RM2211D [ETC]

FSK Demodulator/Tone Decoder; FSK解调器/解码器音
RM2211D
型号: RM2211D
厂家: ETC    ETC
描述:

FSK Demodulator/Tone Decoder
FSK解调器/解码器音

解码器
文件: 总16页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electronics  
Semiconductor Division  
RC2 2 1 1  
FS K De m o d u la t o r/To n e De c o d e r  
Features  
Applications  
¥ Wide frequency range Ð 0.01 Hz to 300 kHz  
¥ Wide supply voltage range Ð 4.5V to 20V  
¥ DTL/TTL/ECL logic compatibility  
¥ FSK demodulation  
¥ Data synchronization  
¥ Tone decoding  
¥ FSK demodulation with carrier-detector  
¥ FM detection  
¥ Wide dynamic range Ð 2 mV to 3 V  
¥ Carrier detection  
RMS  
¥ Adjustable tracking range Ð ±1% to ±80%  
¥ Excellent temperature stability Ð 20 ppm/°C typical  
Description  
The RC2211 is a monolithic phase-locked loop (PLL)  
system especially designed for data communications. It is  
particularly well-suited for FSK modem applications, and  
operates over a wide frequency range of 0.01 Hz to 300 kHz.  
It can accommodate analog signals between 2 mV and 3V,  
and can interface with conventional DTL, TTL and ECL  
logic families. The circuit consists of a basic PLL for  
tracking an input signal frequency within the passband, a  
quadrature phase detector which provides carrier detection,  
and an FSK voltage comparator which provides FSK  
demodulation. External components are used to indepen-  
dently set carrier frequency, bandwidth and output delay.  
Block Diagram  
Data Filter  
Loop Filter  
FSK  
Data  
f-Detector  
Output  
FSK  
Comparator  
f
FSK  
VCO  
Input  
f
Preamp  
Lock  
Detector  
Outputs  
f-Detector  
Lock  
Detector  
Filter  
Lock  
Detector  
Comparator  
65-2211-01  
Rev. 1.0.1  
This document was created with FrameMaker 4 0 4  
PRODUCT SPECIFICATION  
RC2211  
FSK Data Output (Pin 7)  
This output is an open collector stage which requires a  
pull-up resistor, R , to +V for proper operation. It can sink  
Description of Circuit Controls  
Signal Input (Pin 2)  
L
S
5 mA of load current. When decoding FSK signals the FSK  
data output will switch to a ÒhighÓ or off state for low input  
frequency, and will switch to a ÒlowÓ or on state for high  
input frequency. If no input signal is present, the logic state  
at pin 7 is indeterminate.  
The input signal is AC coupled to this terminal. The internal  
impedance at pin 2 is 20 kW. Recommended input signal  
level is in the range of 10 mV  
to 3 V .  
RMS  
RMS  
Quadrature Phase Detector Output, Q (Pin 3)  
This is the high impedance output of the quadrature phase  
detector, and is internally connected to the input of lock  
detector voltage comparator. In tone detection applications,  
pin 3 is connected to ground through a parallel combination  
FSK Comparator Input (Pin 8)  
This is the high impedance input to the FSK voltage  
comparator. Normally, an FSK post detection or data Þlter is  
connected between this terminal and the PLL phase detector  
of R and C (see Figure 1) to eliminate chatter at the lock  
D
D
output (pin 11). This data Þlter is formed by R and C of  
Figure 1. The threshold voltage of the comparator is set by  
detector outputs. If this tone detector section is not used,  
pin 3 can be left open circuited.  
F
F
the internal reference voltage, V , available at pin 10.  
R
Lock Detector Output, Q (Pin 5)  
