory  
The Flash memory may be used for storing non-volatile data. To update the data area while  
the program is running, the Flash must be defined as DATA area instead of as CODE area.  
CybraTech Flash Manager software manages this process in an efficient and reliable  
manner. It provides the means to read, write, erase and update the Flash Data area. A  
detailed description of the CybraTech Flash Manager function is included in the SOC-3000  
Software Function Library user manual, document number: SOC-0000-SW01-OM.  
Revision B  
Page 24  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Data Memory Mapping  
The SOC-3000 “scratchpad” data memory is stored in 4Kbyte RAM mapped as XDATA, as  
shown in Figure 11, in addition to the CPU 256-byte RAM.  
8FFFH  
Reserved  
8C00H  
8BFFH  
External  
RAM  
3K  
8000H  
FIGURE 11: SOC-3000 DATA MEMORY MAP  
Memory Bank Select Register  
The memory bank select register is implemented using the 80C51TBO Port 1 bits P1.0 –  
P1.1. P1.0 is the least significant bit. Manipulation of other Port 1 I/O pins must be carried  
out without affecting these bits.  
NOTE: The page register is WRITE ONLY! Reading P1.0-P1.1 may result in an  
ambiguous result.  
CPU SFRs and Configuration Registers (CFR)  
The CPU SFRs (Special Function Registers) are compatible with the 8051 instruction set.  
For more information, please refer to “M8051TBO Technical Specifications”.  
The CPU controls the peripherals and their operating modes through Configuration Registers  
(CFR) mapped as XDATA.  
The CFR registers for each peripheral are described below in Table 32, page 62.  
Instruction Set  
All instructions in the 8051-compatible SOC-3000 instruction set perform the same functions  
as in the 8051. They identically oversee bit and flag operations and other status functions.  
Only the clock configuration differs.  
For absolute timing of real time events, the timing of software loops can be calculated.  
However, counter/timers default to run at the older 12 clocks per increment. In this way,  
timer-based events occur at the standard intervals with software executing at higher speed.  
Timers optionally can run at 4 clocks per increment to take advantage of faster processor  
operation.  
Revision B  
Page 25  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
In the SOC-3000, the MOVX instruction may take only two machine cycles or eight  
oscillator cycles, while the “MOV direct, direct” instruction uses three machine cycles or 12  
oscillator cycles. Thus, the execution times of the two instructions differ. This is because the  
SOC-3000 usually uses one instruction cycle for each instruction byte.  
Note that a machine cycle requires just four clocks, and provides one ALE pulse per cycle.  
Many instructions require only one cycle, but some require five.  
Reset  
The Reset signal is generated by an internal circuitry in the ASIC. The signal thresholds are:  
RESET Falling edge on Vcc=3.98V.  
RESET Rising edge on Vcc=4.19V.  
The hystheresis of the RESET signal is set so that normal operation of the internal Flash  
memory is guaranteed.  
Interrupt Vectors  
The interrupt vectors of the SOC-3000/I are shifted compared with the interrupt vectors of a  
standard 80C51TBO vectors by an offset of 1000H.  
Table 6 details the SOC-3000/I interrupt vectors:  
TABLE 6: INTERRUPT VECTORS DESCRIPTION  
INTERRUPT SOURCE  
FLAG  
VECTOR  
PRIORITY  
LOCATION  
External Interrupt 0  
IE0  
TF0  
1003H  
100BH  
1013H  
101BH  
1023H  
102BH  
1 (Highest)  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port  
2
3
4
5
6
IE1  
TF1  
RI + TI  
TF2 + EXF2  
Timer 2 Overflow  
Revision B  
Page 26  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
ADC CONTROLLER INTERFACE  
Features  
Resolution – 20 bit  
Programmable gain –0.5, 0.75, 1, 1.5, 2  
Programmable sample rate of 5, 10 or 20  
samples per second  
Voltage detection input and alarm  
Controller Registers  
ADC Converter (ADC) controller interface includes a semaphore register (one byte), a  
control register (two bytes) and a data/status register (four bytes).  
The ADC controller registers are defined in Table 7.  
TABLE 7: ADC CONTROLLER REGISTERS DESCRIPTION  
FUNCTION  
ADDRESS  
C200H  
BIT  
7
REMARKS  
1 = Enable  
Controller Clock Enable  
0 =Disable  
0xFF = Reset  
Read/Write  
Read only  
Controller RESET  
Semaphore Register  
Data Registers  
C406H  
All  
0-1  
All  
E100H  
E103H to E106H  
E101H to E102H  
Control Register  
All  
Write only  
Semaphore Register  
The semaphore register bit definitions are shown in Table 8.  
TABLE 8: ADC CONTROLLER INTERFACE SEMAPHORE REGISTER BIT DEFINITIONS  
ADDRESS  
E100H  
BIT 7 … BIT 2  
Don’t Care  
BIT 1  
Tx Semaphore  
BIT 0 (LSB)  
Rx Semaphore  
(Controller to ADC Converter) (ADC Converter to Controller)  
Control Register  
The control register bit definitions and its functions and are given in Table 9, page 28.  
Revision B  
Page 27  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
TABLE 9: ADC CONTROLLER INTERFACE CONTROL REGISTER BIT FUNCTIONS  
BYTE # ADDRESS BIT  
FUNCTION  
SETTINGS  
0 = Disable  
1 = Enable  
1
E101H  
0
Interrupt Enable  
(LSB)  
1-7 Don’t Care  
Don’t Care  
00 = 20 Hz (default) & F.S=100,000 Counts  
01 = 10 Hz & F.S. = 200,000 Counts  
10 = 10 Hz& F.S. = 100,000 Counts  
11 = 5 Hz& F.S. = 200,000 Counts  
2
E102H  
0-1 Sample Rate  
(bit 0 –  
LSB)  
000 = 0.50  
001 = 0.75  
010 = 1.00  
011 = 1.50  
100 = 2.00  
2-4 Gain  
111 = Power Down  
Power Down  
0 = Main (default) channel  
1 = Secondary channel  
5
ADC Channel  
6
7
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Status/Data Registers  
The data register bit definitions are shown in Table 10. The bit functions are described  
in Table 11.  
TABLE 10: ADC CONTROLLER INTERFACE DATA REGISTER BIT DEFINITIONS  
BYTE # ADDRESS BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
1
2
3
4
E103H  
E104H  
E105H  
E106H  
D7  
D6  
D5  
D13  
SR1  
0
D4  
D12  
SR0  
0
D3  
D11  
D19  
0
D2  
D10  
D18  
0
D1  
D9  
D0  
D8  
D15  
D14  
G1/PD1 G0/PD0  
D17  
CH  
D16  
0
0
G2/PD2  
TABLE 11: ADC CONTROLLER INTERFACE DATA REGISTER BIT FUNCTIONS  
BIT FUNCTION  
Di  
ADC Reading Data  
D0 = LSB  
D19 = MSB  
SRi  
Sample Rate  
Gi/PDi  
CH  
Gain/Power Down  
Active ADC Channel  
Revision B  
Page 28  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Operation  
Initialization:  
To enable the ADC controller interface:  
1. Enable the ADC controller interface clock source in Clock Enable register C200H:  
Set C200H, Bit 7 to 1.  
2. Reset the ADC controller interface:  
Write FF to register C406H.  
3. Set the Configuration registers (CFR) address for ADC controller interface function:  
CFR address C10CH = 1FH.  
4. Enable interrupt:  
Set E101H, Bit 0 to 1.  
5. Check the semaphore byte at address E100H.  
If Receive semaphore bit at E100H is Ready (Bit 0 = 0), signaling the CPU that the  
ADC controller can receive data, the CPU performs the following operations:  
a. Sets the Transmit semaphore bit at E100H to Busy (Bit 1 = 1) to prevent  
transmission of data from the ADC controller.  
b. Programs the control register E101–E102H of the ADC controller to initialize  
controller operation.  
Normal operation:  
6. After the ADC controller has been initialized, the following operations are  
performed:  
a. The CPU resets the Transmit semaphore bit at E100H to Ready (Bit 1 = 0) to  
signal the ADC controller that it can now transmit data.  
b. The ADC controller sets the Receive semaphore bit at E100H to Busy  
(Bit 0 = 1) to prevent further data transmission to the controller.  
c. The ADC controller sends ADC converter data to data registers at E103H to  
E106H.  
7. After sending the data of registers E103H to E106H, the ADC controller resets the  
Receive semaphore bit at E100H to Ready (Bit 0 = 0), signaling the CPU that the  
controller can now receive new data.  
One ADC controller operation cycle is now complete.  
Steps 6 through 7 are repeated cyclically.  
The ADC internal counts output is dependent upon the input signal, the gain and the  
operation mode setting. Table 12 defines the relation between the internal counts output  
of the zero signal input of the full-scale signal and the ADC settings.  
Revision B  
Page 29  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
.
TABLE 12: ADC OUTPUT COUNTS VS. ADC SETTINGS  
GAIN SAMPLE  
ADC  
ADC OUTPUT AT  
ZERO SIGNAL  
INPUT  
MAXIMUM  
FULL-SCALE  
INPUT  
ADC OUTPUT  
(COUNTS)  
RATE * RESOLUTION  
MODE *  
(IN COUNTS)  
(HZ)  
(COUNTS)  
153,200  
153,200  
306,400  
306,400  
153,200  
153,200  
306,400  
306,400  
153,200  
153,200  
306,400  
306,400  
153,200  
153,200  
306,400  
306,400  
153,200  
153,200  
306,400  
306,400  
(MILLI-VOLTS)  
0.5  
0.75  
1.0  
20  
10  
10  
5
100,000  
100,000  
200,000  
200,000  
100,000  
100,000  
200,000  
200,000  
100,000  
100,000  
200,000  
200,000  
100,000  
100,000  
200,000  
200,000  
100,000  
100,000  
200,000  
200,000  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
6.6  
6.6  
6.6  
6.6  
5
205,000  
205,000  
412,000  
412,000  
231,000  
231,000  
464,000  
464,000  
257,000  
257,000  
514,000  
514,000  
257,000  
257,000  
514,000  
514,000  
257,000  
257,000  
514,000  
514,000  
20  
10  
10  
5
20  
10  
10  
5
1.5  
20  
10  
10  
5
2.0  
20  
10  
10  
5
5
5
5
* ADC Resolution mode is defined in Table 9, Register E102H, bits 0-1 – Sample Rate.  
Revision B  
Page 30  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
KEYBOARD CONTROLLER  
Features  
Supports up to 64 keys (8×8)  
Functional Description  
Keyboard Controller Matrix Configuration  
Programmable anti-bounce mechanism  
The keyboard matrix configuration showing the  
8 × 8 matrix is given in Figure 12. The key  
values at each junction are in hexadecimal.  
(4-18 ms)  
Automatic key matrix scanning  
Automatically detects excessively long or  
constant key depression  
When Interrupt mode enabled, generates an  
interrupt when any key is pressed or released  
K I N 0  
K I N 1  
0 1  
K I N 2  
0 2  
K I N 3  
0 3  
K I N 4  
0 4  
K I N 5  
0 5  
K I N 6  
0 6  
K I N 7  
0 7  
*
K O U T 0  
K O U T 1  
K O U T 2  
K O U T 3  
K O U T 4  
K O U T 5  
K O U T 6  
K O U T 7  
0 0  
1 0  
2 0  
3 0  
4 0  
5 0  
6 0  
7 0  
1 1  
2 1  
3 1  
4 1  
5 1  
6 1  
7 1  
1 2  
2 2  
3 2  
4 2  
5 2  
6 2  
7 2  
1 3  
2 3  
3 3  
4 3  
5 3  
6 3  
7 3  
1 4  
2 4  
3 4  
4 4  
5 4  
6 4  
7 4  
1 5  
2 5  
3 5  
4 5  
5 5  
6 5  
1 6  
2 6  
3 6  
4 6  
5 6  
6 6  
7 6  
1 7  
2 7  
3 7  
4 7  
5 7  
6 7  
7 7  
7 5  
*
Key values are in hexadecimal.  
FIGURE 12: KEYBOARD MATRIX CONFIGURATION  
Revision B  
Page 31  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Controller Registers  
Keyboard controller interface includes a control register (one byte) and a data/status  
register (two bytes).  
The Keyboard controller registers are defined in Table 13.  
TABLE 13: KEYBOARD CONTROLLER REGISTERS DESCRIPTION  
FUNCTION  
ADDRESS  
C200H  
BIT  
2
REMARKS  
Controller Clock Enable  
1= Enable  
0= Disable  
0xFF = Reset  
Read only  
Write only  
C400H  
Controller RESET  
Data Registers  
Control Register  
All  
All  
All  
F100H to F101H  
F100H  
Registers Description  
Control Register  
The keyboard control register bit definitions, functions, and settings are displayed in  
Table 14.  
TABLE 14: KEYBOARD CONTROLLER CONTROL REGISTER BIT FUNCTIONS  
ADDRESS  
F100H  
BIT  
FUNCTION  
SETTINGS  
000 = 4 ms  
001 = 6 ms  
010 = 8 ms  
011 = 10 ms  
100 = 12 ms  
101 = 14 ms  
110 = 16 ms  
111 = 18 ms  
0-2  
(bit 0 -LSB)  
Anti-Bounce Timeout  
0 = Enable  
3
Interrupt Enable/Disable  
Don’t Care  
1 = Disable (default)  
4-7  
Don’t Care  
Data Registers  
Keyboard data is stored in two 8-bit registers.  
The data register bit functions are shown in Table 15.  
Revision B  
Page 32  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
NOTE  
When Control Register Address F101H, bit 7 is set to 1 (Released), key-code value bits 0  
to 6 in address F101H are meaningless.  
TABLE 15: KEYBOARD CONTROLLER DATA REGISTER BIT DEFINITIONS  
BYTE # ADDRESS  
BIT 7  
X
BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1  
BIT 0 (LSB)  
1
F100H  
X
X
X
X
X
X
Key Error  
0 = Legal  
1 = Error  
2
F101H  
Release Sign  
0 = Pressed  
1 = Released  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Operation  
At power on, the keyboard controller is reset and the scanning rate is set to 10 µs.  
Initialization:  
To enable the keyboard controller:  
1. Enable the keyboard controller clock source in Clock Enable register C200H:  
Set C200H, Bit 2 to 1.  
2. Reset the keyboard controller:  
Write FF to register C400H.  
3. Set CFR address for keyboard controller function:  
CFR addresses C10DH and C10EH = FF (Table 32, page 62).  
This causes the following results:  
Enables keyboard input pins (1 to 5 and 82 to 84) (Table 32; page 62; Table 1,  
page 9; Table 2, page 12)  
Enables keyboard output pins (74 to 81) (Table 32, Table 1, Table 2)  
4. Enable keyboard interrupt:  
Set F100H, Bit 3 to 0.  
5. Set anti-bounce timeout:  
Set F100H, Bits 0, 1 and 2, as shown in Table 14.  
Normal Operation:  
6. Read keyboard key-code value bits, as follows:  
Read register F100H, Bit 0:  
If 0, key-code value is legal.  
If 1, key-code value is illegal (Error).  
Read key code from register F101H, bits 0 to 6:  
When key pressed, values are valid.  
Read F101H, bit 7:  
If 0, key pressed and keyboard values (bits 0 to 6) are valid.  
If 1, key released and keyboard values are meaningless.  
Revision B  
Page 33  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LCD CONTROLLER/DRIVER  
Features  
Functional Description  
The SOC-3000 LCD controller/driver interfaces  
to LCD (Liquid Crystal Display) with low  
multiplex rates.  
Selectable backplane drive configuration,  
static or multiplex drive ratios of 1:2, 1:3 or  
1:4  
Selectable display bias configuration, static, or  
The controller/driver generates drive signals for  
static drive mode (no multiplexing) or  
1/2 bias or 1/3 bias  
Internal LCD bias generation with voltage-  
multiplexed LCDs with multiplex drive ratios of  
1:2, 1:3 or 1:4, depending on the number of  
backplane outputs. The driver supports up to four  
backplanes, each supporting 40 segments.  
follower buffers  
Drives up to 40 segments with the capacity to  
generate 20 numeric characters  
The LCD Controller/Driver block diagram is  
shown in Figure 13.  
20 × 8-bit memory display data  
User-selected LCD voltages  
The driver supports numeric, alphanumeric and  
dot matrix display configurations. The number of  
characters of each type that can be displayed  
depends on the number of backplanes and the  
number of segments required per character. The  
maximum display capacity for each display  
configuration is shown in Table 16.  
VDD  
Backplane  
Display Segment Outputs  
Outputs  
R
+
Display Latch  
Shift Register  
R
R
LCD Voltage  
Selector  
+
V
LCD  
LCD Bias  
Generator  
FIGURE 13: LCD CONTROLLER/DRIVER BLOCK DIAGRAM  
Revision B  
Page 35  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 16: MAXIMUM DISPLAY CAPACITY PER DISPLAY CONFIGURATION  
NUMBER OF  
SEGMENTS OR  
SYMBOLS  
NUMERIC  
BACKPLANES  
(7 SEGMENTS)  
4
3
2
1
160  
120  
80  
20  
15  
10  
5
40  
LCD Bias Generator  
The operative LCD voltage is derived from VDD – VLCD (Figure 13). The three resistors  
connected in series between VDD and VLCD in the bias generator function as a voltage  
divider to produce 1/2 (for the 1:2 multiplex drive ratio) and 1/3 (for the 1:2, 1:3 and 1:4  
multiplex drive ratio) biasing voltages. The bias configuration for each of the multiplex  
drive ratios is given in Table 17.  
For additional information on LCD drivers refer to LCD driver components datasheets  
such as Phillips PCF8756.  
TABLE 17: LCD BIAS CONFIGURATIONS  
MULTIPLEX DRIVE  
MODE  
# BACKPLANES  
# LEVELS  
BIAS  
CONFIGURATION  
Static  
1:2  
1
2
2
3
4
2
3
4
4
4
Static  
1/2  
1:2  
1/3  
1:3  
1/3  
1:4  
1/3  
Drive Mode Waveforms  
The waveforms for the Static drive mode are given in Figure 14, page 37.  
The waveforms for the 1:2 Multiplex Drive Ratio–1/2 Bias are given in  
Figure 15, page 38.  
The waveforms for the 1:2 Multiplex Drive Ratio–1/3 Bias are given in  
Figure 16, page 39.  
The waveforms for the 1:3 Multiplex Drive Ratio are given in Figure 17, page 40.  
The waveforms for the 1:4 Multiplex Drive Ratio are given in Figure 18, page 41.  
Revision B  
Page 36  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
T Frame  
VDD  
Backplane 0  
VLCD  
VDD  
Segment n  
On  
Driver  
Waveforms  
VLCD  
VDD  
Segment n+1  
Off  
VLCD  
+ VOPER  
Segment On  
0V  
LCD Segment  
Waveforms  
On/Off  
– VOPER  
+ VOPER  
0V  
Segment Off  
– VOPER  
FIGURE 14: STATIC DRIVE MODE WAVEFORMS  
Revision B  
Page 37  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Backplane 0  
Backplane 1  
Driver  
Waveforms  
Segment n  
Segment n+1  
LCD Segment  
Waveforms  
On/Off  
Segment On  
Segment Off  
FIGURE 15: 1:2 MULTIPLEX DRIVE RATIO–1/2 BIAS WAVEFORMS  
Revision B  
Page 38  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
T Frame  
Backplane 0  
Backplane 1  
Driver  
Waveforms  
Segment n  
Segment n+1  
Segment On  
LCD Segment  
Waveforms  
On/Off  
Segment Off  
FIGURE 16: 1:2 MULTIPLEX DRIVE RATIO–1/3 BIAS WAVEFORMS  
Revision B  
Page 39  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
T Frame  
Backplane 0  
Backplane 1  
Driver  
Waveforms  
Backplane 2  
Segment n  
Segment n+1  
Segment n+2  
Segment On  
LCD Segment  
Waveforms  
On/Off  
Segment Off  
FIGURE 17: 1:3 MULTIPLEX DRIVE RATIO WAVEFORMS  
Revision B  
Page 40  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
T Frame  
Backplane 0  
Backplane 1  
Backplane 2  
Backplane 3  
Driver  
Waveforms  
Segment n  
Segment n+1  
Segment n+2  
Segment n+3  
Segment On  
LCD Segment  
Waveforms  
On/Off  
Segment Off  
FIGURE 18: 1:4 MULTIPLEX DRIVE RATIO WAVEFORMS  
Revision B  
Page 41  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Registers Description  
LCD controller /driver command and data are stored in a 21-byte × 8-bit, static display  
RAM with one control register and 20 data registers.  
The controller registers are defined in Table 18.  
TABLE 18: LCD CONTROLLER/DRIVER REGISTERS DESCRIPTION  
FUNCTION  
ADDRESS  
C200H  
BIT  
0
REMARKS  
Controller Clock Enable  
1= Enable  
0= Disable  
0xFF = Reset  
Write only  
C401H  
Controller RESET  
Data Registers  
Control Register  
All  
All  
All  
C801H to C814H  
C800H  
Read/Write  
Control Register  
The control-register bit definitions and functions are displayed in Table 19. The Type  
definitions are Static and Dynamic: Static bits update only after an external Reset and  
first chip select (first command write cycle). Dynamic bits can be updated at any time.  
TABLE 19: LCD CONTROLLER CONTROL REGISTER BIT FUNCTIONS  
ADDRESS  
C800H  
BIT  
NAME  
UPDATE  
FUNCTION  
SETTINGS  
00 = Static (5 seven-segment  
0-1 M0 and M1 After Reset  
Bits 0 (M0) and 1 (M1) set  
the multiplex drive ratio.  
Only  
digits)  
( 0-  
01 = 1:2 (10 seven-segment  
LSB)  
digits)  
10 = 1:3 (15 seven-segment  
digits)  
11 = 1:4 (20 seven-segment  
digits)  
0 = 1/2  
1 = 1/3  
2
3
B
E
After Reset  
Only  
Sets the bias voltage.  
0 = Disable  
1 = Enable  
Anytime  
Sets LCD display  
operation.  
000 = 52 Hz  
100 = 62 Hz  
4-6 X0 (LSB),  
After Reset  
Bits 4 (X0), 5 (X1) and 6  
(X2) set the refresh clock  
frequency.  
001 = 104 Hz 101 = 125 Hz  
010 = 156 Hz 110 = 178 Hz  
011 = 208 Hz 111 = 250 Hz  
X1 and X2 Only  
0 = Continuous Data Reading  
1= Command Only  
7
C
Anytime  
Sets the command  
operating mode.  
Revision B  
Page 42  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Data Registers  
LCD display data is stored in a 20-byte × 8-bit RAM. The number of registers used  
depends on the number of digits displayed, 5, 10, 15 or 20. The data register bit  
definitions for a 20-digit display, for which the entire RAM is used, are shown in Table  
20.  
TABLE 20: LCD CONTROLLER DATA REGISTER BIT DEFINITIONS – 20-DIGIT  
DISPLAY  
Byte #  
Address Bit 7  
Bit 6  
g
Bit 5  
Bit 4  
e
Bit 3  
d
Bit 2  
Bit 1  
b
Bit 0  
a
1
C801H  
C802H  
DP  
DP  
f
c
2
g
f
e
d
c
b
a
20  
g
f
e
d
c
b
a
C814H  
DP  
For other displays, Data Registers utilization is as follows:  
For 15-digit command, write data to C801H to C80FH  
For 10-digit command, write data to C801H to C80AH  
For 5-digit command, write data to C801H to C805H  
Each byte in the register defines a seven-segment digit and decimal point (DP). Each bit  
of a register address corresponds to a segment of each digit, as shown in Figure 19.  
When the bit is set to 1, it is on. When it is set to 0, it is off. Figure 19 also shows the  
backplane outputs per LCD digit for each multiplex drive ratio.  
BP 0  
BP 0  
BP 0  
BP 1  
b
BP 0  
a
g
a
g
a
g
a
g
b
c
b
b
c
f
f
f
f
BP 1  
BP 2  
BP 1  
e
BP 2  
e
e
e
c
c
d
DP  
d
DP  
d
DP  
d
DP  
BP 3  
Static  
1:3 Multiplex  
1:4 Multiplex  
1:2 Multiplex  
FIGURE 19: BACKPLANE OUTPUTS PER LCD DIGIT  
Revision B  
Page 43  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Operation  
Initialization:  
At power on, the LCD controller performs the following operations:  
1. Resets its backplane and segment outputs to VDD.  
After power on, the actual operating LCD voltage VOPER is set according to the  
multiplexing drive mode and the bias generator.  
2. After reset, the LCD pins are routed to the Output function.  
To enable the LCD controller:  
1. Enable the LCD controller clock source in Clock Enable register C200H:  
Set C200H, Bit 0 to 1.  
2. Reset the LCD controller:  
Write FF to register C401H.  
3. Set CFR addresses for LCD controller function:  
CFR addresses C101H to C10BH = 00H (Table 32, page 62).  
This enables LCD controller output pins (18 to 61) (Table 32, page 62; Table 1,  
page 9).  
Normal Operation:  
4. Write data to LCD data registers C801H to C814H.  
5. Set Write command in LCD control register C800H.  
6. Repeat steps 4 and 5 for new data.  
The trigger for sending the data out to the display interface is:  
Programming the control register at address C800H AND writing data to the LCD data  
registers (C801H to C814H).  
Revision B  
Page 44  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LED PARALLEL DISPLAY CONTROLLER  
Features  
Functional Description  
Supports up to 21 digits (7 segments +  
The LED display block diagram showing the  
relationship between the 21-digit LED display,  
the SOC-3000 LED controller and the data  
register is given in Figure 20.  
Decimal Point)  
Power-save by LED refresh mechanism  
Programmable-display data registers  
The LED Controller timing diagram is shown in  
Figure 21.  
Supports common-anode, seven-segment LED  
D101  
D102  
D103  
D104  
a
D105  
D106  
D107  
Reg. Address  
a
a
a
a
a
a
Seg a–1  
Seg b–1  
Seg c–1  
Seg d–1  
Seg e–1  
Seg f–1  
Seg g–1  
DP–1  
b
c
b
c
b
c
b
c
b
c
b
c
b
c
f
f
f
f
f
f
f
g
d
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DIG1  
D108  
a
DIG2  
D109  
DIG3  
D10A  
DIG4  
D10B  
DIG5  
D10C  
DIG6  
D10D  
DIG7  
D10E  
Reg. Address  
a
a
a
a
a
a
Seg a–2  
Seg b–2  
Seg c–2  
Seg d–2  
Seg e–2  
Seg f–2  
Seg g–2  
DP–2  
b
b
c
b
c
b
c
b
c
b
c
b
c
f
f
f
f
f
f
f
g
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
c
d
DIG1  
D10F  
a
DIG2  
D110  
DIG3  
D111  
DIG4  
D112  
DIG5  
D113  
DIG6  
D114  
DIG7  
D115  
Reg. Address  
a
a
a
a
a
a
Seg a–3  
Seg b–3  
Seg c–3  
Seg d–3  
Seg e–3  
Seg f–3  
Seg g–3  
DP–3  
b
b
c
b
c
b
c
b
c
b
c
b
c
f
f
f
f
f
f
f
g
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
c
d
DIG1  
DIG2  
DIG3  
DIG4  
DIG5  
DIG6  
DIG7  
SOC–3000  
FIGURE 20: LED PARALLEL DISPLAY CONTROLLER BLOCK DIAGRAM  
Revision B  
Page 45  
July, 2002  
CybraTech (2000) Ltd.  
SEGMENT  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
500 µs  
500 µs  
30 µs  
30 µs  
DIG 1  
440 µs  
60 µs  
DIG 2  
440 µs  
FIGURE 21: LED PARALLEL DISPLAY CONTROLLER TIMING DIAGRAM  
Registers Description  
The LED controller registers are defined in Table 21.  
TABLE 21: LED PARALLEL DISPLAY CONTROLLER DRIVER REGISTERS  
DESCRIPTION  
FUNCTION  
ADDRESS  
C200H  
BIT  
1
REMARK  
Controller Clock Enable  
1= Enable  
0= Disable  
0xFF = Reset  
Read only  
Write only  
Controller RESET  
Semaphore Bit  
Data Registers  
C402H  
All  
0
D100H  
D101H to D115H  
All  
LED display data is stored in a 21-byte × 8-bit static display RAM. The display RAM  
has one Read-only semaphore register containing the semaphore byte and 21 Write-only  
data registers.  
All 22 bytes (one semaphore byte and 21 data bytes) must be written before any  
new data is applied.  
Revision B  
Page 46  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Semaphore Register  
The Semaphore register bit definitions are shown in Table 22.  
TABLE 22: LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT  
DEFINITIONS  
ADDRESS BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
D100H  
X
X
X
X
X
X
X
E
Only Bit 0, the Semaphore bit, is active in the LED Controller control register  
(Table 23). The semaphore is used to synchronize the access to the control registers.  
TABLE 23: LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT  
FUNCTIONS  
BIT  
0
NAME  
E
TYPE  
FUNCTION  
SETTINGS  
0 = Ready  
1 = Busy  
Read-only  
Semaphore bit  
Data Registers  
LED data is stored in a 21-byte × 8-bit RAM.  
The data is organized in three groups of seven digits, as follows:  
Group 1: D101H to D107H - multiplexed on SEC A1 to DP1 Pins.  
Group 2: D108H to D10EH - multiplexed on SEC A2 to DP2 Pins.  
Group 3: D10FH to D115H - multiplexed on SEC A3 to DP3 Pins.  
The data register bit definitions for a 21-digit display are shown in Table 24.  
TABLE 24: LED PARALLEL CONTROLLER DATA REGISTER BIT DEFINITIONS  
GROUP  
1
BYTE #  
ADDRESS  
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
(LSB)  
1
D101H  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
g
g
g
g
g
g
g
g
g
f
f
f
f
f
f
f
f
f
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
c
c
c
c
c
c
c
c
c
b
b
b
b
b
b
b
b
b
a
a
a
a
a
a
a
a
a
2
3 to 7  
8
D102H  
D103H to D107H  
D108H  
2
3
9
D109H  
10 to 14 D10AH to D10EH  
15  
16  
D10FH  
D110H  
17 to 21 D111H to D115H  
Note:  
The trigger for sending the data to the display hardware is writing data to address D115H.  
Revision B Page 47 July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Operation  
At power-on or reset the LED Parallel display controller is disabled.  
Initialization:  
To enable the LED Parallel display controller:  
1. Enable the controller clock source in Clock Enable register C200H:  
Set C200H, Bit 1 to 1.  
2. Reset the controller:  
Write FF to register C402H.  
3. Set CFR addresses for LED Parallel display controller function:  
CFR addresses C103H to C109H = 55H,  
CFR address C10A = 15H (Table 32, page 62).  
These result in the following operations:  
Enable LED parallel display controller output pins (22 to 52) (Table 32, page  
62; Table 2, page 12).  
Check semaphore bit in LED parallel display controller semaphore register at  
address D100H.  
Normal Operation:  
4. If semaphore bit is Ready (Bit 0 set to 0), write data to Data register addresses  
D101H to D115H.  
5. Set Write command:  
Write 01H to D100H.  
The trigger for sending the data out to the display serial interface is:  
Programming the semaphore register at address D100H AND writing data to the 21  
data registers (D101H to D115H).  
OR  
Programming the semaphore register at D100H AND writing data to the last data  
register at D115H.  
As soon as the controller starts to send the data, it sets the semaphore bit to 1, indicating  
that it is busy.  
When the controller finishes data output, it resets the semaphore bit to 0, indicating that  
it is available for a new operation.  
Revision B  
Page 48  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LED SERIAL INTERFACE DISPLAY CONTROLLER  
Features  
Functional Description  
Supports up to 24 digits  
The LED Serial Interface display comprises three  
groups of eight digits. The controller diagram  
showing the division of the 24-byte register into  
three eight-byte groups and the operation cycle is  
given in Figure 22.  
The LED Serial Interface Display Controller  
timing diagram is shown in Figure 23. The clock  
rate is 2 MHz.  
Serial interface  
Programmable control-signal polarity  
Programmable data registers  
Supports common-anode, seven-segment LED  
Digit 8  
Digit 7  
Digit 6  
Digit 5  
Digit 4  
a
Digit 3  
Digit 2  
Digit 1  
Group 1  
a
a
a
a
a
a
a
Seg a  
Seg b  
Seg c  
Seg d  
Seg e  
Seg f  
Seg g  
DP  
b
c
b
c
b
c
b
c
b
c
b
c
b
c
b
c
f
f
f
f
f
f
f
f
g
d
g
d
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
e
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
Digit 8  
Digit 7  
Digit 6  
Digit 5  
Digit 4  
a
Digit 3  
Digit 2  
Digit 1  
Group 2  
a
a
a
a
a
a
a
Seg a  
Seg b  
Seg c  
Seg d  
Seg e  
Seg f  
Seg g  
DP  
b
c
b
c
b
c
b
c
b
b
c
b
c
b
c
f
f
f
f
f
f
f
f
g
d
g
d
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
e
c
DP  
DP  
Digit 8  
Digit 7  
Digit 6  
Digit 5  
Digit 4  
a
Digit 3  
Digit 2  
Digit 1  
Group 3  
a
a
a
a
a
a
a
Seg a  
Seg b  
Seg c  
Seg d  
Seg e  
Seg f  
Seg g  
DP  
b
c
b
c
b
c
b
c
b
c
b
c
b
c
b
c
f
f
f
f
f
f
f
f
g
d
g
d
g
d
g
d
g
d
g
d
g
d
g
d
e
e
e
e
e
e
e
e
DP  
DP  
0
0
0
0
0
0
0
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Cycle 1  
Digit 1  
Group 1  
Group 2  
Group 3  
1
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
Cycle 8  
The controller transmits cycles 1 to 8 continuously.  
FIGURE 22: LED SERIAL INTERFACE DISPLAY BLOCK DIAGRAM  
Revision B  
Page 49  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
20 µs  
BLANK  
/
BLANK  
20 µs  
t = 400 µs  
STROBE  
/
STROBE  
20 µs  
t1 = 8µs  
CLOCK  
/
CLOCK  
DATA  
FIGURE 23: LED SERIAL INTERFACE CONTROLLER TIMING DIAGRAM  
Registers Description  
The LED Serial controller registers description is given in Table 25.  
TABLE 25: LED SERIAL CONTROLLER DRIVER REGISTERS DESCRIPTION  
FUNCTION  
ADDRESS  
C200H  
BIT  
5
REMARKS  
Controller Clock Enable  
1= Enable  
0= Disable  
Controller RESET  
C403H  
D201H  
All  
0xFF = Reset  
Read only  
Semaphore register  
Data Registers  
Group 1  
Group 2  
D201H to D208H  
D209H to D210H  
D211H to D218H  
Write Only  
Write Only  
Write Only  
Group 3  
Control Register  
D200H  
Read/Write  
LED data is stored in a 24-byte × 8-bit static display RAM. The data registers are  
divided into three groups, each group containing eight bytes with the segment data for  
eight digits. Thus, the LED display can be formatted to display eight, 16 or 24 digits.  
The display RAM has one Read/Write control register containing the Command byte and  
a Read-only semaphore byte that informs the system if the display is Busy or Ready to  
initiate writing of LED data. The semaphore byte address also serves as first address of  
the Write-only data register.  
The trigger for sending the data out to the display serial interface is programming the  
control register at address D200H. As soon as the controller starts to send data, it sets  
the semaphore byte to FFH, indicating that it is busy.  
The data is sent serially, Group 1 Digit 8 (left-most digit of the first group) most-  
significant bit (MSB) first, and continuously until Group 3 Digit 1 least-significant bit  
(LSB) last.  
Revision B  
Page 50  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
When the controller has finished data output, it resets the semaphore byte to 0, indicating  
that it is available for a new operation.  
Control Register  
The definitions and functions of the control-register Command-byte bits are displayed in  
Table 26.  
TABLE 26: LED SERIAL INTERFACE DISPLAY CONTROL REGISTER BIT FUNCTIONS  
ADDRESS BIT  
NAME  
FUNCTION  
Command bit  
SETTINGS  
0 = Command Only  
1 = Command + Data  
D200H  
0
C
X
(LSB)  
1
2
N/A  
Don’t Care  
0 = Negative Logic  
1 = Positive Logic  
Blank Polarity  
Strobe Polarity  
Clock Polarity  
E
Sets the Blank polarity.  
0 = Negative Logic  
1 = Positive Logic  
3
4
5
6
7
Sets the Strobe polarity.  
0 = Negative Logic  
1 = Positive Logic  
Sets the Clock polarity.  
0 = Disable Display  
1 = Enable Display  
Enables and disables the display.  
0 = Close communication  
1 = Open communication  
Block  
Opens communication or blocks  
the hardware communication lines.  
N/A  
N/A  
Don’t Care  
Semaphore Register  
The semaphore byte is located at address D201H, which is the first address of the  
Write-only data register. This address is Read-only for the semaphore byte. The  
semaphore byte bit definitions are identical. The settings are:  
Controller is Busy: Bits 0 to 7 set to 1 (FFH).  
Controller is Ready: Bits 0 to 7 set to 0 (00H).  
Revision B  
Page 51  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Data Registers  
The display data is stored in a 24-byte × 8-bit RAM area.  
The data register bit definitions for a 21-digit display are shown in Table 27. The  
registers are Write-only.  
TABLE 27: LED SERIAL INTERFACE DISPLAY DATA REGISTER BIT DEFINITIONS  
GROUP DIGIT BYTE ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
#
1
#
(MSB)  
(LSB)  
#
1
2
3
4
5
6
7
8
9
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
8
8
8
8
8
8
8
8
D201H  
D202H  
D203H  
D204H  
D205H  
D206H  
D207H  
D208H  
D209H  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
DP  
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A
a
a
a
a
a
a
a
2
10 D20AH  
11 D20BH  
12 D20CH  
13 D20DH  
14 D20EH  
15 D20FH  
16 D210H  
17 D211H  
18 D212H  
19 D213H  
20 D214H  
21 D215H  
22 D216H  
23 D217H  
24 D218H  
3
Revision B  
Page 52  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Operation  
At power-on or reset the LED Serial Interface display controller is disabled.  
Initialization:  
To enable the LED Serial Interface display controller:  
1. Enable the controller clock source in Clock Enable register C200H:  
Set C200H, Bit 5 to 1.  
2. Reset the controller:  
Write FF to register C403H.  
3. Check CFR address for LED serial Interface display controller function:  
CFR address C101H = AA (Table 32, page 62).  
This results in the following operations:  
Enables serial controller output pins (58 to 61) (Table 32, page 62)  
Check semaphore byte at address D201H.  
Normal Operation:  
4. If semaphore byte is Ready (Bits 0 to 7 set to 0), write data to Data register  
addresses D201H to D218H.  
5. Set Write command at the controller Control register address D200H.  
6. Repeat steps 4 and 5 for new data.  
Revision B  
Page 53  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PROGRAMMABLE FREQUENCY CONTROLLER  
Features  
Functional Description  
Dividing the 16-MHz frequency source according  
to the control register setting generates the CPU  
clock frequency.  
The CPU clock can be set to 16, 8, 4, 2, 1 or  
0.5 MHz.  
Programmable CPU clock frequency: 16, 8, 4,  
2, 1 or 0.5 MHz  
Driven by a 16-MHz resonator or crystal  
oscillator  
Functions  
Generates independent clocks for the CPU and  
controllers (ADC converter, display,  
keyboard, watchdog timer, etc.)  
Switching CPU frequency:  
To switch from the 16-MHz frequency to any  
other frequency, program the frequency-  
controller control register as shown in  
Table 28.  
To switch from any frequency (other than  
16 MHz) to another frequency, first switch to  
16 MHz and then switch to the desired  
frequency.  
Clock Generator Block Diagram  
The clock generator block diagram is presented in  
Figure 24.  
16 MHz (Default)  
16 MHz  
Clock  
8 MHz  
4 MHz  
1/2  
1/2  
2 MHz  
1/2  
1 MHz  
1/2  
0.5 MHz  
1/2  
FIGURE 24: CLOCK GENERATOR BLOCK DIAGRAM  
Revision B  
Page 55  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Operation  
At Power on or Reset, the CPU frequency clock output is set to 16 MHz.  
The clocks for the controllers is fixed and derived directly from the external frequency  
source.  
The Frequency controller setting derives the CPU clock, as defined in Table 28.  
Control Registers Description  
The clock frequency is programmed from a single 8-bit control register.  
The address of the clock frequency control register is E800H.  
The bit settings at E800H that define the clock frequency are given in Table 28.  
TABLE 28: CLOCK FREQUENCY CONTROL REGISTER BIT SETTINGS  
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
(LSB)  
CPU CLOCK  
E800H  
Don’t Care  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
16 MHz  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.5 MHz  
Revision B  
Page 56  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
WATCHDOG TIMER  
Functions  
Functional Description  
The purpose of the watchdog timer is to  
generate a CPU reset at specified intervals. If  
the SOC-3000 software does not interrupt the  
watchdog cycle and instead enters an  
The operating parameters of the watchdog  
timer are presented in Table 29.  
erroneous state, the watchdog time carries out  
its CPU reset one second after the software  
was supposed to make its interrupt. The  
erroneous state may be due to a programming  
error. The watchdog may be disabled or re-  
triggered via its control register.  
TABLE 29: WATCHDOG TIMER OPERATING PARAMETERS  
PARAMETER VALUE  
Time Constant  
Trigger  
1 second  
By the control register (WDI)  
By the control register (ENWD)  
Disabled  
Enable/Disable  
Power Up Mode  
Operation  
The application software controls the watchdog operation. It is automatically disabled in  
the In-circuit Emulator (ICE) mode and after power-up or reset.  
The application software should activate the watchdog as soon as it starts normal  
operation after power-on or reset conditions.  
The watchdog timer should be periodically re-triggered during normal operation, before  
the timer expires. Expiration of the watchdog timer resets the CPU.  
If required, disabling the watchdog timer clock input can disable the watchdog.  
Table 30 describes the operation of the watchdog timer.  
TABLE 30: WATCHDOG TIMER COMMAND SEQUENCE  
#
COMMAND  
ADDRESS  
BIT  
3
SETTING  
1 Enable Watchdog  
C200H  
1= Enable  
0= Disable  
2 Re-trigger Timer  
F800H  
C200H  
all  
3
FFH  
0
3 Disable Watchdog  
Control Registers Description  
Setting the Clock Enable register (C200H), bit 3 to 1 enables the watchdog timer.  
Setting the Clock Enable register (C200H), bit 3 to 0 disables the watchdog timer.  
Writing FFH to address F800H re-triggers the watchdog.  
Revision B  
Page 57  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LOW VOLTAGE DETECTOR  
The low voltage detector is a supervisory circuit in which the Power Fail Input (Vdet) is  
compared to an internal 2.23 V reference (Figure 25). The comparator output goes low  
when the voltage at Vdet is less than or equal to 2.23 V and Bit 1 of register E400H  
equals 0.  
Vdet is usually driven by an external voltage divider, which senses the unregulated DC  
input to the system 5V regulator. The voltage divider ratio can be chosen such that the  
voltage at Vdet falls below 2.23 V several milliseconds before the +5V supply falls below  
4.75V. INT0 is normally used to interrupt the microprocessor so that data can be stored  
in non-volatile memory before VCC falls below 4.75 V and the RESET output goes low.  
The Power Fail Comparator output returns to High when Vdet>2.27V.  
V
VCC  
DC Unreg.  
in  
REG  
Recommended  
SOC-3000  
Values for Resistors  
Vdet  
Power Fail Comparator  
+
1% 133K R  
1
INTØ  
1% 100K R  
2
INTØ  
INTØ  
5.19V (Typ.)  
5.3V (Typ.)  
INTØ goes low if Vdet < 2.23V.  
FIGURE 25: LOW VOLTAGE DETECTOR  
Interrupt Register  
The address of the power-supply interrupt register is E400H (Read/Write).  
The bit settings at E400H that define the power failure interrupt and flag are given in  
Table 31.  
TABLE 31: POWER-FAILURE INTERRUPT REGISTER BIT SETTINGS  
ADDRESS BIT BIT BIT BIT BIT BIT  
BIT 1  
BIT 0 (LSB)  
7
6
5
4
3
2
POWER FAIL FLAG INTERRUPT ENABLE  
0 = If VDET < VREF  
1 = Normal  
0 = Enabled  
1 = Disabled  
E400H  
Don’t Care  
Revision B  
Page 59  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Revision B  
Page 60  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
CONFIGURATION REGISTERS (CFR)  
Programming the configuration registers (CFR) in the CPU sets the SOC-3000 pin functions.  
The CFR registers include control and configuration registers that provide the interface  
between the CPU and the other on-chip peripherals, such as the keyboard, LED and LCD  
controllers and input/output ports. Each peripheral operates as designated in the CFR  
registers, where each register may be programmed to perform alternative functions. (See  
“Examples of Pin Configuration Programming”, on page 85).  
The complete CFR-register bit assignment for all peripherals and input/output and  
corresponding PLCC-84 pins are given on the following pages in Table 32.  
Revision B  
Page 61  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
NOTES  
SOC-3000/i Scale-On-Chip ASIC  
BIT SETTINGS PER FUNCTION  
TABLE 32: CFR BIT ASSIGNMENT  
PLCC-84 REG BIT  
PIN  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
ADD.  
C101H  
7-6 00=LCD Display S40  
5-4 00=LCD Display S39  
3-2 00=LCD Display S38  
1-0 00=LCD Display S37  
10=LED-SI-BLANK  
11=OUT 13.3 SI = Serial Interface  
10=LED-SI- STROBE  
10=LED-SI- STROBE  
10=LED-SI- CLK  
11=OUT 13.2  
11=OUT 13.1  
11=OUT 13.0 CLK = Clock  
C102H  
7
6
0=LCD Display S36  
0=LCD Display S35  
1=OUT 12.4  
1=OUT 12.3  
5-4 00=LCD Display S34  
3-2 00=LCD Display S33  
1-0 00=LCD Display S32  
7-6 00=LCD Display S31  
5-4 00=LCD Display S30  
3-2 00=LCD Display S29  
1-0 00=LCD Display S28  
7-6 00=LCD Display S27  
5-4 00=LCD Display S26  
3-2 00=LCD Display S25  
1-0 00=LCD Display S24  
7-6 00=LCD Display S23  
5-4 00=LCD Display S22  
3-2 00=LCD Display S21  
1-0 00=LCD Display S20  
7-6 00=LCD Display S19  
5-4 00=LCD Display S18  
10=OUT 12.2  
10=OUT 12.1  
10=OUT 12.0  
10=OUT 11.3  
10=OUT 11.2  
10=OUT 11.1  
10=OUT 11.0  
10=OUT 10.0  
C103H  
C104H  
C105H  
C106H  
01=LED Display DIG 7  
01=LED Display DIG 6  
01=LED Display DIG 5  
01=LED Display DIG 4  
01=LED Display DIG 3  
01=LED Display DIG 2  
01=LED Display DIG 1  
01=LED Display SEG DP3  
01=LED Display SEG G3  
01=LED Display SEG F3  
01=LED Display SEG E3  
01=LED Display SEG D3  
01=LED Display SEG C3  
01=LED Display SEG B3  
DIG = Digit  
SEG = Segment  
DP = Decimal Point  
10=OUT 9.2  
Revision B  
Page 62  
July, 2002  
CybraTech (2000) Ltd.  
PLCC-84 REG BIT  
Technical Specification  
NOTES  
SOC-3000/i Scale-On-Chip ASIC  
BIT SETTINGS PER FUNCTION  
PIN  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
ADD.  
3-2 00=LCD Display S17  
1-0 00=LCD Display S16  
7-6 00=LCD Display S15  
5-4 00=LCD Display S14  
3-2 00=LCD Display S13  
1-0 00=LCD Display S12  
7-6 00=LCD Display S11  
5-4 00=LCD Display S10  
3-2 00=LCD Display S9  
1-0 00=LCD Display S8  
7-6 00=LCD Display S7  
5-4 00=LCD Display S6  
3-2 00=LCD Display S5  
1-0 00=LCD Display S4  
01=LED Display SEG A3  
01=LED Display SEG DP2  
01=LED Display SEG G2  
01=LED Display SEG F2  
01=LED Display SEG E2  
01=LED Display SEG D2  
01=LED Display SEG C2  
01=LED Display SEG B2  
01=LED Display SEG A2  
01=LED Display SEG DP1  
01=LED Display SEG G1  
01=LED Display SEG F1  
01=LED Display SEG E1  
01=LED Display SEG D1  
01=LED Display SEG C1  
01=LED Display SEG B1  
01=LED Display SEG A1  
10=OUT 9.1  
10=OUT 9.0  
C107H  
11=OUT 8.3  
11=OUT 8.2  
10=OUT 8.1  
11=OUT 8.0  
11=OUT 7.3  
11=OUT 7.2  
11=OUT 7.1  
11=OUT 7.0  
11=OUT 6.3  
C108H  
C109H  
10=OUT 6.2  
10=OUT 6.1  
10=OUT 6.0  
10=OUT 5.2  
10=OUT 5.1  
10=OUT 5.0  
C10AH 5-4 00=LCD Display S3  
3-2 00=LCD Display S2  
1-0 00=LCD Display S1  
Revision B  
Page 63  
July, 2002  
CybraTech (2000) Ltd.  
PLCC-84 REG BIT  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
BIT SETTINGS PER FUNCTION  
10=OUT 4.3  
NOTES  
PIN  
21  
20  
19  
18  
-
ADD.  
C10BH 6-5 00=BP4  
4-3 00=BP3  
BP = Backplane  
01=VPP  
10=OUT 4.2  
2
0=BP2  
1-0 00=BP1  
C10CH 7-0 FFH  
C10DH  
1=OUT 4.1  
10=OUT 4.0  
Must be always 0xFF  
KIN = Keyboard In  
I.O = Input/Output  
5
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0=I.O 15.7  
0=I.O 15.6  
0=I.O 15.5  
0=I.O 15.4  
0=I.O 15.3  
0=I.O 15.2  
0=I.O 15.1  
0=I.O 15.0  
0=I.O 14.7  
0=I.O 14.6  
0=I.O 14.5  
0=I.O 14.4  
0=I.O 14.3  
0=I.O 14.2  
0=I.O 14.1  
0=I.O 14.0  
1=KIN0  
4
1=KIN1  
3
1=KIN2  
2
1=KIN3  
1
1=KIN4  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
1=KIN5  
1=KIN6  
1=KIN7  
C10EH  
1=KOUT0  
1=KOUT1  
1=KOUT2  
1=KOUT3  
1=KOUT4  
1=KOUT5  
1=KOUT6  
1=KOUT7  
KOUT = Keyboard Out  
Revision B  
Page 64  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
SPECIAL FUNCTION REGISTERS (SFR)  
The SOC-3000/i includes Special Function Registers (SFR) that enable the device hardware  
controllers and reset them. Each controller description details its specific SFR operation.  
This section details all the SFR registers and functions. All these registers are mapped as  
XDATA memory area.  
Global Configuration Register  
Register 0C100H is used as a general enable/disable of pin allocation to all the hardware  
controllers in the SOC-3000/i. Upon power-up or reset this register is cleared, disabling all  
the hardware controllers. Writing 0xFF to the register activates the allocation of pins to  
hardware controller, as defined by programming the CFR registers.  
TABLE 33: GLOBAL CFR REGISTER  
ADDRESS  
C100H  
FUNCTION  
REMARKS  
0x00 – Enable  
0xFF - Disable  
Enable / Disable pin allocation  
Operation  
1. Upon power-up or reset, the Global CFR register is set, disabling all pin allocation to the  
hardware controllers.  
2. Initialize the CFR registers according to the required hardware configuration as described in  
section “  
Revision B  
Page 65  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Configuration Registers (CFR)” page 61.  
3. Initialize the hardware controllers.  
4. Enable the Global CFR Register: Write 0x00 to address C100H.  
Controllers Clock Enable Register  
Register C200H controls the clock source to the hardware controllers in the SOC-3000/i.  
Each controller operation may be disabled by inhibiting its clock.  
TABLE 34: CLOCK ENABLE REGISTER  
ADDRESS BIT 7  
BIT 6  
0
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
PLED  
BIT 0  
(LSB)  
C200H  
ADC  
SLED  
0
WDT  
KBD  
LCD  
Revision B  
Page 66  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
TABLE 35: CONTROLLERS CLOCK ENABLE REGISTER BIT FUNCTIONS  
BIT  
NAME  
LCD  
TYPE  
FUNCTION  
SETTINGS  
0 = Disable  
1 = Enable  
0
Read-Write Enable LCD display controller clock  
(LSB)  
1
2
3
PLED  
KBD  
Read-Write Enable parallel LED display controller 0 = Disable  
clock  
1 = Enable  
Read-Write Enable keyboard controller clock  
0 = Disable  
1 = Enable  
WDT  
Read-Write Enable watch-dog timer clock  
0 = Disable  
1 = Enable  
4
5
-
Read-Write None. Set always to 0.  
Always 0.  
SLED  
Read-Write Enables serial LED display controller  
0 = Disable  
1 = Enable  
6
7
-
Read-Write None. Set always to 0.  
Always 0.  
AD  
Read-Write Enables ADC controller clock  
0 = Disable  
1 = Enable  
Controllers RESET Registers  
The SFRs listed in Table 36 provides the mechanism to reset the hardware controllers of the  
SOC-3000/i.  
TABLE 36: CONTROLLERS RESET REGISTER  
ADDRESS  
C400H  
TYPE  
FUNCTION  
SETTINGS  
0xFF = Reset  
0xFF = Reset  
Write only Keyboard controller reset  
Write only LCD display controller reset  
C401H  
C402H  
Write only Parallel LED display controller reset 0xFF = Reset  
C403H  
Write only Serial LED display controller reset  
Write only ADC controller reset  
0xFF = Reset  
0xFF = Reset  
C406H  
Revision B  
Page 67  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Revision B  
Page 68  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
I/O OPERATION  
I/O operation is determined by the configuration registers (CFR) programming. The I/O  
ports are composed of two groups:  
Byte-Oriented Output Ports –  
Data written to the port is byte oriented (writing FFH to the port will set it to HIGH, and  
writing 00H to the port will set it to LOW).  
Bit-Oriented Input/Output (I/O) Ports –  
Data written to the port is byte oriented (FFH–to set the port, 00H–to reset the port).  
Data read from the port is bit-oriented (only the port allocated bit is set/reset).  
Table 44, the I/O ports groups, addresses and corresponding PLCC-84 pins are described in  
Table 37 and Table 38.  
TABLE 37: BIT-ORIENTED I/O PORTS ADDRESSES, PIN AND BIT ASSIGNMENT  
PLCC-84 PIN I/O PORT NAME  
PORT  
BIT  
ADDRESS ASSIGNMENT  
(LSB)  
x
5
I.O 15.7  
I.O 15.6  
I.O 15.5  
I.O 15.4  
I.O 15.3  
I.O 15.2  
I.O 15.1  
I.O 15.0  
I.O 14.7  
I.O 14.6  
I.O 14.5  
I.O 14.4  
I.O 14.3  
I.O 14.2  
I.O 14.1  
I.O 14.0  
F22A  
F22B  
F22C  
F22D  
F22E  
F22F  
F230  
F231  
F232  
F233  
F234  
F235  
F236  
F237  
F238  
F239  
0 0 0 0 0 0 0  
x
4
0 0 0 0 0 0  
0
x
0 0 0 0 0 0 0  
3
x
0 0 0 0 0 0 0  
2
x
0 0 0 0 0 0 0  
1
x
0 0 0 0 0 0 0  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
x
0
0 0 0 0 0 0  
x
0 0 0 0 0 0 0  
x
0 0 0 0 0 0 0  
x
0 0 0 0 0 0  
0
x
0 0 0 0 0 0 0  
x
0 0 0 0 0 0 0  
x
0 0 0 0 0 0 0  
x
0 0 0 0 0 0 0  
x
0
0 0 0 0 0 0  
0 0 0 0 0 0 0  
x
TABLE 38: BYTE-ORIENTED OUTPUT PORTS ADDRESSES AND PIN ASSIGNMENT  
PLCC-84 PIN  
I/O FUNCTION  
OUT 13.3  
PORT ADDRESS  
61  
60  
59  
F205  
F206  
F207  
OUT 13.2  
OUT 13.1  
Revision B  
Page 69  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
PLCC-84 PIN  
58  
I/O FUNCTION  
OUT 13.0  
OUT 12.4  
OUT 12.3  
OUT 12.2  
OUT 12.1  
OUT 12.0  
OUT 11.3  
OUT 11.2  
OUT 11.1  
OUT 11.0  
OUT 10.0  
OUT 9.2  
OUT 9.1  
OUT 9.0  
OUT 8.3  
OUT 8.2  
OUT 8.1  
OUT 8.0  
OUT 7.3  
OUT 7.2  
OUT 7.1  
OUT 7.0  
OUT 6.3  
OUT 6.2  
OUT 6.1  
OUT 6.0  
OUT 5.2  
OUT 5.1  
OUT 5.0  
OUT 4.3  
OUT 4.2  
OUT 4.1  
OUT 4.0  
PORT ADDRESS  
F208  
F209  
F20A  
F20B  
F20C  
F20D  
F20E  
F20F  
F210  
F211  
F212  
F213  
F214  
F215  
F216  
F217  
F218  
F219  
F21A  
F21B  
F21C  
F21D  
F21E  
F21F  
F220  
F221  
F222  
F223  
F224  
F225  
F226  
F227  
F228  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
Revision B  
Page 70  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
8051-COMPATIBLE ON-CHIP PERIPHERALS  
This section describes the standard 8051 peripheral devices available to the user. These  
functions are fully compatible with the standard 8051 CPUs and are controlled via the  
standard 8051 Special Function Registers (SFRs).  
Parallel I/O Ports  
Some of the parallel I/O ports of the 80C51TBO core are available on the SOC-3000 pins.  
Most of the ports are already allocated to specific functions. However, the application design  
may require allocating different functions to these pins. Table 39 list the available pins,  
80C51 I/O port, default function and special precaution needed when changing the function  
of the pin.  
TABLE 39: AVAILABLE PINS ON THE 80C51 I/O PORT  
PIN #  
80C51  
PORT  
DEFAULT  
SPECIAL PRECAUTIONS  
FUNCTION  
7
8
P1.7  
P1.5  
P1.4  
Buzzer  
None  
None  
None  
After power-up the SOC-3000 asserts 3 pulses on this pin  
9
14  
P3.4 /  
Timer 0  
Used in CybraTech application for power-off control in low-power  
applications  
15  
16  
P3.5 /  
Timer 1  
None  
None  
Used in CybraTech application for detecting power source  
(AC/Battery)  
P1.6  
Used in CybraTech application to control LCD electro-luminescent  
backlight operation  
The I/O ports are controlled and accessible using the 80C51TBO Special Function Registers  
as described in its device specification.  
Timers/Counters  
The 80C51 Timers/Counters external inputs are available for use on SOC-3000 pin #14  
(Timer 0) and pin #15 (Timer 1). Using the timers is via the 80C51 Special Function  
Registers (SFRs) as described in the 80C51TBO specification.  
Revision B  
Page 71  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Revision B  
Page 72  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
SOC-3000 INITIALIZATION  
At power-up or after RESET the SOC-3000 performs the following procedures:  
Disabling all the peripheral controllers of the ASIC.  
Setting the CFR and control registers to their default values.  
Start the boot program (ROM mask in the chip) that checks if the chip is  
programmed or not. If the chip is programmed it starts running the program  
starting at address 1000H. Otherwise, it toggles the buzzer signal (pin 7)  
HIGH/LOW three times to signal that the chip is erased and waits for software  
download via the serial communication port.  
To initialize the SOC-3000:  
1. Program the SOC-3000 pin configuration in the CFR registers.  
For general pin configuration for an LCD display, refer to Table 1, page 9. For a  
quick reference, refer to Table 4, page 18.  
For general pin configuration for a LED display, refer to Table 2, page 12. For a  
quick reference, refer to Table 5, page 19.  
For CFR bit assignment, refer to Table 32, page 62.  
For examples of CFR bit assignment, refer to “Example of Pin Configuration Programming”,  
on page 85.  
2. Initialize the peripheral controllers used by the application.  
3. Write 0x00 to the global CFR register at address C100H.  
This activates all CFR registers and completes SOC-3000 initialization.  
Revision B  
Page 73  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
SOC-3000 HARDWARE DESIGN CONSIDERATIONS AND  
PERIPHERAL INTERFACE CONNECTIONS  
Load Cell Interface  
The SOC-3000 supports a wide range of load-cell connection configurations, each based on  
various combinations of the following connection options:  
4-wire or 6-wire interface  
Up to eight load cells connected in parallel  
Load cell impedance range of 350 to 1000 ohms  
Individually and in combination, these connection options enable the SOC-3000 to function  
on a wide range of application platforms, each having different power consumption and  
system configuration requirements, while using the same electronic hardware.  
4-Wire and 6-Wire Interfaces  
The SOC-3000 interface to the load cell carries the following electrical signals:  
SIG + (Signal Input +)  
SIG – (Signal Input –)  
SEN + (Excitation voltage / Sense input +)  
SEN – (Excitation voltage / Sense input –)  
A typical 4-wire load-cell connection, in which the distance between the load cells and the  
SOC-3000 chip is small, as in a standard retail scale, is shown in Figure 26.  
However, in platforms requiring long wires between the load cell and the electronic  
hardware, such as weighing bridges, the voltage drop over the cables is significant and affects  
accuracy.  
The 6-wire interface eliminates this error factor by using the sense wires, as shown in Figure  
27. The sense wires serve as a reference for the ADC converter, thus eliminating the voltage  
drop over the long excitation-voltage wires.  
Revision B  
Page 75  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Load Cell  
Cable  
(4-Wires)  
Regulated  
5 V  
Unregulated  
Reg.  
Power  
73  
AVcc  
72 SEN  
+
71 SIG +  
SOC-3000  
70 SIG -  
69 SEN-  
AGND  
68  
FIGURE 26: 4-WIRE LOAD-CELL CONNECTION  
Load Cell  
Cable  
(6-Wires)  
Regulated  
Reg.  
Unregulated  
Power  
5 V  
Sense  
Wire  
73  
AVcc  
72 SEN  
+
71 SIG +  
70 SIG -  
SOC-3000  
69 SEN-  
AGND  
68  
Sense  
Wire  
AGND  
FIGURE 27: 6-WIRE LOAD-CELL CONNECTION  
Revision B  
Page 76  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Load Cells Connected in Parallel  
The SOC-3000 may be connected to up to eight load cells connected in parallel. Multiple  
load cells are required in heavy load applications, such as weigh bridges, that require from  
two to eight load cells.  
Load cells connected in parallel typically result in lower output impedance, which decreases  
in direct proportion to the number of load cells. This results in a higher excitation current  
and higher sensitivity to factors that throw load cells out of balance.  
The SOC-3000 eliminates this problem with its high Common Mode Rejection Ratio  
(CMRR), which allows the connection of a large number of load cells (up to eight) without  
losing measurement accuracy. The multiple load-cell connection is shown in Figure 28.  
IMPORTANT  
The load cells should be matched before connecting them to the SOC-3000 to ensure the  
same initial offset, span and impedance. This will eliminate error factors that are beyond the  
control of SOC-3000 electronics.  
NOTE  
These large weighing platforms may also require a 6-wire interface connection, as described  
above, on page 75.  
LOADCells  
Connection  
Regulated  
5 V  
JUNCTION  
BOX  
73  
AVcc  
( ) Output  
72 SEN +  
*
Trimming  
71 SIG +  
70 SIG -  
69 SEN-  
Upto 8  
Load Cells  
SOC-3000  
( ) Zero Offset  
*
Trimming  
AGND  
68  
AGND  
FIGURE 28: MULTIPLE LOAD-CELL CONNECTION  
Revision B  
Page 77  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Load Cell Impedance  
Most load cells have output impedance of 350 ohms. However, in power-restricted  
applications, load cells of higher impedance, typically a 1000-ohm bridge, are used to reduce  
the cell’s power consumption.  
The SOC-3000 CMRR minimizes the error resulting from this high bridge impedance and  
ensures full and accurate performance under this limiting condition.  
The result is economical power consumption without sacrificing weighing accuracy.  
Keyboard Interface  
The SOC-3000 supports direct connection of a keyboard of up to 64 keys arranged in an 8 ×  
8 matrix. The hardware interface with an example of a scale keyboard is shown in Figure 29.  
The keyboard controller (“Keyboard Controller”, page 31) automatically scans the matrix by  
asserting a high signal on the output lines (KOUT 0 to 7) and reading the input lines (KIN 0  
to 7). The key hardware code, which is the code returned by the keyboard controller when  
the key is pressed, is shown in Figure 12, page 31.  
The keyboard controller has a programmable anti-bounce mechanism, in which different  
delays can be programmed to avoid erroneous key activation due to bouncing of the keys.  
The delay can be set to a discrete value from 4 to 18 milliseconds, in two-millisecond  
increments. For programming the anti-bounce mechanism, see Table 14, page 32.  
Scale Keyboard  
KOUT7  
/
7
4
1
.
*
8
-
+
±
F1  
F2  
F3  
F4  
Bsp  
T
F5  
F6  
F7  
F8  
Esc  
Y
KOUT6  
9
KOUT5  
5
6
3
%
=
C
M
C
E
R
KOUT4  
2
M+  
O
U
M
KOUT3  
0
Enter  
E
P
I
KOUT2  
Q
A
Z
W
S
X
R
F
V
KOUT1  
D
G
H
J
K
L
KOUT0  
C
B
N
M
74  
75  
76  
77  
78  
79  
80  
8 1 8 2  
KIN7  
8 3  
KIN6  
8 4  
KIN5  
1
2
3
4
5
PIN#  
Signal  
KIN4  
KIN3  
KIN2  
KIN1  
KIN0  
FIGURE 29: KEYBOARD INTERFACE  
Revision B  
Page 78  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LCD Display Interface  
The SOC-3000 interface supports LCD displays as follows:  
Up to four backplanes, each driving 40 LCD segments  
Static, 1/2-bias and 1/3-bias display options  
Electro-luminescent (EL) lighting control  
The hardware interface is shown in Figure 30.  
The SOC-3000 is equipped with bias generators with voltage-followers buffers that generate  
the LCD bias voltages and backplane multiplexing signals. Thus, LCD displays can be  
directly connected to the SOC-3000 without any external component.  
LCD DISPLAY  
Backplane  
Multiplexer  
Segment Inputs  
1
2
40  
1
2
3
4
18 19 20 21  
22 23  
61  
S40  
PIN #  
Signal  
(Up to 4 Backplanes)  
(Up to 40 Segments)  
SOC-3000  
FIGURE 30: LCD DISPLAY INTERFACE  
Revision B  
Page 79  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
LED Display Interface  
The SOC-3000 interface supports LED displays as follows:  
Up to 21 digits each comprising eight segments–seven-segment digit plus Decimal Point  
(DP)  
Three digit groups, Weight, Price, and Total  
Automatic hardware refresh mechanism to reduce power consumption  
The hardware interface is shown in Figure 31.  
The LED display is directly connected to the SOC-3000 with the addition of only the LED  
display drivers.  
Pin 46  
.
.
.
.
.
Hi-  
Digit  
Driver  
Current  
Drivers  
(DY9953)  
(ULN2003)  
Pin 52  
A3-G3,DP3  
A2-G2,DP2  
A1-G1,DP1  
Pin 22  
8
8
8
.
.
.
.
.
Segment  
Drivers  
(ULN2003)  
Pin 45  
FIGURE 31: LED PARALLEL DISPLAY INTERFACE  
External Interrupt Sources  
External interrupt sources may be connected to the SOC-3000 using the following pins:  
a. Vdet / INT0~.  
b. P3.4 / Timer-counter 0 input.  
c. P3.5 / Timer-counter 1 input.  
Using the Vdet input:  
The Vdet input is connected to INT0 of the 80C51TBO core. In battery-operated equipment  
this input is connected to the battery voltage divider and used to detect low battery voltage.  
Revision B  
Page 80  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Other interrupt sources may be connected to this input using open-collector drivers operating  
in negative logic mode (‘0’ is active interrupt). A low voltage input triggers the INT0. The  
application software applies a mechanism to determine whether the interrupt was generated  
by low battery voltage or by other interrupt source.  
Using Timer0 and Timer1 inputs:  
SOC-3000 pin #14 is connected to the 80C51 Timer 0 input and pin #15 is connected to  
Timer1 input.  
These inputs may be used for counting or timer operations, or as additional interrupt inputs to  
the device.  
Using these inputs as interrupt inputs requires that the appropriate timer be set to 0xFE. The  
next event causes the counter to increase to 0xFF and triggers the Timer 0 (or timer 1)  
interrupt.  
I2C-Compatible Interface  
The SOC-3000 may supports a 2-wire I2C compatible serial interface. The I2C-compatible  
interface shares its pins with the CPU I/O pins (P1.4, P1.5) and is implemented in software.  
Table 40 provides the hardware interface information:  
TABLE 40: I2C-COMPATIBLE INTERFACE HARDWARE INTERFACE  
PIN#  
NAME  
DESCRIPTION  
8
9
SDATA  
Serial Data I/O pin  
Serial Clock pin  
SCLOCK  
Power Saving Schemes  
SOC-3000/i provides several means for power saving for battery-operated systems:  
a. Set the CPU to IDLE or POWERDOWN operating modes – see detailed description in  
the M8051TBO Technical Specification, Power Management section.  
b. Disable unused hardware controllers – by disabling the controller clock via the  
“Controllers Clock Enable Register (C200H)”, see tables 33 and 34.  
c. Reduce the CPU frequency to minimum while idle by using the Frequency Controller.  
The CPU frequency may be increased on the fly to 16MHz when an interrupt or an event  
occurred.  
d. Switch the power to the load cell using the I/O pins of the SOC and an external switch.  
Revision B  
Page 81  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Grounding and Board Layout Recommendations  
As with all high-resolution data converters, special attention must be paid to grounding and to  
the PCB layout of SOC-3000 based designs in order to achieve optimum performance from  
the Analog-To-Digital Converter.  
Four-layer boards are recommended where the outer layers are ground layers covering the  
whole surface, and the inner layers are used for routing the signal lines. The same ground  
plane should be used for both the digital and analog grounds.  
Keep all ground connection as short as possible. Make sure that the return paths of the  
signals are as close as possible to the paths that the currents took to reach their destinations.  
Avoid digital signals flowing under the analog components area.  
Wherever possible, avoid large discontinuities in the ground plane, since they force the return  
signals to travel on a longer path. An example of correct implementation is routing all  
signals through the inner layers and keeping the outer layers for ground.  
If you plans to connect fast logic signals (rise/fall time < 5ns) to any of the SOC-3000 digital  
inputs, add a series resistor to each relevant line in order to keep rise and fall times longer  
than 5ns at the SOC-3000 input pins. A value of 100 or 200 is usually sufficient to  
prevent high-speed signals from capacitive coupling into the SOC-3000 and affecting the  
accuracy of the ADC.  
Revision B  
Page 82  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
IN-CIRCUIT EMULATOR (ICE) SYSTEM  
The In-Circuit Emulator (ICE-3000) system provides full emulation of the SOC-3000 device.  
It includes a plug-in pod that replaces the SOC-3000 device thus enabling full emulation of  
the device in the target board. It emulates the SOC-3000 device in real-time simplifying the  
hardware-software integration process.  
The ICE-3000 is composed of 3 elements:  
a. DS-51 emulator.  
b. SOC-3000 Personality Probe.  
c. Windows-based software debugger.  
The system enables you to access all SOC-3000 device registers and memory locations and  
debug the application using free run or breakpoints and single step execution control.  
Revision B  
Page 83  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Revision B  
Page 84  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
EXAMPLES OF PIN CONFIGURATION PROGRAMMING  
The following pages show examples of pin configuration programming, as follows:  
Example 1 shows a 20-digit LCD display and an 8×8 keyboard.  
Example 2 shows a 16-digit LCD display, an 8×4 keyboard, 8 output ports and 4 I/O  
ports.  
Example 3 shows a 21-digit LED Parallel display, an 8×8 keyboard and 13 output ports.  
Example 4 shows the pin programming for all output and I/O ports.  
Example 1: Configuring a 20-digit LCD Display and an 8x8  
Keyboard  
20-digit LCD display support implies allocation of the whole LCD driver output pins to  
the LCD display, using 4 backplanes and 40 segments. Thus, pins 18-61 should be  
assigned to the LCD controller/driver.  
8x8 keyboard support implies allocation of the whole keyboard I/O pins to the keyboard  
controller. Thus, pins 1-5 and 74-84 should be assigned to the keyboard controller.  
Table 41 lists the CFR registers affected and their required values.  
TABLE 41: EXAMPLE 1: 20-DIGIT LCD DISPLAY, 8×8 KEYBOARD  
FUNCTION  
LCD Display  
CFR REGISTER ADDRESS PORT / SEGMENT  
& VALUE  
AFFECTED  
PINS  
C101H = 00H  
C102H = 00H  
C103H = 00H  
C104H = 00H  
C105H = 00H  
C106H = 00H  
C107H = 00H  
C108H = 00H  
C109H = 00H  
C10AH = 00H  
C10BH = 00H  
S37 – S40  
S32 – S36  
S28 – S31  
S24 – S27  
S20 – S23  
S16 – S19  
S12 – S15  
S8 – S11  
S4 – S7  
58 – 61  
53 – 57  
49 – 52  
45 – 48  
41 – 44  
37 – 40  
33 – 36  
29 – 32  
25 – 28  
22 – 24  
18 – 21  
S1 – S3  
BP1 – BP4  
Keyboard Matrix  
C10DH = FFH  
C10EH = FFH  
KIN0 – KIN7  
KOUT0 – KOUT7  
1 – 5; 82 – 84  
74 – 81  
Revision B  
Page 85  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Example 2: Configuring a 16-digit LCD Display, an 8x4  
Keyboard, 8 Output and 4 I/O Ports  
16-digit LCD display support implies partial allocation of the LCD driver output pins to  
the LCD display, using 4 backplanes and 32 segments. Thus, pins 18-52 should be  
assigned to the LCD controller/driver.  
8x4 keyboard support implies partial allocation of the keyboard I/O pins to the keyboard  
controller. Thus, pins 1-5 and 78-84 should be assigned to the keyboard controller.  
8 output ports will be implemented using the 8 pins of the LCD driver that are not used  
for the display. Thus, pins 53-61 should be assigned as Output ports.  
4 I/O ports will be implemented using the 4 pins of the keyboard input matrix that are  
not used by the keyboard. Thus, pins 74-77 should be assigned as I/O ports.  
Table 42 lists the CFR registers affected and their required values.  
TABLE 42: EXAMPLE 2: 16-DIGIT LCD DISPLAY, 8×4 KEYBOARD, 8 OUTPUT, 4 I/O  
FUNCTION  
CFR REGISTER ADDRESS PORT / SEGMENT  
& VALUE  
AFFECTED  
PINS  
LCD Display  
C102H = E8H  
C103H = 00H  
C104H = 00H  
C105H = 00H  
C106H = 00H  
C107H = 00H  
C108H = 00H  
C109H = 00H  
C10AH = 00H  
C10BH = 00H  
S32  
53  
S28 – S31  
S24 – S27  
S20 – S23  
S16 – S19  
S12 – S15  
S8 – S11  
S4 – S7  
49 – 52  
45 – 48  
41 – 44  
37 – 40  
33 – 36  
29 – 32  
25 – 28  
22 – 24  
18 – 21  
S1 – S3  
BP1 – BP4  
Keyboard Matrix  
Output Ports  
I/O Ports  
C10DH = FFH  
C10EH = F0H  
KIN0 – KIN7  
KOUT4 – KOUT7  
1 – 5; 82 – 84  
78 – 81  
C101H = FFH  
C102H = E8H  
P13.0 – P13.3  
P12.1 – P12.4  
58 –61  
54 – 57  
C10E = F0H  
KOUT4 – KOUT7  
P14.0 – P14.3  
78 – 81  
74 – 77  
Revision B  
Page 86  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Example 3: Configuring a 21-digit LED Parallel Display, an  
8x8 Keyboard and 13 Output Ports  
21-digit LED parallel display support implies full allocation of the LED parallel display  
controller output pins to the LED parallel display. Thus, pins 22-52 should be assigned  
to the LED parallel display controller.  
8x8 keyboard support implies full allocation of the keyboard I/O pins to the keyboard  
controller. Thus, pins 1-5 and 74-84 should be assigned to the keyboard controller.  
13 output ports will be implemented using the available OUTPUT ports available in the  
ASIC. Thus, pins 53-61 should be assigned as Output ports.  
Table 43 lists the CFR registers affected and their required values.  
TABLE 43: EXAMPLE 3: 21-DIGIT LED DISPLAY, 8×8 KEYBOARD, 13 OUTPUT  
FUNCTION  
CFR REGISTER  
PORT / SEGMENT  
AFFECTED  
PINS  
ADDRESS & VALUE  
LED Display  
C103H = 55H  
DIG4 – 7  
SEG DP3; DIG1 - 3  
SEG D3 – G3  
SEG DP2; A3 – C3  
SEG D2 – G2  
SEG DP1; A2 – C2  
SEG D1 – G1  
49 – 52  
C104H = 55H  
C105H = 55H  
C106H = 55H  
C107H = 55H  
C108H = 55H  
C109H = 55H  
C10AH = 15H  
45 – 48  
41 – 44  
37 – 40  
33 – 36  
29 – 32  
25 – 28  
22 – 24  
SEG A1 – C1  
Keyboard Matrix  
Output Ports  
C10DH = FFH  
C10EH = FFH  
KIN0 – KIN7  
KOUT0 – KOUT7  
1 – 5; 82 – 84  
74 – 81  
C101H = FFH  
C102H = EAH  
C10BH = 56H  
P13.0 – P13.3  
P12.0 – P12.4  
P4.0 – P4.3  
58 –61  
53 – 57  
18 – 21  
Revision B  
Page 87  
July, 2002  
CybraTech (2000) Ltd.  
Technical Specification  
SOC-3000/i Scale-On-Chip ASIC  
Example 4: Outputs and I/O Ports Programming  
Output ports support implies full allocation of the LCD display controller output pins to  
the OUTPUT function. Thus, pins 18-61 should be assigned to the OUTPUT controller.  
I/O ports support implies full assignment of the Keyboard controller pins to the I/O  
ports. Thus, pins 1 – 5 and 74 – 84 should be assigned to the I/O controller.  
TABLE 44: OUTPUT AND I/O PORTS PROGRAMMING  
FUNCTION  
CFR REGISTER  
PORT / SEGMENT  
AFFECTED  
PINS  
ADDRESS & VALUE  
OUTPUT ports  
C101H = FFH  
P13.0 – P13.4  
P12.0 – P12.4  
P11.0 – P11.3  
P10.0  
P9.0 – P9.2  
P8.0 – P8.3  
P7.0 – P7.3  
P6.0 – P6.3  
P5.0 – P5.2  
P4.0 – P4.3  
58 – 61  
C102H = EAH  
C103H = AAH  
C104H = 80H  
C106H = 2AH  
C107H = FCH  
C108H = FFH  
C109H = EAH  
C10AH = 2AH  
C10BH = 56H  
53 - 57  
49 – 52  
48  
37 – 39  
33 – 36  
29 – 32  
25 – 28  
22 – 24  
18 - 21  
I/O Ports  
C10DH = 00H  
C10EH = 00H  
P15.0 – P15.7  
P14.0 – P14.7  
1 – 5; 82 - 84  
74 - 81  
Revision B  
Page 88  
July, 2002  
USA  
Germany  
Tedea-Huntleigh Incorporated  
20630 Plummer Street  
Chatsworth, California 91311  
U.S.A.  
Tel: +1-818-701-2700  
Fax: +1-818-701-2799  
Email: sales@tedea-huntleigh.com  
Tedea-Huntleigh GmbH  
Mümlingweg 18  
D-64297  
Darmstadt-Eberstadt  
Germany  
Tel:+49-6151-94460  
Fax:+49-6151-944640  
UK  
France  
SEEA sa.  
16 Rue Francis Vovelle  
28000 Chartres  
France  
Tedea-Huntleigh Europe Ltd.  
37 Portmanmoor Road  
Cardiff  
CF24 5HE  
United Kingdom  
Tel: +33-2-37-33-31-20  
Fax: +33-2-37-33-31-29  
Tel: +44 (0) 29-20460231  
Fax: +44 (0) 29-20462173  
Email: sales@tedea-huntleigh.co.uk  
Taiwan  
Integrated Solutions Ltd.  
Tel: +886-2-2649-7254  
Fax: +886-2-2649-7253  
CybraTech (1998) Ltd.  
5a Hazoran St., PO Box 8381  
Netanya, 42506 ISRAEL  
Tel: +972-9-8638832  
Fax: +972- 9-8638822  
Email: info@cybratech.co.il  
Website: www.cybratech.com  
Document order number: SOC-3000-0001-SP  

相关型号:

SOC-3000-0001-SP

Scale-On-Chip ASIC Technical Specification Rev.B1
ETC

SOC-3000I

Microcontroller, CMOS, PQCC84, PLASTIC, LCC-84
VISHAY

SOC-4000

Scale-On-Chip ASIC Technical Specification
ETC

SOC-4000-0001-SP

Scale-On-Chip ASIC Technical Specification
ETC

SOC-4000I

Scale-On-Chip ASIC Technical Specification
ETC

SOC01D

THIN FILM COMPENSATED SENSORS
ETC

SOC01DD1

THIN FILM COMPENSATED SENSORS
ETC

SOC01DD2

THIN FILM COMPENSATED SENSORS
ETC

SOC01DD3

THIN FILM COMPENSATED SENSORS
ETC

SOC01DN

THIN FILM COMPENSATED SENSORS
ETC

SOC01DP1

THIN FILM COMPENSATED SENSORS
ETC

SOC01DP2

THIN FILM COMPENSATED SENSORS
ETC