LX8386A-33CDL [ETC]

Positive Fixed Voltage Regulator ; 正固定电压稳压器\n
LX8386A-33CDL
型号: LX8386A-33CDL
厂家: ETC    ETC
描述:

Positive Fixed Voltage Regulator
正固定电压稳压器\n

稳压器 调节器 输出元件
文件: 总7页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8386  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
Three-Terminal Adjustable or Fixed  
are pin-compatible with earlier 3-  
terminal regulators, such as 117 series  
The LX8386/86A/86B series ICs are  
positive regulators designed to provide  
1.5A output current. These regulators  
yield higher efficiency than currently  
available devices with all internal  
circuitry designed to operate down to a  
1V input-to-output differential. In this  
product, the dropout voltage is fully  
specified as a function of load current.  
Dropout is guaranteed at a maximum of  
1.3V (LX8386A/86B) and 1.5V (LX8386)  
at maximum output current, decreasing  
at lower load currents. On-chip  
Output  
Guaranteed <1.3V Headroom  
products. While a 10µF output capacitor  
is required on both input and output of  
these new devices, this capacitor is  
generally included in most regulator  
designs.  
The LX8386/86A/86B series quiescent  
current flows into the load, increasing  
efficiency. This feature contrasts with  
PNP regulators, where up to 10% of the  
output current is wasted as quiescent  
current. The LX8386-xxI is specified  
over the full industrial temperature  
range of -25°C to +125°C and the  
LX8386/86A/86B-xxC is specified over  
the commercial range of 0°C to +125°C.  
at 1.5A (LX8386A/86B)  
Output Current of 1.5A Minimum  
Operates Down to 1V Dropout  
p 0.015% Line Regulation  
p 0.1% Load Regulation  
Evaluation Board Available:  
Request LXE9001 EVALUATION KIT  
APPLICATIONS  
trimming adjusts the reference voltage  
to 1% (0.8% for the 8386B) initial  
accuracy and 2% (1% for the 8386B)  
over line, load and temperature.  
The LX8386/86A/86B series devices  
High Efficiency Linear Regulators  
Post Regulators For Switching Power  
Supplies  
Battery Chargers  
Constant Current Regulators  
ASIC & Low Voltage IC Supplies  
Memory Cards  
NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.  
PRODUCT HIGHLIGHT  
Graphics & Sound Chipsets  
3.3V, 1.5A REGULATOR  
AVAILABLE OPTIONS PER PAR T #  
Output  
Part #  
Voltage  
IN  
OUT  
3.3V at 1.5A  
LX8386/86A/86B-00  
LX8386/86A/86B-33  
Other voltage options may be available —  
Please contact factory for details.  
Adjustable  
3.3V  
5V  
LX8386  
121  
1%  
1500µF  
6MV1500GX  
1500µF, 6.3V  
6MV1500GX  
from Sanyo  
ADJ  
200  
1%  
PACKAGE ORDER INFORMATION  
Plastic TO-220  
3-pin  
Plastic TO-263  
3-pin  
DL (PNloans-tJeicdecT)O3--p2i6n3 DT Plastic T0-252  
Max. Ref. Max. Dropout  
TA (°C)  
P
DD  
Accuracy  
Voltage  
(D-Pak) 3-pin  
2.0%  
2.0%  
1.0%  
2.0%  
1.5V  
1.3V  
1.3V  
1.5V  
LX8386-xxCP  
LX8386-xxCDD  
LX8386A-xxCDD  
LX8386B-xxCDD  
LX8386-xxIDD  
LX8386-xxCDL  
LX8386A-xxCDL  
LX8386B-xxCDL  
LX8386-xxCDT  
LX8386A-xxCDT  
LX8386B-xxCDT  
0 to 125  
LX8386A-xxCP  
LX8386B-xxCP  
LX8386-xxIP  
-25 to 125  
Note: All surface-mount packages are available in Tape & Reel, append the letter "T" to part number. (i.e. LX8386A-xxCDDT)  
"xx" refers to output voltage, please see table above.  
L I N F I N I T Y M I C R O E L E C T R O N I C S I N C .  
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
Copyright © 1999  
Rev. 1.7 3/99  
1
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
TAB IS VOUT  
Power Dissipation ..................................................................................Internally Limited  
Input Voltage................................................................................................................ 10V  
Input to Output Voltage Differential........................................................................... 10V  
Maximum Output Current .......................................................................................... 1.5A  
Operating Junction Temperature  
3
V
IN  
2
VOUT  
ADJ / GND*  
1
P PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Plastic (P, DD & DT Packages) ............................................................................ 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds)............................................................. 300°C  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with  
respect to Ground. Currents are positive into, negative out of the specified terminal.  
TAB IS VOUT  
THERMAL DATA  
VIN  
3
2
VOUT  
P PACKAGE:  
1
ADJ / GND*  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DD & DL PACKAGES:  
3.0°C/W  
60°C/W  
DD & DL PACKAGES  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DT PACKAGE:  
3.0°C/W  
*60°C/W  
TAB IS VOUT  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
9°C/W  
3. VIN  
*80°C/W  
2. VOUT  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system. All  
1. ADJ / GND*  
of the above assume no ambient airflow.  
