PB1507GV-E1-A [ETC]

BIPOLAR DIGITAL INTEGRATED CIRCUITS PB1507GV; 双极型数字集成电路? PB1507GV
PB1507GV-E1-A
型号: PB1507GV-E1-A
厂家: ETC    ETC
描述:

BIPOLAR DIGITAL INTEGRATED CIRCUITS PB1507GV
双极型数字集成电路? PB1507GV

文件: 总16页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BIPOLAR DIGITAL INTEGRATED CIRCUITS  
μPB1507GV  
3GHz INPUT DIVIDE BY 256, 128, 64 PRESCALER IC  
FOR ANALOG DBS TUNERS  
The μPB1507GV has 3.0 GHz input, high division silicon prescaler ICs for analog DBS tuner applications. This IC  
divide-by-256, 128 and 64 contribute to produce analog DBS tuners with kit-use of 17 K series DTS controller or  
standard CMOS PLL synthesizer IC. The μPB1507GV is a shrink package version of the μPB586G/588G or  
μPB1505GR so that these smaller packages contribute to reduce the mounting space replacing from conventional  
ICs.  
The μPB1507GV are manufactured using the high fT NESAT™IV silicon bipolar process. This process uses  
silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution  
and prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability.  
FEATURES  
High toggle frequency  
: fin = 0.5 GHz to 3.0 GHz  
High-density surface mounting : 8-pin plastic SSOP (175 mil)  
Low current consumption  
Selectable high division  
Pin connection variation  
: 5 V, 19 mA  
: ÷256, ÷128, ÷64  
: μPB1507GV  
APPLICATION  
These ICs can use as a prescaler between local oscillator and PLL frequency synthesizer included modulus  
prescaler. For example, following application can be chosen;  
Analog DBS tuner’s synthesizer  
Analog CATV converter synthesizer  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
SSOP (175 mil) (Pb-Free)  
MARKING  
1507  
SUPPLYING FORM  
direction. 1 000 p/reel.  
μPB1507GV-E1-A  
Remarks To order evaluation samples, please contact your local nearby sales office.  
(Part number for sample order: μPB1507GV-A)  
Caution: Electro-static sensitive devices  
Document No. P10767EJ3V0DS00 (3rd edition)  
Date Published January 1998 N CP(K)  
μPB1507GV  
PIN CONNECTION (Top View)  
Pin  
μPB1506GV  
μPB1507GV  
NO.  
1
2
3
4
5
6
7
8
SW1  
IN  
IN  
VCC  
IN  
SW1  
OUT  
GND  
SW2  
NC  
GND  
NC  
SW2  
OUT  
VCC  
IN  
PRODUCT LINE-UP  
Features  
Part No.  
ICC  
fin  
VCC  
(V)  
Package  
Pin connection  
(division, Freq.)  
(mA)  
(GHz)  
÷512, ÷256, 2.5 GHz  
÷128, ÷64, 2.5 GHz  
÷256, ÷128, ÷64  
μPB586G  
28  
26  
14  
19  
0.5 to 2.5  
0.5 to 2.5  
0.5 to 3.0  
0.5 to 3.0  
4.5 to 5.5  
4.5 to 5.5  
4.5 to 5.5  
8 pin SOP 225 mil  
Original  
μPB588G  
μPB1505GR  
μPB1507GV  
Standard  
Standard  
4.5 to 5.5 8 pin SSOP 175 mil  
Remarks  
This table shows the TYP values of main parameters.  
CHARACTERISTICS.  
Please refer to ELECTRICAL  
μPB586G and μPB588G are discontinued.  
INTERNAL BLOCK DIAGRAM  
D
Q
D
Q
Q
D
Q
Q
D
Q
Q
D
Q
Q
CLK  
CLK  
CLK  
CLK  
CLK  
IN  
IN  
CLK Q  
D
Q
Q
D
Q
Q
D
Q
Q
CLK  
CLK  
CLK  
OUT  
AMP  
SW1  
SW2  
2
μPB1507GV  
SYSTEM APPLICATION EXAMPLE  
RF unit block of Analog DBS tuners  
1stIF input  
from DBS converter  
MIX  
Baseband output  
BPF  
SAW  
AGC amp.  
FM demo.  
To 2150 MHz  
High division prescaler  
CMOS  
PLL  
synthesizer  
μ
PB1506GV or  
OSC  
To 2650 MHz  
μPB1507GV  
LPF  
loop filter  
RF unit block of Analog CATV converter  
upconverter  
downconverter  
BPF  
To 800 MHz  
BPF  
To 1300 MHz  
High division prescaler  
CMOS  
PLL  
synthesizer  
μ
PB1506GV or  
μPB1507GV  
OSC  
To 2000 MHz  
LPF  
loop filter  
3
μPB1507GV  
PIN EXPLANATION  
Applied  
voltage  
V
Pin  
voltage  
V
Pin no.  
Functions and explanation  
Pin name  
IN  
μPB1507GV  
2.9  
Signal input pin. This pin should be coupled to signal  
source with capacitor (e.g. 1 000 pF) for DC cut.  
1
IN  
2.9  
Signal input bypass pin. This pin must be equipped  
with bypass capacitor (e.g. 1 000 pF) to minimize  
ground impedance.  
8
GND  
SW1  
0
Ground pin. Ground pattern on the board should be  
formed as wide as possible to minimize ground  
impedance.  
5
3
H/L  
Divide ratio input pin. The ratio can be determined by  
following applied level to these pins.  
SW2  
H
L
SW2  
6
H
L
÷64  
÷128  
÷128  
÷256  
SW1  
These pins should be equipped with bypass capacitor  
(e.g. 1 000 pF) to minimize ground impedance.  
VCC  
OUT  
NC  
4.5 to 5.5  
Power supply pin. This pin must be equipped with  
bypass capacitor (e.g. 10 000 pF) to minimize ground  
impedance.  
2
4
7
2.6 to 4.7 Divided frequency output pin. This pin is designed as  
emitter follower output. This pin can be connected to  
CMOS input due to 1.2 VP-P MIN output.  
Non connection pin. This pin must be openned.  
4
μPB1507GV  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply voltage  
SYMBOL  
CONDITION  
RATINGS  
UNIT  
V
VCC  
Vin  
TA = +25 °C  
TA = +25 °C  
0.5 to +6.0  
0.5 to VCC + 0.5  
250  
Input voltage  
V
Total power dissipation  
PD  
Mounted on double sided copper clad  
50 × 50 × 1.6 mm epoxy glass PWB (TA =  
+85 °C)  
mW  
Operating ambient temperature  
Storage temperature  
TA  
40 to +85  
°C  
°C  
Tstg  
55 to +150  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
VCC  
MIN.  
4.5  
TYP.  
5.0  
MAX.  
5.5  
UNIT  
V
NOTICE  
Supply voltage  
Operating ambient temperature  
TA  
40  
+25  
+85  
°C  
ELECTRICAL CHARACTERISTICS (TA = 40 to +85 °C, VCC = 4.5 to 5.5 V, ZS = 50 Ω)  
PARAMETER  
Circuit current  
SYMBOL  
ICC  
TEST CONDITION  
No signals  
MIN.  
12.5  
3.0  
TYP.  
MAX.  
26.5  
UNIT  
mA  
19  
Upper limit operating frequency  
Lower limit operating frequency 1  
Lower limit operating frequency 2  
Input power 1  
fin(u)  
Pin = 15 to +6 dBm  
Pin = 10 to +6 dBm  
Pin = 15 to +6 dBm  
fin = 1.0 to 3.0 GHz  
fin = 0.5 to 1.0 GHz  
CL = 8 pF  
GHz  
GHz  
GHz  
dBm  
dBm  
VP-P  
fin(L)1  
fin(L)2  
Pin1  
0.5  
1.0  
+6  
15  
10  
1.2  
VCC  
Input power 2  
Pin2  
+6  
Output Voltage  
Vout  
1.6  
VCC  
Divide ratio control input high  
VIH1  
Connection in the test  
circuit  
VCC  
Divide ratio control input low  
Divide ratio control input high  
Divide ratio control input low  
VIL1  
VIH2  
VIL2  
Connection in the test  
circuit  
OPEN or  
GND  
OPEN or  
GND  
OPEN or  
GND  
Connection in the test  
circuit  
VCC  
VCC  
VCC  
Connection in the test  
circuit  
OPEN or  
GND  
OPEN or  
GND  
OPEN or  
GND  
5
μPB1507GV  
TYPICAL CHARACTERISTICS (Unless otherwise specified TA = +25 °C)  
CIRCUIT CURRENT vs. SUPPLY VOLTAGE  
25  
No signals  
T = +85°C  
A
20  
15  
0
TA = +25°C  
TA = –40°C  
5
0
0
1
2
3
4
5
6
VCC - Supply Voltage - V  
Divide by 64 mode  
INPUT POWER vs. INPUT FREQUENCY  
= +25°C  
INPUT POWER vs. INPUT FREQUENCY  
CC = 4.5 to 5.5 V  
+20  
+10  
0
+20  
+10  
0
V
T
A
V
CC = 4.5 to 5.5 V  
T = +25°C  
A
T
A
= –40°C  
= +85°C  
Guaranteed  
Operating  
Window  
Guaranteed  
Operating  
Window  
T
A
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
T
A
= +85°C  
V
CC = 4.5 to 5.5 V  
T
A
= +25 °C  
T
A
= –40°C  
100  
1000  
in - Input Frequency - MHz  
4000  
100  
1000  
fin - Input Frequency - MHz  
4000  
f
OUTPUT VOLTAGE vs.INPUT FREQUENCY  
OUTPUT VOLTAGE vs.INPUT FREQUENCY  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T
P
A
= +25°C  
T
A
= –40°C  
in = –10 dBm  
Pin = –10 dBm  
V
CC = 5.5 V  
V
V
CC = 5.5 V  
CC = 5.0 V  
V
CC = 5.0 V  
CC = 4.5 V  
V
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
100  
1000  
fin - Input Frequency - MHz  
4000  
f
6
μPB1507GV  
OUTPUT VOLTAGE vs. INPUT RFEQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T
P
A
= +85°C  
in = –10 dBm  
V
CC = 5.5 V  
CC = 5.0 V  
V
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
f
Divide by 128 mode  
INPUT POWER vs. INPUT FREQUENCY  
= +25°C  
INPUT POWER vs. INPUT FREQUENCY  
CC = 4.5 to 5.5 V  
+20  
+10  
0
+20  
+10  
0
V
T
A
T = +25°C  
A
T
A
= –40°C  
= +85°C  
V
CC = 4.5 to 5.5 V  
Guaranteed  
Operating  
Window  
Guaranteed  
Operating  
Window  
T
A
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
T
A
= +85°C  
= +25°C  
= –40°C  
V
CC = 4.5 to 5.5 V  
T
A
A
T
100  
1000  
in - Input Frequency - MHz  
4000  
100  
1000  
fin - Input Frequency - MHz  
4000  
f
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
T
P
A
= +25°C  
T
A
= –40°C  
in = –10 dBm  
Pin = –10 dBm  
V
V
CC = 5.5 V  
V
CC = 5.5 V  
V
CC = 5.0 V  
V
CC = 5.0 V  
CC = 4.5 V  
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
100  
1000  
4000  
f
f
in - Input Frequency - MHz  
7
μPB1507GV  
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
T
P
A
= +85°C  
in = –10 dBm  
V
CC = 5.5 V  
V
CC = 5.0 V  
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
f
Divide by 256 mode  
INPUT POWER vs. INPUT FREQUENCY  
= +25°C  
INPUT POWER vs. INPUT FREQUENCY  
CC = 4.5 to 5.5 V  
+20  
+10  
0
+20  
+10  
0
V
T
A
T
A
= –40°C  
= +85°C  
= +25°C  
V
CC = 4.5 to 5.5 V  
Guaranteed  
Operating  
Window  
Guaranteed  
Operating  
Window  
T
A
T
A
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
T
A
= +85°C  
= +25°C  
= –40 °C  
V
CC = 4.5 to 5.5 V  
T
A
T
A
100  
1000  
4000  
100  
1000  
fin - Input Frequency - MHz  
4000  
f
in - Input Frequency - MHz  
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
T
P
A
= +25°C  
T
A
= –40°C  
in = –10 dBm  
Pin = –10 dBm  
V
CC = 5.5 V  
V
CC = 5.5 V  
V
CC = 5.0 V  
V
CC = 5.0 V  
V
CC = 4.5 V  
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
100  
1000  
fin - Input Frequency - MHz  
4000  
f
8
μPB1507GV  
OUTPUT VOLTAGE vs. INPUT FREQUENCY  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
T
P
A
= +85°C  
in = –10 dBm  
V
CC = 5.5 V  
V
CC = 5.0 V  
V
CC = 4.5 V  
100  
1000  
in - Input Frequency - MHz  
4000  
f
9
μPB1507GV  
μPB1507GV  
S11 vs. INPUT FREQUENCY  
VCC = 5.0 V  
FREQUENCY  
MHz  
S11  
MAG  
ANG  
S
11  
Z
REF 1.0 Units  
500.0000  
600.0000  
.857  
.849  
.800  
.764  
.725  
.665  
.619  
.573  
.531  
.484  
.439  
.377  
.340  
.377  
.441  
.464  
.443  
.466  
.465  
.454  
.433  
.383  
.350  
.332  
.271  
.185  
–27.5  
–32.0  
–38.9  
–43.8  
–49.0  
–50.9  
–55.3  
–59.3  
–61.3  
–62.8  
–63.0  
–59.1  
–54.1  
–54.7  
–59.5  
–67.2  
–67.4  
–74.5  
–81.3  
–89.4  
–99.2  
–109.6  
–114.0  
–124.2  
–141.2  
–163.6  
200.0 mUnits/  
38.111 Ω 0.9707 Ω  
4
700.0000  
hp  
800.0000  
900.0000  
C
D
1000.0000  
1100.0000  
1200.0000  
1300.0000  
1400.0000  
1500.0000  
1600.0000  
1700.0000  
1800.0000  
1900.0000  
2000.0000  
2100.0000  
2200.0000  
2300.0000  
2400.0000  
2500.0000  
2600.0000  
2700.0000  
2800.0000  
2900.0000  
3000.0000  
MARKER 4  
3.0 GHz  
: 500 MHz  
: 1000 MHz  
: 2000 MHz  
: 3000 MHz  
1
2
3
4
4
1
3
2
START  
STOP  
0.500000000 GHz  
3.000000000 GHz  
10  
μPB1507GV  
μPB1507GV  
S22 vs. OUTPUT FREQUENCY  
Divide by 64 mode, VCC = 5.0 V  
FREQUENCY  
MHz  
S22  
MAG  
ANG  
S
22  
Z
REF 1.0 Units  
45.000  
50.000  
55.000  
60.000  
65.000  
70.000  
75.000  
80.000  
85.000  
90.000  
95.000  
100.000  
.580  
.572  
.574  
.574  
.584  
.587  
.592  
.587  
.589  
.591  
.573  
.604  
3.4  
2.5  
3.0  
2.7  
3.0  
2.6  
2.4  
2.6  
2.9  
2.9  
1.7  
2.9  
200.0 mUnits/  
185.13 Ω 17.789 Ω  
1
hp  
C
D
MARKER 1  
45.0 MHz  
: 45 MHz  
1
2
1
: 100 MHz  
2
0.045000000 GHz  
0.100000000 GHz  
START  
STOP  
μPB1507GV  
S22 vs. OUTPUT FREQUENCY  
Divide by 128 mode, VCC = 5.0 V  
FREQUENCY  
MHz  
S22  
MAG  
ANG  
S
22  
Z
REF 1.0 Units  
45.000  
50.000  
55.000  
60.000  
65.000  
70.000  
75.000  
80.000  
85.000  
90.000  
95.000  
100.000  
.578  
.571  
.572  
.576  
.584  
.587  
.589  
.589  
.588  
.593  
.598  
.602  
3.2  
2.8  
3.3  
3.0  
3.1  
2.8  
2.4  
2.8  
3.0  
2.8  
3.0  
2.9  
200.0 mUnits/  
185.02 Ω 18.953 Ω  
1
hp  
C
D
MARKER 1  
45.0 MHz  
: 45 MHz  
1
2
1
: 100 MHz  
2
START 0.045000000 GHz  
STOP  
0.100000000 GHz  
11  
μPB1507GV  
μPB1507GV  
S22 vs. OUTPUT FREQUENCY  
Divide by 256 mode, VCC = 5.0 V  
FREQUENCY  
MHz  
S22  
MAG  
ANG  
S
22  
Z
REF 1.0 Units  
45.000  
50.000  
55.000  
60.000  
65.000  
70.000  
75.000  
80.000  
85.000  
90.000  
95.000  
100.000  
.580  
.572  
.571  
.576  
.585  
.590  
.589  
.590  
.588  
.597  
.600  
.601  
3.0  
2.8  
2.9  
2.9  
3.2  
2.8  
2.5  
2.6  
2.9  
2.9  
3.1  
3.1  
200.0 mUnits/  
186.76 Ω 17.82 Ω  
1
hp  
C
D
MARKER 1  
45.0 MHz  
: 45 MHz  
1
2
1
: 100 MHz  
2
0.045000000 GHz  
0.100000000 GHz  
START  
STOP  
12  
μPB1507GV  
TEST CIRCUIT  
μPB1507GV  
C2  
C3  
1
2
8
7
6
5
IN  
IN  
NC  
50 Ω  
S.G  
VCC  
OPEN  
C4  
3 SW1  
SW2  
GND  
C1  
OUT  
4
C5  
VCC = +5.0 V ±10%  
Monitor  
0.6 pF  
C6  
1 MΩ  
C7  
Stray cap.  
Oscilloscope  
or Counter  
50  
Ω
SG (HP-8665A)  
Divide ratio setting  
Counter (HP5350B) : To measure input sensitivity  
or  
SW2  
Oscilloscope  
: To measure output voltage swing  
H
L
SW1  
H
L
1/64  
1/128  
1/256  
1/128  
H: Connect to VCC  
L: Connect to GND or OPEN  
13  
μPB1507GV  
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD  
μPB1507GV  
IN  
IN  
C2  
1P  
C3  
V
CC  
SW2  
SW1  
C4  
C5  
C7  
OUT  
OUT  
μPB1507GV  
EVALUATION BOARD CHARACTERS  
(1) 35 μm thick double-sided copper clad 50 × 50 × 0.4 mm  
polyimide board  
(2) Back side: GND pattern  
(3) Solder plated patterns  
(4)  
: Through holes  
°
14  
μPB1507GV  
PACKAGE DIMENSIONS  
8 PIN PLASTIC SSOP (UNIT: mm) (175 mil)  
8
5
detail of lead end  
1
4
4.94 ±0.2  
3.2 ±0.1  
3.0 MAX.  
0.87 ±0.2  
0.65  
0.5 ±0.2  
M
0.575 MAX.  
+0.10  
–0.05  
0.15  
0.10  
0.3  
15  
μPB1507GV  
NOTE CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).  
(3) Keep the wiring length of the ground pins as short as possible.  
(4) Connect a bypass capacitor (e.g. 10 000 pF) to the VCC pin.  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered in the following recommended conditions. Other soldering methods and  
conditions than the recommended conditions are to be consulted with our sales representatives.  
μPB1507GV  
Soldering method  
Infrared ray reflow  
Soldering conditions  
Package peak temperature: 235 °C,  
Recommended condition symbol  
IR35-00-3  
Hour: within 30 s. (more than 210 °C),  
Time: 3 times, Limited days: no.*  
VPS  
Package peak temperature: 215 °C,  
Hour: within 40 s. (more than 200 °C),  
Time: 3 times, Limited days: no.*  
VP15-00-3  
WS60-00-1  
Wave soldering  
Pin part heating  
Soldering tub temperature: less than 260 °C,  
Hour: within 10 s.,  
Time: 1 time, Limited days: no.  
Pin area temperature: less than 300 °C,  
Hour: within 3 s./pin,  
Limited days: no.*  
* It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH.  
Caution The combined use of soldering method is to be avoided (However, except the pin area heating  
method).  
For details of recommended soldering conditions for surface mounting, refer to information document  
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).  
16  

相关型号:

PB16

MOUNTING BOARD
CRYDOM

PB16

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1ABW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1ACW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1AEW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1AFW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1AGW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1ANW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1BBW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1BCW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1BEW

SPST Sealed Round Pushbutton Switches
GREATECS

PB161B1TS1BFW

SPST Sealed Round Pushbutton Switches
GREATECS