Reference Bypass (Pin 9)  
The output at pin 5 is at a ÒhighÓ state when the PLL is out of  
lock and goes to a ÒlowÓ or conducting state when the PLL is  
locked. It is an open collector output and requires a pull-up  
This pin can have an optional 0.1, mF capacitor connected to  
the ground.  
resistor, R , to +V for proper operation. In the ÒlowÓ state it  
L
S
Reference Voltage, V (Pin 10)  
can sink up to 5 mA of load current.  
R
This pin is internally biased at the reference voltage level,  
Lock Detector Complement, Q (Pin 6)  
V ; V = +V /2 Ð 650 mV. The DC voltage level at this pin  
R
R
S
forms an internal reference for the voltage levels at pin 3, 8,  
11 and 12. Pin 10 must be bypassed to ground with a 0.1 mF  
capacitor.  
The output at pin 6 is the logic complement of the lock  
detector output at pin 5. This output is also an open collector  
type stage which can sink 5 mA of load current in the low or  
ÒonÓ state.  
R
B
R
L
510K  
(1)  
(7)  
R
F
+V  
S
100K  
(8)  
(11)  
Loop  
f-Detector  
C
C
F
1
FSK  
Output  
R
FSK  
Comparator  
1
Input  
Preamp  
f
(2)  
(12)  
Internal  
Reference  
(10)  
VCO  
f
0.1 µF  
R
0
(14)  
C
(13)  
(3)  
Q
Q
0
0.1 µF  
(6)  
Input  
Signal  
Lock  
Detector  
Outputs  
Quad  
f-Detector  
(5)  
Lock  
Detector  
Comparator  
R
D
100K  
to 470K  
C
D
65-2211-02  
Figure 1. Generalized Circuit Connection for FSK and Tone Detection  
2
RC2211  
PRODUCT SPECIFICATION  
2. Internal Reference Voltage, V (measured at pin 10)  
R
Loop Phase Detector Output (Pin 11)  
This terminal provides a high impedance output for the loop  
phase detector. The PLL loop Þlter is formed by R1 and C1  
connected to pin 11 (see Figure 1). With no input signal, or  
with no phase error within the PLL, the DC level at pin 11 is  
+V  
æ
Sö  
----------  
-650 mV  
ø
VR  
=
è
2
3. Loop Lowpass Filter Time Constant, t  
very nearly equal to V . The peak voltage swing available at  
R
the phase detector output is equal to ±V .  
R
t = R C  
1 1  
VCO Control Input (Pin 12)  
4. Loop Dampening, z:  
VCO free running frequency is determined by external  
timing resistor, R0, connected from this terminal to ground.  
æ
ç
è
ö
C0  
1
4
æ ö  
÷
--  
z =  
------  
C
è ø  
The VCO free running frequency, F is given by:  
0
1ø  
1
F0 (Hz) = -------------  
R0C0  
5. Loop Tracking Bandwidth, ±DF/F :  
0
Df/F = R0/R1  
O
where C is the timing capacitor across pins 13 and 14. For  
0
Tracking  
Bandwidth  
optimum temperature stability R must be in the range of  
10 kW to 100 kW (see Typical Performance Characteristics).  
0
Df  
Df  
This terminal is a low impedance point, and is internally  
biased at a DC level equal to V . The maximum timing cur-  
R
rent drawn from pin 12 must be limited to £3 mA for proper  
operation of the circuit.  
F
LL  
F
F
F
F
1
0
2
LH  
65-2211-03  
VCO Timing Capacitor (Pins 13 and 14)  
6. FSK Data Filter Time Constant, t :  
F
VCO frequency is inversely proportional to the external tim-  
ing capacitor, C , connected across these terminals. C must  
t = R C  
F F F  
0
0
be non-polarized, and in the range of 200 pF to 10 mF.  
7. Loop Phase Detector Conversion Gain, Kf (Kf is the  
differential DC voltage across pins 10 and 11, per unit  
of phase error at phase-detector input):  
VCO Frequency Adjustment  
VCO can be Þne tuned by connecting a potentiometer, Rx, in  
series with R at pin 12 (see Figure 2).  
0
(Ð2) (VR)  
kf (in volts per radian) = ---------------------------  
p
VCO Free-Running Frequency, F  
0
The RC2211 does not have a separate VCO output terminal.  
Instead, the VCO outputs are internally connected to the  
phase detector sections of the circuit. However, for set-up or  
adjustment purposes, the VCO freerunning frequency can be  
8. VCO Conversion Gain, K is the amount of change in  
0
VCO frequency per unit of DC voltage change at pin 11:  
Ð1  
K0 (in Hertz per volt) = ---------------------  
C0R1VR  
measured at pin 3 (with C disconnected) with no input and  
D
with pin 2 shorted to pin 10.  
9. Total Loop Gain, K :  
T
Design Equations  
K (in radians per second per volt)= 2 pKfK0  
T
See Figure 1 for DeÞnitions of Components.  
4
=
-------------  
C 0 R 1  
1. VCO Center Frequency, F :  
0
1
F 0 (Hz) = -------------  
R0C0  
10. Peak Phase Detector Current, I :  
A
VR  
I
A (mA) = -------  
25  
3
PRODUCT SPECIFICATION  
RC2211  
Pin Assignments  
1
2
3
4
5
6
7
+V  
Timing Capacitor  
Timing Capacitor  
Timing Resistor  
14  
13  
12  
11  
10  
9
S
Input  
Lock Detector Filter  
GND  
Loop f-Detector  
Q
Q
Reference Voltage Output  
Reference Bypass  
8
FSK Data Output  
FSK Comparator Input  
65-2211-04  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
+20  
Unit  
Supply Voltage  
-20  
V
Input Signal Level  
3
V
RMS  
Storage Temperature Range  
Operating Temperature Range  
-65  
-55  
-25  
-0  
+150  
+125  
+85  
°C  
°C  
RM2211D  
RV2211N  
RC2211N  
PDIP  
°C  
+70  
°C  
Junction Temperature  
+125  
+175  
+300  
468  
°C  
CerDIP  
°C  
Lead Soldering Temperature (60 sec.)  
°C  
Max. P T <50°C  
PDIP  
mW  
mW  
D
A
CerDIP  
1042  
Thermal Characteristics  
Parameter  
14 Lead Plastic DIP  
14 Lead Ceramic DIP  
60°C/W  
Therm. Res q  
JC  
Therm. Res. q  
160°C/W  
120°C/W  
JA  
For T > 50°C Derate at  
6.5 mW/°C  
8.33 mW/°C  
A
4
RC2211  
PRODUCT SPECIFICATION  
Electrical Characteristics  
(Test Conditions +V = +12V, T +25°C, R0 = 30 kW, C0 = 0.033 mF. See Figure 1 for component designations.)  
S
A
RV/RM2211  
Min Typ Max Min  
RC2211  
Parameters  
General  
Test Conditlons  
Typ Max Units  
Supply Voltage2  
Supply Current  
Oscillator  
4.5  
20  
9.0  
4.5  
20  
11  
V
R ³ 10 kW  
0
4.0  
5.0  
mA  
Frequency Accuracy  
Frequency Stability1  
Deviation from f = 1/R C  
0 0  
±1.0 ±3.0  
±1.0  
%
0
Temperature Coefficient  
Power Supply Rejection  
R = ¥  
±20  
±50  
±20  
ppm/°C  
1
+V = 12 ±1V  
0.05  
0.2  
0.5  
0.05  
%/V  
%/V  
S
+V = 5 ±0.5V  
0.2  
S
Upper Frequency Limit  
R = 8.2 kW, C = 400 pF  
100  
300  
300  
kHz  
Hz  
0
0
Lowest Practical Operating  
Frequency1  
R = 2 MW, C = 50 mF  
0.01  
0.01  
0
0
Timing Resistor, R  
Operating Range  
0
5.0  
15  
2000 5.0  
100 15  
2000  
100  
kW  
kW  
Recommended Range  
Loop Phase Detector  
Peak Output Current  
Output Offset Current  
Output Impedance  
Maximum Swing  
Measured at pin 11  
±150 ±200 ±300 ±100 ±200 ±300  
mA  
mA  
MW  
V
±1.0  
1.0  
±2.0  
1.0  
Ref. to pin 10  
±4.0 ±5.0  
±4.0 ±5.0  
Quadrature Phase Detector  
Peak Output Current3  
Output Impedance  
Maximum Swing  
Measured at pin 3  
100  
150  
1.0  
11  
150  
1.0  
11  
mA  
MW  
V
P-P  
Input Preamp  
Input Impedance  
Measured at pin 2  
20  
20  
kW  
mV  
Input Signal Voltage  
2.0  
10  
2.0  
RMS  
Required to Cause Limiting3  
Voltage Comparator  
Input Impedance  
Measured at pins 3 & 8  
2.0  
100  
70  
2.0  
MW  
nA  
Input Bias Current  
Voltage Gain1  
100  
R = 5.1 kW  
L
55  
55  
70  
dB  
Output Voltage Low  
Output Leakage Current  
Internal Reference  
Voltage Level  
I
= 3mA  
300  
0.01  
300  
0.01  
mV  
mA  
C
V = 12V  
0
Measured at pin 10  
4.9  
5.3  
5.7  
4.75  
5.3  
5.85  
V
Output Impedance  
100  
100  
W
Notes:  
1. Guaranteed by design.  
2. Individual applications may need special circuitry to function at <12V.  
3. Sample tested.  
5
PRODUCT SPECIFICATION  
RC2211  
1. Calculate PLL center frequency, F  
F1 + F2  
0
Applications  
F0 = -----------------  
2
FSK Decoding  
Figure 2 shows the basic circuit connection for FSK decod-  
ing. With reference to Figures 1 and 2, the functions of  
2. Choose a value of timing resistor R to be in the range  
0
of 10 kW to 100 kW. This choice is arbitrary. The recom-  
external components are deÞned as follows: R and C set  
0
0
mended value is R = 20 kW. The Þnal value of R ios  
0
0
the PLL center frequency, R sets the system bandwidth, and  
1
normally Þnetuned with the series potentiometer, R .  
X
C sets the loop Þlter time constant and the loop damping  
1
factor. C and R form a one pole post-detection Þlter for the  
F
F
3. Calculate value of C from Design Equation No. 1 or  
0
FSK data output. The resistor R (510 kW) from pin 7 to pin  
B
from Typical Performance Characteristics:  
8 introduces positive feedback across FSK comparator to  
facilitate rapid transition between output logic states.  
C = 1/R F  
0 0 0  
Recommended component values for some of the most  
commonly used FSK bauds are given in Table 1.  
4. Calculate R to give a Df equal to the markspace  
1
deviation:  
+V  
S
R = R [F /(F - F )]  
1
0
0
1
2
0.1 µF  
5. Calculate C to set loop damping. (See Design Equation  
1
C
0
VCO  
Fine Tune  
No. 4)  
1
2
3
4
5
6
7
14  
13  
12  
11  
0.1 µF  
FSK  
Input  
R
0
Normally, z » 1/2 is recommended  
R
5K  
Then: C = C /4 for z = 1/2  
X
1 0  
R
1
0.1 µF  
R
RC2211  
L
10  
+VS 5.1K  
6. Calculate Data Filter Capacitance, C :  
F
C
1
9
For R = 100 kW, R = 510 kW, the recommended value  
F
B
FSK Data  
Output  
8
of C is:  
F
R
F
100K  
R
B
3
CF (in mF) = ------------------------  
65-2211-05  
Baud Rate  
510K  
CF  
Note: All calculated component values except RO can be  
rounded off to the nearest standard value, and R0 can  
be varied to fine-tune center frequency through a series  
Figure 2. Circuit Connectbn for FSK Decoding  
potentiometer, R (see Figure 2).  
X
Table 1. Recommended Component Values  
for Commonly Used FSK Bands  
(see Circuit of Figure 2)  
Design Example  
75 Baud FSK demodulator with mark space frequencies of  
1110/1170 Hz:  
FSK Band  
300 Baud  
Component Values  
C = 0.039 mF, C = 0.005 mF  
0
F
Step 1: Calculate F :  
0
F = 1070 Hz  
1
C = 0.01 mF, R = 18 kW  
1 0  
F =(1110+1170)(1/2)= 1140Hz  
0
F = 1270 Hz  
2
R = 100 kW  
1
Step 2: Choose R = 20 kW (18 kW Þxed resistor in series  
0
300 Baud  
C = 0.022 mF, C = 0.005 mF  
0 F  
with 5 kW potentiometer)  
F = 2025 Hz  
1
C = 0.0047 mF, R = 18 kW  
1 0  
F = 2225 Hz  
2
R = 200 kW  
1
Step 3: Calculate C from VCO Frequency vs. Timing  
0
Capacitor: C = 0.044mF  
9
1200 Baud  
C = 0.027 mF, C = 0.0022 mF  
0 F  
F = 1200 Hz  
C = 0.01 mF, R = 18 kW  
1 0  
1
Step 4: Calculate R : R = R (1140/60) = 380 kW  
1
1
0
F = 2200 Hz  
2
R = 30 kW  
1
Step 5: Calculate C : C = C /4 = 0.011 mF  
1
1
0
Design Instructions  
The circuit of Figure 2 can be tailored for any FSK decoding  
application by the choice of Þve key circuit components: R ,  
Note: All values except R can be rounded off to nearest  
0
standard value.  
0
R , C , C and C . For a given set of FSK mark and space  
1
0
1
F
frequencies, F and F , these parameters can be calculated as  
1
2
follows:  
6
RC2211  
PRODUCT SPECIFICATION  
FSK Decoding with Carrier Detector  
+V  
S
The lock detector section of the RC2211 can be used as a  
carrier detector option for FSK decoding. The recommended  
circuit connection for this application is shown in Figure 3.  
The open-collector lock detector output, pin 6, is shorted to  
the data output (pin 7). Thus, the data output will be disabled  
at ÒlowÓ state, until there is a carrier within the detection  
band of the PLL, and the pin 6 output goes ÒhighÓ to enable  
the data output.  
0.1 µF  
C
0
VCO  
Fine Tune  
1
2
3
4
5
6
7
14  
13  
12  
11  
0.1 µF  
FSK  
Inputs  
R
0
R
X
C
O
R
1
470K  
5K  
0.1 µF  
RC2211  
10  
C
1
9
+V  
S
8
+V  
S
R
L1  
+V  
S
R
0.1 µF  
L2  
Logic  
Output  
C
0
Q
VCO  
Logic  
Outputs  
1
2
3
4
5
6
7
14  
13  
12  
11  
0.1 µF  
Fine Tune  
FSK  
Q
Inputs  
R
65-2211-07  
0
Figure 4. Circuit Connection for Tone Detection  
Both logic outputs at pins 5 and 6 are open-collector type  
stages, and require external pull-up resistors R and R as  
shown in Figure 4.  
R
C
X
O
R
1
470K  
0.1 µF  
5K  
RC2211  
10  
9
C
1
L1 L2  
8
5.1K  
R
F
+V  
S
100K  
With reference to Figures 1 and 4, the function of the  
external circuit components can be explained as follows:  
R and C set VCO center frequency, R sets the detection  
Data  
Output  
510K  
CF  
0
0
1
65-2211-06  
bandwidth, C sets the lowpass-loop Þlter time constant and  
1
Note: Data output is "low" when no carrier is present.  
the loop dampening factor, and R and R are the respec-  
L1 L2  
Figure 3. External Connections for  
FSK Demodulation with Carrier Detector Capability  
tive pull-up resistors for the Q and Q logic outputs.  
Design Instructions  
The minimum value of the lock detector Þlter capacitance  
The circuit of Figure 4 can be optimized for any tone-detec-  
tion application by the choice of Þve key circuit components:  
C
is inversely proportional to the capture range, ±Df .  
D
C
This is the range of incoming frequencies over which the  
loop can acquire lock and is always less than the tracking  
range. It is further limited by C . For most applications,  
R , R , C , C and C . For a given input tone frequency, F ,  
0
1
0
1
D
S
these parameters are calculated as follows:  
1
DF < DF/2. For R = 470 kW, the approximate minimum  
C
D
1. Choose R to be in the range of 15 kW to 100 kW.  
0
value of C can be determined by:  
D
This choice is arbitrary.  
C (mF) ³ 16/capture range in Hz  
D
2. Calculate C to set center frequency, f equal to  
0
0
F : C = 1/R F .  
0 S  
S
0
With values of C that are too small, chatter can be observed  
D
on the lock detector output as an incoming signal frequency  
approaches the capture bandwidth. Excessively large values  
3. Calculate R to set bandwidth ±DF (see Design Equa-  
1
tion No. 5): R = R (F /DF). Note: The total detection  
1
0 0  
of C will slow the response time of the lock detector  
bandwidth covers the frequency range of F ± DF.  
0
D
output.  
4. Calculate value of C for a given loop damping factor:  
1
C =C /16z2  
1
0
Tone Detection  
Normally z = 1/2 is optimum for most tone detector  
applications, giving C = 0.25 C0.  
Figure 4 shows the generalized circuit connection for tone  
detection. The logic outputs, Q and Q at pins 5 and 6 are  
normally at ÒhighÓ and ÒlowÓ logic states, respectively.  
When a tone is present within the detection band of the PLL,  
the logic state at these outputs becomes reversed to the  
duration of the input tone. Each logic output can sink 5 mA  
of load current.  
1
Increasing C improves the out-of-band signal rejection,  
1
but increases the PLL capture time.  
5. Calculate value of Þlter capacitor C . To avoid chatter  
D
at the logic output, with R = 470W, C must be:  
D
D
C (mF) ³ (16/capture range in Hz)  
D
Increasing C slows the logic output response time.  
D
7
PRODUCT SPECIFICATION  
RC2211  
Design Examples  
Linear FM Detection  
Tone detector with a detection band of 1 kHz ±20 Hz:  
The RC2211 can be used as a linear FM detector for a wide  
range of analog communications and telemetry applications.  
The recommended circuit connection for the application is  
shown in Figure 5. The demodulated output is taken from the  
loop phase detector output (pin 11), through a post detection  
Step 1: Choose R = 20 kW (18 kW in series with 5 kW  
0
potentiometer) .  
Step 2: Choose C for F = 1 kHz: C = 0.05 mF.  
0
0
0
Þlter made up of R and C , and an external buffer ampliÞer.  
F
F
This buffer ampliÞer is necessary because of the high  
impedance output at pin 11. Normally, a non-inverting unity  
gain op amp can be used as a buffer ampliÞer, as shown in  
Figure 5.  
Step 3: Calculate R : R = (R ) (1000/20) = 1 MW.  
1
1
0
Step 4: Calculate C : for z = 1/2, C = 0.25 mF,  
1
1
C = 0.013 mF.  
0
The FM detector gain, i.e., the output voltage change per unit  
of FM deviation, can be given as:  
Step 5: Calculate C : C = 16/38 = 0.42 mF.  
D
D
Step 6: Fine tune the center frequency with the 5 kW  
potentiometer. R .  
V
OUT  
= R V /100 R Volts/% deviation  
1 R 0  
X
where V is the internal reference voltage. For the choice of  
R
external components R , R , C , C and C , see the section  
1
0
0
1
F
0.1 µF  
0.1 µF  
on Design Instructions.  
+VS  
(1)  
(8)  
0.1 µF  
(2)  
FM  
Input  
(10)  
(4)  
(13)  
RC2211  
CO  
C
K
(14)  
(12) (11)  
R
0
+VS  
RF  
R
1
100K  
CF  
C
1
Demodulated  
Ouput  
65-2211-08  
Figure 5. Linear FM Detector  
Using RC2211 and an External Op Amp  
8
RC2211  
PRODUCT SPECIFICATION  
Typical Performance Characteristics  
10  
1.0  
0.1  
20  
R = 5 kWŸ  
0
R = 10 kWŸ  
0
R = 20 kWŸ  
0
15  
R = 40 kWŸ  
0
R
= 5 kW  
0
R = 80 kWŸ  
0
R = 160 kW  
R
0
= 10 kW  
0
10  
5
R
> 100 kW  
0
0
4
6
8
10 12 14 16 18 20 22 24  
100  
1K  
10K  
+VS (V)  
FO (Hz)  
Figure 6. Supply Current vs. Supply Voltage  
(Logic Outputs Open Circuited)  
Figure 7. Timing Resistor with Timing  
Capacitor vs. VCO Frequency  
1K  
100  
10  
1.0  
0.5  
0
1 MW  
R
= 10 kWŸ  
= 50 kWŸ  
0
0
Ÿ
R
Ÿ
500 kW  
50 kW  
10 kW  
-0.5  
-1.0  
R
0
= 1 MWŸ  
Ÿ
R
0
= 500 kWŸ  
Ÿ
0
1
10  
0
-50  
-25  
+25  
+50 +75 +100 +125  
F
O (Hz)  
Temperature (¡C)  
Figure 8. Timing Capacitor with Timing  
Resistor vs. VCO Frequency  
Figure 9. Center Frequency Drift vs. Temperature  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
Curve  
R0  
5K  
10K  
30K  
100K  
300K  
1
2
3
4
5
F
R
O = 1 kHz  
10 R0  
4
6
8
10 12 14 16 18 20 22 24  
-VS (V)  
Figure 10. VCO Frequency vs. Supply Voltage  
9
PRODUCT SPECIFICATION  
RC2211  
Schematic Diagram  
10  
RC2211  
PRODUCT SPECIFICATION  
Notes:  
11  
PRODUCT SPECIFICATION  
RC2211  
Notes:  
12  
RC2211  
PRODUCT SPECIFICATION  
Notes:  
13  
PRODUCT SPECIFICATION  
RC2211  
Mechanical Dimensions  
14-Lead Ceramic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.785  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 7, 8 and 14 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
19.94  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 14.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 7, 8, and 14).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Twelve spaces.  
D
1
7
8
NOTE 1  
E
14  
s1  
eA  
e
A
Q
c1  
a
L
b1  
b2  
14  
RC2211  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
14-Lead Plastic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
.725  
.005  
.300  
.240  
3. Terminal numbers are shown for reference only.  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
2.93  
.36  
.195  
.022  
.070  
.015  
.795  
4.95  
.56  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
18.42  
.13  
20.19  
D1  
E
.325  
.280  
7.62  
6.10  
8.26  
7.11  
E1  
e
2
5
.100 BSC  
2.54 BSC  
eB  
L
.430  
.200  
10.92  
5.08  
.115  
2.92  
N
14  
14  
D
1
7
E1  
D1  
8
14  
E
e
A
A1  
C
L
eB  
B1  
B
15  
PRODUCT SPECIFICATION  
RC2211  
Ordering Information  
Part Number  
RC2211N  
Package  
Operating Temperature Range  
0°C to +70°C  
N
N
D
D
RV2211N  
-25°C to +85°C  
RM2211D  
-55°C to +125°C  
RM2211D/883B  
-55°C to +125°C  
Notes:  
/883B suffix denotes MIL-STD-883, Par 1.2.1 Compliant Devices  
N = 14-Lead Plastic DIP  
D = 14-Lead Ceramic DIP  
The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the  
terms and conditions of any subsequent sale. RaytheonÕs liability shall be determined solely by its standard terms and conditions of sale.  
No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied.  
Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.  
LIFE SUPPORT POLICY:  
RaytheonÕs products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably  
be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and  
indemniÞes Raytheon Company against all damages  
Raytheon Electronics  
Semiconductor Division  
350 Ellis Street  
Mountain View CA 94043  
415 968 9211  
FAX 415 966 7742  
12/95 0.0m  
Stock#DS20002211  
Ó Raytheon Company 1995  

相关型号:

RM2211D/883B

Telecom Circuit, 1-Func, Bipolar, CDIP14, CERAMIC, DIP-14
RAYTHEON

RM2211D883B

FSK Demodulator/Tone Decoder
ETC

RM221C

Logic IC
ETC

RM221D

Logic IC
ETC

RM221K

R. F. Molded Chokes
ETC

RM222K

R. F. Molded Chokes
ETC

RM224C

Logic IC
ETC

RM224D

Logic IC
ETC

RM225C

Logic IC
ETC

RM225D

Logic IC
ETC

RM226C

Logic IC
ETC

RM226D

Logic IC
ETC