* θJAcan be improved with package soldered to 0.5IN2 copper area over backside ground  
plane or internal power plane. θJAcan vary from 20ºC/W to > 40ºC/W depending on  
mounting technique.  
DT PACKAGE (D-Pak)  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
BLOCK DIAGRAM  
VIN  
Bias  
Circuit  
Bandgap  
Circuit  
Control  
Circuit  
Output  
Circuit  
Thermal  
Limit Circuit  
VOUT  
SOA Protection  
Circuit  
ADJ or  
GND*  
Current  
Limit Circuit  
* This pin GND for fixed voltage versions.  
Copyright © 1999  
Rev. 1.7 3/99  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8386/86A/86B-xxC with 0°C TA 125°C,  
and the LX8386-xxI with -25°C TA 125°C; VIN - VOUT = 3V; IOUT = 1.5A. Low duty cycle pulse testing techniques are used which maintains junction  
and case temperatures equal to the ambient temperature.)  
LX8386/86A/86B-00 (Adjustable)  
LX8386/86A/86B-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
1.238 1.250 1.262  
1.225 1.250 1.270  
1.240 1.250 1.260  
1.238 1.250 1.262  
V
V
V
Reference Voltage  
(Note 4)  
LX8386/86A-00  
LX8386B-00  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT IOUT (MAX), 1.5V (V - VOUT), V 10V, P PMAX  
IN  
IN  
IOUT = 10mA, TA = 25°C  
10mA IOUT IOUT (MAX), 1.5V (V - VOUT), V 10V, P PMAX  
V
IN  
IN  
0.015  
0.15  
0.01  
83  
0.2  
0.4  
%
%
%/W  
dB  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
Thermal Regulation  
VREF(VIN) 1.5V (VIN - VOUT) 7V, IOUT = 10mA  
VREF(IOUT) VIN - VOUT = 3V, 10mA IOUT 1.5A  
VOUT(Pwr) TA = 25°C, 20ms pulse  
0.04  
65  
Ripple Rejection (Note 3)  
VOUT = 5V, f =120Hz, COUT = 100µf Tantalum, VIN = 6.5V  
CADJ = 10µF, IOUT = 1.5A  
55  
0.2  
100  
5
µA  
µA  
V
Adjust Pin Current  
IADJ  
IADJ  
V  
Adjust Pin Current Change (Note 4)  
Dropout Voltage  
10mA IOUT IOUT (MAX) , 1.5V (V - VOUT), V 10V  
VREF = 1%, IOUT = 1.5A  
VREF = 1%, IOUT = 1.5A  
IN  
IN  
LX8386-00  
1.2  
1.1  
1.5  
1.3  
10  
V
LX8386A/86B-00  
2
2.0  
mA  
A
Minimum Load Current  
Maximum Output Current  
IOUT (MIN)  
IOUT (MAX) (VIN - VOUT) 7V  
VOUT (T)  
V 10V  
IN  
1.5  
0.25  
0.3  
%
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
1
VOUT (t) TA = 125°C, 1000 hours  
0.003  
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
LX8386/86A/86B-33 (3.3V Fixed)  
LX8386/86A/86B-33  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Output Voltage  
(Note 4)  
LX8386-33  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
3.267  
3.235  
3.274  
3.267  
3.30  
3.30  
3.30  
3.30  
1
3.333  
3.365  
3.326  
3.333  
6
V
V
4.75V VIN 10V, 0mA IOUT 1.5A, P PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 1.5A, P PMAX  
LX8386A/86B-33  
V
V
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
4.75V VIN 10V  
2
5
10  
15  
Load Regulation (Note 2)  
Thermal Regulation  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 1.5A  
0.01  
83  
0.02  
60  
IQ  
V  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX)  
4
10  
1.5  
1.3  
Dropout Voltage  
LX8386-33  
LX8386A/86B-33  
1.2  
1.1  
2.0  
0.25  
0.3  
0.003  
V
VOUT = 1%, IOUT IOUT (MAX)  
1.5  
A
%
Maximum Output Current  
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
IOUT (MAX) VIN 7V  
VOUT (T)  
1
%
%
VOUT (t) TA = 125°C, 1000 hours  
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Note 4. See Maximum Output Current Section above.  
Copyright © 1999  
Rev. 1.7 3/99  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
TheLX8386/86A/86BseriesICsareeasytouseLow-Dropout(LDO)  
Power Supply  
LX8386  
/8386A/8386B  
IN  
OUT  
voltage regulators. They have all of the standard self-protection  
featuresexpectedofvoltageregulators: shortcircuitprotection,safe  
operating area protection and automatic thermal shutdown if the  
device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8386/86A/  
86B series. Please see the table below for recommended minimum  
capacitor values.  
Full Load  
(Smaller resistor)  
ADJ  
RDSON << RL  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — Dynamic Input And Output Test  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8386/86A/86B regulators  
are equipped with Safe Operating Area (SOA) protection. The SOA  
circuit limits the regulator's maximum output current to progres-  
sively lower values as the input-to-output voltage difference  
increases. By limiting the maximum output current, the SOA circuit  
keeps the amount of power that is dissipated in the regulator itself  
within safe limits for all values of input-to-output voltage within the  
operating range of the regulator. The LX8386/86A/86B SOA  
protection system is designed to be able to supply some output  
current for all values of input-to-output voltage, up to the device  
breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1999  
Rev. 1.7 3/99  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8386/86A/86B  
OUT  
IN  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — Basic Adjustable Regulator  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because the LX8386/86A/86B regulators are three-terminal devices,  
it is not possible to provide true remote load sensing. Load  
regulation will be limited by the resistance of the wire connecting  
the regulator to the load. The data sheet specification for load  
regulation is measured at the bottom of the package. Negative side  
sensing is a true Kelvin connection, with the bottom of the output  
divider returned to the negative side of the load. Although it may  
not be immediately obvious, best load regulation is obtained when  
the top of the resistor divider, (R1), is connected directly to the case  
of the regulator, not to the load. This is illustrated in Figure 3. If R1  
were connected to the load, the effective resistance between the  
regulator and the load would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8386/86A/86B  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
VIN  
OUT  
IN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8386/86A/86B ICs develop a 1.25V reference voltage between  
the output and the adjust terminal (See Figure 2). By placing a resistor,  
R1, between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — Connections For Best Load Regulation  
Copyright © 1999  
Rev. 1.7 3/99  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is optimally configured, parasitic resistance  
canbeasignificantsourceoferror. A20milwidePCtracebuiltfrom  
1 oz. copper-clad circuit board material has a parasitic resistance of  
about 25 milliohms per inch of its length at room temperature. If  
a 3-terminal regulator used to supply 2.50 volts is connected by 2  
inches of this trace to a load which draws 1.5 amps of current, a  
75 millivolt drop will appear between the regulator and the load.  
Even when the regulator output voltage is precisely 2.50 volts, the  
load will only see 2.43 volts, which is a 3% error. It is important to  
keep the connection between the regulator output pin and the load  
as short as possible, and to use wide traces or heavy-gauge wire.  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.5V, IOUT = 1.5A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
RθJT  
RθCS  
RθSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
PD = (VIN(MAX) - VOUT) IOUT = (5.0V-2.5V) 1.5A  
*
= 3.75W  
THERMAL CONSIDERATIONS  
125°C - 50°C  
RθSA  
=
- (2.7°C/W + 1.0°C/W)  
The LX8386/86A/86B regulators have internal power and thermal  
limiting circuitry designed to protect each device under overload  
conditions. For continuous normal load conditions, however,  
maximum junction temperature ratings must not be exceeded. It is  
important to give careful consideration to all sources of thermal  
resistance from junction to ambient. This includes junction to case,  
case to heat sink interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
3.75W  
= 16.3°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA 16.3°C/W. Thermalloy heatsink 6230B has RθSA = 12.0°C/W.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 3.75W (2.7°C/W + 1.0°C/W + 12.0°C/W) + 50°C = 109°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1999  
Rev. 1.7 3/99  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8386-xx/8386A-xx/8386B-xx  
1 . 5 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8386/86A/86B  
OUT  
LX8386/86A/86B  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121  
R1  
121  
1%  
ADJ  
10µF  
C2  
100µF  
C1*  
10µF  
150µF  
R2  
1k  
R2  
C1  
10µF*  
* C1 improves ripple rejection.  
XC should be R1 at ripple  
frequency.  
365Ω  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — Improving Ripple Rejection  
FIGURE 5 — 1.2V - 8V Adjustable Regulator  
LX8386/86A/86B  
VIN  
(Note A)  
OUT  
IN  
5V  
ADJ  
121  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365Ω  
1%  
1k  
FIGURE 6 — 5V Regulator With Shutdown  
LX8386/86A/86B-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50m.  
FIGURE 7 — Fixed 3.3V Output Regulator  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
PRODUCTIONDATA-InformationcontainedinthisdocumentisproprietarytoLinFinity, andiscurrentasofpublicationdate. Thisdocument  
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1999  
Rev. 1.7 3/99  
7

相关型号:

LX8386A-33CDLT

Positive Fixed Voltage Regulator
ETC

LX8386A-33CDT

1.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8386A-33CDT-TR

暂无描述
MICROSEMI

LX8386A-33CDTT

Positive Fixed Voltage Regulator
MICROSEMI

LX8386A-33CP

1.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8386A-33CP-TR

Fixed Positive LDO Regulator
MICROSEMI

LX8386A-33CPT

Fixed Positive LDO Regulator, 3.3V, 1.3V Dropout, PSFM3, PLASTIC, TO-220, 3 PIN
MICROSEMI

LX8386A-XXCDD

1.5A Low Dropout Positive Regulators
MICROSEMI

LX8386A-XXCDT

1.5A Low Dropout Positive Regulators
MICROSEMI

LX8386A-XXCP

1.5A Low Dropout Positive Regulators
MICROSEMI

LX8386B-00

1.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8386B-00CDD

1.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI