MTV118 [ETC]

On-Screen-Display for LCD Monitor; 在屏幕显示的液晶显示器
MTV118
型号: MTV118
厂家: ETC    ETC
描述:

On-Screen-Display for LCD Monitor
在屏幕显示的液晶显示器

显示器 CD
文件: 总30页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MYSON  
MTV118  
TECHNOLOGY  
On-Screen-Display for LCD Monitor  
FEATURES  
GENERAL DESCRIPTION  
Horizontal sync input may be up to 120 KHz.  
MTV118 is designed for LCD monitor appli-  
cations to display the built-in characters or fonts  
onto an LCD monitor screen. The display oper-  
ates by transferring data and control information  
from the micro controller to the RAM through a  
serial data interface. It can execute full screen  
displays automatically and specific functions such  
as character bordering, shadowing, blinking, dou-  
ble height and width, font by font color control,  
frame positioning, frame size control by character  
height and windowing effect. Moreover, MTV118  
also provides 8 PWM DAC channels with 8-bit  
resolution and a PWM clock output for external  
digital-to-analog control.  
Acceptable wide-range pixel clock up to 96MHz  
from XIN pin.  
Full-screen display consists of 15 (rows) by 30 (col-  
umns) characters.  
12 x 18 dot matrix per character.  
Total of 256 characters and graphic fonts including  
248 mask ROM fonts and 8 programmable RAM  
fonts.  
8 color selection maximum per display character.  
Double character height and/or width control.  
Programmable positioning for display screen cen-  
ter.  
Bordering, shadowing and blinking effect.  
Programmable vertical character height (18 to 71  
lines) control.  
Row to row spacing register to manipulate the con-  
stant display height.  
4 programmable background windows with multi-  
level operation.  
Software clears for display frame.  
Half tone and fast blanking output.  
8-channel/8-bit PWM D/A converter output.  
2
Compatible with SPI bus or I C interface with  
address 7AH (slave address is mask option).  
16 or 24-pin PDIP/SOP package.  
BLOCK DIAGRAM  
SSB  
SCK  
SDA  
VDD  
8
9
8
LUMAR  
LUMAG  
LUMAB  
BLINK  
DATA  
DATA  
DISPLAY & ROW  
CONTROL  
REGISTERS  
SERIAL DATA  
INTERFACE  
ROW, COL  
ACK  
VSS  
CWS  
CHS  
8
CRADDR  
VDDA  
VSSA  
8
CHARACTER ROM  
USER FONT RAM  
DATA  
LUMA  
5
9
9
5
5
RCADDR  
DADDR  
FONTADDR  
WINADDR  
PWMADDR  
5
ARWDB  
HDREN  
VDREN  
NROW  
LPN  
CWS  
BORDER  
ADDRESS BUS  
ADMINISTRATOR  
LUMINANCE &  
BORDGER  
GENERATOR  
VCLKS  
5
8
VFLB  
LPN  
DATA  
BSEN  
VERTICAL  
DISPLAY  
CONTROL  
WINDOWS &  
FRAME  
CONTROL  
SHADOW  
OSDENB  
HSP  
7
8
8
8
7
CH  
CHS  
VERTD  
NROW  
VDREN  
VERTD  
HORD  
CH  
VSP  
HSP  
VSP  
ARWDB  
HDREN  
HFLB  
ROUT  
GOUT  
BOUT  
FBKG  
HTONE  
HORIZONTAL  
DISPLAY CONTROL  
8
HORD  
LUMAR  
LUMAG  
LUMAB  
BLINK  
COLOR  
ENCODER  
NC  
CLOCK  
GENERATOR  
VCLKX  
XIN  
VCLKX  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM D/A  
CONVERTER  
POWER ON  
RESET  
PRB  
8
DATA  
This datasheet contains new product information. Myson Technology reserves the rights to modify the product specification  
without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of  
the product.  
1/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
1.0 PIN CONNECTION  
1
16  
1
24  
23  
22  
21  
20  
19  
VSS  
XIN  
VSS  
VSS  
XIN  
VSS  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
2
ROUT  
ROUT  
GOUT  
BOUT  
FBKG  
3
NC  
GOUT  
NC  
4
VDD  
HFLB  
SSB  
SDA  
SCK  
BOUT  
VDD  
MTV118  
5
FBKG  
HFLB  
SSB  
6
HTONE/PWMCK  
HTONE/PWMCK  
MTV118N24  
10 VFLB  
VDD  
SDA  
7
18 VFLB  
17 VDD  
16 PWM7  
9
SCK  
8
PWM0  
PWM1  
PWM2  
PWM3  
9
PWM6  
PWM5  
PWM4  
10  
11  
12  
15  
14  
13  
2.0 PIN DESCRIPTIONS  
Pin #  
Name  
I/O  
Descriptions  
N16 N24  
VSS  
-
1
2
3
4
1
2
3
4
Ground. This ground pin is used for internal circuitry.  
Pixel Clock Input. This is a clock input pin. MTV118 is driven by  
an external pixel clock source for all the logics inside. The fre-  
quency of XIN must be the integral time of pin HFLB.  
XIN  
NC  
I
I
No connection.  
Power supply. Positive 5 V DC supply for internal circuitry. A  
0.1uF decoupling capacitor should be connected across VDD and  
VSS.  
VDD  
-
Horizontal Input. This pin is used to input the horizontal synchro-  
nizing signal. It is a leading edge trigger and has an internal pull-  
up resistor.  
HFLB  
SSB  
I
I
I
5
6
7
5
6
7
Serial Interface Enabler. It is used to enable the serial data and  
is also used to select the operation of I2C or SPI bus. If this pin is  
left floating, I2C bus is enabled, otherwise the SPI bus is enabled.  
Serial Data Input. The external data transfers through this pin to  
internal display registers and control registers. It has an internal  
pull-up resistor.  
SDA  
Serial Clock Input. The clock-input pin is used to synchronize the  
data transfer. It has an internal pull-up resistor.  
SCK  
I
8
-
8
9
Open-Drain PWM D/A Converter 0. The output pulse width is  
programmable by the register of row 15, column 19.  
PWM0  
PWM1  
PWM2  
O
O
O
Open-Drain PWM D/A Converter 1. The output pulse width is  
programmable by the register of row 15, column 20.  
-
10  
11  
Open-Drain PWM D/A Converter 2. The output pulse width is  
programmable by the register of row 15, column 21.  
-
2/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
Pin #  
I/O  
Name  
Descriptions  
N16 N24  
Open-Drain PWM D/A Converter 3. The output pulse width is  
programmable by the register of row 15, column 22.  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
O
O
O
O
O
-
-
-
-
-
12  
13  
14  
15  
16  
Open-Drain PWM D/A Converter 4. The output pulse width is  
programmable by the register of row 15, column 23.  
Open-Drain PWM D/A Converter 5. The output pulse width is  
programmable by the register of row 15, column 24.  
Open-Drain PWM D/A Converter 6. The output pulse width is  
programmable by the register of row 15, column 25.  
Open-Drain PWM D/A Converter 7. The output pulse width is  
programmable by the register of row 15, column 26.  
Power Supply. Positive 5 V DC supply for internal circuitry and a  
VDD  
-
I
9
17 0.1uF decoupling capacitor should be connected across VDD and  
VSS.  
Vertical Input. This pin is used to input the vertical synchronizing  
VFLB  
10  
18  
signal. It is triggered by lead and has an internal pull-up resistor.  
Half Tone Output / PWM Clock Output. This is a multiplexed pin  
HTONE /  
PWMCK  
selected by the PWMCK bit. This pin can be a PWM clock or used  
to attenuate R, G, B gain of VGA for the transparent windowing  
O
11  
19  
effect.  
Fast Blanking Output. It is used to cut off external R, G, B sig-  
nals of VGA while this chip is displaying characters or windows.  
FBKG  
O
12  
20  
BOUT  
GOUT  
ROUT  
VSS  
O
O
O
-
13  
14  
15  
16  
21 Blue Color Output. This is a blue color video signal output.  
22 Green Color Output. This is a green color video signal output.  
23 Red Color Output. This is a red color video signal output.  
24 Ground. This ground pin is used for internal circuitry.  
3.0 FUNCTIONAL DESCRIPTIONS  
3.1 Serial Data Interface  
The serial data interface receives data transmitted from an external controller. There are 2 types of bus  
which can be accessed through the serial data interface: SPI bus and I2C bus.  
3.1.1 SPI Bus  
When the SSB pin is pulled to a HIGH or LOW level, the SPI bus operation is selected. A valid trans-  
mission should start from pulling SSB to LOW level, enabling the MTV118 receiving mode and retaining  
the LOW level until the last cycle for a complete data packet transfer. The protocol is shown in Figure 1  
on page 4.  
There are 3 transmission formats as shown below:  
Format (a) R - C - D ® R - C - D ® R - C - D  
Format (b) R - C - D ® C - D ® C - D ® C - D  
Format (c) R - C - D ® D ® D ® D ® D ® D  
R=row address, C=column address, D=display data  
3/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
SSB  
SCK  
MS  
B
LSB  
SDA  
first byte  
last byte  
FIGURE 1. Data Transmission Protocol (SPI)  
3.1.2 I2C Bus  
I2C bus operation is only selected when the SSB pin is left floating. A valid transmission should begin  
from writing the slave address 7AH, which is mask option, to MTV118. The protocol is shown in Figure  
2 on page 4..  
SCK  
SDA  
B7  
B6  
B0  
B7  
B0  
¡
@¡ @¡ @¡ @  
START  
ACK  
ACK  
STOP  
first byte  
¡
@
second byte  
last byte  
FIGURE 2. Data Transmission Protocol (I2C)  
There are 3 transmission formats as shown below:  
Format (a) S - R - C - D ® R - C - D ® R - C - D  
Format (b) S - R - C - D ® C - D ® C - D ® C - D  
Format (c) S - R - C - D ® D ® D ® D ® D ® D  
S=slave address, R=row address, C=column address, D=display data  
Each arbitrary length of data packet consists of 3 portions: row address (R), column address (C) and  
display data (D). Format (a) is suitable for updating small amounts of data which will be allocated with  
different row and column addresses. Format (b) is recommended for updating data that has the same  
row address but a different column address. Massive data updating or full screen data changes should  
be done in format (c) to increase transmission efficiency. The row and column addresses will be incre-  
mented automatically when format (c) is applied. Furthermore, the undefined locations in display or font  
RAM should be filled with dummy data.  
There are 3 types of data which should be accessed through the serial data interface: address bytes of  
display registers, attribute bytes of display registers and user font RAM data. The protocol is the same  
for all except bits 5 and 6 of the row addresses. The MSB(b7) is used to distinguish row and column  
addresses when transferring data from an external controller. Bit 6 of the row address is used to distin-  
guish display registers and user font RAM data and bit6 of the column address is used to differentiate  
the column address for formats (a), (b) and (c), respectively. Bit 5 of the row address for display regis-  
ters is used to distinguish the address byte when it is set to "0" and the attribute byte when it is set to  
"1". The configuration of transmission formats is shown in Table 1 on page 5.  
4/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
TABLE 1. Configuration of Transmission Formats  
Address  
b7  
1
b6  
0
b5  
0
b4  
x
b3  
R3  
C3  
b2  
R2  
C2  
b1  
R1  
C1  
b0  
R0  
C0  
Format  
a,b,c  
a,b  
Address  
Bytes of  
Display  
Reg.  
Row  
Column  
0
0
x
C4  
ab  
Column  
Row  
0
1
x
C4  
C3  
C2  
C1  
C0  
c
c
Attribute  
Bytes of  
Display  
Reg.  
1
0
0
0
1
x
x
R3  
C3  
R2  
C2  
R1  
C1  
R0  
C0  
a,b,c  
a,b  
Column  
C4  
ab  
Column  
Row  
0
1
x
C4  
C3  
C2  
C1  
C0  
c
c
User  
Fonts  
RAM  
1
0
1
0
x
x
x
R2  
C2  
R1  
C1  
R0  
C0  
a,b,c  
a,b  
Column  
C5  
C4  
C3  
ab  
Column  
0
1
C5  
C4  
C3  
C2  
C1  
C0  
c
c
The data transmission is permitted to change from format (a) to format (b) and (c), or from format (b) to  
format (a), but not from format (c) back to format (a) and (b). The alternation between transmission for-  
mats is configured as the state diagram shown in Figure 3 on page 5.  
0, X  
Input = b7, b6  
Initiate  
1, X  
format (a)  
1, X  
ROW  
format (b)  
format (c)  
0, 1  
0, 0  
COLc  
COLab  
1, X  
X, X  
DAc  
DAab  
FIGURE 3. Transmission State Diagram  
3.2 Address Bus Administrator  
The administrator manages bus address arbitration of internal registers or user font RAM during exter-  
nal data write-in. The external data write through serial data interface to registers must be synchronized  
by internal display timing. In addition, the administrator also provides automatic incrementation to the  
address bus when external writing occurs using format (c).  
3.3 Vertical Display Control  
The vertical display control can generate different vertical display sizes for most display standards in  
current monitors. The vertical display size is calculated with the information of a double character height  
bit(CHS) and a vertical display height control register(CH6-CH0).The algorithms of a repeating charac-  
ter line display are shown in Tables 2 and 3. The programmable vertical size range is 270 lines to max-  
imum 2130 lines.  
5/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
The vertical display center for a full-screen display may be figured out according to the information of  
the vertical starting position register (VERTD) and VFLB input. The vertical delay starting from the lead-  
ing edge of VFLB is calculated using the following equation:  
Vertical delay time = ( VERTD * 4 + 1 ) * H  
Where H = 1 horizontal line display time  
TABLE 2. Repeat Line Weight of Character  
CH6-CH0  
CH6,CH5=11  
CH6,CH5=10  
CH6,CH5=0x  
CH4=1  
Repeat Line Weight  
+18*3  
+18*2  
+18  
+16  
+8  
CH3=1  
CH2=1  
+4  
CH1=1  
+2  
CH0=1  
+1  
TABLE 3. Repeat Line Number of Character  
Repeat Line #  
RepeaterLine  
Weight  
0
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
v
-
9
-
10 11 12 13 14 15 16 17  
+1  
+2  
-
-
-
-
-
v
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
v
-
-
-
-
-
+4  
-
-
v
-
-
-
v
-
-
-
-
v
-
-
-
v
-
-
-
-
+8  
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
-
+16  
+17  
+18  
-
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
-
v
-
v
v
Note: v means the nth line in the character would be repeated once, while -” means the nth line in the  
character would not be repeated.  
3.4 Horizontal Display Control  
The horizontal display control is used to generate control timing for a horizontal display based on dou-  
ble character width bit (CWS), horizontal positioning register (HORD) and HFLB input. A horizontal dis-  
play line includes 360 dots for 30 display characters and the remaining dots for a blank region. The  
horizontal delay starting from the HFLB leading edge is calculated using the following equation:  
Horizontal delay time = ( HORD * 6 + 49) * P  
Where P = 1 XIN pixel display time  
3.5 Display & Row Control Registers  
The internal RAM contains display and row control registers. The display registers have 450 locations  
which are allocated between row 0/column 0 and row 14/column 29 as shown in Figure 4. Each display  
register has its corresponding character address on the address byte, and 1 blink bit and its corre-  
sponding color bits on attribute bytes. The row control register is allocated at column 30 for row 0 to row  
14; it is used to set character size for each respective row. If the double width character (CWS) is cho-  
6/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
sen, only even column characters may be displayed on-screen and the odd column characters will be  
hidden.  
COLUMN #  
ROW #  
0 1  
28 29  
30  
31  
0
1
ROW CTRL  
REG  
DISPLAY REGISTERS  
RESERVED  
13  
14  
COLUMN#  
8 9  
0
2 3  
5 6  
WINDOW2  
11 12  
18 19  
26  
ROW 15  
FRAMECRTL PWM D/A  
WINDOW1  
WINDOW3  
WINDOW4  
REG  
CRTL REG  
FIGURE 4. Memory map  
3.5.1 Register Descriptions  
1. (i) Display Register, (Row 0 - 14, Column 0 - 29)  
ADDRESS BYTE  
b7  
b6  
b5  
b4  
CRADDR  
b3  
b2  
b1  
b0  
LSB  
MSB  
CRADDR - Defines ROM character and user-programmable fonts address.  
(a) 0 ~ 247 Þ 248 built-in characters and graphic symbols  
(b) 248 ~ 255 Þ 8 user-programmable fonts  
ATTRIBUTE BYTE  
b7 b6 b5  
b4  
-
b3  
BLINK  
b2  
R1  
b1  
G1  
b0  
B1  
-
-
-
BLINK - Enables blinking effect when this bit is set to " 1 ". The blinking is alternated per 32 vertical  
frames.  
R1, G1, B1 - These bits are used to specify its relative address character color 1.  
2. Row Control Registers, (Row 0 - 14)  
b7  
-
b6  
-
b5  
-
b4  
R2  
b3  
G2  
b2  
B2  
b1  
b0  
COLN 30  
CHS CWS  
R2, G2, B2 - These bits are used to specify its relative row character color 2. While the corresponding  
CCS bit is set to 1, color 2 should be chosen.  
CHS - Defines double height character to the respective row.  
CWS - Defines double width character to the respective row.  
7/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
3.6 User Font RAM  
The user font RAM has 288 locations which are allocated between row 0/column 0 and row 7/column  
35 to specify 8 user-programmable fonts, as shown in Figure 5. Each programmable font consists of a  
12x18 dot matrix. Each row of dot matrix consists of 2 bytes of data which include 4 dummy bits as  
shown in figure 6. That is, the dot matrix data of each font is stored in 36-byte registers. For example,  
font 0 is stored in row 0 from column 0 to column 35 and font 1 is stored in row 1 from column 0 to col-  
umn 35, etc.  
ROW #  
COLUMN #  
34 35 36  
0
1
63  
0
1
USER FONT RAM  
RESERVED  
6
7
FIGURE 5. User Font RAM Memory Map  
Nth byte  
leftmost dot of font  
(N+1)th byte  
rightmost dot of font  
b7 b6  
b5 b4 b3 b2 b1 b0 b7 b6  
12 bits for 1-row data of font dot matrix  
b5 b4 b3 b2 b1 b0  
Dummy bits  
N=even number  
FIGURE 6. Data Format of Font Dot Matrix  
3.7 Character ROM  
The character ROM contains 248 built-in characters and symbols from addresses 0 to 247. Each char-  
acter and symbol consists of a 12x18 dot matrix. The detail pattern structures for each character and  
symbol are shown in 10.0“ CHARACTER AND SYMBOL PATTERN” on page 15.  
3.8 Luminance & Border Generator  
There are 2 shift registers included in the design which can shift out of luminance and border dots to the  
color encoder. The bordering and shadowing feature is configured in this block. For bordering effect,  
the character will be enveloped with blackedge on 4 sides. For shadowing effect, the character is envel-  
oped with blackedge on right and bottom sides only.  
3.9 Window and Frame Control  
The display frame position is completely controlled by the contents of VERTD and HORD. The window  
size and position control are specified in columns 0 to 11 on row 15 of the memory map, as shown in  
Figure 4. Window 1 has the highest priority and window 4 has the least, when 2 windows are overlap-  
ping. More detailed information is described as follows:  
8/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
1. Window control registers:  
ROW 15  
Column  
b7  
MSB  
b7  
b6  
b5  
b4  
LSB MSB  
b4 b3  
LSB  
b3  
LSB  
b3  
b2  
b1  
b0  
ROW START ADDR  
ROW END ADDR  
0,3,6,OR 9  
LSB  
b6  
b5  
b2  
b1  
b0  
-
Column  
COL START ADDR  
WEN  
CCS  
1,4,7,OR 10  
MSB  
b7  
b6  
b5  
b4  
b2  
R
b1  
G
b0  
B
Column  
COL END ADDR  
2,5,8,OR 11  
MSB  
START(END) ADDR - These addresses are used to specify the window size. It should be noted that  
when the start address is greater than the end address, the window will be disa-  
bled.  
WEN - Enables the window display.  
CCS - When a window is overlapping with the character, character color 2 should be chosen while this  
bit is set to 1. Color 1 is selected otherwise.  
R, G, B - Specifies the color of the relative background window.  
2. Frame control registers:  
ROW 15  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
VERTD  
Column 12  
MSB  
LSB  
VERTD - Specifies the starting position for vertical display. The total steps are 256, and the increment  
of each step is 4 horizontal display lines. The initial value is 4 after power-up.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
HORD  
Column 13  
MSB  
LSB  
HORD - Defines the starting position for horizontal display. The total steps are 256 and the increment of  
each step is 6 dots. The initial value is 15 after power-up.  
b7  
-
b6  
CH6  
b5  
CH5  
b4  
CH4  
b3  
CH3  
b2  
CH2  
b1  
CH1  
b0  
CH0  
Column 14  
CH6-CH0 - Defines the character vertical height, which is programmable from 18 to 71 lines. The char-  
acter vertical height is at least 18 lines if the contents of CH6-CH0 are less than 18. For  
example, when the content is " 2 ", the character vertical height is regarded as equal to 20  
lines. If the contents of CH4-CH0 are greater than or equal to 18, it will be regarded as equal  
to 17. See Tables 2 and 3 for a detailed description of this operation.  
b7  
b6  
b5  
b4  
Reserved  
b3  
b2  
b1  
b0  
Column 15  
This byte is reserved for internal testing.  
9/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
b7  
-
b6  
-
B5  
-
b4  
b3  
b2  
RSPACE  
b1  
b0  
Column 16  
MSB  
LSB  
RSPACE - Defines the row to row spacing in each unit of the horizontal line. That is, extra RSPACE  
horizontal lines will be appended below each display row, and the maximum space is 31  
lines. The initial value is 0” after power-up.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Column 17  
OSDEN BSEN SHADOW TRIC BLANK WENCLR RAMCLR FBKGC  
OSDEN - Activates the OSD operation when this bit is set to "1". The initial value is” 0” after power-up.  
BSEN - Enables the bordering and shadowing effect.  
SHADOW - Activates the shadowing effect if this bit is set, otherwise the bordering is chosen.  
TRIC - Defines the driving state of output pins ROUT, GOUT, BOUT and FBKG when OSD is disabled.  
That is, while OSD is disabled, these 4 pins will drive LOW if this bit is set to 1, otherwise these  
pins are in high-impedance state. The initial value is 0” after power-up.  
BLANK - Forces the FBKG pin output to HIGH while this bit is set to "1".  
WENCLR - Clears all WEN bits of window control registers when this bit is set to "1". The initial value is  
0” after power-up.  
RAMCLR - Clears all ADDRESS bytes of display registers when this bit is set to "1". The initial value is  
0” after power-up.  
FBKGC - Defines the output configuration for FBKG pin. When it is set to "0", the FBKG outputs during  
the display of characters or windows, otherwise, it outputs only during the display of charac-  
ters.  
B7  
b6  
b5  
b4  
DWE  
b3  
HSP  
b2  
VSP  
b1  
b0  
Column 18  
TEST FBKGP PWMCK  
PWM1 PWM0  
TEST - = 0 Þ Normal mode.  
= 1 Þ Test mode, not allowed in applications.  
FBKGP - Selects the polarity of the output pin FBKG.  
= 1 Þ Positive polarity FBKG output is selected.  
= 0 Þ Negative polarity FBKG output is selected.  
The initial value is 1 after power-up.  
PWMCK - Selects the output options to the HTONE/PWMCK pin.  
= 0 Þ ? HTONE option is selected.  
= 1 Þ ? PWMCK option is selected with 50/50 duty cycle and is synchronous with the input  
HFLB. The frequency is selected by PWM1, PWM0 as shown in table 4.  
The initial value is 0 after power-up.  
DWE - Enables double width. When the bit is set to 1, the display of the OSD menu can change to half  
resolution for double character width, and then the number of pixels of each line should be even.  
HSP -  
= 1 Þ Accepts positive polarity Hsync input.  
10/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
= 0 Þ Accepts negative polarity Hsync input.  
VSP - = 1 Þ Accepts positive polarity Vsync input.  
= 0 Þ Accepts negative polarity Vsync input.  
PWM1, PWM0 - Selects the PWMCK output frequency.  
= (0, 0) Þ XIN frequency /8  
= (0, 1) Þ XIN frequency /4  
= (1, 0) Þ XIN frequency /2  
= (1, 1) Þ XIN frequency /1  
The initial value is 0, 0 after power-up.  
Notes : When XIN is not present, don't write data in any address. If data is written in any address, a  
malfunction may occur.  
TABLE 4. PWMCK Frequency and PWMDA Sampling Rate  
(PWM1, PWM0)  
( 0, 0 )  
PWMCK Freq.  
XIN frequency /8  
XIN frequency /4  
XIN frequency /2  
XIN frequency /1  
PWMDA sampling rate  
XIN frequency /(8 * 256)  
XIN frequency /(4 * 256)  
XIN frequency /(2 * 256)  
XIN frequency /(1 * 256)  
( 0, 1 )  
( 1, 0 )  
( 1 ,1 )  
3.10 PWM D/A Converter  
There are 8 open-drain PWM D/A outputs (PWM0 to PWM7). The PWM D/A converter output pulse  
width is programmable by writing data to columns 19-26 registers of row 15 with 8-bit resolution to con-  
trol the pulse width duration from 0/256 to 255/256. The sampling rate is selected by PWM1, PWM0 as  
shown in table 4. In applications, all open-drain output pins should be pulled up by external resistors to  
supply voltage (5V to 9V) for the desired output range.  
ROW 15  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PWMDA0  
Column 19  
|
|
PWMDA7  
Column 26  
MSB  
LSB  
PWMDA0 - PWMDA7 - Defines the output pulse width of pins PWM0 to PWM7.  
3.11 Color Encoder  
The decoder generates the video output to ROUT, GOUT and BOUT by integrating window color, bor-  
der blackedge, luminance output and color selection output (R, G, B) to form the desired video outputs.  
4.0 ABSOLUTE MAXIMUM RATINGS  
DC Supply Voltage(VDD,VDDA)  
Ground Voltage  
-0.3 to +7 V  
-0.3 to VDD+0.3 V  
o
Storage Temperature  
-65 to +150 C  
o
Ambient Operating Temperature  
0 to +70 C  
11/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
5.0 OPERATING CONDITIONS  
DC Supply Voltage(VDD,VDDA)  
Operating Temperature  
+4.75 to +5.25 V  
o
0 to +70 C  
6.0 ELECTRICAL CHARACTERISTICS (Under Operating Conditions)  
Symbol  
Parameter  
Conditions(Notes)  
Min.  
Max.  
Unit  
V
Input High Voltage  
-
0.7 * VDD  
VDD+0.3  
V
IH  
0.3 * VDD  
(0.2*VDD  
for SSB pin )  
V
V
V
Input Low Voltage  
-
VSS-0.3  
VDD-0.8  
-
V
V
V
IL  
Output High Volt-  
age  
I
³ -24 mA  
-
OH  
OL  
OH  
Output Low Volt-  
age  
I
£ 24 mA  
0.5  
OL  
-
(For all OD pins, pulled  
up by external 5 to 9V  
power supply)  
Open Drain Out-  
put High Voltage  
5
9
V
V
ODH  
5 mA ³ I  
Open Drain Out-  
put Low Voltage  
DOL  
V
I
-
-
-
0.5  
12  
20  
V
ODL  
( For all OD pins )  
Vin = VDD,  
Standby Current  
Operating Current  
mA  
mA  
SB  
I
l
load = 0uA  
Pixel rate=96MHz  
I
CC  
I
load = 0uA  
7.0 SWITCHING CHARACTERISTIC (Under Operating Conditions)  
Symbol  
fHFLB  
Parameter  
HFLB input frequency  
Min.  
15  
Typ.  
Max.  
Unit  
-
-
-
-
-
-
-
-
-
-
-
-
120  
KHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tr  
Output rise time  
-
5
5
-
Tf  
Output fall time  
-
tBCSU  
tBCH  
tDCSU  
tDCH  
SSB to SCK set-up time  
SSB to SCK hold time  
SDA to SCK set-up time  
SDA to SCK hold time  
SCK HIGH time  
200  
100  
200  
100  
500  
500  
500  
500  
500  
-
-
-
tSCKH  
tSCKL  
tSU:STA  
tHD:STA  
tSU:STO  
-
SCK LOW time  
-
START condition set-up time  
START condition hold time  
STOP condition set-up time  
-
-
-
12/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
Symbol  
tHD:STO  
Parameter  
STOP condition hold time  
Min.  
500  
2
Typ.  
Max.  
Unit  
ns  
-
-
tSETUP  
tHOLD  
tpd  
HFLB delay to rising edge of pixel clock  
minimum pulse width of HFLB  
propagation delay of output to pixel clock  
pixel clock input  
6
ns  
25  
ns  
10  
96  
ns  
PIXin  
6
MHz  
8.0 TIMING DIAGRAMS  
tSCKH  
SCK  
SSB  
SDA  
tSCKL  
tBCSU  
tBCH  
tDCSU  
tDCH  
FIGURE 7. Data Interface Timing (SPI)  
tSCKH  
SCK  
tSCKL  
tSU:STA  
tHD:STO  
SDA  
tHD:STA  
tDCSU  
tDCH  
tSU:STO  
2
FIGURE 8. Data Interface Timing (I C)  
PlXin  
R,G,B, FBKG  
HTONE  
t
pd:: Propagation Delay to R,G,B, FBKG  
and HTONE outputs  
t
pd  
HFLB  
t
SETUP  
t
HOLD  
FIGURE 9. Output and HFLB Timing to Pixel Clock  
13/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
9.0 PACKAGE DIMENSION  
9.1 16 PDIP 300Mil  
Unit:Mil  
R10Max  
(4X  
)
312 +/-12  
55 +/-20  
250 +/-4  
90 +/-20  
350 +/-20  
R40  
10  
65 +/-4  
55 +/-4  
310Max  
75 +/-20  
90 +/-20  
750 +/-10  
7
15 Max  
Typ  
35 +/-5  
115 Min  
15 Min  
60 +/-  
5Typ  
100Ty  
p
18 +/-  
2Typ  
9.2 24 PDIP 300Mil  
Unit: Mil  
R10Max  
(4X)  
312+/-12  
55+/-20  
80+/-20  
350+/-20  
250+/-4  
R40  
10  
930+/-10  
65+/-4  
65+/-4  
1245+/-10  
7Ty  
p
15Max  
35+/-5  
115Min  
15Min.  
100Ty  
p
18+/-  
2Typ  
60+/-  
5Typ  
14/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
9.3 16-pin SOP 300Mil  
Unit: Mil  
0.406 +/-0.013  
0.295 +/-0.004  
7o(4x)  
0.015x45o  
0.406 +/-0.008  
(4x)  
0.098 +/-0.006  
0.091  
0.028 +0.022 /-0.013  
0.016 +/-0.004 0.050  
9.4 24-pin SOP 300Mil  
15.0mm /+0.4 -0.1  
1.85mm/+0.4 -0.15  
24  
13  
7.9mm+/-0.4  
5.3mm +0.3/-0.1  
0.1mm +0.2/-0.05  
0.5mm+/-0.2  
6.9mm  
0.2mm  
1
12  
+0.1/-0.05  
0.45mm +/-0.1  
1.27mm  
10.0 CHARACTER AND SYMBOL PATTERN  
Please see the attachment.  
Myson Technology, Inc.  
No. 2, Industry E. Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan, 20111 Stevens Creek Blvd. #138 Cupertino, Ca. 95014, U.S.A.  
R. O. C. Tel: 886-3-5784866 Fax: 886-3-5785002 Tel:408-252-8788 FAX: 408-252-8789 Sales@myson.com  
http://www.myson.com.tw  
Myson Technology USA, Inc.  
http://www.myson.com  
15/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
On-Screen-Display for LCD Monitor  
FEATURES  
GENERAL DESCRIPTION  
Horizontal sync input may be up to 120 KHz.  
MTV118 is designed for LCD monitor appli-  
cations to display the built-in characters or fonts  
onto an LCD monitor screen. The display oper-  
ates by transferring data and control information  
from the micro controller to the RAM through a  
serial data interface. It can execute full screen  
displays automatically and specific functions such  
as character bordering, shadowing, blinking, dou-  
ble height and width, font by font color control,  
frame positioning, frame size control by character  
height and windowing effect. Moreover, MTV118  
also provides 8 PWM DAC channels with 8-bit  
resolution and a PWM clock output for external  
digital-to-analog control.  
Acceptable wide-range pixel clock up to 96MHz  
from XIN pin.  
Full-screen display consists of 15 (rows) by 30 (col-  
umns) characters.  
12 x 18 dot matrix per character.  
Total of 256 characters and graphic fonts including  
248 mask ROM fonts and 8 programmable RAM  
fonts.  
8 color selection maximum per display character.  
Double character height and/or width control.  
Programmable positioning for display screen cen-  
ter.  
Bordering, shadowing and blinking effect.  
Programmable vertical character height (18 to 71  
lines) control.  
Row to row spacing register to manipulate the con-  
stant display height.  
4 programmable background windows with multi-  
level operation.  
Software clears for display frame.  
Half tone and fast blanking output.  
8-channel/8-bit PWM D/A converter output.  
2
Compatible with SPI bus or I C interface with  
address 7AH (slave address is mask option).  
16 or 24-pin PDIP/SOP package.  
BLOCK DIAGRAM  
SSB  
SCK  
SDA  
VDD  
8
9
8
LUMAR  
LUMAG  
LUMAB  
BLINK  
DATA  
DATA  
DISPLAY & ROW  
CONTROL  
REGISTERS  
SERIAL DATA  
INTERFACE  
ROW, COL  
ACK  
VSS  
CWS  
CHS  
8
CRADDR  
VDDA  
VSSA  
8
CHARACTER ROM  
USER FONT RAM  
DATA  
LUMA  
5
9
9
5
5
RCADDR  
DADDR  
FONTADDR  
WINADDR  
PWMADDR  
5
ARWDB  
HDREN  
VDREN  
NROW  
LPN  
CWS  
BORDER  
ADDRESS BUS  
ADMINISTRATOR  
LUMINANCE &  
BORDGER  
GENERATOR  
VCLKS  
5
8
VFLB  
LPN  
DATA  
BSEN  
VERTICAL  
DISPLAY  
CONTROL  
WINDOWS &  
FRAME  
CONTROL  
SHADOW  
OSDENB  
HSP  
7
8
8
8
7
CH  
CHS  
VERTD  
NROW  
VDREN  
VERTD  
HORD  
CH  
VSP  
HSP  
VSP  
ARWDB  
HDREN  
HFLB  
ROUT  
GOUT  
BOUT  
FBKG  
HTONE  
HORIZONTAL  
DISPLAY CONTROL  
8
HORD  
LUMAR  
LUMAG  
LUMAB  
BLINK  
COLOR  
ENCODER  
NC  
CLOCK  
GENERATOR  
VCLKX  
XIN  
VCLKX  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM D/A  
CONVERTER  
POWER ON  
RESET  
PRB  
8
DATA  
This datasheet contains new product information. Myson Technology reserves the rights to modify the product specification  
without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of  
the product.  
1/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
1.0 PIN CONNECTION  
1
16  
1
24  
23  
22  
21  
20  
19  
VSS  
XIN  
VSS  
VSS  
XIN  
VSS  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
2
ROUT  
ROUT  
GOUT  
BOUT  
FBKG  
3
NC  
GOUT  
NC  
4
VDD  
HFLB  
SSB  
SDA  
SCK  
BOUT  
VDD  
MTV118  
5
FBKG  
HFLB  
SSB  
6
HTONE/PWMCK  
HTONE/PWMCK  
MTV118N24  
10 VFLB  
VDD  
SDA  
7
18 VFLB  
17 VDD  
16 PWM7  
9
SCK  
8
PWM0  
PWM1  
PWM2  
PWM3  
9
PWM6  
PWM5  
PWM4  
10  
11  
12  
15  
14  
13  
2.0 PIN DESCRIPTIONS  
Pin #  
Name  
I/O  
Descriptions  
N16 N24  
VSS  
-
1
2
3
4
1
2
3
4
Ground. This ground pin is used for internal circuitry.  
Pixel Clock Input. This is a clock input pin. MTV118 is driven by  
an external pixel clock source for all the logics inside. The fre-  
quency of XIN must be the integral time of pin HFLB.  
XIN  
NC  
I
I
No connection.  
Power supply. Positive 5 V DC supply for internal circuitry. A  
0.1uF decoupling capacitor should be connected across VDD and  
VSS.  
VDD  
-
Horizontal Input. This pin is used to input the horizontal synchro-  
nizing signal. It is a leading edge trigger and has an internal pull-  
up resistor.  
HFLB  
SSB  
I
I
I
5
6
7
5
6
7
Serial Interface Enabler. It is used to enable the serial data and  
is also used to select the operation of I2C or SPI bus. If this pin is  
left floating, I2C bus is enabled, otherwise the SPI bus is enabled.  
Serial Data Input. The external data transfers through this pin to  
internal display registers and control registers. It has an internal  
pull-up resistor.  
SDA  
Serial Clock Input. The clock-input pin is used to synchronize the  
data transfer. It has an internal pull-up resistor.  
SCK  
I
8
-
8
9
Open-Drain PWM D/A Converter 0. The output pulse width is  
programmable by the register of row 15, column 19.  
PWM0  
PWM1  
PWM2  
O
O
O
Open-Drain PWM D/A Converter 1. The output pulse width is  
programmable by the register of row 15, column 20.  
-
10  
11  
Open-Drain PWM D/A Converter 2. The output pulse width is  
programmable by the register of row 15, column 21.  
-
2/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
Pin #  
I/O  
Name  
Descriptions  
N16 N24  
Open-Drain PWM D/A Converter 3. The output pulse width is  
programmable by the register of row 15, column 22.  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
O
O
O
O
O
-
-
-
-
-
12  
13  
14  
15  
16  
Open-Drain PWM D/A Converter 4. The output pulse width is  
programmable by the register of row 15, column 23.  
Open-Drain PWM D/A Converter 5. The output pulse width is  
programmable by the register of row 15, column 24.  
Open-Drain PWM D/A Converter 6. The output pulse width is  
programmable by the register of row 15, column 25.  
Open-Drain PWM D/A Converter 7. The output pulse width is  
programmable by the register of row 15, column 26.  
Power Supply. Positive 5 V DC supply for internal circuitry and a  
VDD  
-
I
9
17 0.1uF decoupling capacitor should be connected across VDD and  
VSS.  
Vertical Input. This pin is used to input the vertical synchronizing  
VFLB  
10  
18  
signal. It is triggered by lead and has an internal pull-up resistor.  
Half Tone Output / PWM Clock Output. This is a multiplexed pin  
HTONE /  
PWMCK  
selected by the PWMCK bit. This pin can be a PWM clock or used  
to attenuate R, G, B gain of VGA for the transparent windowing  
O
11  
19  
effect.  
Fast Blanking Output. It is used to cut off external R, G, B sig-  
nals of VGA while this chip is displaying characters or windows.  
FBKG  
O
12  
20  
BOUT  
GOUT  
ROUT  
VSS  
O
O
O
-
13  
14  
15  
16  
21 Blue Color Output. This is a blue color video signal output.  
22 Green Color Output. This is a green color video signal output.  
23 Red Color Output. This is a red color video signal output.  
24 Ground. This ground pin is used for internal circuitry.  
3.0 FUNCTIONAL DESCRIPTIONS  
3.1 Serial Data Interface  
The serial data interface receives data transmitted from an external controller. There are 2 types of bus  
which can be accessed through the serial data interface: SPI bus and I2C bus.  
3.1.1 SPI Bus  
When the SSB pin is pulled to a HIGH or LOW level, the SPI bus operation is selected. A valid trans-  
mission should start from pulling SSB to LOW level, enabling the MTV118 receiving mode and retaining  
the LOW level until the last cycle for a complete data packet transfer. The protocol is shown in Figure 1  
on page 4.  
There are 3 transmission formats as shown below:  
Format (a) R - C - D ® R - C - D ® R - C - D  
Format (b) R - C - D ® C - D ® C - D ® C - D  
Format (c) R - C - D ® D ® D ® D ® D ® D  
R=row address, C=column address, D=display data  
3/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
SSB  
SCK  
MS  
B
LSB  
SDA  
first byte  
last byte  
FIGURE 1. Data Transmission Protocol (SPI)  
3.1.2 I2C Bus  
I2C bus operation is only selected when the SSB pin is left floating. A valid transmission should begin  
from writing the slave address 7AH, which is mask option, to MTV118. The protocol is shown in Figure  
2 on page 4..  
SCK  
SDA  
B7  
B6  
B0  
B7  
B0  
¡
@¡ @¡ @¡ @  
START  
ACK  
ACK  
STOP  
first byte  
¡
@
second byte  
last byte  
FIGURE 2. Data Transmission Protocol (I2C)  
There are 3 transmission formats as shown below:  
Format (a) S - R - C - D ® R - C - D ® R - C - D  
Format (b) S - R - C - D ® C - D ® C - D ® C - D  
Format (c) S - R - C - D ® D ® D ® D ® D ® D  
S=slave address, R=row address, C=column address, D=display data  
Each arbitrary length of data packet consists of 3 portions: row address (R), column address (C) and  
display data (D). Format (a) is suitable for updating small amounts of data which will be allocated with  
different row and column addresses. Format (b) is recommended for updating data that has the same  
row address but a different column address. Massive data updating or full screen data changes should  
be done in format (c) to increase transmission efficiency. The row and column addresses will be incre-  
mented automatically when format (c) is applied. Furthermore, the undefined locations in display or font  
RAM should be filled with dummy data.  
There are 3 types of data which should be accessed through the serial data interface: address bytes of  
display registers, attribute bytes of display registers and user font RAM data. The protocol is the same  
for all except bits 5 and 6 of the row addresses. The MSB(b7) is used to distinguish row and column  
addresses when transferring data from an external controller. Bit 6 of the row address is used to distin-  
guish display registers and user font RAM data and bit6 of the column address is used to differentiate  
the column address for formats (a), (b) and (c), respectively. Bit 5 of the row address for display regis-  
ters is used to distinguish the address byte when it is set to "0" and the attribute byte when it is set to  
"1". The configuration of transmission formats is shown in Table 1 on page 5.  
4/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
TABLE 1. Configuration of Transmission Formats  
Address  
b7  
1
b6  
0
b5  
0
b4  
x
b3  
R3  
C3  
b2  
R2  
C2  
b1  
R1  
C1  
b0  
R0  
C0  
Format  
a,b,c  
a,b  
Address  
Bytes of  
Display  
Reg.  
Row  
Column  
0
0
x
C4  
ab  
Column  
Row  
0
1
x
C4  
C3  
C2  
C1  
C0  
c
c
Attribute  
Bytes of  
Display  
Reg.  
1
0
0
0
1
x
x
R3  
C3  
R2  
C2  
R1  
C1  
R0  
C0  
a,b,c  
a,b  
Column  
C4  
ab  
Column  
Row  
0
1
x
C4  
C3  
C2  
C1  
C0  
c
c
User  
Fonts  
RAM  
1
0
1
0
x
x
x
R2  
C2  
R1  
C1  
R0  
C0  
a,b,c  
a,b  
Column  
C5  
C4  
C3  
ab  
Column  
0
1
C5  
C4  
C3  
C2  
C1  
C0  
c
c
The data transmission is permitted to change from format (a) to format (b) and (c), or from format (b) to  
format (a), but not from format (c) back to format (a) and (b). The alternation between transmission for-  
mats is configured as the state diagram shown in Figure 3 on page 5.  
0, X  
Input = b7, b6  
Initiate  
1, X  
format (a)  
1, X  
ROW  
format (b)  
format (c)  
0, 1  
0, 0  
COLc  
COLab  
1, X  
X, X  
DAc  
DAab  
FIGURE 3. Transmission State Diagram  
3.2 Address Bus Administrator  
The administrator manages bus address arbitration of internal registers or user font RAM during exter-  
nal data write-in. The external data write through serial data interface to registers must be synchronized  
by internal display timing. In addition, the administrator also provides automatic incrementation to the  
address bus when external writing occurs using format (c).  
3.3 Vertical Display Control  
The vertical display control can generate different vertical display sizes for most display standards in  
current monitors. The vertical display size is calculated with the information of a double character height  
bit(CHS) and a vertical display height control register(CH6-CH0).The algorithms of a repeating charac-  
ter line display are shown in Tables 2 and 3. The programmable vertical size range is 270 lines to max-  
imum 2130 lines.  
5/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
The vertical display center for a full-screen display may be figured out according to the information of  
the vertical starting position register (VERTD) and VFLB input. The vertical delay starting from the lead-  
ing edge of VFLB is calculated using the following equation:  
Vertical delay time = ( VERTD * 4 + 1 ) * H  
Where H = 1 horizontal line display time  
TABLE 2. Repeat Line Weight of Character  
CH6-CH0  
CH6,CH5=11  
CH6,CH5=10  
CH6,CH5=0x  
CH4=1  
Repeat Line Weight  
+18*3  
+18*2  
+18  
+16  
+8  
CH3=1  
CH2=1  
+4  
CH1=1  
+2  
CH0=1  
+1  
TABLE 3. Repeat Line Number of Character  
Repeat Line #  
RepeaterLine  
Weight  
0
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
v
-
9
-
10 11 12 13 14 15 16 17  
+1  
+2  
-
-
-
-
-
v
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
v
-
-
-
-
-
+4  
-
-
v
-
-
-
v
-
-
-
-
v
-
-
-
v
-
-
-
-
+8  
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
v
v
v
v
v
v
v
v
-
-
+16  
+17  
+18  
-
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
-
v
-
v
v
Note: v means the nth line in the character would be repeated once, while -” means the nth line in the  
character would not be repeated.  
3.4 Horizontal Display Control  
The horizontal display control is used to generate control timing for a horizontal display based on dou-  
ble character width bit (CWS), horizontal positioning register (HORD) and HFLB input. A horizontal dis-  
play line includes 360 dots for 30 display characters and the remaining dots for a blank region. The  
horizontal delay starting from the HFLB leading edge is calculated using the following equation:  
Horizontal delay time = ( HORD * 6 + 49) * P  
Where P = 1 XIN pixel display time  
3.5 Display & Row Control Registers  
The internal RAM contains display and row control registers. The display registers have 450 locations  
which are allocated between row 0/column 0 and row 14/column 29 as shown in Figure 4. Each display  
register has its corresponding character address on the address byte, and 1 blink bit and its corre-  
sponding color bits on attribute bytes. The row control register is allocated at column 30 for row 0 to row  
14; it is used to set character size for each respective row. If the double width character (CWS) is cho-  
6/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
sen, only even column characters may be displayed on-screen and the odd column characters will be  
hidden.  
COLUMN #  
ROW #  
0 1  
28 29  
30  
31  
0
1
ROW CTRL  
REG  
DISPLAY REGISTERS  
RESERVED  
13  
14  
COLUMN#  
8 9  
0
2 3  
5 6  
WINDOW2  
11 12  
18 19  
26  
ROW 15  
FRAMECRTL PWM D/A  
WINDOW1  
WINDOW3  
WINDOW4  
REG  
CRTL REG  
FIGURE 4. Memory map  
3.5.1 Register Descriptions  
1. (i) Display Register, (Row 0 - 14, Column 0 - 29)  
ADDRESS BYTE  
b7  
b6  
b5  
b4  
CRADDR  
b3  
b2  
b1  
b0  
LSB  
MSB  
CRADDR - Defines ROM character and user-programmable fonts address.  
(a) 0 ~ 247 Þ 248 built-in characters and graphic symbols  
(b) 248 ~ 255 Þ 8 user-programmable fonts  
ATTRIBUTE BYTE  
b7 b6 b5  
b4  
-
b3  
BLINK  
b2  
R1  
b1  
G1  
b0  
B1  
-
-
-
BLINK - Enables blinking effect when this bit is set to " 1 ". The blinking is alternated per 32 vertical  
frames.  
R1, G1, B1 - These bits are used to specify its relative address character color 1.  
2. Row Control Registers, (Row 0 - 14)  
b7  
-
b6  
-
b5  
-
b4  
R2  
b3  
G2  
b2  
B2  
b1  
b0  
COLN 30  
CHS CWS  
R2, G2, B2 - These bits are used to specify its relative row character color 2. While the corresponding  
CCS bit is set to 1, color 2 should be chosen.  
CHS - Defines double height character to the respective row.  
CWS - Defines double width character to the respective row.  
7/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
3.6 User Font RAM  
The user font RAM has 288 locations which are allocated between row 0/column 0 and row 7/column  
35 to specify 8 user-programmable fonts, as shown in Figure 5. Each programmable font consists of a  
12x18 dot matrix. Each row of dot matrix consists of 2 bytes of data which include 4 dummy bits as  
shown in figure 6. That is, the dot matrix data of each font is stored in 36-byte registers. For example,  
font 0 is stored in row 0 from column 0 to column 35 and font 1 is stored in row 1 from column 0 to col-  
umn 35, etc.  
ROW #  
COLUMN #  
34 35 36  
0
1
63  
0
1
USER FONT RAM  
RESERVED  
6
7
FIGURE 5. User Font RAM Memory Map  
Nth byte  
leftmost dot of font  
(N+1)th byte  
rightmost dot of font  
b7 b6  
b5 b4 b3 b2 b1 b0 b7 b6  
12 bits for 1-row data of font dot matrix  
b5 b4 b3 b2 b1 b0  
Dummy bits  
N=even number  
FIGURE 6. Data Format of Font Dot Matrix  
3.7 Character ROM  
The character ROM contains 248 built-in characters and symbols from addresses 0 to 247. Each char-  
acter and symbol consists of a 12x18 dot matrix. The detail pattern structures for each character and  
symbol are shown in 10.0“ CHARACTER AND SYMBOL PATTERN” on page 15.  
3.8 Luminance & Border Generator  
There are 2 shift registers included in the design which can shift out of luminance and border dots to the  
color encoder. The bordering and shadowing feature is configured in this block. For bordering effect,  
the character will be enveloped with blackedge on 4 sides. For shadowing effect, the character is envel-  
oped with blackedge on right and bottom sides only.  
3.9 Window and Frame Control  
The display frame position is completely controlled by the contents of VERTD and HORD. The window  
size and position control are specified in columns 0 to 11 on row 15 of the memory map, as shown in  
Figure 4. Window 1 has the highest priority and window 4 has the least, when 2 windows are overlap-  
ping. More detailed information is described as follows:  
8/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
1. Window control registers:  
ROW 15  
Column  
b7  
MSB  
b7  
b6  
b5  
b4  
LSB MSB  
b4 b3  
LSB  
b3  
LSB  
b3  
b2  
b1  
b0  
ROW START ADDR  
ROW END ADDR  
0,3,6,OR 9  
LSB  
b6  
b5  
b2  
b1  
b0  
-
Column  
COL START ADDR  
WEN  
CCS  
1,4,7,OR 10  
MSB  
b7  
b6  
b5  
b4  
b2  
R
b1  
G
b0  
B
Column  
COL END ADDR  
2,5,8,OR 11  
MSB  
START(END) ADDR - These addresses are used to specify the window size. It should be noted that  
when the start address is greater than the end address, the window will be disa-  
bled.  
WEN - Enables the window display.  
CCS - When a window is overlapping with the character, character color 2 should be chosen while this  
bit is set to 1. Color 1 is selected otherwise.  
R, G, B - Specifies the color of the relative background window.  
2. Frame control registers:  
ROW 15  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
VERTD  
Column 12  
MSB  
LSB  
VERTD - Specifies the starting position for vertical display. The total steps are 256, and the increment  
of each step is 4 horizontal display lines. The initial value is 4 after power-up.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
HORD  
Column 13  
MSB  
LSB  
HORD - Defines the starting position for horizontal display. The total steps are 256 and the increment of  
each step is 6 dots. The initial value is 15 after power-up.  
b7  
-
b6  
CH6  
b5  
CH5  
b4  
CH4  
b3  
CH3  
b2  
CH2  
b1  
CH1  
b0  
CH0  
Column 14  
CH6-CH0 - Defines the character vertical height, which is programmable from 18 to 71 lines. The char-  
acter vertical height is at least 18 lines if the contents of CH6-CH0 are less than 18. For  
example, when the content is " 2 ", the character vertical height is regarded as equal to 20  
lines. If the contents of CH4-CH0 are greater than or equal to 18, it will be regarded as equal  
to 17. See Tables 2 and 3 for a detailed description of this operation.  
b7  
b6  
b5  
b4  
Reserved  
b3  
b2  
b1  
b0  
Column 15  
This byte is reserved for internal testing.  
9/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
b7  
-
b6  
-
B5  
-
b4  
b3  
b2  
RSPACE  
b1  
b0  
Column 16  
MSB  
LSB  
RSPACE - Defines the row to row spacing in each unit of the horizontal line. That is, extra RSPACE  
horizontal lines will be appended below each display row, and the maximum space is 31  
lines. The initial value is 0” after power-up.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Column 17  
OSDEN BSEN SHADOW TRIC BLANK WENCLR RAMCLR FBKGC  
OSDEN - Activates the OSD operation when this bit is set to "1". The initial value is” 0” after power-up.  
BSEN - Enables the bordering and shadowing effect.  
SHADOW - Activates the shadowing effect if this bit is set, otherwise the bordering is chosen.  
TRIC - Defines the driving state of output pins ROUT, GOUT, BOUT and FBKG when OSD is disabled.  
That is, while OSD is disabled, these 4 pins will drive LOW if this bit is set to 1, otherwise these  
pins are in high-impedance state. The initial value is 0” after power-up.  
BLANK - Forces the FBKG pin output to HIGH while this bit is set to "1".  
WENCLR - Clears all WEN bits of window control registers when this bit is set to "1". The initial value is  
0” after power-up.  
RAMCLR - Clears all ADDRESS bytes of display registers when this bit is set to "1". The initial value is  
0” after power-up.  
FBKGC - Defines the output configuration for FBKG pin. When it is set to "0", the FBKG outputs during  
the display of characters or windows, otherwise, it outputs only during the display of charac-  
ters.  
B7  
b6  
b5  
b4  
DWE  
b3  
HSP  
b2  
VSP  
b1  
b0  
Column 18  
TEST FBKGP PWMCK  
PWM1 PWM0  
TEST - = 0 Þ Normal mode.  
= 1 Þ Test mode, not allowed in applications.  
FBKGP - Selects the polarity of the output pin FBKG.  
= 1 Þ Positive polarity FBKG output is selected.  
= 0 Þ Negative polarity FBKG output is selected.  
The initial value is 1 after power-up.  
PWMCK - Selects the output options to the HTONE/PWMCK pin.  
= 0 Þ ? HTONE option is selected.  
= 1 Þ ? PWMCK option is selected with 50/50 duty cycle and is synchronous with the input  
HFLB. The frequency is selected by PWM1, PWM0 as shown in table 4.  
The initial value is 0 after power-up.  
DWE - Enables double width. When the bit is set to 1, the display of the OSD menu can change to half  
resolution for double character width, and then the number of pixels of each line should be even.  
HSP -  
= 1 Þ Accepts positive polarity Hsync input.  
10/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
= 0 Þ Accepts negative polarity Hsync input.  
VSP - = 1 Þ Accepts positive polarity Vsync input.  
= 0 Þ Accepts negative polarity Vsync input.  
PWM1, PWM0 - Selects the PWMCK output frequency.  
= (0, 0) Þ XIN frequency /8  
= (0, 1) Þ XIN frequency /4  
= (1, 0) Þ XIN frequency /2  
= (1, 1) Þ XIN frequency /1  
The initial value is 0, 0 after power-up.  
Notes : When XIN is not present, don't write data in any address. If data is written in any address, a  
malfunction may occur.  
TABLE 4. PWMCK Frequency and PWMDA Sampling Rate  
(PWM1, PWM0)  
( 0, 0 )  
PWMCK Freq.  
XIN frequency /8  
XIN frequency /4  
XIN frequency /2  
XIN frequency /1  
PWMDA sampling rate  
XIN frequency /(8 * 256)  
XIN frequency /(4 * 256)  
XIN frequency /(2 * 256)  
XIN frequency /(1 * 256)  
( 0, 1 )  
( 1, 0 )  
( 1 ,1 )  
3.10 PWM D/A Converter  
There are 8 open-drain PWM D/A outputs (PWM0 to PWM7). The PWM D/A converter output pulse  
width is programmable by writing data to columns 19-26 registers of row 15 with 8-bit resolution to con-  
trol the pulse width duration from 0/256 to 255/256. The sampling rate is selected by PWM1, PWM0 as  
shown in table 4. In applications, all open-drain output pins should be pulled up by external resistors to  
supply voltage (5V to 9V) for the desired output range.  
ROW 15  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PWMDA0  
Column 19  
|
|
PWMDA7  
Column 26  
MSB  
LSB  
PWMDA0 - PWMDA7 - Defines the output pulse width of pins PWM0 to PWM7.  
3.11 Color Encoder  
The decoder generates the video output to ROUT, GOUT and BOUT by integrating window color, bor-  
der blackedge, luminance output and color selection output (R, G, B) to form the desired video outputs.  
4.0 ABSOLUTE MAXIMUM RATINGS  
DC Supply Voltage(VDD,VDDA)  
Ground Voltage  
-0.3 to +7 V  
-0.3 to VDD+0.3 V  
o
Storage Temperature  
-65 to +150 C  
o
Ambient Operating Temperature  
0 to +70 C  
11/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
5.0 OPERATING CONDITIONS  
DC Supply Voltage(VDD,VDDA)  
Operating Temperature  
+4.75 to +5.25 V  
o
0 to +70 C  
6.0 ELECTRICAL CHARACTERISTICS (Under Operating Conditions)  
Symbol  
Parameter  
Conditions(Notes)  
Min.  
Max.  
Unit  
V
Input High Voltage  
-
0.7 * VDD  
VDD+0.3  
V
IH  
0.3 * VDD  
(0.2*VDD  
for SSB pin )  
V
V
V
Input Low Voltage  
-
VSS-0.3  
VDD-0.8  
-
V
V
V
IL  
Output High Volt-  
age  
I
³ -24 mA  
-
OH  
OL  
OH  
Output Low Volt-  
age  
I
£ 24 mA  
0.5  
OL  
-
(For all OD pins, pulled  
up by external 5 to 9V  
power supply)  
Open Drain Out-  
put High Voltage  
5
9
V
V
ODH  
5 mA ³ I  
Open Drain Out-  
put Low Voltage  
DOL  
V
I
-
-
-
0.5  
12  
20  
V
ODL  
( For all OD pins )  
Vin = VDD,  
Standby Current  
Operating Current  
mA  
mA  
SB  
I
l
load = 0uA  
Pixel rate=96MHz  
I
CC  
I
load = 0uA  
7.0 SWITCHING CHARACTERISTIC (Under Operating Conditions)  
Symbol  
fHFLB  
Parameter  
HFLB input frequency  
Min.  
15  
Typ.  
Max.  
Unit  
-
-
-
-
-
-
-
-
-
-
-
-
120  
KHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tr  
Output rise time  
-
5
5
-
Tf  
Output fall time  
-
tBCSU  
tBCH  
tDCSU  
tDCH  
SSB to SCK set-up time  
SSB to SCK hold time  
SDA to SCK set-up time  
SDA to SCK hold time  
SCK HIGH time  
200  
100  
200  
100  
500  
500  
500  
500  
500  
-
-
-
tSCKH  
tSCKL  
tSU:STA  
tHD:STA  
tSU:STO  
-
SCK LOW time  
-
START condition set-up time  
START condition hold time  
STOP condition set-up time  
-
-
-
12/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
Symbol  
tHD:STO  
Parameter  
STOP condition hold time  
Min.  
500  
2
Typ.  
Max.  
Unit  
ns  
-
-
tSETUP  
tHOLD  
tpd  
HFLB delay to rising edge of pixel clock  
minimum pulse width of HFLB  
propagation delay of output to pixel clock  
pixel clock input  
6
ns  
25  
ns  
10  
96  
ns  
PIXin  
6
MHz  
8.0 TIMING DIAGRAMS  
tSCKH  
SCK  
SSB  
SDA  
tSCKL  
tBCSU  
tBCH  
tDCSU  
tDCH  
FIGURE 7. Data Interface Timing (SPI)  
tSCKH  
SCK  
tSCKL  
tSU:STA  
tHD:STO  
SDA  
tHD:STA  
tDCSU  
tDCH  
tSU:STO  
2
FIGURE 8. Data Interface Timing (I C)  
PlXin  
R,G,B, FBKG  
HTONE  
t
pd:: Propagation Delay to R,G,B, FBKG  
and HTONE outputs  
t
pd  
HFLB  
t
SETUP  
t
HOLD  
FIGURE 9. Output and HFLB Timing to Pixel Clock  
13/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
9.0 PACKAGE DIMENSION  
9.1 16 PDIP 300Mil  
Unit:Mil  
R10Max  
(4X  
)
312 +/-12  
55 +/-20  
250 +/-4  
90 +/-20  
350 +/-20  
R40  
10  
65 +/-4  
55 +/-4  
310Max  
75 +/-20  
90 +/-20  
750 +/-10  
7
15 Max  
Typ  
35 +/-5  
115 Min  
15 Min  
60 +/-  
5Typ  
100Ty  
p
18 +/-  
2Typ  
9.2 24 PDIP 300Mil  
Unit: Mil  
R10Max  
(4X)  
312+/-12  
55+/-20  
80+/-20  
350+/-20  
250+/-4  
R40  
10  
930+/-10  
65+/-4  
65+/-4  
1245+/-10  
7Ty  
p
15Max  
35+/-5  
115Min  
15Min.  
100Ty  
p
18+/-  
2Typ  
60+/-  
5Typ  
14/15  
MTV118 Revision 2.0 01/01/1999  
MYSON  
MTV118  
TECHNOLOGY  
9.3 16-pin SOP 300Mil  
Unit: Mil  
0.406 +/-0.013  
0.295 +/-0.004  
7o(4x)  
0.015x45o  
0.406 +/-0.008  
(4x)  
0.098 +/-0.006  
0.091  
0.028 +0.022 /-0.013  
0.016 +/-0.004 0.050  
9.4 24-pin SOP 300Mil  
15.0mm /+0.4 -0.1  
1.85mm/+0.4 -0.15  
24  
13  
7.9mm+/-0.4  
5.3mm +0.3/-0.1  
0.1mm +0.2/-0.05  
0.5mm+/-0.2  
6.9mm  
0.2mm  
1
12  
+0.1/-0.05  
0.45mm +/-0.1  
1.27mm  
10.0 CHARACTER AND SYMBOL PATTERN  
Please see the attachment.  
Myson Technology, Inc.  
No. 2, Industry E. Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan, 20111 Stevens Creek Blvd. #138 Cupertino, Ca. 95014, U.S.A.  
R. O. C. Tel: 886-3-5784866 Fax: 886-3-5785002 Tel:408-252-8788 FAX: 408-252-8789 Sales@myson.com  
http://www.myson.com.tw  
Myson Technology USA, Inc.  
http://www.myson.com  
15/15  
MTV118 Revision 2.0 01/01/1999  

相关型号:

MTV121

Super On-Screen-Display for LCD Monitor
ETC

MTV130

On-Screen Display for LCD Monitor
ETC

MTV14-187

COPPER ALLOY, TIN FINISH, TAB TERMINAL
3M

MTV14-250

COPPER ALLOY, TIN FINISH, TAB TERMINAL
3M

MTV16N50E

TMOS POWER FET 16 AMPERES 500 VOLTS RDS(on) = 0.40 OHM
MOTOROLA

MTV16N50E-RL

16A, 500V, 0.4ohm, N-CHANNEL, Si, POWER, MOSFET
MOTOROLA

MTV18-187

COPPER ALLOY, TIN FINISH, TAB TERMINAL
3M

MTV18-250

COPPER ALLOY, TIN FINISH, TAB TERMINAL
3M
ITT