QFBR-5651 [ETC]

Gigabit Interface Converters (GBIC) for Gigabit Ethernet ; 千兆位接口转换器( GBIC )的千兆以太网\n
QFBR-5651
型号: QFBR-5651
厂家: ETC    ETC
描述:

Gigabit Interface Converters (GBIC) for Gigabit Ethernet
千兆位接口转换器( GBIC )的千兆以太网\n

转换器 以太网
文件: 总14页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AgilentHFBR-5601/HFCT-5611  
Gigabit Interface Converters  
(GBIC) for Gigabit Ethernet  
Data Sheet  
Features  
Compliant with Gigabit Interface  
Converter specification Rev. 5.4 (1)  
HFBR-5601 is compliant with  
proposed specifications for  
IEEE802.3z/D5.0GigabitEthernet  
(1000Base-SX)  
HFCT-5611 is compliant with the  
ANSI100-SM-LC-Lrevision2  
10 km link specification  
Performance:  
HFBR-5601:  
Description  
Themechanicalandelectrical  
interfaces of these converters to  
the host system are identical for  
allimplementationsofthe  
converterregardlessofexternal  
mediatype.A20-pinconnectoris  
500mwith50/125µmMMF  
220mwith62.5/125µmMMF  
HFCT-5611:  
550mwith50/125µmMMF  
550mwith62.5/125µmMMF  
10kmwith9/125µmSMF  
Horizontal or vertical installation  
AEL Laser Class 1 eye safe per  
IEC60825-1  
TheHFBR-56xx/HFCT-56xx  
familyofinterfaceconverters  
meet the Gigabit Interface  
ConverterspecificationRev.5.4,  
anindustrystandard.Thefamily  
providesauniformformfactorfor used to connect the converter to  
awidevarietyofstandard  
connectionstotransmission  
media. The converters can be  
inserted or removed from a host  
chassiswithoutremovingpower  
from the host system.  
thehostsystem.Surgecurrents  
areeliminatedbyusingpin  
sequencingatthisconnectorand  
a slow start circuit. Two ground  
tabs at this connector also make  
contactbeforeanyotherpins,  
dischargingpossiblecomponent-  
damagingstaticelectricity.In  
addition,theconnectoritself  
performsatwo-stagecontact  
sequence.Operationalsignalsand  
powersupplygroundmake  
AEL Laser Class I eye safe per  
US 21 CFR  
Hot-pluggable  
Applications  
Theconvertersaresuitablefor  
interconnectionsintheGigabit  
Ethernethubsandswitches  
Switch to switch interface  
High speed I/O for file servers  
Bus extension applications  
environment. Thedesignofthese  
convertersisalsopracticalfor  
otherhighperformance,point-to-  
pointcommunicationrequiring  
gigabitinterconnections.Since  
theconvertersarehot-pluggable,  
theyallowsystemconfiguration  
changes simply by plugging in a  
differenttypeofconverter.  
Related Products  
contact in stage 1 while power  
makes contact in stage 2.  
850 nm VCSEL, 1 x 9 and SFF  
transceivers for 1000 base  
SXapplications(HFBR-53D5,  
HFBR-5912E)  
1300 nm, 1 x 9 Laser transceiver  
for 1000 base-LX applications  
(HFCT-53D5)  
TheHFBR-5601hasbeen  
developedwith850nmshort  
wavelengthVCSELtechnology  
while the HFCT-5611 is based on  
1300nmlongwavelengthFabry  
Perotlasertechnology.  
Physical layer ICs available for  
optical interface  
(HDMP-1636A/46A)  
TheHFBR-5601complieswith  
Annex G of the GBIC specification SeetheRegulatoryCompliance  
Revision5.4.Inthe1000BASE-SX Table for the targeted typical and  
environmenttheHFBR-5601  
achieves220mtransmission  
distancewith62.5µmand500m  
with50µmmultimodefiber  
respectively.  
Regulatory Compliance  
Electromagnetic Interference (EMI)  
Mostequipmentdesignsutilizing  
thesehigh-speedtransceivers  
fromAgilentwillberequiredto  
meettherequirementsofFCCin  
theUnitedStates,CENELEC  
EN55022(CISPR22)inEurope  
andVCCIinJapan.  
measuredperformanceforthese  
transceivers.  
Theoverallequipmentdesignwill  
determine the level it is able to be  
certifiedto.Thesetransceiver  
TheHFCT-5611complieswith  
performancetargetsareofferedas Immunity  
Annex F of the GBIC specification a figure of merit to assist the  
Equipmentutilizingthese  
Revision5.4andreaches10km  
with9/125µmsinglemodefiber.  
BoththeHFBR-5601andthe  
HFCT-5611 are Class 1 Eye Safe  
laserdevices.  
designerinconsideringtheiruse  
inequipmentdesigns.  
transceivers will be subject to  
radio-frequencyelectromagnetic  
fieldsinsomeenvironments.  
Thesetransceivershavegood  
immunity to such fields due to  
theirshieldeddesign.  
Electrostatic Discharge (ESD)  
There are two design cases in  
which immunity to ESD damage is  
important.  
Serial Identification  
TheHFBR-56xxandHFCT-5611  
familycomplieswithAnnexD  
(Module Definition 4) of the GBIC  
specificationRevision5.4,which  
definestheSerialIdentification  
Protocol.  
Eye Safety  
The first case is during handling of  
thetransceiverpriortoinsertingit  
into the host system. It is  
importanttousenormalESD  
handlingprecautionsforESD  
sensitive devices. These  
precautionsincludeusing  
groundedwriststraps,work  
benches, and floor mats in ESD  
controlledareas.  
Laser-basedGBICtransceivers  
provideClass1(IEC60825-1)and  
Class I (US 21 CFR[J]) laser eye  
safety by design. Agilent has  
testedthecurrenttransceiver  
designforcompliancewiththe  
requirementslistedbelowunder  
normaloperatingconditionsand  
forcomplianceundersinglefault  
conditions.  
Definition4specifiesaserial  
definitionprotocol.Forthis  
definition,uponpowerup,  
MOD_DEF(1:2) (Pins 5 and 6 on  
the20-pinconnector)appearas  
NC. Pin 4 is TTL ground. When the  
host system detects this  
The second case to consider is  
staticdischargesduringinsertion  
of the GBIC into the host system.  
There are two guide tabs  
Outline Drawing  
Anoutlinedrawingisshownin  
Figure1.Moredetaileddrawings  
areshowninGigabitInterface  
ConverterspecificationRev.5.4.  
condition,itactivatesthepublic  
domainserialprotocol.The  
protocolusesthe2-wireserial  
integratedintothe20-pin  
connector on the GBIC. These  
guide tabs are connected to  
circuitground. WhentheGBICis  
2
CMOS E PROM protocol of the  
ATMELAT24C01Aorsimilar.  
Thedatatransferprotocolandthe insertedintothehostsystem,  
detailsofthemandatoryand  
vendorspecificdatastructures  
are defined in Annex D of the  
GBICspecificationRevision5.4.  
these tabs will engage before any  
of the connector pins. The mating  
connector in the host system must  
have its tabs connected to circuit  
ground.Thisdischargesanystray  
staticchargesandestablishesa  
referenceforthepowersupplies  
thataresequencedlater.  
Note: HFBR-5601 is non-compliant for Tx fault timing.  
2
GBIC Serial ID Memory Contents - HFBR-5601  
Addr  
0
Hex  
1
ASCII  
Addr  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Hex  
48  
46  
42  
52  
2D  
35  
36  
30  
31  
20  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
0
ASCII  
Addr  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Hex  
39  
38  
30  
36  
32  
33  
30  
33  
32  
38  
33  
34  
33  
37  
33  
30  
39  
38  
30  
36  
32  
33  
30  
30  
0
ASCII  
Addr  
96  
Hex  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ASCII  
H
F
B
R
-
9
8
0
6
2
3
0
3
2
8
3
4
3
7
3
0
9
8
0
6
2
3
0
0
1
7
97  
2
1
98  
3
0
99  
4
0
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
5
0
5
6
0
1
6
1
7
0
8
0
9
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
0
1
0D  
0
0
0
32  
16  
0
0
0
0
0
0
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0
A
G
I
0
0
L
74  
0
E
N
T
1A  
0
0
0
0
F3  
00  
30  
D3  
Note: Blanks in ASCII column are numeric values not ASCII characters.  
3
GBIC Serial ID Memory Contents - HFCT-5611  
Addr  
0
Hex  
1
ASCII  
Addr  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Hex  
48  
46  
43  
54  
2D  
35  
36  
31  
31  
20  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
0
ASCII  
Addr  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Hex  
39  
38  
30  
36  
32  
33  
30  
33  
34  
32  
30  
39  
34  
32  
39  
30  
39  
38  
30  
36  
32  
33  
30  
30  
0
ASCII  
Addr  
96  
Hex  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ASCII  
H
F
C
T
-
9
8
0
6
2
3
0
3
4
2
0
9
4
2
9
0
9
8
0
6
2
3
0
0
1
6
97  
2
1
98  
3
0
99  
4
0
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
5
0
5
6
1
1
6
2
7
0
8
0
9
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
0
1
0D  
0
0
64  
37  
37  
0
0
0
0
0
0
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0
A
G
I
0
0
L
3
E
N
T
0
1A  
0
0
0
0
F3  
00  
30  
D3  
Note: Blanks in ASCII column are numeric values not ASCII characters.  
4
Figure 1. Outline Drawing of HFBR-5601 and HFCT-5611.  
5
Optical Power Budget and  
1300nmFabryPerotlasershave  
factorybeforeshipmenttoour  
Link Penalties  
beenmodeledandspecified. Refer customers. Tamperingwithor  
The worst-case Optical Power  
Budget (OPB) in dB for a fiber  
opticlinkisdeterminedbythe  
differencebetweentheminimum  
transmitteroutputopticalpower  
(dBm avg) and the lowest receiver  
sensitivity(dBmavg). ThisOPB  
providesthenecessaryoptical  
signalrangetoestablishaworking  
fiber-optic link. The OPB is  
allocated for the fiber-optic cable  
lengthandthecorrespondinglink  
penalties.Forproperlinkperform-  
ance, all penalties that affect the  
link performance must be acc-  
ountedforwithinthelinkoptical  
powerbudget.TheGigabit/sec  
Ethernet(GbE)IEEE802.3z  
standardidentifies,andhas  
toIEEE802.3zstandardandits  
supplementaldocumentsthat  
developthemodel,empirical  
resultsandfinalspecifications.  
modifyingtheperformanceofany  
AgilentGBICunitwillresultin  
voidedproductwarranty. Itmay  
alsoresultinimproperoperation  
ofthecircuitry,andpossible  
overstressofthesemiconductor  
components. Devicedegradation  
orproductfailuremayresult.  
10 km Link Support  
As well as complying with the LX  
5kmstandard,theHFCT-56xx  
specificationprovidesadditional  
margin allowing for a 10 km  
GigabitEthernetlinkonsingle  
modefiber. Thisisaccomplished  
bylimitingthespectralwidthand  
center wavelength range of the  
transmitterwhileincreasingthe  
outputopticalpowerand  
Connectionofeitherthe  
HFBR-5601ortheHFCT-5611toa  
non-approvedopticalsource,  
operatingabovethe  
recommendedabsolutemaximum  
conditions,oroperatingina  
mannerinconsistentwithunit  
improvingsensitivity.AllotherLX designandfunction,mayresultin  
cableplantrecommendations  
should be followed.  
hazardousradiationexposureand  
may be considered an act of  
modifyingormanufacturinga  
laserproduct. Theperson(s)  
performingsuchanactisrequired  
by law to recertify the laser  
productundertheprovisionsof  
US 21 CFR (Subchapter J).  
modeled,thecontributionsof  
these OPB penalties to establish  
thelinklengthrequirementsfor  
62.5/125µmand50/125µmmulti-  
modefiberusage.Inaddition,  
single-modefiberwithstandard  
CAUTION:  
There are no user serviceable  
partsnoranymaintenance  
requiredfortheHFBR-56xxand  
HFCT-56xxproductfamily. All  
adjustmentsaremadeatthe  
Regulatory Compliance  
Feature  
Test Method  
Targeted Performance  
Electrostatic Discharge  
(ESD) to the Electrical  
Pins  
MIL-STD-883C  
Method 3015.4  
Class 1 (>2000 V)  
Electrostatic Discharge  
(ESD) to the Duplex SC  
Receptacle  
Variation of IEC 801-2  
Typically withstand at least 15 kV without damage  
when port is contacted by a Human Body Model  
probe.  
Electromagnetic  
Interference (EMI)  
FCC Class B  
CENELEC EN55022 Class B  
(CISPR 22A)  
Margins are dependent on customer board and  
chassis design.  
VCCI Class 1  
Immunity  
Variation of IEC 801-3  
Typically show no measurable effect from a  
10 V/m field swept from 27 to 1000 MHz applied to  
the transceiver without a chassis enclosure  
Laser Eye Safety  
US 21 CFR, Subchapter J per  
paragraphs 1002.10 and 1002.12  
AEL Class I, FDA/CDRH  
HFBR-5601 Accession No. 9720151-04  
HFCT-5611 Accession No. 9521220-16  
AEL Class 1, TUV Rheinland of North America  
HFBR-5601 Certificate No. R9771018-7  
HFCT-5611 Certificate No. 933/51083  
Protection Class III  
EN 60825-1: 1994+A11  
EN 60825-2: 1994  
EN 60950: 1992+A1+A2+A3  
Component Recognition Underwriters Laboratories and  
Canadian Standards Association  
Joint Component Recognition for  
Information Technology Equipment  
Including Electrical Business  
UL File E173874 (Pending)  
Equipment.  
6
20-Pin SCA-2 Host Connector Characteristics  
Table 1. SCA-2 Host connector pin assignment  
Pin  
1
Name  
Sequence  
Pin  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Name  
Sequence  
RX_LOS  
2
2
2
2
2
2
2
2
2
2
RGND  
1
1
1
1
2
2
1
1
1
1
2
RGND  
-RX_DAT  
+RX_DAT  
RGND  
3
RGND  
4
MOD_DEF(0)  
MOD_DEF(1)  
MOD_DEF(2)  
TX_DISABLE*  
TGND  
5
VDDR  
6
VDDT  
7
TGND  
8
+TX_DAT  
-TX_DAT  
TGND  
9
TGND  
10  
TX_FAULT  
Notes:  
A sequence value of 1 indicates that the signal is in the first group to engage during plugging of a module. A sequence value of 2 indicates that  
the signal is the second and last group. The two guide pins integrated on the connector are connected to TGND. These two guide pins make  
contact with circuit ground prior to Sequence 1 signals.  
*
This pin is tied high via 10 K pull-up resistor.  
Table 2. Signal Definition  
Pin  
1
Signal Name  
RX_LOS  
RGND  
Input/Output  
Description  
Output  
Receiver Loss of Signal, TTL High, open collector  
Receiver Ground  
2
3
RGND  
Receiver Ground  
4
MOD_DEF(0)  
MOD_DEF(1)  
MOD_DEF(2)  
TX_DISABLE  
TGND  
Output  
TTL Low  
5
Input  
SCL Serial Clock Signal  
SDA Serial Data Signal  
Transmit Disable  
6
Input/Output  
Input  
7
8
Transmitter Ground  
9
TGND  
Transmitter Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TX_FAULT  
RGND  
Output  
Transmit Fault  
Receiver Ground  
-RX_DAT  
+RX_DAT  
RGND  
Output  
Output  
Received Data, Differential PECL, ac coupled  
Received Data, Differential PECL, ac coupled  
Receiver Ground  
VDDR  
Input  
Input  
Receiver +5 V supply  
VDDT  
Transmitter +5 V supply  
Transmitter Ground  
TGND  
+TX_DAT  
-TX_DAT  
TGND  
Input  
Input  
Transmit Data, Differential PECL, ac coupled  
Transmit Data, Differential PECL, ac coupled  
Transmitter Ground  
Table 3. Module Definition  
Defntn. MOD_DEF(0) Pin 4  
MOD_DEF(1) Pin 5  
MOD_DEF(2) Pin 6  
Interpretation by host  
4
TTL Low  
SCL  
SDA  
Serial module definition protocol  
Note: All Agilent GBIC modules comply with Module Definition 4 of the GBIC specification Rev 5.4  
7
Short Wavelength GBIC: HFBR-5601  
Transmitter Section  
Thetransmittersectionconsists  
of an 850 nm VCSEL in an optical  
subassembly(OSA),whichmates  
to the fiber cable. The VCSEL  
thatprovidespost-amplification  
andquantization. Thepost-  
amplifierincludesaSignalDetect  
circuitthatprovidesTTL  
compatiblelogic-lowoutputin  
response to the detection of a  
There are three key elements to  
thesafetycircuitry:amonitor  
diode,awindowdetectorcircuit,  
and direct control of the laser  
bias.Thewindowdetectioncircuit  
monitorstheaverageoptical  
powerusingthemonitordiode. If  
a fault occurs such that the dc  
regulationcircuitcannotmaintain  
thepresetbiasconditionswithin  
20ꢀ,thetransmitterwill  
OSA is driven by a custom, silicon usableinputopticalsignal.  
bipolarICwhichconverts  
Eye Safety Design  
differentiallogicsignalsintoan  
The laser driver is designed to be  
analogLaserDiodedrivecurrent.  
Class 1 eye safe (CDRH21 CFR(J),  
Receiver Section  
IEC60825-1)underasinglefault  
condition. To be eye safe, only  
one of two results can occur in  
the event of a single fault. The  
transmittermusteithermaintain  
normal eye safe operation or the  
transmittershouldbedisabled.  
automaticallybedisabled.Once  
thishasoccurred,anelectrical  
power reset will allow an  
The receiver includes a GaAs PIN  
photodiodemountedtogether  
withacustom, siliconbipolar  
transimpedancepreamplifierIC,  
in an OSA. The OSA interfaces to  
acustomsiliconbipolarcircuit  
attemptedturn-onofthe  
transmitter.TX_FAULTcanalso  
beclearedbycyclingTX_DISABLE  
high for a time interval >10 µs.  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause catastrophic damage to the device. Limits apply to each parameter  
in isolation, all other parameters having values within the recommended operating conditions. It should not be assumed that  
limiting values of more than one parameter can be applied to the product at the same time. Exposure to the absolute maximum  
ratings for extended periods can adversely affect device reliability.  
Parameter  
Symbol  
Min.  
-40  
Typ.  
Max.  
+85  
6.0  
Unit  
°C  
Notes  
Storage Temperature  
Supply Voltage  
TS  
VDDT  
-0.5  
V
VDDR  
Data Input Voltage  
TX_DAT  
-0.5  
5
VDDT  
2000  
V
1
Transmitter  
Differential Input Voltage  
Relative Humidity  
TX_DAT  
mV p-p  
RH  
95  
%
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
Typ.  
Max.  
+60  
Unit  
°C  
°C  
V
Notes  
Ambient Operating Temperature  
Case Temperature  
Supply Voltage  
0
TCASE  
+75  
2
VDDT  
4.75  
5.0  
5.25  
VDDR  
Supply Current  
ITX + IRX  
200  
300  
mA  
3
Transceiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
ISURGE  
Min.  
Typ.  
Max.  
+30  
Unit  
mA  
W
Notes  
Surge Current  
Power Dissipation  
4
5
PDISS  
1.00  
1.58  
Notes:  
1. Up to applied V T.  
DD  
2. See Figure 1 for measurement point.  
3. Maximum current is specified at V = maximum @ maximum operating temperature and end of life.  
CC  
4. Hot plug above actual steady state current.  
5. Total T + R .  
X
X
8
HFBR-5601  
Transmitter Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
2000  
10  
Unit  
Notes  
Transmitter Differential Input Voltage  
Transmit Fault Load  
TX_DAT  
650  
mV p-p  
kW  
TX_FAULTLoad 4.7  
1
2
3
4
TX-DISABLE Assert Time  
TX_DISABLE Negate Time  
t_off  
T-on  
t_init  
10  
µsec  
msec  
msec  
1
Time to initialize, includes reset of  
TX_FAULT  
300  
TX_FAULT from fault to assertion  
t_fault  
7
msec  
µsec  
5
6
TX_DISABLE time to start reset  
t_reset  
10  
Receiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
RX_DAT  
trRX_DAT  
Min.  
Typ.  
Max.  
2000  
0.35  
0.35  
10  
Unit  
mV p-p  
ns  
Notes  
Receiver Differential Output Voltage  
Receiver Output Rise Time  
Receiver Output Fall Time  
370  
0.25  
0.25  
7
7
1
tfRX_DAT  
ns  
Receiver Loss of Light Load  
RX_LOSLoad  
4.7  
0.0  
kW  
Receiver Loss of Signal Output Voltage RX_LOSL  
- Low  
0.5  
V
Receiver Loss of Signal Output Voltage RX_LOSH  
- High  
Receiver Loss of Signal Assert Time - tA,RX_LOS  
Logic low to high  
Receiver Loss of Signal Deassert Time tD,RX_LOS  
- Logic high to low  
VCC  
-0.5  
VCC  
+0.3  
100  
V
µs  
µs  
100  
Notes:  
1. Pull-up resistor on host V  
.
CC  
2. Rising edge of TX_DISABLE to fall of output signal below 10% of nominal.  
3. Falling edge of TX_DISABLE to rise of output signal above 90% of nominal.  
4. From power on or hot plug after V T >4.75 V or From negation of TX_DISABLE during reset of TX_FAULT.  
DD  
5. From occurrence of fault (output safety violation or V T <4.5 V).  
DD  
6. TX_DISABLE HIGH before TX_DISABLE set LOW.  
7. 20 - 80% values.  
9
HFBR-5601  
TransmitterOpticalCharacteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Output Optical Power  
50/125 µm, NA = 0.20 fiber  
Output Optical Power  
62.5/125 µm, NA = 0.275 fiber  
Optical Extinction Ratio  
PO  
-9.5  
-4  
dBm  
avg.  
dBm  
avg.  
dB  
PO  
-9.5  
-4  
9
lC  
Center Wavelength  
Spectral Width - rms  
Optical Rise/Fall Time  
RIN12  
830  
850  
860  
0.85  
0.26  
-117  
227  
nm  
nm rms  
ns  
tr/tf  
1, 4 and Figure 2  
dB/Hz  
Total Contributed Jitter  
Coupled Power Ratio  
Max. Pout TX_DISABLE Asserted  
TJ  
ps  
p-p  
CPR  
POFF  
9
dB  
-35  
dBm  
Receiver Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Input Optical Power  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
PIN  
-17  
-22  
0
dBm  
avg.  
nm  
2
lC  
Operating Center Wavelength  
Return Loss  
770  
12  
860  
-17  
dB  
Receiver Loss of Signal - TTL Low  
PRX_LOS  
PRX_LOS  
A
-23  
-26  
dBm  
avg.  
dBm  
avg.  
Receiver Loss of Signal - TTL High  
D
-31  
Stressed Receiver Sensitivity  
62.5 µm fiber  
50 µm fiber  
Stressed Receiver Eye Opening  
@TP4  
-12.5  
-13.5  
dBm  
dBm  
ps  
3
3
201  
Electrical 3 dB Upper Cutoff Frequency  
1500  
MHz  
Notes:  
1. 20 - 80 values.  
2. Modulated with 2 1 PRBS pattern. Results are for a BER of IE-12.  
7-  
3. Tested in accordance with the conformance testing requirements of IEEE802.3z.  
4. Laser transmitter pulse response characteristics are specified by an eye diagram (Figure 2).  
1.3  
1.0  
0.8  
0.5  
0.2  
0
-0.2  
0
0.375  
0.625  
0.78  
1.0  
0.22  
NORMALIZED TIME  
Figure 2. Transmitter Optical Eye Diagram Mask  
10  
Long Wavelength GBIC: HFCT-5611  
Transmitter Section  
Receiver Section  
There are three key elements to  
thesafetycircuitry:amonitor  
diode,awindowdetectorcircuit,  
and direct control of the laser  
bias.Thewindowdetectioncircuit  
monitorstheaverageoptical  
powerusingthephotodiodeinthe  
laser OSA. If a fault occurs such  
that the dc bias circuit cannot  
maintainthepresetconditions  
within 20ꢀ,TX_FAULT(Pin10)  
will be asserted (high).  
The receiver includes a PIN  
photodiodemountedtogether  
withacustom, siliconbipolar  
transimpedancepreamplifierIC,  
in an OSA. The OSA interfaces to  
acustomsiliconbipolarcircuit  
Thetransmittersectionconsists  
of a 1300 nm MQW Fabry Perot  
Laserinanopticalsubassembly  
(OSA), which mates to the fiber  
optic cable. The Laser OSA is  
drivenbyacustom, siliconbipolar thatprovidespost-amplification  
ICwhichconvertsdifferential  
PECL logic signals (ECL  
referenced to a +5 V supply) into  
ananalogdrivecurrenttothe  
laser.  
andquantization.Thepost-  
amplifierincludesaSignalDetect  
circuitthatprovidesTTL  
compatiblelogic-lowoutputin  
response to the detection of a  
usableinputopticalsignal.  
Note: Under any single fault, the  
laseropticaloutputpowerwill  
remainwithinClass1eyesafe  
limits.  
ThelaserdriverICincorporates  
temperaturecompensationand  
feedback from the OSA to  
maintainconstantoutputpower  
andextinctionratiooverthe  
operatingtemperaturerange.  
Eye Safety Design  
The laser driver is designed to be  
Class 1 eye safe (CDRH21 CFR(J),  
IEC60825-1)underasinglefault  
condition.  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause catastrophic damage to the device. Limits apply to each parameter  
in isolation, all other parameters having values within the recommended operating conditions. It should not be assumed that  
limiting values of more than one parameter can be applied to the product at the same time. Exposure to the absolute maximum  
ratings for extended periods can adversely affect device reliability.  
Parameter  
Symbol  
Min.  
-40  
Typ.  
Max.  
+85  
6.0  
Unit  
°C  
Notes  
Storage Temperature  
Supply Voltage  
TS  
VDDT  
-0.5  
V
VDDR  
Data Input Voltage  
TX_DAT  
-0.5  
5
VDDT  
2000  
V
Transmitter  
Differential Input Voltage  
Relative Humidity  
TX_DAT  
mV p-p  
RH  
95  
%
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
Typ.  
Max.  
+60  
Unit  
°C  
°C  
V
Notes  
Ambient Operating Temperature  
Case Temperature  
0
TCASE  
+75  
1
Supply Voltage  
VDDT  
4.75  
5.0  
5.25  
VDDR  
Supply Current  
ITX + IRX  
200  
300  
mA  
2
Transceiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Surge Current  
Power Dissipation  
Notes:  
Symbol  
ISURGE  
Min.  
Typ.  
Max.  
+30  
Unit  
mA  
W
Notes  
3
4
PDISS  
1.00  
1.58  
1. See Figure 1 for measurement point.  
2. Maximum current is specified at V = maximum @ maximum operating temperature and end of life.  
CC  
3. Hot plug above actual steady state current.  
4. Total T + R .  
X
X
11  
HFCT-5611  
TransmitterElectricalCharacteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
2000  
10  
Unit  
Notes  
Transmitter Differential Input Voltage  
Tranmit Fault Load  
TX_DAT  
650  
mV p-p  
TX_FAULTLoad 4.7  
kW  
v
1
Transmit Fault Output - Low  
Transmit Fault Output - High  
TX_FAULTL  
TX_FAULTH  
0.0  
0.5  
VCC  
-0.5  
VCC  
+0.3  
10  
v
TX_DISABLE Assert Time  
TX_DISABLE Negate Time  
t_off  
t_on  
t_init  
3
µsec  
msec  
msec  
2
3
4
0.5  
30  
1
Time to initialize, includes reset of  
TX_FAULT  
300  
TX_FAULT from fault to assertion  
t_fault  
t_reset  
20  
100  
µsec  
µsec  
5
6
TX_DISABLE time to start reset  
10  
Receiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
RX_DAT  
trRX_DAT  
Min.  
Typ.  
Max.  
2000  
0.35  
0.35  
10  
Unit  
mV p-p  
ns  
Notes  
Receiver Differential Output Voltage  
Receiver Output Rise Time  
Receiver Output Fall Time  
370  
7
7
1
tfRX_DAT  
ns  
Receiver Loss of Light Load  
RX_LOSLoad  
4.7  
0.0  
kW  
Receiver Loss of Signal Output Voltage RX_LOSL  
0.5  
V
- Low  
Receiver Loss of Signal Output Voltage RX_LOSH  
- High  
VCC  
-0.5  
VCC  
+0.3  
100  
V
Receiver Loss of Signal Assert Time  
(off to on)  
tA,RX_LOS  
µs  
µs  
Receiver Loss of Signal Deassert Time tD,RX_LOS  
(on to off)  
100  
Notes:  
1. Pull-up resistor on host V  
.
CC  
2. Rising edge of TX_DISABLE to fall of output signal below 10% of nominal.  
3. Falling edge of TX_DISABLE to rise of output signal above 90% of nominal.  
4. From power on or hot plug after V T >4.75 V or From negation of TX_DISABLE during reset of TX_FAULT.  
DD  
5. From occurrence of fault (output safety violation or V T <4.5 V).  
DD  
6. TX_DISABLE HIGH before TX_DISABLE set LOW.  
7. 20 - 80% values.  
12  
HFCT-5611  
TransmitterOpticalCharacteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Output Optical Power  
9/125 µm SMF  
62.5/125 µm MMF  
50/125 µm MMF  
PO  
-9.5  
-11.5  
-11.5  
9
-7  
-3  
-3  
-3  
dBm  
dBm  
dBm  
dB  
Optical Extinction Ratio  
lC  
Center Wavelength  
Spectral Width - rms  
Optical Rise/Fall Time  
RIN12  
1285  
1310  
1343  
2.8  
nm  
nm rms  
ns  
tr/tf  
0.26  
-116  
227  
1, 4 and Figure 2  
dB/Hz  
Total Contributed Jitter  
Coupled Power Ratio  
Max. Pout TX_DISABLE Asserted  
TJ  
ps  
p-p  
CPR  
POFF  
9
dB  
-35  
dBm  
Receiver Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Input Optical Power  
Symbol  
PIN  
lC  
Min.  
-20  
Typ.  
Max.  
-3  
Unit  
Notes  
-25  
dBm avg. 2  
nm  
Operating Center Wavelength  
Return Loss  
1270  
12  
1355  
dB  
Receiver Loss of Signal - TTL Low  
Receiver Loss of Signal - TTL High  
Stressed Receiver Sensitivity  
PRX_LOS A  
PRX_LOS D  
-28  
-20  
dBm avg.  
dBm avg.  
-31  
-14.4  
dBm  
ps  
3
3
Stressed Receiver Eye Opening  
@TP4  
201  
Electrical 3 dB Upper Cutoff Frequency  
1500  
MHz  
Notes:  
1. 20 - 80% values.  
2. Modulated with 2 -1 PRBS pattern. Results are for a BER of IE-12.  
7
3. Tested in accordance with the conformance testing requirements of IEEE802.3z.  
4. Laser transmitter pulse response characteristics are specified by an eye diagram (Figure 2).  
13  
www.agilent.com/  
semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(408) 654-8675  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6271 2451  
India, Australia, New Zealand: (+65) 6271 2394  
Japan: (+81 3) 3335-8152(Domestic/  
International),or  
0120-61-1280(Domestic Only)  
Korea: (+65) 6271 2194  
Malaysia, Singapore: (+65) 6271 2054  
Taiwan: (+65) 6271 2654  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
Obsoletes: 5988-0537EN  
July 29, 2002  
5988-7407EN  

相关型号:

QFBR-5689

Multi-mode Gigabit Interface Converter (GBIC) for Gigabit Ethernet
ETC

QFBR-5690

Gigabit Interface Converters (GBIC) for Gigabit Ethernet
ETC

QFBR-R518Z

Change to improved mold compound
AVAGO

QFBR-R521Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-R531Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T081Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T501Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T515EZ

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T518Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T519Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T521Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

QFBR-T531Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO