PI6C110EV [ETC]

CPU System Clock Generator ; CPU的系统时钟发生器\n
PI6C110EV
型号: PI6C110EV
厂家: ETC    ETC
描述:

CPU System Clock Generator
CPU的系统时钟发生器\n

晶体 时钟发生器 外围集成电路 光电二极管
文件: 总15页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Features  
Description  
• 3of2.5V66/100/133MHz CPU(CPU[0-2])  
• 2of2.5V33MHzAPIC(APIC[0-1])  
• 9of3.3V100/133MHz SDRAM(SDRAM[0-7],DCLK)  
• 8of3.3V33MHzPCI(PCI[0-7])  
PericomPI6C110EintegratesadualPLLclockgenerator,SDRAM  
buffer and I C interface. The clock generator section comprised  
of an oscillator, 2 low jitter phased locked loop, skew control, and  
power down logic. The SDRAM buffers are high speed and low  
skew to handle data transfers in excess of 133 MHz.  
2
• 2of3.3V66MHz(3V66[0-1])  
When Spread Spectrum mode is enabled, all clock outputs are  
modulated except for REF and 48 MHz[0-1] outputs. These clocks  
are down spread linearly (triangular modulation) by +0%, –0.6%.  
• 2of3.3V48MHz(48MHz[0-1])  
• 1of3.3V14.3MHz(REF)  
To minimize power consumption and EMI radiation some unused  
• Selectable CPU and SDRAM clocks (on power up only)  
2
outputs can be turned off. Two wire I C interface is used to enable/  
• Power down function using PWR_DWN#  
disable Spread Spectrum mode, and to turned off PCI clocks, CPU  
clocks, and 48 MHz clocks.  
2
• Spread Spectrum Enable/Disable by I C  
2
For low power sleep mode, the entire device can be placed to power  
down mode. Driving the PWR_DWN# to low state disables the  
entire chip. In this state the crystal oscillator, and both PLLs are  
turned off. Furthermore, all outputs are deactivated to low state, all  
inputs are inactive except for PWR_DWN#.  
• I C interface to turn off unused clocks  
• 56pinSSOPpackage(V)  
Block Diagram  
Pin Configuration  
V
All trademarks are of their respective companies.  
PS8410  
08/11/99  
1
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Pin Description Table  
Pin  
Type Qty. P/S  
Symbol  
REF/SEL2  
XTAL_IN  
Description  
Normally 14.318 MHz reference output. During power up this pin is  
sampled as SEL2, clock bit 2. Internally pulled down w/100K Ohm.  
1
I/O  
1
3.3  
3
4
I
1
1
2
3.3  
3.3  
3.3  
14.318 MHz crystal input  
O
O
XTAL_OUT 14.318 MHz crystal output  
3V66 [0-1] 66 MHz  
7, 8  
11, 12, 13, 15,  
16, 18, 19, 20  
O
8
3.3  
PCI [0-7]  
PCI outputs  
25, 26  
28, 29  
30  
O
I
1
2
1
1
1
3.3 48 MHz [0-1] 48 MHz output  
3.3  
3.3  
3.3  
SEL [0-1]  
SDATA  
LVTTL level frequency select inputs, internal pullup  
2
I/O  
I
I C compatible SDATA, internal pullup  
2
31  
SCLOCK  
I C compatible SCLOCK, internal pullup  
32  
I
3.3 PWRDWN# LVTTL level Power Down control input, active low  
34, 36, 37, 39,  
40, 42, 43, 45, 46  
DCLK,  
SDRAM and DCLK outputs. 100/133 MHz depending on SEL [0-2].  
O
9
3.3  
2
SDRAM [0-7] SDRAM [0-7] can be turned off through I C, but not DCLK.  
49, 50, 52  
54, 55  
O
O
3
2
2.5  
2.5  
CPU [0-2] Host Bus Clock output. 66/100/133 MHz depending on SEL [0-2]  
APIC [0-1] 33 MHz APIC clock, synchronous to PCI clock  
2, 9, 10, 21, 27,  
33, 38, 44  
PWR  
GND  
8
8
3.3  
V
3.3V Power Supply  
3.3V Ground  
DD3.3  
5, 6, 14, 17, 24,  
35, 41, 47  
N/A  
V
SS3.3  
51, 53  
48, 56  
22  
PWR  
GND  
PWR  
GND  
2
2
1
1
2.5  
N/A  
3.3  
V
2.5V Power Supply  
2.5V Ground  
DD2.5  
V
SS2.5  
V
3.3V Core Power Supply  
3.3V Core Ground  
DDA  
23  
N/A  
V
SSA  
Frequency Select Function Table  
SEL2 SEL1 SEL0  
Function  
X
X
0
0
0
1
1
1
1
0
1
0
1
0
1
Tri-State  
Test  
CPU = 66 MHz, SDRAM = 100 MHz  
CPU = 100 MHz, SDRAM = 100 MHz  
CPU = 133 MHz, SDRAM = 133 MHz  
CPU = 133 MHz, SDRAM = 100 MHz  
0
1
1
PS8410  
08/11/99  
2
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
DC Specifications  
DC parameters must be sustainable under steady state (DC) conditions.  
Absolute Maximum DC Power Supply  
Symbol Parameter  
Min.  
-0.5  
-0.5  
-0.5  
-65  
Max.  
4.6  
Units  
V
Notes  
V
DDA  
V
DD2.5  
V
DD3.3  
S
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
3.3V I/O Supply Voltage  
Storage Temperature  
3.6  
V
4.6  
V
T
150  
°C  
Absolute Maximum DC I/O  
Symbol  
Parameter  
Min.  
-0.5  
Max.  
Units  
V
Notes  
V
IH3  
V
IL3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
4.6  
1
-0.5  
V
ESD prot. Input ESD protection  
2000  
V
2
Notes:  
1. Maximum VIH is not to exceed maximum VDD  
.
2. Human body model.  
DC Operating Specification  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units Notes  
V
V
V
3.3V Core Supply Voltage 3.3V ±5%  
3.135  
3.135  
2.375  
3.465  
3.465  
2.625  
V
V
V
2
2
2
DDA  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.3V ±5%  
2.5V ±5%  
DD3.3  
DD2.5  
V
V
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input Leakage Current  
V
2.0  
-5  
V +0.3  
DD  
V
V
4
IH3  
IL3  
DDA  
V -0.3  
0.8  
+5  
4
SS  
I
0 <V <V  
DD3.3  
µA  
1,4  
IL  
IN  
C
C
C
Input Pin Capacitance  
Xtal Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
pF  
pF  
pF  
nH  
°C  
in  
13.5  
0
22.5  
6
3
xtal  
out  
PIN  
A
L
T
7
Ambient Temperature  
No Airflow  
70  
Notes:  
1. Input Leakage Current does not include inputs with Pull-Up or Pull-down resistors.  
2. No power sequencing is implied or allowed to be required in the system.  
3. As seen by the crystal. Device is intended to be used with a 17-20pF AT crystal.  
4. All inputs referenced to 3.3V power supply.  
PS8410  
08/11/99  
3
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Clock Output Buffer DC Characteristics  
Buffer Name  
CPU, APIC  
48MHz, REF  
SDRAM  
VCC Range (V)  
Impedance (Ohm)  
13.5-45  
Buffer Type  
Type 1  
2.375 - 2.625  
20-60  
Type 3  
3.135-3.465  
10-24  
Type 4  
PCI, 3V66  
12-55  
Type 5  
Type 1: CPU, APIC Clocks  
Symbol  
IOHMIN  
IOHMAX  
IOLMIN  
IOLMAX  
Parameter  
Condition  
Min.  
Typ.  
Max. Units  
VOUT = 1.0V  
VOUT = 2.375V  
VOUT = 1.2V  
VOUT = 0.3V  
–27  
Pull-Up Current  
–27  
mA  
30  
Pull-Down Current  
30  
Type 3: 48 MHz, REF Clocks  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Units  
I
V
= 1.0V  
= 3.135V  
= 1.95V  
= 0.4V  
–29  
OHMIN  
OUT  
Pull-Up Current  
I
V
OUT  
–23  
mA  
OHMAX  
I
V
OUT  
29  
OLMIN  
Pull-Down Current  
I
V
27  
OLMAX  
OUT  
Type 4: SDRAM Clocks  
Symbol  
Parameter  
Condition  
= 2.0V  
OUT  
Min.  
Typ.  
Max.  
–46  
53  
Units  
I
V
–54  
OHMIN  
Pull-Up Current  
I
V
= 3.135V  
= 1.0V  
OUT  
OHMAX  
OUT  
mA  
I
V
54  
OLMIN  
Pull-Down Current  
I
V
OUT  
= 0.4V  
OLMAX  
Type 5: PCI, 3V66 Clocks  
Symbol  
Parameter  
Condition  
= 1.0V  
OUT  
Min.  
Typ.  
Max.  
–33  
38  
Units  
I
V
–33  
OHMIN  
Pull-Up Current  
I
V
= 3.135V  
OHMAX  
OUT  
mA  
I
V
= 1.95V  
= 0.4V  
30  
OLMIN  
OUT  
Pull-Down Current  
I
V
OUT  
OLMAX  
PS8410  
08/11/99  
4
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
AC Timing Specifications  
66 MHz  
100 MHz  
133 MHz  
Symbol  
Parameter  
Units Notes  
Min. Max. Min. Max. Min. Max.  
15.0 15.5 10.0 10.5 7.5 8.0  
T Period  
T HIGH  
T LOW  
Host/CPU CLK period  
Host/CPU CLK high time  
Host/CPU CLK low time  
ns  
ns  
2, 7  
3
5.2  
5.0  
1.0  
1.0  
0.4  
0.4  
N/A  
N/A  
4.0  
3.0  
2.8  
1.0  
1.0  
0.4  
0.4  
N/A 1.87 N/A  
N/A 1.67 N/A  
ns  
4
Edge Rate Rising Edge Rate (Type 1 Buffer 2.5V)  
Edge Rate Falling Edge Rate (Type 1 Buffer 2.5V)  
4.0  
4.0  
1.6  
1.6  
1.0  
1.0  
0.4  
0.4  
4.0  
4.0  
1.6  
1.6  
V/ns  
V/ns  
ns  
4.0  
T Rise  
Host/CPU CLK rise time  
Host/CPU CLK fall time  
1.6  
1, 6  
1, 6  
2, 7  
3
T Fall  
1.6  
ns  
T Period  
T HIGH  
T LOW  
APIC 33 MHz CLK period  
APIC 33 MHz CLK high time  
APIC 33 MHz CLK low time  
30.0 N/A 30.0 N/A 30.0 N/A  
12.0 N/A 12.0 N/A 12.0 N/A  
12.0 N/A 12.0 N/A 12.0 N/A  
ns  
ns  
ns  
4
Edge Rate Rising Edge Rate (Type 1 Buffer 2.5V)  
Edge Rate Falling Edge Rate (Type 1 Buffer 2.5V)  
1.0  
1.0  
0.4  
0.4  
4.0  
4.0  
1.6  
1.6  
1.0  
1.0  
0.4  
0.4  
4.0  
4.0  
1.6  
1.6  
1.0  
1.0  
0.4  
0.4  
4.0  
4.0  
1.6  
1.6  
V/ns  
V/ns  
ns  
T Rise  
APIC 33 MHz CLK rise time  
APIC 33 MHz CLK fall time  
3V66 CLK period  
1, 6  
1, 6  
2, 7  
3
T Fall  
ns  
T Period  
T HIGH  
T LOW  
15.0 16.0 15.0 16.0 15.0 16.0  
5.25 N/A 5.25 N/A 5.25 N/A  
ns  
3V66 CLK high time  
ns  
3V66 CLK low time  
5.5  
1.0  
1.0  
0.5  
0.5  
N/A  
4.0  
4.0  
2.0  
2.0  
5.5  
1.0  
1.0  
0.5  
0.5  
N/A  
4.0  
4.0  
2.0  
2.0  
5.5 N/A  
ns  
4
Edge Rate Rising Edge Rate (Type 5 Buffer 3.3V)  
Edge Rate Falling Edge Rate (Type 5 Buffer 3.3V)  
1.0  
1.0  
0.5  
0.5  
4.0  
4.0  
2.0  
2.0  
V/ns  
V/ns  
ns  
T Rise  
3V66 CLK rise time  
1, 6  
1, 6  
2, 7  
3
T Fall  
3V66 CLK fall time  
ns  
T Period  
T HIGH  
T LOW  
PCI & APIC CLK period  
PCI & APIC CLK high time  
PCI & APIC CLK low time  
30.0 N/A 30.0 N/A 30.0 N/A  
12.0 N/A 12.0 N/A 12.0 N/A  
12.0 N/A 12.0 N/A 12.0 N/A  
ns  
ns  
ns  
4
Edge Rate Rising Edge Rate (Type 5 Buffer 3.3V)  
Edge Rate Falling Edge Rate (Type 5 Buffer 3.3V)  
1.0  
1.0  
4.0  
4.0  
2.0  
2.0  
1.0  
1.0  
0.5  
0.5  
4.0  
4.0  
2.0  
2.0  
1.0  
1.0  
0.5  
0.5  
4.0  
4.0  
2.0  
2.0  
8.0  
V/ns  
V/ns  
ns  
T Rise  
PCI & APIC CLK rise time  
PCI & APIC CLK fall time  
SDRAM CLK period  
0.5  
1, 6  
1, 6  
2, 7  
3
T Fall  
0.5  
ns  
T Period  
T HIGH  
T LOW  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.0  
N/A 10.5 10.5 7.5  
ns  
SDRAM CLK high time  
SDRAM CLK low time  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
10.0  
10.0  
3
3.0  
2.8  
1.5  
1.5  
0.4  
0.4  
1.0  
1.0  
N/A 1.87 N/A  
N/A 1.67 N/A  
ns  
ns  
4
Edge Rate Rising Edge Rate (Type 4 Buffer 3.3V)  
Edge Rate Falling Edge Rate (Type 4 Buffer 3.3V)  
4.0  
4.0  
1.6  
1.6  
1.0  
1.0  
0.4  
0.4  
4.0  
4.0  
1.6  
1.6  
V/ns  
V/ns  
ns  
T Rise  
T Fall  
SDRAM CLK rise time  
SDRAM CLK fall time  
1, 6  
1, 6  
ns  
TpZL, tpZH Output Enable Delay (All Outputs)  
TpLZ, tpZH Output Disable Delay (All Outputs)  
10.0 1.0 10.0  
10.0 1.0 10.0  
ns  
1.0  
ns  
Tstable  
All clock stabilization from power-up  
3
3
ms  
5
(see notes on next page)  
PS8410  
08/11/99  
5
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
AC Timing Notes:  
1. Output drivers must have monotonic rise/fall times through the specified V /V levels.  
OL OH  
2. Period, jitter, offset and skew measured on rising edge @1.25V for 2.5V clocks and @ 1.5V for 3.3V clocks.  
3. T  
4. T  
is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
is measured at 0.4V for all outputs.  
HIGH  
LOW  
5. The time specified is measured from when the power supply achieves its nominal operating level  
(typical condition V = 3.3V) until the frequency output is stable and operating within specification.  
DD3.3V  
6. T  
and T  
are measured as a transition through the threshold region  
RISE  
FALL  
V
OL  
= 0.4V and V = 2.0V (1mA) JEDEC Specification.  
OH  
7. The average period over any 1µs period of time must be greater than the minimum specified period.  
Group Skew And Jitter Limits  
Pin-pin  
Output  
Group  
Skew  
MAX.  
Cycle-Cycle  
Jitter  
Skew, jitter  
measure point  
Duty Cycle  
45/55  
Nom V  
2.5V  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
3.3V  
DD  
CPU  
175ps  
250ps  
250ps  
N/A  
250ps  
250ps  
500ps  
500ps  
500ps  
500ps  
1000ps  
1.25V  
1.5V  
1.25V  
1.5V  
1.5V  
1.5V  
1.5V  
SDRAM  
APIC  
48 MHz  
3V66  
PCI  
45/55  
45/55  
45/55  
175ps  
500ps  
N/A  
45/55  
45/55  
REF  
45/55  
Output  
Buffer  
Test Point  
Test Load  
Output Waveform  
Tperiod  
Duty Cycle  
THIGH  
2.0  
2.5V Clocking  
1.25  
0.4  
Interface  
TLOW  
TRISE  
TFALL  
Tperiod  
Duty Cycle  
THIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
TLOW  
TRISE  
TFALL  
Figure 1.  
PS8410  
08/11/99  
6
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
2.5 Volt Measure Points  
VDD2.5  
Measurement Points For Component Output  
Voh = 2.0V  
Vih = 1.7V  
1.25V  
Vil = 0.7V  
Vol =0.4V  
Vss  
Measurement Points For System Level Inputs  
3.3 Volt Measure Points  
VDD2.5  
Measurement Points For Component Output  
Voh = 2.4V  
Vih = 2.0V  
1.5V  
Vil = 0.8V  
Vol =0.4V  
Vss  
Measurement Points for System Level Inputs  
Figure 2. Component Versus System Measure Points  
Group to Group Skew Tolerance  
CPU66  
CPU66  
CPU100  
Offset  
5.0ns  
CPU100  
Tolerance  
500ps  
N/A  
CPU133  
Offset  
0.0ns  
CPU133  
Tolerance  
500ps  
500ps  
500ps  
500ps  
500ps  
500ps  
1.0ns  
Group  
Offset  
2.5ns  
Tolerance  
500ps  
N/A  
CPU to SDRAM100  
CPU to SDRAM133  
CPU to 3V66  
N/A  
N/A  
5.0ns  
5.0ns  
500ps  
500ps  
N/A  
5.0ns  
500ps  
500ps  
N/A  
0.0ns  
SDRAM100 to 3V66  
SDRAM133 to 3V66  
3V66 to PCI  
0.0ns  
0.0ns  
0.0ns  
N/A  
N/A  
0.0ns  
1.5~3.5ns  
0.0ns  
500ps  
1.0ns  
1.5~3.5ns  
0.0ns  
500ps  
1.0ns  
1.5~3.5ns  
0.0ns  
PCI to APIC  
48 MHz & DOT  
Async  
N/A  
Async  
N/A  
Async  
N/A  
Note:  
Only offset specifications listed above are guaranteed/tested. The specification is treated as ANY output within first  
specified bank to ANY output of the second specified bank. Pin-pin skew is implied within offset specification, jitter  
is not. Previous offset specifications such as CPU to PCI offset are no longer required.  
PS8410  
08/11/99  
7
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Group Offset Measurement Clarification  
PS8410  
08/11/99  
8
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Clock Enable Configuration  
REF,  
48 MHZ  
PWR_DWN#  
CPU  
SDRAM APIC  
3V66  
PCI  
Osc  
VCOs  
0
LOW  
ON  
LOW  
ON  
LOW  
ON  
LOW  
ON  
LOW  
ON  
LOW  
ON  
OFF  
ON  
OFF  
ON  
1
Notes:  
1. LOW means outputs held static LOW.  
2. ON means active.  
3. PWR_DWN# pulled LOW, impacts all outputs including REF and 48 MHz outputs.  
Truth Table  
SEL2 SEL1 SEL0  
CPU  
SDRAM  
Hi-Z  
3V66  
Hi-Z  
PCI  
48 MHz  
REF  
APIC  
Hi-Z  
Notes  
1
X
0
0
1
1
1
1
0
1
0
1
0
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
X
TCLK/2  
66 MHz  
100 MHz  
133 MHz  
133 MHz  
TCLK/2  
100 MHz  
100 MHz  
133 MHz  
100 MHz  
TCLK/3  
66 MHz  
66 MHz  
66 MHz  
66 MHz  
TCLK/6  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
TCLK/2  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
TCLK  
TCLK/6  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
3, 4  
0
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
0
1
2, 5, 6  
1
Notes:  
1. Required for board level “bed of nails” testing.  
2. “Normal” mode of operation.  
3. TCLK is a test clock over driven on the XTAL_IN input during test mode.  
4. Required for DC output impedance verification.  
5. Range of reference frequency allowed is min = 14.316 MHz, nominal = 14.31818 MHz, max = 14.32 MHz.  
6. Frequency accuracy of 48 MHz is ±167PPM to match 48 MHz default.  
System Clock Design Considerations  
PI6C110E supports 4 operational modes. It varies the FSB (Front Side Bus) and SDRAM clock frequencies. FSB selection is 66  
MHz, 100 MHz or 133 MHz. SDRAM frequency is either 100 MHz or 133 MHz. The supported modes are:  
SEL[2:0] Mode  
CPU SDRAM 3V66  
APIC/PCI  
0 1 0  
0 1 1  
1 1 0  
1 1 1  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
66  
100  
133  
133  
100  
100  
133  
100  
66  
66  
66  
66  
33  
33  
33  
33  
default  
The clock select pins, SEL[2:0] have the appropriate 100K (±20K) internal pull up and pull down to allow the system defaults to 100 MHz  
CPUclockand100MHzSDRAMclockwithoutexternalstrappingresistor. SEL2inpulleddown, SEL1andSEL0ispulleduptoindicate  
“0 1 1”.  
The APIC clock is a 33 MHz, the same frequency and phase as the PCI clocks, except it is powered by 2.5V supply. APIC and PCI clocks  
are always in phase with the other clocks. In Mode 0, CPU and 3V66 are inverted. In Mode 1 and Mode 3, CPU and SDRAM clocks  
are inverted.  
System Debug and Timing Margin Analysis  
To support system debug and to measure/test margin analysis, the internal PI6C110E oscillator circuits allows the input crystal frequency  
to be driven with parallel resonant crystal with frequency range of 10 MHz to 20 MHz in laboratory environment. The alternative is to  
put the device in TEST mode, SEL2 = “don’t care”, SEL1 = “1” and SEL0 = “0”. Then drive a clock signal to XTAL_IN (pin 3) from  
a signal generator and float XTAL_OUT (pin 4).  
PS8410  
08/11/99  
9
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Power Management  
Maximum Current  
Max. 2.5 supply consumption,  
Max. discreet cap loads,  
Max. 3.3 supply consumption,  
Max. discreet cap loads,  
Condition  
VDD2.5 = 2.625V  
VDD3.3 = 3.465V,  
All static inputs = VDD3.3 or VSS  
All static inputs = VDD3.3 or VSS  
Power Down Mode  
(PWRDWN#) = 0)  
100µA  
200µA  
CPU = 66 MHz, SDRAM = 100 MHz  
SEL [0-2] = 010  
70mA  
100mA  
TBD  
280mA  
280mA  
TBD  
CPU = 100 MHz, SDRAM = 100 MHz  
SEL [2-0] = 011  
CPU = 133 MHz, SDRAM = 133 MHz  
SEL [2-0] = 110  
CPU = 133 MHz, SDRAM = 100 MHz  
SEL [2-0] = 111  
TBD  
TBD  
Power Management  
Latency  
No. of rising edges of PCI Clocks  
3ms  
Signal  
Signal State  
PWRDWN#  
1 (normal operation)  
0 (power down)  
See Timing Diagram Below  
Notes:  
1. Clock on/off latency is defined in the number of rising edges of free running PCI clock  
between the clock disable goes low/high to the first valid clock comes out of the device.  
2. Power up latency is when PWRDWN# goes inactive (high) to when the first valid clocks  
are driven from the device.  
The power down selection is used to put the part into a very low  
power state without turning off the power to the part. PWRDWN#  
is an asynchronous active low input. This signal is synchronized  
internal to the device prior to powering down the clock synthesizer.  
PWRDWN# is an asynchronous function for powering up the  
system. Internal clocks are not running after the device is put in  
power down. When PWRDWN# is active low all clocks are driven  
toalowvalueandheldpriortoturningofftheVCO’sandthecrystal.  
The power -up latency needs to be less than 3ms. The REF and  
48 MHz clocks are expected to be stopped in the LOW state as soon  
as possible. Due to the state of the internal logic, stopping and  
holding the REF clock outputs in the LOW state may require more  
than one clock cycle to complete.  
PS8410  
08/11/99  
10  
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
PWRDWN# Timing Diagram  
Notes:  
1. Once the PWRDWN# signal is sampled LOW for two consecutive rising edges of CPU clock, clocks of interest should be held LOW on the  
next high to low transition.  
2. PWRDWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside the part.  
3. The shaded sections on the SDRAM, REF, and 48 MHz clocks indicate don’t care states.  
4. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66/133 MHz.  
Minimum and Maximum Lumped Capacitive Loads  
Min.  
Load  
Max.  
Load  
Clock  
Units  
Notes  
CPU  
PCI  
10  
10  
20  
10  
10  
10  
10  
20  
30  
30  
30  
20  
20  
20  
1 device load, possible 2 loads  
Must meet PCI 2.1 requirements  
PC100/PC133 specs  
1 device load, possible 2 loads  
1 device load,  
SDRAM  
3V66  
pF  
48MHz  
REF  
1 device load,  
APIC  
1 device load,  
PS8410  
08/11/99  
11  
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
2
I C Considerations  
1. Address Assignment: Any clock driver in this specification can use the single, 7 bit address shown below. All devices can use  
the address if only one master clock driver is used in a design.  
The following address was confirmed by Philips on 09/04/96.  
A6  
1
A5  
1
A4  
0
A3  
1
A2  
0
A1  
0
A0  
1
R/W#  
0
Note:  
2
The R/W# bit is used by the I C controller as a data direction bit. A “zero” indicates a transmission (WRITE) to the clock device.  
A ‘one’ indicates a request for data (READ) from the clock driver. Since the definition of the clock buffer only allows the controller  
to WRITE data; the R/W# bit of the address will always be seen as a “zero.”  
2. Slave/Receiver: The clock driver is assumed to require only slave/receiver functionality.  
3. Data Transfer Rate: 100 kbits/s (standard mode) is the base functionality.  
4. Logic Levels: Assume all devices are based on a 3.3 Volt supply.  
5. Data Byte Format: Byte format is 8-bits.  
6. Data Protocol:  
2
To simplify the clock I C interface, the clock driver serial protocol was specified to use only block writes from the controller.  
The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte  
has been transferred. Indexed bytes are not allowed.  
2
The clock driver must meet this protocol which is more rigorous than previously stated I C protocol. Treat the description from  
the viewpoint of controller. The controller “writes” to the clock driver and if possible would “read” from the clock driver.  
“The block write begins with a slave address and a write condition. After the command code the host (controller) issues a byte  
count which describes how many more bytes will follow in the message. If the host had 20 bytes to send, the first byte would  
be the number 20 (14h), followed by the 20 bytes of data. The byte count may not be 0. A block write command is allowed  
to transfer a maximum of 32 data bytes.”  
Note: The acknowledgment bit is returned by the slave/receiver (the clock driver).  
PS8410  
08/11/99  
12  
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Consider the command code and the byte count bytes required as the first two bytes of any transfer. The command code is software  
programmable via the controller, but will be specified as 0000 0000 in the clock specification. The byte count byte is the number of  
additional bytes required for the transfer, not counting the command code and byte count bytes. Additionally, the byte count byte is  
required to be a minimum of 1 byte and a maximum of 32 bytes to satisfy the above requirement. For example:  
Byte count byte  
Notes  
MSB  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0010  
LSB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
Not allowed. Must have at least one byte.  
Data for functional and frequency select register (currently byte 0 in spec)  
Reads first two bytes of data (byte 0, then byte 1)  
Reads first three bytes of data (byte 0, 1, 2 in order)  
Reads first four bytes of data (byte 0, 1, 2, 3 in order)  
Reads first five bytes of data (byte 0, 1, 2, 3, 4 in order)  
Reads first six bytes of data (byte 0, 1, 2, 3, 4, 5 in order)  
Reads first seven bytes of data (byte 0, 1, 2, 3, 4, 5, 6 in order)  
Max. byte count supported = 32  
A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller. The serial controller  
interface can be simplified by discarding the information in both the command code and the byte count bytes and simply reading all the  
bytes that are sent to the clock driver after being addressed by the controller. It is expected that the controller will not provide more bytes  
than the clock driver can handle.  
7. Clock Stretching: The clock device must not hold/stretch the SCLK or SDATA lines low for more than 10 mS. Clock stretching is  
discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than this time puts the device in an error/  
time-out mode and may not be supported in all platforms. It is assumed that all data transfers can be completed as specified without  
the use of clock/data stretching.  
8. General Call: It is assumed that the clock driver will not have to respond to the “general call.”  
9. Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in section 15  
2
of the I C specification.  
A) Pull-Up Resistors: There is a 100k internal resistor pull-ups on the SDATA and SCLK inputs. Assume that the board designer  
2
will use a single external pull-up resistor for each line and that these values are in the 5-6K Ohm range. Assume one I C device  
2
2
per DIMM (serial presence detect), one I C controller, one clock driver plus one/two more I C devices on the platform for capacitive  
loading purposes.  
2
B) Input Glitch Filters: Only fast mode I C devices require input glitch filters to suppress bus noise. The clock driver is specified  
as a standard mode device and is not required to support this feature.  
10. PWRDWN#: If a clock driver is placed in Power down mode, the SDATA and SCLK inputs are Tri-Stated and the device must retain  
all programming information.  
2
2
For specific I C information consult the Philips I C Peripherals Data Handbook ICI2 (1996)  
PS8410  
08/11/99  
13  
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
PI6C110E Conditions  
At power up all SDRAM outputs are enabled and active. The SDATA and SCLK inputs have internal pull-up resistors with values  
above 100K Ohms as well for complete platform flexibility.  
PI6C110E Serial Configuration Map  
A) The serial bits will be read by the clock driver in the following order:  
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0  
B) All unused register bits (reserved and N/A) are designed as don't care. The controller will force all of these bits to a “0” level.  
C) All reserved bits should be programmed to a logic level “ 0.”  
Note:  
1. Default is for ALL clocks to be enabled and all reserved bits should be programmed to a logic level “0.”  
Spread spectrum modulation should power up disabled (Byte 0 bit 3 = 0).  
Byte 0 : Control Register (1 = Enable, 0 = Disable)  
Byte 1: Control Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Pin Description  
Bit  
Pin#  
36 SDRAM7  
Name  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
–
–
–
–
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
37 SDRAM6  
39 SDRAM5  
40 SDRAM4  
42 SDRAM3  
43 SDRAM2  
45 SDRAM1  
46 SDRAM0  
(Active/Inactive)  
(Active/Inactive)  
Spread Spectrum  
(1 = On / 0 = Off)  
Bit 3  
–
Bit 2  
Bit 1  
Bit 0  
26 USB1  
25 USB0  
49 CPU2  
Byte 3 and Byte 4:  
Reserved Register (1 = Enable, 0 = Disable)  
Byte 2: Control Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
20 PCI7  
Name  
Pin Description  
Bit  
Pin#  
–
Name  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
Reserved Drive to '0'  
19 PCI6  
18 PCI5  
16 PCI4  
15 PCI3  
13 PCI2  
12 PCI1  
–
–
–
(Active/Inactive)  
(Active/Inactive)  
–
–
–
–
Reserved Drive to '0'  
–
Note: Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not  
expected to be configured during the normal modes of operation.  
PS8410  
08/11/99  
14  
PI6C110E  
Clock Solution for 133 MHz  
Celeron/Pentium II/III Processors  
Ordering Information  
P/N  
Description  
PI6C110EV  
56-pin SSOP Package  
56 Pin SSOP Package Data  
56  
.291  
.299  
7.39  
7.59  
.396  
.416  
10.06  
10.56  
Gauge Plane  
0.25  
.02  
.04  
.010  
0.51  
1.01  
1
.015 0.381  
x 45˚  
18.29  
18.54  
.720  
.730  
.008  
0.20  
.025 0.635  
Nom.  
.110 2.79  
Max  
.008  
.0135  
0.20  
0.34  
.025 BSC  
0.635  
0.20  
0.40  
.008  
.016  
0-8˚  
X.XX  
X.XX  
DENOTES DIMENSIONS  
IN MILLIMETERS  
Pericom Semiconductor Corporation  
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com  
PS8410  
08/11/99  
15  

相关型号:

PI6C110VX

Processor Specific Clock Generator, 100MHz, CMOS, PDSO56, 0.300 INCH, 0.635 MM PITCH, SSOP-56
PERICOM

PI6C112-02V

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, 0.635 MM PITCH, SSOP-48
PERICOM

PI6C112-02VX

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, 0.635 MM PITCH, SSOP-48
PERICOM

PI6C115-02A

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, TSSOP-56
PERICOM

PI6C115-02AE

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, TSSOP-56
PERICOM

PI6C115-02V

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, SSOP-56
PERICOM

PI6C1201A

Clock Generator,
DIODES

PI6C1201ASX

Video Clock Generator, 40MHz, CMOS, PDSO20, 0.300 INCH, 1.27 MM PITCH, SOIC-20
PERICOM

PI6C1201CS

Video Clock Generator, 70MHz, CMOS, PDSO20, 0.300 INCH, 1.27 MM PITCH, SOIC-20
PERICOM

PI6C1201CSX

Video Clock Generator, 70MHz, CMOS, PDSO20, 0.300 INCH, 1.27 MM PITCH, SOIC-20
PERICOM

PI6C1201S

Video/Graphics Clock Generator
ETC

PI6C1201SA

Clock Generator, CMOS, PDSO20
DIODES