NCT3101S TR [ETC]

IC BUS TERM REGULATOR 8ESOP;
NCT3101S TR
型号: NCT3101S TR
厂家: ETC    ETC
描述:

IC BUS TERM REGULATOR 8ESOP

文件: 总20页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nuvoton  
Bus Termination Regulator  
NCT3101S  
DATE: MARCH, 2013  
Revision: A4  
NCT3101S  
-Table of Content-  
1. GENERAL DESCRIPTION ...................................................................................1  
2. FEATURES...........................................................................................................1  
3. BLOCK DIAGRAM ...............................................................................................2  
4. PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT........................2  
5. PIN DESCRIPTION...............................................................................................3  
6. FUNCTIONAL DESCRIPTION .............................................................................3  
7. ELECTRICAL CHARACTERISTICS.....................................................................7  
8. TYPICAL OPERATING CHARACTERISTICS AND WAVEFORMS.....................9  
9. PACKAGE DIMENSION.....................................................................................15  
10. ORDERING INFORMATION............................................................................16  
11. TOP MARKING SPECIFICATION ...................................................................16  
12. REVISION HISTORY.......................................................................................17  
Publication Date: Mar., 2013  
-I-  
Revision A4  
NCT3101S  
1. GENERAL DESCRIPTION  
The NCT3101S is a sink/source Double Data Rate (DDR) termination regulator specifically  
designed for low input voltage, low cost systems where space is a key consideration. The  
NCT3101S maintains a fast transient response and only requires a minimum output capacitance  
of 10uF. The NCT3101S supports all power requirements for DDR, DDR2, DDR3, DDR3L,  
DDR3U, LPDDR3 and DDR4 VTT bus termination.  
2. FEATURES  
General  
VCNTL Voltage: Supports 3.3V Rail and 5V Rail  
VIN Voltage Range: 1.0V to 5.5V  
Sink/Source Current: 2A  
Requires Minimum Output Capacitance of 10uF MLCC for Memory Termination Application  
Integrated Power MOSFET  
VREF Input Allows for Flexible Input Tracking Either Directly or Through Resistor Divider  
Low External Component Count  
Low Output Voltage Offset  
Current Limit Protection  
Over Temperature Protection  
Meets DDR, DDR2 JEDEC Specifications; Supports DDR3, DDR3L, DDR3U, LPDDR3 and  
DDR4 VTT Regulation  
-40°C to 85°C Ambient Operating Temperature Range  
Package  
SOP-8 150mil with Exposed Pad Package  
Lead Free (ROHS Compliant) and Halogen Free  
Applications  
Desktop PCs, Notebooks, and Workstations  
Graphics Card Memory Termination  
Set Top Boxes, Digital TVs and Printers  
Active Termination Buses  
DDR, DDR2, DDR3, DDR3L, DDR3U, LPDDR3 and DDR4 Memory Systems  
Publication Date: Mar., 2013  
-1-  
Revision A4  
 
 
NCT3101S  
3. BLOCK DIAGRAM  
VCNTL  
VIN  
Current Limit  
Protection  
Control  
Logic  
VOUT  
GND  
VREF  
Thermal  
Shutdown  
4. PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT  
NC  
8
VIN  
1
2
3
4
NC  
7
6
5
GND  
VREF  
VCNTL  
NC  
VOUT  
NCT3101S  
(Top View)  
VDDQ=2.5V/1.8V/1.5V/1.2V  
VCNTL=3.3V/5V  
CCNTL  
CIN  
R1  
VIN VCNTL  
VREF  
VTT = VDDQ x R2 / (R1+R2)  
COUT  
Enable  
VOUT  
R2  
CSS  
GND  
R1 = R2 = 1k ~ 5kΩ, CSS = 0.1uF ~ 1uF  
CCNTL = 0.1uF, CIN = 10uF, COUT= 10uF  
Publication Date: Mar., 2013  
Revision A4  
-2-  
 
 
NCT3101S  
5. PIN DESCRIPTION  
SYMBOL  
PIN  
I/O  
FUNCTION  
Main power input pin which supplies current to output pin. For  
lower power dissipation consideration, using VDDQ (Supply  
voltage for DRAM) as power source is recommended.  
VIN  
1
I
Internal reference voltage source. Generally, VREF tracks  
VDDQ/2 for DDR application.  
Using voltage dividing resistors and capacitor as low pass  
filter for noise immunity and output voltage soft start is  
recommended.  
VREF  
3
I
If using an N-MOSFET as shutdown function, please make  
sure the sinking current capability can pull down VREF under  
0.2V.  
Voltage output pin which is regulated to track VREF voltage.  
Connect to VTT power rail of DDR-SDRAM DIMM.  
VOUT  
4
6
O
I
Power for internal control logic circuitry. A ceramic decoupling  
capacitor with 0.1uF is required. The voltage on this pin must  
be at least 2V greater than output voltage and no less than  
minimum VCNTL supply voltage.  
VCNTL  
Ground.  
GND  
NC  
2
Connect to negative terminal of the output capacitor(s).  
No connection.  
5, 7, 8  
6. FUNCTIONAL DESCRIPTION  
VTT Sink/Source Regulator  
The NCT3101S is a sink/source tracking termination regulator specifically designed for low input  
voltage, low cost and low external component count systems where space is a key application  
parameter. The NCT3101S integrates a high performance, low dropout linear regulator that is  
capable of both sinking and sourcing current. The load dropout regulator employs a fast  
feedback loop so that small ceramic capacitors can be used to support the fast load transient  
response. The NCT3101S also incorporates two distinct power rails that separates the analog  
circuitry from the power output stage. This allows a split rail approach to be utilized to decrease  
internal power dissipation.  
Series Stub Termination Logic (SSTL) was created to improve signal integrity of the data  
transmission across the memory bus. This termination scheme is essential to prevent data error  
from signal reflections while transmitting at high frequencies encountered with DDR-SDRAM.  
The DDR-SDRAM memory termination structure determines the main characteristics of the VT  
rail, which is to be able to sink and source current while maintaining acceptable VTT tolerance.  
Fig. 6-1 shows typical characteristics for a single memory cell.  
When Q1 is on and Q2 is off:  
Current flows from VDDQ via the termination resistor to VTT  
VTT sinks current  
Publication Date: Mar., 2013  
-3-  
Revision A4  
 
 
NCT3101S  
When Q1 is off and Q2 is on:  
Current flows from VTT via the termination resistor to GND  
VTT sources current  
VDDQ  
Q1  
VTT  
RT  
RS  
Chipset  
Memory  
Q2  
VREF  
GND  
Fig. 6-1 DDR Physical Signal System Bi-Directional SSTL Signaling  
Power Sequence Requirement  
The input sequence of power rails should be taken care. VCNTL can be energized after VIN and  
VREF, but VREF cannot be energized before VIN. It is recommended that VIN and VREF  
connect to the same power rail.  
Reference Voltage, VREF  
The output voltage, VOUT, is regulated to VREF. When VREF is configured for standard DDR  
termination applications, VREF can be set by an external equivalent ratio voltage divider  
connected to the memory supply bus (VDDQ). The NCT3101S supports VREF voltage from  
0.5V to VIN-2.2V, making it versatile and ideal for many types of low power LDO applications.  
An external bypass capacitor is also connected to VREF. The capacitor and the resistor divider  
form a low pass filter to reduce the inherent reference noise from VIN. The capacitor is a 0.1uF  
or greater ceramic capacitor and connected to VREF as close as possible. It is not allowed any  
additional loading on the reference input pin.  
Shutdown Function  
When the external reference voltage at VREF pin is under shutdown threshold, the internal  
regulator will be turned off.  
Over Current Protection  
The NCT3101S provides a current limit circuitry, which monitors the output current and controls  
MOSFET’s gate voltage to limit the output current.  
Over Temperature Protection  
The NCT3101S monitors its junction temperature. If the device junction temperature exceeds its  
threshold value, typically 165°C, the VOUT is shut off. The shutdown is a non-latch protection.  
Publication Date: Mar., 2013  
-4-  
Revision A4  
NCT3101S  
Thermal Design  
Since the NCT3101S is a linear regulator, the VOUT current flows in both source and sink  
directions, thereby dissipating power from the device. When the device is sourcing current, the  
voltage difference between VIN and VOUT times IOUT current becomes the power dissipation as  
shown in below equation.  
PDISS_SOURCE = (VIN-VOUT) x IOUT_SOURCE  
In this case, if VIN is connected to an alternative power supply lower than the VDDQ voltage,  
overall power loss can be reduced. For the sink phase, VOUT voltage is applied across the  
internal LDO regulator and the power dissipation, PDISS_SINK can be calculated by below  
equation.  
PDISS_SINK = VOUT x IOUT_SINK  
Because the device does not sink and source current at the same time and the IOUT current may  
vary rapidly with time, the actual power dissipation should be the time average of the above  
dissipations over the thermal relaxation duration of the system. Another source of power  
consumption is the current used for the internal current control circuitry form VCNTL supply and  
the VIN supply. This can be estimate as 10mW or less during normal operating conditions. The  
power must be effectively dissipated from the package.  
Maximum power dissipation allowed by the package is calculated by below equation.  
PPKG = [ TJ(MAX) – TA(MAX)] / θJA  
, where  
TJ(MAX) is +125°C  
TA(MAX) is the maximum ambient temperature in the system  
θJA is the thermal resistance form junction to ambient  
θJA highly depends on IC package, PCB layout, the aireflow. Thermal resistance θJA can be  
improved by adding copper under the exposed pad of ESOP-8 while the IC package is fixed.  
The copper under the exposed pad of ESOP-8 is an effective heatsink and is useful for  
improving thermal conductivity. Figure 6-3 shows the relationship between thermal resistance  
θJA vs. copper area on a standard JEDEC 51-7 (4 layers, 2S2P) thermal test board at TA =  
25°C, PCB copper thickness = 2oz. The 70mm2 copper plane reduces θJA from 75°C/W to  
45°C/W and increases maximum power disspation from 1.33W to 2.22W.  
70mm2 copper area  
30mm2 copper area  
Minimum copper area  
Fig. 6-2 Power Dissipation vs. Ambient Temperature  
Fig. 6-3 Thermal Resistance θJA vs. Copper Area of  
ESOP Packages  
Publication Date: Mar., 2013  
Revision A4  
-5-  
NCT3101S  
Input Capacitor  
Depend on the trace impedance between the VIN bulk power supply to the device, a transient  
increase of source current is supplied mostly by the charge from the VIN input capacitor. If the  
NCT3101S is located near the bulk capacitor(s) for upstream voltage regulator, the input  
capacitor may not be required. Use a 10uF (or greater) capacitor to supply this transient charge.  
Provide more input capacitance as more output capacitance is used at VOUT.  
Input capacitor for VCNTL is recommended. Place the input capacitor for VCNTL as close to  
VCNTL pin as possible prevents outside noise from entering NCT3101S’ control circuitry. The  
recommended capacitance of VCNTL input capacitor is 0.1uF or above.  
Output Capacitor  
For stable operation, the total capacitance of the VOUT terminal must be greater than 10uF.  
Total output capacitors value including MLCC and AL electrolytic capacitors should be larger  
than 10uF.  
Layout consideration  
Consider the following points before starting the NCT3101S layout design. Fig. 6-4 shows the  
suggestion of minimum land pattern. Fig. 6-5 shows the recommended PCB layout. Using “dog  
bone” copper patterns on the top layer can increase efficiency of heat dissipating.  
The input bypass capacitor for VIN should be placed as close as possible to the pin with  
short and wide connections.  
The output capacitor for VOUT should be placed close to the pin with short and wide  
connection in order to avoid ESR and/or ESL trace inductance.  
In order to effectively remove heat from the package, properly prepare the thermal land.  
Apply solder directly to the package’s thermal pad. The wide traces of component and the  
side copper connected to the thermal land pad help to dissipate heat. The thermal land  
connected to the ground plane could also be used to help dissipation.  
75  
VCNTL  
Ground  
For heat  
dissipating  
CCNTL  
90  
219  
90  
Ground  
CIN  
Unit: mil  
(Not to scale)  
COUT  
(Optional)  
VIN  
VOUT  
24  
50  
Fig. 6-5 Recommended PCB Layout  
Fig. 6-4 Recommended Land Pattern  
Publication Date: Mar., 2013  
Revision A4  
-6-  
NCT3101S  
7. ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings(Note1)  
ITEM  
Input Voltage  
SYMBOL  
RATING  
-0.3 to 7  
-0.3 to 7  
-0.3 to 7  
±2  
UNITS  
V
VIN  
Control Logic Input Voltage  
Reference Voltage  
VCNTL  
VREF  
V
V
Human Body Mode  
Machine Mode  
Latch-Up  
kV  
V
Electrostatic discharge protection (Note2)  
±200  
±100  
mA  
°C  
°C  
Junction Temperature Range  
Storage Temperature Range  
-40 to 150  
-65 to 150  
Refer to IPC/JEDEC J-STD-020 Specification  
260°C for 30sec max  
Soldering Temperature  
Note1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the  
device. These are stress ratings only and functional operation of the device at these or any other  
conditions beyond those indicated under recommended operating conditions is not implied. Exposure  
to absolute maximum rated conditions for extended periods may affect device reliability.  
Note2. Devices are ESD sensitive. Handling precaution recommended.  
Thermal Information  
ITEM  
Power Dissipation, PD @ TA=25°C  
RATING  
1.33  
75  
UNITS  
W
(Note3)  
Junction to Ambient, θJA  
Junction to Case, θJC  
°C/W  
°C/W  
Package Thermal Resistance  
20  
Note3. At elevated temperatures, devices must be de-rated based on thermal resistance. The device in the  
ESOP-8 package must be de-rated at θJA=75˚C/W junction to ambient with minimum PCB footprint.  
Recommended Operating Conditions  
ITEM  
SYMBOL  
VIN  
MIN  
1.0  
3.0  
0.5  
0
MAX  
UNITS  
5.5  
V
V
A
Input Voltage  
VCNTL  
VREF  
Sourcing  
Sinking  
CCNTL  
CIN  
5.5  
VCNTL-2.2  
2
2
Output Current  
0
Capacitance of VCNTL Decoupling Capacitor  
Capacitance of VIN Decoupling Capacitor  
Capacitance of VREF Soft Start Capacitor  
Capacitance of VOUT Regulation Capacitor, MLCC  
Operating Temperature Range  
0.1  
10  
1
uF  
uF  
uF  
uF  
°C  
°C  
22  
1
CSS  
0.1  
4.7  
-40  
-40  
COUT  
22  
85  
125  
TOPT  
Junction Temperature Range (Note3)  
TJ  
Publication Date: Mar., 2013  
Revision A4  
-7-  
 
NCT3101S  
DC Characteristics  
Typicals and limits appearing in normal type apply for Tj = 25°C. Limits appearing in Boldface type apply over the  
entire junction temperature range for operation, -40°C to 85°C (Note4). VCNTL= 3.3V/5V, VIN=2.5V/1.8V/1.5V,  
VREF=1.25V/0.9V/0.75V, COUT=10uF, all voltage outputs unloaded (unless otherwise noted).  
PARAMETER  
SYM.  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
Input  
VCNTL Operating Current  
VIN Operating Current  
ICNTL  
IVIN  
IOUT=0A, VCNTL=5V  
IOUT=0A, VCNTL=5V  
0.7  
1.5  
50  
mA  
uA  
VCNTL Quiescent Current in Shutdown  
Mode  
VIN Quiescent Current in Shutdown  
Mode  
ISD_CNTL  
ISD_VIN  
VREF < 0.15V, VCNTL=5V  
VREF < 0.15V  
30  
50  
1
uA  
uA  
-1  
IIH  
IIL  
VREF=3.3V  
VREF=0V  
-1  
-1  
1
1
VREF Leakage Current  
uA  
Output (DDR1 / DDR2 / DDR3)  
Output Offset Voltage (VREF-VOUT)  
VOS  
IOUT=0A  
-10  
-20  
-20  
10  
20  
mV  
mV  
IOUT=0 → +2A (Note5), TA=25°C  
IOUT=0 → -2A (Note5) , TA=25°C  
VCNTL=3.3V, IOUT=2A  
VCNTL=3.3V, IOUT=1.5A  
VCNTL=3.3V, IOUT=1A  
VCNTL=5V, IOUT=2A  
VCNTL=5V, IOUT=1.5A  
VCNTL=5V, IOUT=1A  
Load Regulation (VREF-VOUT)  
VL  
20  
390  
260  
160  
350  
240  
150  
600  
400  
280  
600  
400  
280  
mV  
mV  
mV  
mV  
mV  
mV  
Dropout Voltage(Note6)  
VDROP  
Protection  
TA=25°C  
±2.2  
±1.7  
±2  
±3  
±3  
±4.2  
±4.8  
±4.2  
±4.5  
175  
Current Limit Trip Threshold  
IOCP  
A
A
TA=-40°C ~ 85°C  
TA=25°C  
Current Limit  
ILIM  
TA=-40°C ~ 85°C  
3.3V < VCNTL < 5V (Note7)  
3.3V < VCNTL < 5V(Note7)  
±1.5  
150  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
VREF Shutdown Mode  
TSD  
165  
30  
°C  
°C  
TSD  
VIH  
VIL  
Enable  
Disable  
0.4  
Shutdown Threshold  
V
0.15  
Note4. Limits are 100% production tested at 25˚C. Limits over operating temperature range are guaranteed through  
correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate average  
outgoing quality level.  
Note5. VOUT load regulation is tested by using a 10ms period and 50% duty cycle current pulse.  
Note6. Measured when the output drops 2% below its nominal value. VOUT range is from 0.5V to VCNTL-2.2V.  
Note7. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ (MAX), the  
junction to ambient thermal resistance, θJA, and the ambient temperature, TA exceeding the maximum  
allowable power dissipation will cause excessive die temperature and the regulator will go into thermal  
shutdown. Ensured by design, no production tested.  
Publication Date: Mar., 2013  
-8-  
Revision A4  
NCT3101S  
8. TYPICAL OPERATING CHARACTERISTICS AND WAVEFORMS  
Operating Characteristics  
VOS vs. Temperature, VCNTL=5V  
VOS vs. Temperature, VCNTL=3.3V  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
IOUT = 0mA  
IOUT = 0mA  
DDR1  
DDR1  
DDR2  
DDR3  
DDR2  
DDR3  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
VCNTL Current vs. Temperature  
VCNTL Current vs. Temperature  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
VCNTL=3.3V  
IOUT = 0mA  
VCNTL=5V  
IOUT = 0mA  
DDR1  
DDR2  
DDR3  
DDR1  
DDR2  
DDR3  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Publication Date: Mar., 2013  
Revision A4  
-9-  
 
NCT3101S  
Sourcing Current Limit vs. Temperature  
Sinking Current Limit vs. Temperature  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VCNTL=5V  
VCNTL=5V  
VCNTL=3.3V  
VCNTL=3.3V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Enable Threshold vs. Temperature @  
VCNTL=5V  
Enable Threshold vs. Temperature @  
VCNTL=3.3V  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VIH  
VIH  
VIL  
VIL  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Dropout Voltage vs. IOUT @ VCNTL=3.3V  
Dropout Voltage vs. IOUT @ VCNTL=5V  
600  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT=2A  
IOUT=2A  
IOUT=1.5A  
IOUT=1A  
IOUT=1.5A  
IOUT=1A  
0
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6  
OUTPUT Voltage (V)  
OUTPUT Voltage (V)  
Publication Date: Mar., 2013  
Revision A4  
-10-  
NCT3101S  
Operating Waveforms  
VCNTL=5V, VIN=VREF, CIN=COUT=10uF (MLCC), CSS=0.1uF  
Load Transient Response (VIN=2.5V)  
Load Transient Response (VIN=1.8V)  
IOUT=10mA to 2A to 10mA  
IOUT=10mA to 2A to 10mA  
Load Transient Response (VIN=1.5V)  
Load Transient Response (VIN=2.5V)  
IOUT=-10mA to -2A to -10mA  
IOUT=10mA to 2A to 10mA  
Load Transient Response (VIN=1.8V)  
Load Transient Response (VIN=1.5V)  
IOUT=-10mA to -2A to -10mA  
IOUT=-10mA to -2A to -10mA  
Publication Date: Mar., 2013  
Revision A4  
-11-  
NCT3101S  
Power On Test (VIN=2.5V)  
Power On Test (VIN=1.8V)  
VCNTL Turn On  
VCNTL Turn On  
RLOAD=5Ω  
RLOAD=5Ω  
Power On Test (VIN=1.5V)  
Power On Test (VIN=2.5V)  
VIN Turn On  
VCNTL Turn On  
RLOAD=5Ω  
RLOAD=5Ω  
Power On Test (VIN=1.8V)  
Power On Test (VIN=1.5V)  
VIN Turn On  
VIN Turn On  
RLOAD=5Ω  
RLOAD=5Ω  
Publication Date: Mar., 2013  
Revision A4  
-12-  
NCT3101S  
Power On Test (VIN=2.5V)  
Power On Test (VIN=1.8V)  
VREF Turn On  
VREF Turn On  
RLOAD=5Ω  
RLOAD=5Ω  
Power On Test (VIN=1.5V)  
Current Limit Test (VIN=2.5V)  
VOUT Short to GND  
Thermal  
Shutdown  
VREF Turn On  
RLOAD=5Ω  
Current Limit Test (VIN=1.8V)  
Current Limit Test (VIN=1.5V)  
VOUT Short to GND  
VOUT Short to GND  
Thermal  
Shutdown  
Thermal  
Shutdown  
Publication Date: Mar., 2013  
Revision A4  
-13-  
NCT3101S  
Current Limit Test (VIN=2.5V)  
Current Limit Test (VIN=1.8V)  
VOUT Short to VIN  
VOUT Short to VIN  
Thermal  
Shutdown  
Thermal  
Shutdown  
Current Limit Test (VIN=1.5V)  
VOUT Short to VIN  
Thermal  
Shutdown  
Publication Date: Mar., 2013  
Revision A4  
-14-  
NCT3101S  
9. PACKAGE DIMENSION  
TAPING SPECIFICATION  
8 Pin ESOP Package  
Publication Date: Mar., 2013  
Revision A4  
-15-  
 
NCT3101S  
10. ORDERING INFORMATION  
Supplied as  
8PIN ESOP (Green Package) T Shape: 2,500 units/T&R  
Part Number  
NCT3101S  
Package Type  
Operating Temperature  
Commercial, -40°C to +85°C  
11. TOP MARKING SPECIFICATION  
3101S  
952AX  
1st Line: Nuvoton logo  
2
nd Line: 3101S (Part number)  
3rd line: Tracking code  
952: packages assembled in Year 2009, week 52  
A: assembly house ID  
X: the IC version (A means A; B means B & C means C…etc.)  
Publication Date: Mar., 2013  
Revision A4  
-16-  
 
 
NCT3101S  
12. REVISION HISTORY  
VERSION  
A1  
DATE  
PAGE  
All  
DESCRIPTION  
Aug., 2010  
Jan., 2011  
New Release  
Correct typo  
A2  
8
1.Modified Recommended Land Pattern  
2.Modified Package Dimension  
3.Modified Ordering Information  
4.Modified Importance Notice  
A3  
A4  
Nov., 2011  
Mar., 2013  
6, 15, 16 & 18  
1.Add supporting DDR3L, DDR3U, LPDDR3  
and DDR4  
2.Add OCP trip threshold and current spec  
3.Add soldering information  
1,7 & 8  
4.Add junction temperature absolute  
maximum rating  
Publication Date: Mar., 2013  
-17-  
Revision A4  
 
NCT3101S  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types  
of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims  
to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages  
and liabilities thus incurred by Nuvoton.  
Publication Date: Mar., 2013  
-18-  
Revision A4  

相关型号:

NCT3521U-2

High-side Power Distribution Switch
NUVOTON

NCT3521U-A

High-side Power Distribution Switch
NUVOTON

NCT3527U

Adjustable Current-Limited, Power-Distribution Switch
NUVOTON

NCT3527U TR

PWR DISTRIBUTION SWITCH
ETC

NCT3527U-A

Adjustable Current-Limited, Power-Distribution Switch
NUVOTON

NCT3527U-A TR

PWR DISTRIBUTION SWITCH
ETC

NCT3703U

300mA Linear Regulator
NUVOTON

NCT3703U-12

300mA Linear Regulator
NUVOTON

NCT3703U-15

300mA Linear Regulator
NUVOTON

NCT3703U-18

300mA Linear Regulator
NUVOTON

NCT3703U-25

300mA Linear Regulator
NUVOTON

NCT3703U-28

300mA Linear Regulator
NUVOTON