R1224N132F-TR [ETC]

SMPS Controller ; SMPS控制器\n
R1224N132F-TR
型号: R1224N132F-TR
厂家: ETC    ETC
描述:

SMPS Controller
SMPS控制器\n

控制器
文件: 总36页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2002. Nov. 5  
PWM/VFM step-down DC/DC Converter  
R1224N Series  
12345  
OUTLINE  
The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current.  
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a  
phase compensation circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable  
circuit, resistors for output voltage detect, and input voltage detect circuit. A low ripple, high efficiency step-down  
DC/DC converter can be easily composed of this IC with only several external components, or a power-transistor, an  
inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjustable types  
are without PWM/VFM alternative circuit).  
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching into  
the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several types of  
the R1224NXXX, which are without a PWM/VFM alternative circuit, are also available.  
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The protection  
circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation  
until maximum duty cycle condition is released. When the cause of large load current or something else is removed,  
the operation is automatically released and returns to normal operation.  
Further, built-in UVLO function works when the input voltage is equal or less than UVLO threshold, it makes this IC  
be standby and suppresses the consumption current and avoid an unstable operation.  
FEATURES  
Range of Input Voltage • • • • • • • • • • • • •2.3V18.5V  
Built-in Soft-start Function and Protection Function (Reset type protection)  
Three options of Oscillator Frequency • • • • • •180kHz, 300kHz, 500kHz  
High Efficiency • • • • • • • • • • • • • • • • • •Typ. 90%  
Output Voltage • • • • • • • • • • • • • Stepwise Setting with a step of 0.1V in the range of 1.2V to 6.0V as  
fixed voltage type. Reference Voltage of Adjustable Type is 1.0V  
Standby Current • • • • • • • • • • • • • • • • •Typ. 0.0µA  
High Accuracy Output Voltage • • • • • • • • • •±2.0%  
Low Temperature-Drift Coefficient of Output Voltage • • • • • Typ. ±100ppm/°C  
APPLICATIONS  
Power source for hand-held communication equipment, cameras, video instruments such as VCRs,  
camcorders.  
Power source for battery-powered equipment.  
Power source for household electrical appliances.  
12345  
Rev. 1.12  
- 1 -  
BLOCK DIAGRAM  
*Fixed Output Voltage Type  
OSC  
VOUT  
VIN  
Amp  
Vref  
EXT  
PWM/VFM  
Soft Start  
CONTROL  
CE  
Chip Enable  
Protection  
Vref  
UVLO  
GND  
*Adjustable Output Voltage Type  
OSC  
VFB  
VIN  
Amp  
Vref  
EXT  
PWM/VFM  
Soft Start  
Chip Enable  
CONTROL  
CE  
Protection  
Vref  
UVLO  
GND  
12345  
Rev. 1.12  
- 2 -  
SELECTION GUIDE  
In the R1224N Series, the output voltage, the oscillator frequency, the optional function, and the taping type  
for the ICs can be selected at the user’s request.  
The selection can be made with designating the part number as shown below;  
R1224NXX2X-TR  
↑ ↑ ↑  
a b c  
Code  
a
Contents  
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible.  
Adjustable type; a=10 means Reference voltage=1.0V Optional Function is G/H/M.  
Designation of Oscillator Frequency  
b
c
2 : fixed  
Designation of Optional Function  
E : 300kHz, with a PWM/VFM alternative circuit  
F : 500kHz, with a PWM/VFM alternative circuit  
G : 300kHz, without a PWM/VFM alternative circuit  
H : 500kHz, without a PWM/VFM alternative circuit  
L : 180kHz, with a PWM/VFM alternative circuit  
M : 180kHz, without a PWM/VFM alternative circuit  
PIN CONFIGURATION  
SOT-23-5  
5
4
VIN  
EXT  
(mark side)  
VOUT  
CE GND (VFB  
)
2
3
1
PIN DESCRIPTION  
Symbol  
Description  
Pin No.  
1
2
3
4
5
CE  
GND  
Chip Enable Pin (Active with “H”)  
Ground Pin  
Pin for Monitoring Output Voltage(Feedback Voltage)  
External Transistor Drive Pin(CMOS Output)  
Power Supply Pin  
V
/(V  
)
OUT  
FB  
EXT  
V
IN  
12345  
Rev. 1.12  
- 3 -  
ABSOLUTE MAXIMUM RATINGS  
(GND=0V)  
Symbol  
Item  
Supply Voltage  
Rating  
20  
Unit  
V
V
IN  
V
IN  
V
V
EXT Pin Output Voltage  
CE Pin Input Voltage  
V
V
EXT  
-0.3V +0.3  
IN  
CE  
-0.3V +0.3  
IN  
V
/(V  
EXT  
)
V /V Pin Input Voltage  
OUT FB  
EXT Pin Inductor Drive Output Current  
Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
V
OUT  
FB  
-0.3V +0.3  
IN  
I
mA  
mW  
°C  
°C  
50  
250  
-40+85  
-55+125  
P
D
Topt  
Tstg  
ELECTRICAL CHARACTERISTICS  
R1224Nxx2X (X=E/F/G/H/L/M) except R1224N102X  
(Topt=25°C)  
Symbol  
Item  
Conditions  
+1.5V, I  
Min.  
2.3  
Typ.  
Max. Unit  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
18.5  
V
V
V
OUT  
V =V  
When V  
V
SET  
=-100mA  
V
SET  
IN  
CE= SET  
OUT  
V
SET  
×
V
SET  
×
1.5V, V =V =3.0V  
0.98  
1.02  
IN  
CE  
Step-down Output Voltage  
Temperature Coefficient  
Oscillator Frequency  
ppm  
/°C  
kHz  
V  
/
-40°C Topt 85°C  
V =V =V +1.5V, I =-100mA  
OUT  
100  
OUT  
T  
fosc  
IN  
CE  
SET  
When V  
1.5, V =V =3.0V  
SET  
IN CE  
144  
240  
400  
180  
300  
500  
216  
360  
600  
L/M version  
E/G version  
F/H version  
Oscillator Frequency  
%
/°C  
µA  
f  
/
-40°C Topt 85°C  
0.2  
OSC  
T  
Temperature Coefficient  
I
Supply Current1  
V =V =V =18.5V  
DD1  
IN  
CE  
OUT  
E/F/L/M version  
G version  
H version  
20  
30  
40  
0.0  
-17  
30  
50  
60  
80  
0.5  
I
Standby Current  
V =18.5V, V =0V, V  
=0V  
=8V,V =8V  
=0V,V =8V  
stb  
IN  
CE  
OUT  
µA  
-10 mA  
mA  
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V  
=0.1V,V  
EXTH  
IN  
EXT  
OUT  
CE  
I
V =8V,V  
20  
EXTL  
IN  
EXT  
OUT  
CE  
I
V =V =V =18.5V  
0.0  
0.0  
0.5  
CEH  
IN  
CE  
OUT  
µA  
µA  
V
V
%
%
V
I
V = V  
=18.5V, V =0V  
-0.5  
1.5  
CEL  
IN  
OUT  
CE  
V
V
V =8V,V  
=0V  
=0V  
CEH  
IN  
OUT  
V =8V,V  
0.3  
CEL  
IN  
OUT  
Maxdty Oscillator Maximum Duty Cycle  
VFMdty VFM Duty Cycle  
100  
1.8  
E/F/L version  
V =V =2.5V to 1.5V, V  
35  
2.0  
UVLO  
+0.1  
10  
V
V
UVLO Voltage  
UVLO Release Voltage  
=0V  
=0V  
2.2  
2.3  
UVLO1  
IN  
CE  
OUT  
OUT  
V =V =1.5V to 2.5V, V  
V
1
V
UVLO2  
IN  
CE  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
T
V =V  
+1.5V, I  
=-10mA  
5
5
20  
30  
ms  
ms  
start  
IN  
SET  
=0V->V  
OUT  
+1.5V  
V
CE  
SET  
T
V =V =V  
+1.5V  
15  
prot  
IN  
CE  
SET  
+1.5V->0V  
V
OUT  
=V  
SET  
12345  
Rev. 1.12  
- 4 -  
R1224N102X (X=G/H/M)  
(Topt=25°C)  
Typ. Max. Unit  
Symbol  
Item  
Conditions  
V =V =3.5V, I =-100mA  
Min.  
2.3  
0.98  
V
IN  
Operating Input Voltage  
Feedback Voltage  
18.5  
1.02  
V
V
ppm  
/°C  
kHz  
V
FB  
1.00  
100  
IN  
CE  
FB  
Feedback Voltage  
V  
T  
fosc  
/
-40°C Topt 85°C  
FB  
Temperature Coefficient  
Oscillator Frequency  
V =V =3.5V, I =-100mA  
IN  
CE  
FB  
M version  
G version  
H version  
144  
240  
400  
180  
300  
500  
0.2  
216  
360  
600  
Oscillator Frequency  
Temperature Coefficient  
%
/°C  
f  
/
-40°C Topt 85°C  
OSC  
T  
I
Supply Current1  
V =V =V =18.5V  
DD1  
IN  
CE  
FB  
µA  
M version  
G version  
H version  
20  
30  
50  
60  
80  
0.5  
40  
I
stb  
Standby Current  
V =18.5V, V =0V, V =0V  
0.0  
-17  
30  
0.0  
0.0  
IN  
CE  
FB  
µA  
mA  
mA  
µA  
µA  
V
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V =8V,V =8V  
FB CE  
EXTH  
IN  
EXT  
I
V =8V,V  
=0.1V,V =0V,V =8V  
EXTL  
IN  
EXT  
FB CE  
I
V =V =V =18.5V  
0.5  
CEH  
IN  
CE  
FB  
I
V = V =18.5V, V =0V  
-0.5  
1.5  
CEL  
IN  
FB  
CE  
V
CEH  
V =8V,V =0V  
IN FB  
V
V =8V,V =0V  
0.3  
V
CEL  
IN  
FB  
Maxdty Oscillator Maximum Duty Cycle  
100  
1.8  
%
V
V
V
V
UVLO Voltage  
UVLO Release Voltage  
V =V =2.5V to 1.5V, V =0V  
2.0  
UVLO  
+0.1  
10  
2.2  
2.3  
UVLO1  
IN  
CE  
FB  
V =V =1.5V to 2.5V, V =0V  
V
1
UVLO2  
IN  
CE  
FB  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
T
V =2.5V, I =-10mA  
5
5
20  
30  
ms  
ms  
start  
IN  
FB  
V
CE  
=0V->2.5V  
T
V =V =2.5V  
15  
prot  
IN  
CE  
V
FB  
=2.5V->0V  
TYPICAL APPLICATION AND APPLICATION HINTS  
(1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M except xx=10)  
L
PMOS  
C1  
R1  
VIN  
CE  
EXT  
VOUT  
C3  
SD  
GND  
C2  
LOAD  
CE CONTROL  
PMOS: HAT1044M (Hitachi) L: CR105-270MC (Sumida, 27µH)  
SD1: RB063L-30 (Rohm) C3: 47µF (Tantalum Type)  
C1: 10µF (Ceramic Type) C2: 0.1µF (Ceramic Type)  
R1: 10Ω  
12345  
Rev. 1.12  
- 5 -  
(2) Adjustable Output Type (R1224N102G/H/M) Example: Output Voltage=3.2V  
L
PMOS  
C4  
C1  
R4  
R1  
R3  
VIN  
CE  
EXT  
VFB  
C3  
SD  
GND  
R2  
C2  
LOAD  
CE CONTROL  
PMOS: HAT1044M (Hitachi) L: CR105-270MC (Sumida, 27µH)  
SD1: RB063L-30 (Rohm) C3: 47µF (Tantalum Type)  
C1: 10µF (Ceramic Type) C2: 0.1µF (Ceramic Type) C4: 1000pF(Ceramic Type)  
R1: 10, R2=22k, R3=2.7k, R4=33kΩ  
When you use these ICs, consider the following issues;  
As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for  
load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not  
make its "H" level more than the voltage level of VIN pin.  
Set external components as close as possible to the IC and minimize the connection between the components and  
the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make sufficient  
ground and reinforce supplying. A large switching current could flow through the connection of power supply, an  
inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the voltage level of  
power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC.  
Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical characteristics.  
Once after stopping the output voltage, output will restart with soft-start operation. If the difference between input  
voltage and output voltage is small, the protection circuit may work.  
Use capacitors with a capacity of 22µF or more for VOUT pin, and with good high frequency characteristics such as  
tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as much  
as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by  
an inductor when an external transistor is on and off.  
Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach  
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute  
maximum rating at the maximum loading.  
Use an inductor with appropriate inductance.  
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.  
Do not use this IC under the condition with VIN voltage at equal or less than minimum operating voltage.  
When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is  
small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this case,  
the devise is reset with UVLO function that is different from the reset-protection function caused by maximum duty  
cycle.  
With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1225N alters from  
PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light load by  
skipping the frequency and suppressing the consumption current. However, the ratio of output voltage against input  
voltage is 35% or less, (ex. Vin>8.6V and Vout=3.0V) even if the large current may be loaded, the IC keeps its VFM  
mode. As a result, frequency might be decreased, and oscillation waveform might be unstable. These phenomena  
12345  
Rev. 1.12  
- 6 -  
are the typical characteristics of the IC with PWM/VFM alternative circuit.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the  
values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 1.0V.  
Output Voltage, VOUT is as following equation:  
VOUT: R2+R4=VFB: R2  
VOUT=VFB×(R2+R4)/R2  
Thus, with changing the value of R2 and R4, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180  
degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase  
margin should be secured with proceeding the phase. A pole is formed with external components L and C3.  
Fpole 1/2π√L×C3  
A zero (signal back to zero) is formed with R4 and C4.  
Fzero1/(2π×R4×C4)  
For example, if L=27µH, C3=47µF, the cut off frequency of the pole is approximately 4.5kHz.  
To make the cut off frequency of the pole as much as 4.5kHz, set R4=33kand C4=1000pF.  
If VOUT is set at 2.5V, R2=22kis appropriate.  
R3 prevents feedback of the noise to VFB pin, about 2.7kis appropriate value.  
L
PMOS  
C4  
C1  
R4  
R1  
R3  
VIN  
CE  
EXT  
VFB  
C3  
SD  
GND  
R2  
C2  
LOAD  
CE CONTROL  
12345  
Rev. 1.12  
- 7 -  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy  
from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than  
the input voltage is obtained. The operation will be explained with reference to the following diagrams:  
<Basic Circuits>  
<Current through L>  
i1  
ILmax  
IOUT  
ILmin  
L
topen  
VIN  
Lx Tr  
SD  
VOUT  
i2  
CL  
ton  
toff  
T=1/fosc  
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from  
ILmin. (=0) to reach ILmax. in proportion to the on-time period(ton) of LX Tr.  
Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL (=i2)  
flows.  
Step 3: IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in the  
continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is  
from this ILmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the  
oscillator frequency (fosc) being maintained constant.  
Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the same  
as those when Lx Tr. is ON and when it is OFF.  
The difference between ILmax and ILmin, which is represented by I;  
I = ILmax – ILmin = VOUT × topen / L = (VIN-VOUT)×ton/L⋅⋅⋅Equation 1  
wherein, T=1/fosc=ton+toff  
duty (%)=ton/T×100=ton× fosc × 100  
topen  
toff  
In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L are respectively shown the change of the current at ON, and  
the change of the current at OFF.  
When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period  
of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen becomes to  
toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is  
referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
tonc=T×VOUT/VIN⋅⋅⋅ Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When Lx Tr. is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as Rp the direct  
current of the inductor is described as RL.)  
12345  
Rev. 1.12  
- 8 -  
VIN=VOUT+(Rp+RL)×IOUT+L×IRP/ton ⋅⋅⋅Equation 3  
When Lx Tr. is OFF:  
L×IRP/toff = VF+VOUT+RL×IOUT ⋅⋅⋅Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,  
DON=(VOUT+VF+RL×IOUT)/(VIN+VF-Rp×IOUT)⋅⋅⋅Equation 5  
Ripple Current is as follows;  
IRP=(VIN-VOUT-Rp×IOUT-RL×IOUT)×DON/f/L Equation 6  
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;  
ILmax=IOUT+IRP/2Equation 7  
Consider ILmax, condition of input and output and select external components.  
The above explanation is directed to the calculation in an ideal case in continuous mode.  
External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and make transform efficiency worse.  
When the load current is definite, the smaller value of L, the larger the ripple current.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output current,  
efficiency is better than using an inductor with a large value of L and vice versa.  
2. Diode  
Use a diode with low VF (Schottky type is recommended.) and high switching speed.  
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.  
3. Capacitors  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for stable  
operation.  
COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is  
recommended.  
4. Lx Transistor  
Pch Power MOSFET is required for this IC.  
Its breakdown voltage between gate and source should be a few V higher than Input Voltage.  
In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold voltage is  
effective.  
If a large load current is necessary for your application and important, choose a MOSFET with low ON resistance  
for good efficiency.  
If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for good  
efficiency.  
Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.  
12345  
Rev. 1.12  
- 9 -  
TIMING CHART  
VOUT Set Output Voltage  
UVLO Voltage  
VIN  
Input Voltage  
Rising Time  
UVLO Reset  
VOUT Set Output Voltage  
CE  
Protection circuit delay time  
VOUT Set Output  
Voltage  
EXT  
Reset Protection  
VOUT Set Output  
Voltage  
VOUT  
Stable  
Operation  
Stable  
Operation  
Stable  
Operation  
Soft-start  
Soft-start  
Soft-start  
Soft-start  
The timing chart shown above describes the changing process of input voltage rising, stable operating, operating  
with large current, stable operating, input voltage falling, input voltage recovering, and stable operating.  
First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of pre-standby.  
Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation  
finishes, the operation becomes stable.  
If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during the  
delay time of protection circuit. (The current value depends on the circuit.)  
After the delay time passes, reset protection works, or EXT signal will be "H", then output will turn off, then soft-start  
operation starts. After the soft-start operation, EXT signal will be "L", but if the large current is still flowing, after the  
delay time of protection circuit passes, reset protection circuit will work again, the operation will be continuously  
repeated unless the cause of large current flowing is not removed.  
Once the cause of the large current flowing is removed, within the delay time, the operation will be back to the  
stable one.  
If the timing for release the large current is in the protection process, the operation will be back to the normal one  
after the soft-start operation.  
If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection circuit  
may be ready to work, therefore, after the delay time of protection circuit, EXT will be "H".  
Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function.  
After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of spre-  
standby.  
Then after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation  
finishes, the operation becomes stable.  
12345  
Rev. 1.12  
- 10 -  
TEST CIRCUITS  
A) Output Voltage, Oscillator Frequency, CE”H” Input Voltage, CE”L” Input Voltage, Soft-start time  
L1  
PMOS  
EXT  
VIN  
CE  
Oscilloscope  
D1  
GND  
VOUT  
(VFB)  
+
-
C1  
+
-
C2  
V
B) Supply Current1  
C) Standby Current  
A
EXT  
VIN  
CE  
EXT  
VIN  
A
GND  
GND  
VOUT  
(VFB)  
VOUT  
(VFB)  
CE  
D) EXT “H” Output Current  
E) EXT “L” Output Current  
EXT  
VIN  
CE  
EXT  
VIN  
CE  
GND  
A
GND  
VOUT  
(VFB)  
A
VOUT  
(VFB)  
F) CE “H” Input Current, CE “L” Input Current  
G) Output Delay Time for Protection Circuit  
EXT  
VIN  
EXT  
VIN  
CE  
Oscilloscope  
GND  
GND  
+
-
C2  
VOUT  
(VFB)  
CE  
VOUT  
(VFB)  
A
PMOS: HAT1044M (Hitachi) L: CD104-270MC (Sumida, 27µH)  
SD1: RB491D (Rohm)  
C1: 47µF (Tantalum Type) C2: 47µF (Tantalum Type)  
12345  
Rev. 1.12  
- 11 -  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current (*Note)  
R1224N182E  
L=10uH  
R1224N182F  
L=10uH  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
Vin3.3V  
Vin3.3V  
Vin5V  
Vin5V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout (mA)  
R1224N182H  
L=10uH  
R1224N182G  
L=10uH  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
Vin3.3V  
Vin5V  
Vin3.3V  
Vin5V  
Vin12V  
Vin12V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
R1224N182L L=27uH  
R1224N182M L=27uH  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
Vin3.3V  
Vin5V  
Vin3.3V  
Vin5V  
Vin12V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
12345  
Rev. 1.12  
- 12 -  
R1224N332E  
L=10uH  
R1224N332F  
L=10uH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
Vin4.8V  
Vin7V  
Vin4.8V  
Vin7V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
R1224N332G L=10uH  
R1224N332G(V IN=10V)  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
Vin4.8V  
Vin12V  
Vin15V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current I OUT(mA)  
Output Current Iout (mA)  
R1224N332H L=10uH  
R1224N332G(V IN=16V)  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
Vin4.8V  
Vin12V  
Vin15V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current I OUT(mA)  
Output Current Iout (mA)  
12345  
Rev. 1.12  
- 13 -  
R1224N332L  
L=27uH  
R1224N332M L=27uH  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
Vin4.8V  
Vin12V  
Vin15V  
Vin4.8V  
Vin7V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
R1224N332M(VIN=5V)  
R1224N332M(VIN=10V)  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
0
1
2
3
4
5
0
1
2
3
4
5
Output Current IOUT(A)  
Output Current IOUT(A)  
R1224N502E  
L=10uH  
R1224N332M(VIN=18V)  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
Vin6.5V  
Vin10V  
0.1  
1
10  
100  
1000  
10000  
0
1
2
3
4
Output Current Iout (mA)  
Output Current IOUT(A)  
12345  
Rev. 1.12  
- 14 -  
R1224N502G  
L=10uH  
R1224N502F L=10uH  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
Vin6.5V  
Vin12V  
Vin15V  
Vin6.5V  
Vin10V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
R1224N502G(VIN=10V)  
R1224N502G(VIN=16V)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1224N502H L=10uH  
R1224N502L  
L=27uH  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
Vin6.5V  
Vin12V  
Vin15V  
Vin6.5V  
Vin10V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
Output Current Iout (mA)  
12345  
Rev. 1.12  
- 15 -  
R1224N502M L=27uH  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
Vin6.5V  
Vin12V  
Vin15V  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout (mA)  
2) Efficiency vs. Output Current (*Note)  
R1224N182F(Vin=3.3V) CDRH127-10uH  
100%  
R1224N182F(Vin=5.0V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
10000  
- 16 -  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N182G(Vin=3.3V) CDRH127-10uH  
R1224N182G(Vin=5.0V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
R1224N182G(Vin=12V) CDRH127-10uH  
R1224N182H(Vin=3.3V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N182H(Vin=5.0V) CDRH127-10uH  
R1224N182H(Vin=12V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N182L(Vin=3.3V) CDRH127-27uH  
R1224N182L(Vin=5.0V) CDRH127-27uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 17 -  
R1224N182M(Vin=3.3V) CDRH127-27uH  
R1224N182M(Vin=5.0V) CDRH127-27uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
10000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N182M(Vin=12V) CDRH127-27uH  
R1224N332E(Vin=7.0V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332E(Vin=4.8V) CDRH127-10uH  
R1224N332F(Vin=7.0V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 18 -  
R1224N332F(Vin=4.8V) CDRH127-10uH  
R1224N332G(Vin=12V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332G(Vin=4.8V) CDRH127-10uH  
R1224N332G(VIN=10V)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
Output Current Iout(mA)  
R1224N332G(Vin=15V) CDRH127-10uH  
R1224N332G(VIN=16V)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current IOUT(mA)  
12345  
Rev. 1.12  
- 19 -  
R1224N332H(Vin=12V) CDRH127-10uH  
R1224N332H(Vin=4.8V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332H(Vin=15V) CDRH127-10uH  
R1224N332L(Vin=7.0V) CDRH127-27uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332L(Vin=4.8V) CDRH127-27uH  
R1224N332M(Vin=12V) CDRH127-27uH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 20 -  
R1224N332M(Vin=4.8V) CDRH127-27uH  
R1224N332M(VIN=5V)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
1
2
3
4
5
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current IOUT(A)  
R1224N332M(VIN=10V)  
R1224N332M(VIN=18V)  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
1
2
3
4
0
1
2
3
4
5
Output Current IOUT(A)  
Output Current IOUT(A)  
R1224N332M(Vin=15V) CDRH127-27uH  
R1224N502E(Vin=6.5V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 21 -  
R1224N502E(Vin=10V) CDRH127-10uH  
R1224N502F(Vin=6.5V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502F(Vin=10V) CDRH127-10uH  
R1224N502G(VIN=10V)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
Output Current Iout(mA)  
R1224N502G(Vin=6.5V) CDRH127-10uH  
R1224N502G(VIN=16V)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 22 -  
R1224N502G(Vin=12V) CDRH127-10uH  
R1224N502G(Vin=15V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502H(Vin=6.5V) CDRH127-10uH  
R1224N502H(Vin=12V) CDRH127-10uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502H(Vin=15V) CDRH127-10uH  
R1224N502L(Vin=6.5V) CDRH127-27uH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 23 -  
R1224N502M(Vin=6.5V) CDRH127-27uH  
R1224N502L(Vin=10V) CDRH127-27uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502M(Vin=12V) CDRH127-27uH  
R1224N502M(Vin=15V) CDRH127-27uH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
*Note: Typical characteristics 9), 10) are obtained with using the following components;  
PMOS: IRF7406 (IR)  
L: CDRH127-100MC (Sumida: 10µH)  
C2: 0.1µF (Ceramic Type)  
C3: 10SA220(Sanyo/OS-con: 220µF/10V)  
R1: 10Ω  
SD: RB083L-20 (Rohm)  
C1: 25SC47(Sanyo/OS-con: 47µF/25V)×2  
3) Ripple Voltage vs. Output Current  
R1224N182E  
L=10uH  
R1224N182F  
L=10uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin3.3V  
Vin5V  
Vin3.3V  
Vin5V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 24 -  
R1224N182H  
L=10uH  
R1224N182G  
L=10uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin3.3V  
Vin5V  
Vin3.3V  
Vin5V  
Vin12V  
Vin12V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N182L  
L=27uH  
R1224N182M  
L=27uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin3.3V  
Vin5V  
Vin3.3V  
Vin5V  
Vin12V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332E  
L=10uH  
R1224N332F  
L=10uH  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
Vin4.8V  
Vin7V  
Vin4.8V  
Vin7V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 25 -  
R1224N332G L=10uH  
R1224N332H L=10uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin4.8V  
Vin12V  
Vin15V  
Vin4.8V  
Vin12V  
Vin15V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N332L  
L=27uH  
R1224N332M  
L=27uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin4.8V  
Vin12V  
Vin15V  
Vin4.8V  
Vin7V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502E L=10uH  
R1224N502F  
L=10uH  
70  
70  
60  
50  
40  
30  
20  
10  
0
Vin6.5V  
Vin10V  
60  
50  
40  
30  
20  
10  
0
Vin6.5V  
Vin10V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
12345  
Rev. 1.12  
- 26 -  
R1224N502G L=10uH  
R1224N502H  
L=10uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin6.5V  
Vin12V  
Vin15V  
Vin6.5V  
Vin12V  
Vin15V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
R1224N502L  
L=27uH  
R1224N502M  
L=27uH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Vin6.5V  
Vin12V  
Vin15V  
Vin6.5V  
Vin10V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current Iout(mA)  
Output Current Iout(mA)  
4) Output Voltage vs. Input Voltage  
R1224N182E L=10uH  
2.00  
R1224N182F L=10uH  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.95  
1.90  
1.85  
1.80  
1.75  
1mA  
1.70  
1.65  
1.60  
1mA  
500mA  
500mA  
0
5
10  
Input Voltage Vin(V)  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
12345  
Rev. 1.12  
- 27 -  
R1224N182G  
L=10uH  
R1224N182H  
L=10uH  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
-1mA  
-500mA  
-1mA  
-500mA  
0
5
10  
Input Voltage Vin(V)  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
R1224N182L L=27uH  
R1224N182M  
L=27uH  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1mA  
1mA  
500mA  
500mA  
0
5
10  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
Input Voltage Vin(V)  
R1224N332E L=10uH  
R1224N332F  
L=10uH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
1mA  
1mA  
500mA  
500mA  
0
5
10  
15  
20  
0
5
10  
Input Voltage Vin(V)  
15  
20  
Input Voltage Vin(V)  
12345  
Rev. 1.12  
- 28 -  
R1224N332H L=10uH  
R1224N332G  
L=10uH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
-1mA  
-1mA  
-500mA  
-500mA  
0
5
10  
Input Voltage Vin(V)  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
R1224N332L  
L=27uH  
R1224N332M L=27uH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
1mA  
1mA  
500mA  
500mA  
0
5
10  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
Input Voltage Vin(V)  
R1224N502E  
L=10uH  
R1224N502F L=10uH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1mA  
1mA  
500mA  
500mA  
0
5
10  
Input Voltage Vin(V)  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
12345  
Rev. 1.12  
- 29 -  
R1224N502H L=10uH  
R1224N502G  
L=10uH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
-1mA  
-500mA  
-1mA  
-500mA  
0
5
10  
Input Voltage Vin(V)  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
R1224N502L  
L=27uH  
R1224N502M  
L=27uH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1mA  
1mA  
500mA  
500mA  
0
5
10  
15  
20  
0
5
10  
15  
20  
Input Voltage Vin(V)  
Input Voltage Vin(V)  
5) Output Voltage vs. Temperature  
R1224N332E  
3.33  
R1224N122F  
1.210  
1.205  
1.200  
1.195  
1.190  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
-40  
10  
60  
-40  
10  
60  
(°C)  
(°C)  
Temperature Topt  
Temperature Topt  
12345  
Rev. 1.12  
- 30 -  
R1224N602L  
R1224N102G  
6.10  
6.05  
6.00  
5.95  
5.90  
1.010  
1.005  
1.000  
0.995  
0.990  
-40  
10  
60  
-40  
10  
60  
Temperature Topt  
(°C)  
(°C)  
Temperature Topt  
6) Oscillator Frequency vs. Temperature  
R1224N102G  
360  
R1224N102H  
600  
550  
500  
450  
400  
330  
300  
270  
240  
-40  
10  
60  
-40  
10  
60  
(°C)  
(°C)  
Temperature Topt  
Temperature Topt  
R1224N102M  
216  
198  
180  
162  
144  
-40  
-20  
0
20  
40  
60  
80  
(°C)  
Temperature Topt  
12345  
Rev. 1.12  
- 31 -  
7) Supply Current vs. Temperature  
R1224N602L  
R1224N332E  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
-40  
10  
60  
(°C)  
-40  
10  
60  
Temperature Topt  
(°C)  
Temperature Topt  
R1224N602F  
R1224N102G  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
0
-40  
10  
60  
-40  
10  
60  
(°C)  
(°C)  
Temperature Topt  
Temperature Topt  
R1224N102H  
R1224N102M  
60  
40  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
-40  
10  
60  
-40  
10  
60  
(°C)  
(°C)  
Temperature Topt  
Temperature Topt  
12345  
Rev. 1.12  
- 32 -  
8) Soft-start time vs. Temperature  
R1224N102G  
15  
10  
5
-40  
-20  
0
20  
40  
(°C)  
60  
80  
Temperature Topt  
9) Delay Time for Protection vs. Temperature  
R1224N332E  
30  
25  
20  
15  
10  
-40  
-20  
0
20  
40  
60  
80  
(°C)  
Temperature Topt  
10) EXT "H" Output Current vs. Temperature  
R1224N332E  
-10  
-15  
-20  
-25  
-40  
-20  
0
20  
40  
(°C)  
60  
80  
Temperature Topt  
12345  
Rev. 1.12  
- 33 -  
11) EXT"L" Output Current vs. Temperature  
R1224N332E  
50  
40  
30  
20  
-40  
-20  
0
20  
40  
60  
80  
(°C)  
Temperature Topt  
12) Load Transient Response  
R1224N332G  
L=10uH Vin=4.8V  
R1224N332G  
L=10uH Vin=4.8V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
-0  
-0  
0
1E- 2E- 3E- 4E-  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
04  
04  
04  
04  
Time(sec)  
Time(sec)  
R1224N332G  
L=10uH Vin=10V  
R1224N332G L=10uH Vin=10V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-0.00 -0.00 0.000 0.000 0.000 0.000 0.000  
02  
01  
0
1
2
3
4
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
12345  
Rev. 1.12  
- 34 -  
R1224N332H  
L=10uH Vin=4.8V  
R1224N332H  
L=10uH Vin=4.8V  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-2E-04 -1E-04  
0
1E-04 2E-04 3E-04 4E-04  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
R1224N332H  
L=10uH Vin=10V  
R1224N332H  
L=10uH Vin=10V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
3.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1800  
1600  
1400  
1200  
1000  
800  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
600  
600  
400  
400  
200  
200  
0
0
-2E- -1E-  
04 04  
0
1E-04 2E-04 3E-04 4E-04  
Time(sec)  
-2E-04 -1E-04  
0
0.000 0.000 0.000 0.000  
Time(sec)  
1
2
3
4
R1224N332M  
L=27uH Vin=4.8V  
R1224N332M  
L=27uH Vin=4.8V  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-2E-04 -1E-04  
0
0.000 0.000 0.000 0.000  
Time(sec)  
-0.04 -0.02  
0
0.02 0.04  
Time(sec)  
0.06 0.08  
1
2
3
4
12345  
Rev. 1.12  
- 35 -  
R1224N332M  
L=27uH Vin=10V  
R1224N332M  
L=27uH Vin=10V  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
600  
200  
400  
0
200  
-2E- -1E-  
04 04  
0
1E-04 2E-04 3E-04 4E-04  
Time(sec)  
0
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
13) UVLO Voltage vs. Temperature  
R1224N332E  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
-40  
-20  
0
20  
40  
60  
80  
(°C)  
Temperature Topt  
12345  
Rev. 1.12  
- 36 -  

相关型号:

R1224N132F-TR-F

Switching Controller, 500kHz Switching Freq-Max, CMOS, PDSO5, ROHS COMPLIANT, SOT-23, 5 PIN
RICOH

R1224N132F-TR-FA

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132F-TR-FE

Switching Regulator/Controller,
RICOH

R1224N132G-TR

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132G-TR-FA

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132H

PWM/VFM step-down DC/DC Converter
RICOH

R1224N132H-TL

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132H-TL-FA

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132H-TR

SMPS Controller
ETC

R1224N132H-TR-FA

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132H-TR-FE

Switching Controller, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N132L-TR

Switching Controller, 0.05A, 216kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH