LM79L18A [ETC]

;
LM79L18A
型号: LM79L18A
厂家: ETC    ETC
描述:

文件: 总306页 (文件大小:8569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Index of /ds/LM/  
Name  
Last modified  
Size Description  
Parent Directory  
LM101A.pdf  
22-Dec-99 00:11 65K  
24-Nov-98 00:00 65K  
22-Dec-99 00:11 59K  
22-Dec-99 00:11 71K  
22-Dec-99 00:11 68K  
22-Dec-99 00:11 85K  
22-Dec-99 00:11 85K  
22-Dec-99 00:11 97K  
22-Dec-99 00:11 97K  
22-Dec-99 00:11 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
22-Dec-99 00:11 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
03-Dec-99 15:48 97K  
LM101A_LH2101A.pdf  
LM108A.pdf  
LM111.pdf  
LM124.pdf  
LM139.pdf  
LM139A.pdf  
LM1458.pdf  
LM1458A.pdf  
LM1458AI.pdf  
LM1458AIM.pdf  
LM1458AIN.pdf  
LM1458AIS.pdf  
LM1458AM.pdf  
LM1458AN.pdf  
LM1458AS.pdf  
LM1458I.pdf  
LM1458IM.pdf  
LM1458IN.pdf  
LM1458IS.pdf  
LM1458M.pdf  
LM1458N.pdf  
LM1458S.pdf  
LM148.pdf  
22-Dec-99 00:11 98K  
22-Dec-99 00:11 88K  
25-Aug-97 17:20 228K  
LM1851.pdf  
LM1882.pdf  
LM224.pdf  
22-Dec-99 00:11  
22-Dec-99 00:11  
1M  
1M  
LM224A.pdf  
LM236-2.5.pdf  
LM239.pdf  
22-Dec-99 00:11 134K  
22-Dec-99 00:11 144K  
22-Dec-99 00:11 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
LM239A.pdf  
LM239AM.pdf  
LM239AN.pdf  
LM239M.pdf  
LM239N.pdf  
LM248.pdf  
08-Feb-00 00:00  
22-Dec-99 00:11  
22-Dec-99 00:11  
08-Feb-00 00:00  
08-Feb-00 00:00  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
LM248M.pdf  
LM248N.pdf  
LM258.pdf  
LM258A.pdf  
LM258AM.pdf  
LM258AN.pdf  
LM258AS.pdf  
LM258M.pdf  
LM258N.pdf  
LM258S.pdf  
LM2901.pdf  
LM2901M.pdf  
LM2901N.pdf  
LM2902.pdf  
22-Dec-99 00:11 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
22-Dec-99 00:11  
1M  
LM2903.pdf  
LM2903M.pdf  
LM2903N.pdf  
LM2903S.pdf  
LM2904.pdf  
LM2904M.pdf  
LM2904N.pdf  
LM2904S.pdf  
LM293.pdf  
08-Feb-00 00:00 119K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
08-Feb-00 00:00  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
1M  
1M  
1M  
1M  
08-Feb-00 00:00 119K  
08-Feb-00 00:00 119K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
22-Dec-99 00:11 427K  
03-Dec-99 15:48 427K  
03-Dec-99 15:48 427K  
22-Dec-99 00:11 156K  
17-Feb-00 00:00 68K  
LM293A.pdf  
LM293AM.pdf  
LM293AN.pdf  
LM293AS.pdf  
LM293M.pdf  
LM293N.pdf  
LM293S.pdf  
LM311.pdf  
LM311M.pdf  
LM311N.pdf  
LM317L.pdf  
LM324.pdf  
LM324A.pdf  
LM3301.pdf  
LM3301M.pdf  
LM3301N.pdf  
LM336-2.5.pdf  
LM336-2.5B.pdf  
22-Dec-99 00:11  
1M  
22-Dec-99 00:11 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
22-Dec-99 00:11 134K  
22-Dec-99 00:11 134K  
LM337.pdf  
22-Dec-99 00:11 51K  
17-Feb-00 00:00 85K  
22-Dec-99 00:11 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
03-Dec-99 15:48 144K  
LM339.pdf  
LM339A.pdf  
LM339AM.pdf  
LM339AN.pdf  
LM339M.pdf  
LM339N.pdf  
LM348.pdf  
08-Feb-00 00:00  
22-Dec-99 00:11  
22-Dec-99 00:11  
1M  
1M  
1M  
LM348M.pdf  
LM348N.pdf  
LM353.pdf  
22-Dec-99 00:11 49K  
LM358.pdf  
08-Feb-00 00:00  
08-Feb-00 00:00  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
22-Dec-99 00:11  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
LM358A.pdf  
LM358AM.pdf  
LM358AN.pdf  
LM358AS.pdf  
LM358M.pdf  
LM358N.pdf  
LM358S.pdf  
LM393.pdf  
08-Feb-00 00:00 119K  
08-Feb-00 00:00 119K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
03-Dec-99 15:48 169K  
LM393A.pdf  
LM393AM.pdf  
LM393AN.pdf  
LM393AS.pdf  
LM393M.pdf  
LM393N.pdf  
LM393S.pdf  
LM442.pdf  
22-Dec-99 00:11 53K  
22-Dec-99 00:11 53K  
22-Dec-99 00:11 53K  
22-Dec-99 00:11 53K  
22-Dec-99 00:11 53K  
08-Feb-00 00:00 82K  
08-Feb-00 00:00 82K  
22-Dec-99 00:11 82K  
22-Dec-99 00:11 82K  
22-Dec-99 00:11 82K  
22-Dec-99 00:11 82K  
22-Dec-99 00:11 59K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 159K  
22-Dec-99 00:11 69K  
22-Dec-99 00:11 69K  
22-Dec-99 00:11 69K  
22-Dec-99 00:11 69K  
22-Dec-99 00:11 69K  
22-Dec-99 00:11 69K  
08-Feb-00 00:00 986K  
08-Feb-00 00:00 986K  
08-Feb-00 00:00 986K  
LM442AN.pdf  
LM442AS.pdf  
LM442N.pdf  
LM442S.pdf  
LM555.pdf  
LM555I.pdf  
LM555IM.pdf  
LM555IN.pdf  
LM555M.pdf  
LM555N.pdf  
LM556.pdf  
LM710.pdf  
LM710I.pdf  
LM710IM.pdf  
LM710IN.pdf  
LM710M.pdf  
LM710N.pdf  
LM711.pdf  
LM711I.pdf  
LM711IM.pdf  
LM711IN.pdf  
LM711M.pdf  
LM711N.pdf  
LM741.pdf  
LM741E.pdf  
LM741EI.pdf  
LM741EIM.pdf  
LM741EIN.pdf  
LM741EM.pdf  
LM741EN.pdf  
LM741I.pdf  
LM741IM.pdf  
LM741IN.pdf  
LM741M.pdf  
LM741N.pdf  
LM7805.pdf  
LM7805A.pdf  
LM7806.pdf  
LM7806A.pdf  
LM7808.pdf  
LM7808A.pdf  
LM7809.pdf  
LM7809A.pdf  
LM7810.pdf  
LM7810A.pdf  
LM7811.pdf  
LM7811A.pdf  
LM7812.pdf  
LM7812A.pdf  
LM7815.pdf  
LM7815A.pdf  
LM7818.pdf  
LM7818A.pdf  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
08-Feb-00 00:00 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 986K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
LM7824.pdf  
LM7824A.pdf  
LM78L05.pdf  
LM78L06.pdf  
LM78L08.pdf  
LM78L09.pdf  
LM78L10.pdf  
LM78L12.pdf  
LM78L15.pdf  
LM78L18.pdf  
LM78L24.pdf  
LM78LXX.pdf  
LM78M05.pdf  
LM78M06.pdf  
LM78M08.pdf  
LM78M10.pdf  
LM78M12.pdf  
LM78M15.pdf  
LM78M18.pdf  
LM78M20.pdf  
LM78M24.pdf  
LM78MXX.pdf  
LM78XX.pdf  
LM7905.pdf  
LM7905A.pdf  
LM7906.pdf  
LM7906A.pdf  
22-Dec-99 00:12 516K  
16-Apr-99 00:00 516K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
22-Dec-99 00:12 118K  
08-Feb-00 00:00 136K  
16-Apr-99 00:00 159K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
08-Feb-00 00:00 136K  
22-Dec-99 00:12 516K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
LM7908.pdf  
LM7908A.pdf  
LM7909.pdf  
LM7912.pdf  
LM7912A.pdf  
LM7915.pdf  
LM7915A.pdf  
LM7918.pdf  
LM7918A.pdf  
LM7924.pdf  
LM7924A.pdf  
LM79L05A.pdf  
LM79L12A.pdf  
LM79L15A.pdf  
LM79L18A.pdf  
LM79L24A.pdf  
LM79LXXA.pdf  
LM79M05.pdf  
LM79M06.pdf  
LM79M08.pdf  
LM79M12.pdf  
LM79M15.pdf  
LM79M18.pdf  
LM79M24.pdf  
LM79MXX.pdf  
LM79XX.pdf  
LM79XXA.pdf  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
16-Apr-99 00:00 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
08-Feb-00 00:00 389K  
08-Feb-00 00:00 389K  
08-Feb-00 00:00 389K  
08-Feb-00 00:00 389K  
08-Feb-00 00:00 389K  
08-Feb-00 00:00 389K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
16-Apr-99 00:00 113K  
08-Feb-00 00:00 254K  
22-Dec-99 00:12 194K  
22-Dec-99 00:12 194K  
LM79XX_A.pdf  
22-Dec-99 00:12 194K  
www.fairchildsemi.com  
LM1 0 1 A/LH2 1 0 1 A  
Ge n e ra l P u rp o s e Op e ra t io n a l Am p lifie r  
Features  
Description  
• Input offset voltage 0.7 mV  
• Input bias current 30 nA  
• Input offset current 1.5 nA  
• Full frequency compensation 30pF  
• Supply voltage ±5.0V to ±20V  
The LM101A/LH2101A is a general purpose high perfor-  
mance operational amplifier fabricated monolithically on a  
silicon chip by an advanced epitaxial process. The LH2101A  
consists of two LM101A ICs in one 16-lead DIP. The units  
may be fully compensated with the addition of a 30 pF  
capacitor stabilizing the circuit for all feedback configura-  
tions including capacitive loads.  
The device may be operated as a comparator with a differen-  
tial input as high as 30V. Used as a comparator the output  
can be clamped at any desired level to make it compatible  
with logic circuits.  
The LM101A and LH2101A operate over the full military  
temperature range from -55°C to +125°C.  
Rev 1.0.1  
 
LM101A/LH2101A  
PRODUCT SPECIFICATION  
Pin Assignments  
8-Lead Metal Can  
8-Lead DIP  
(Top View)  
(Top View)  
Comp  
Comp/VOS Trim  
-Input  
1
2
8
7
Comp  
+VS  
8
+VS  
Comp/VOS Trim  
7
5
1
3
6
-Input  
Output  
2
6
5
Output  
+Input  
-VS  
3
4
+Input  
V
OS Trim  
4
VOS Trim  
-VS  
65-101A-01  
16-Lead DIP  
(Top View)  
+VS (A) 1  
16  
Output (A)  
15 NC  
Comp (A)  
2
3
4
5
6
7
8
14 VOS Trim (A)  
A
B
Comp/VOS Trim (A)  
-Input (A)  
13  
+Input (B)  
+Input (A)  
-VS  
12  
11  
-Input (B)  
Comp/VOS Trim (B)  
10  
9
Comp (B)  
+VS (B)  
VOS Trim (B)  
Ouput (B)  
65-101A-02  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
±22  
Units  
Supply Voltage  
V
V
V
Differential Input Voltage  
Input Voltage1  
30  
±15  
Output Short-Circuit Duration2  
Storage Temperature Range  
Operating Temperature Range  
Lead Soldering Temperature (60 sec)  
Notes:  
Indefinite  
+150  
+125  
+300  
-65  
-55  
°C  
°C  
°C  
1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
2. Observe package thermal characteristics.  
2
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Thermal Characteristics  
8-Lead  
Ceramic  
DIP  
8-Lead  
TO-99  
Metal Can  
16-Lead  
Ceramic  
DIP  
Parameter  
Maximum Junction Temperature  
+175°C  
833 mW  
+175°C  
658 mW  
+175°C  
1042 mW  
60°C/W  
Maximum P T <50°C  
D
A
Thermal Resistance, q  
Thermal Resistance, q  
45°C/W  
50°C/W  
JC  
JA  
150°C/W  
8.33 mW/°C  
190°C/W  
5.26 mW/°C  
120°C/W  
8.33 mW/°C  
For T > 50°C Derate at  
A
Electrical Characteristics  
C = 30pF; ±5.0V £ V £ ±20V; -55°C £ T £ +125°C unless otherwise specified  
S
A
LM101A/LH2101 A  
Parameters  
Test Conditions  
T = +25°C, R £ 50 kW  
Mln.  
Typ.  
0.7  
1.5  
30  
Max.  
Units  
mV  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Resistance  
2.0  
10  
75  
A
S
T = +25°C  
A
nA  
T = +25°C  
A
nA  
T = +25°C  
A
1.5  
50  
4.0  
1.8  
160  
MW  
mA  
Supply Current  
T = +25°C V = ±20V  
3.0  
A
S
Large Signal Voltage Gain  
T = +25°C, V = ±15V  
V/mV  
A
S
V
= ±10V, R ³ 2 KW  
OUT  
L
Input Offset Voltage  
R
£ 50 KW  
3.0  
15  
mV  
mV/°C  
nA  
S
Average Input Offset Voltage Drift  
Input Offset Current  
R
S
£ 50 KW  
3.0  
20  
Average Input Offset Current Drift  
+25°C £ T +125°C  
0.01  
0.02  
0.1  
0.2  
100  
2.5  
nA/°C  
A
-55°C £ T +25°C  
A
Input Bias Current  
Supply Current  
nA  
mA  
T = +125°C, V = ±20V  
1.2  
A
S
Large Signal Voltage Gain  
V = ±15V  
S
25  
V/mV  
V
= ±10V, R ³ 2 KW  
OUT  
L
Output Voltage Swing  
V = ±15V, R = 10 KW  
±12  
±10  
±15  
80  
±14  
±13  
V
S
L
R = 2 KW  
L
Input Voltage Range  
V = ±20V  
S
V
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
R
£ 50 KW  
£ 50 KW  
96  
96  
dB  
dB  
S
S
R
80  
3
LM101A/LH2101A  
PRODUCT SPECIFICATION  
Typical Performance Characteristics  
120  
110  
100  
90  
2.5  
TA = -55 C  
2.0  
TA = -55 C  
TA = +25 C  
1.5  
1.0  
0.5  
0
TA = +25 C  
TA = +125 C  
TA = +125 C  
80  
±5  
±10  
±15  
±20  
±5  
±10  
±15  
±20  
±VS (V)  
±VS (V)  
Figure 2. Voltage Gain vs. Supply Voltage  
Figure 1. Supply Current vs. Supply Voltage  
400  
15  
10  
5
V
s
=
15V  
TA = -55 C  
300  
200  
100  
0
TA = +25 C  
TA = -55 C  
TA = -55 C  
TA = +125 C  
0
±5  
±10  
±15  
±20  
0
5
10  
15  
IOUT (mA)  
20  
25  
30  
±VS (V)  
Figure 3. Input Bias Current vs. Supply Voltage  
Figure 4. Current Limiting Output Voltage  
vs. Output Current  
400  
600  
500  
400  
300  
200  
100  
0
VS  
=
15V  
300  
200  
100  
0
Metal Can  
IB  
DIP  
IOS  
+25  
+45  
+65  
+85  
+105  
+125  
-75 -50 -25  
0
+25 +50 +75 +100 +125  
TA (¡C)  
TA (¡C)  
Figure 5. Input Bias, Offset Current vs. Temperature  
Figure 6. Maximum Power Dissipation vs. Temperature  
4
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Typical Performance Characteristics (continued)  
16  
120  
VS  
=
15V  
14  
T A = +25 C  
VS  
=
15V  
100  
80  
60  
40  
20  
0
T A = +25 C  
12  
10  
8
C1 = 3 pF  
C1 = 3 pF  
6
C1 = 30 pF  
4
2
C1 = 30 pF  
10K  
0
1K  
-20  
1
10  
100 1K  
10K 100K 1M 10M  
F (Hz)  
100K  
1M  
10M  
F (Hz)  
Figure 7. Open Loop Gain vs. Frequency  
Figure 8. Output Voltage Swing vs. Frequency  
10  
8
VS  
=
15V  
TA = +25 C  
6
4
Input  
2
Output  
0
-2  
-4  
-6  
-8  
-10  
0
10 20 30 40 50 60 70 80  
Time (µS)  
Figure 9. Follower Large Signal Pulse Response Output Voltage vs. Time  
5
LM101A/LH2101A  
PRODUCT SPECIFICATION  
Typical Applications  
R2  
R1  
Input  
2
3
6
LM101A  
Output  
R EQ*  
5
8
1
C1  
R5  
5.1M  
30 pF  
2
3
6
Inputs  
LM101A  
Output  
-VS  
8
R4  
10M  
R3  
50K  
D1  
LM103  
36  
*May be zero or equal to parallel combination of R1 and R2  
for minimum offset.  
65-101A-13  
65-101A-12  
Figure 10. Inverting Amplifier with Balancing Circuit  
Figure 11. Voltage Comparator for Driving  
DTL or TTL ICs  
Q1  
2N3456  
+VS  
Output  
R2  
150K  
2
3
Output  
-VS  
Q2  
LM101A  
6
R1  
60W  
Input  
2
3
8
C2*  
m
0.01 F  
Q1  
2N2222  
6
1
R1  
91K  
Inputs  
LM101A  
Sample  
8
D2  
FD777  
D1  
FD777  
C1  
30 pF  
65-101A-14  
*Polycarbonate dielectric capacitor  
65-101A-15  
Figure 12. Low Drift Sample and Hold  
Figure 13. Voltage Comparator for Driving RTL Logic  
or High Current Driver  
6
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Notes:  
7
LM101A/LH2101A  
PRODUCT SPECIFICATION  
Notes:  
8
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Mechanical Dimensions  
8-Lead TO-99 Metal Can  
øD  
Inches  
Millimeters  
Symbol  
Notes  
Min.  
Max.  
Min.  
Max.  
øD1  
A
.165  
.016  
.016  
.335  
.305  
.110  
.185  
.019  
4.19  
.41  
4.70  
.48  
øb  
1, 5  
1, 5  
F
L1  
øb1  
øD  
øD1  
øD2  
e
.021  
.375  
.335  
.41  
.53  
9.52  
8.51  
Q
A
8.51  
7.75  
2.79  
.160  
4.06  
L2  
.200 BSC  
.100 BSC  
5.08 BSC  
2.54 BSC  
e1  
F
.040  
.034  
1.02  
.86  
L
øb  
k
.027  
.69  
k1  
L
L1  
L2  
Q
a
.027  
.500  
.045  
.750  
.050  
.69  
12.70  
1.14  
19.05  
1.27  
2
1
1
1
BASE and  
SEATING  
PLANE  
REFERENCE  
PLANE  
.250  
.010  
45¡ BSC  
6.35  
.25  
45¡ BSC  
øb1  
.045  
1.14  
e
Notes:  
1. (All leads) øb applies between L1 & L2. øb1 applies between  
L2 & .500 (12.70mm) from the reference plane. Diameter is  
uncontrolled in L1 & beyond .500 (12.70mm) from the  
reference plane.  
e1  
øD2  
2. Measured from the maximum diameter of the product.  
3. Leads having a maximum diameter .019 (.48mm) measured in  
gauging plane, .054 (1.37mm) +.001 (.03mm) –.000 (.00mm)  
below the reference plane of the product shall be within  
.007 (.18mm) of their true position relative to a maximum width  
tab.  
4. The product may be measured by direct methods or by gauge.  
a
5. All leads – increase maximum limit by .003 (.08mm) when lead  
finish is applied.  
k
k1  
9
LM101A/LH2101A  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
8-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.405  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 4, 5 and 8 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2, 8  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
10.29  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 8.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 4, 5, and 8).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Six spaces.  
D
4
1
8
Note 1  
E
5
s1  
eA  
e
A
Q
c1  
a
L
b2  
b1  
10  
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Mechanical Dimensions (continued)  
16-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.840  
.310  
.36  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 8, 9 and 16 only.  
b1  
b2  
c1  
D
.014  
.050  
.008  
.745  
.220  
8
2
1.27  
.20  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
18.92  
5.59  
21.33  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 16.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.115  
.160  
.060  
2.92  
4.06  
1.52  
6. Applies to all four corners (leads number 1, 8, 9, and 16).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Fourteen spaces.  
D
1
8
9
NOTE 1  
E
16  
s1  
eA  
e
A
Q
c1  
a
L
b1  
11  
PRODUCT SPECIFICATION  
LM101A/LH2101A  
Ordering Information  
Operating  
Temperature  
Range  
Part Number  
LM101AD  
Package  
8-Lead Ceramic DIP  
8-Lead Ceramic DIP  
8-Lead Metal Can  
8-Lead Metal Can  
16-Lead Ceramic DIP  
16-Lead Ceramic DIP  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +1 25°C  
-55°C to +125°C  
LM101AD/883B  
LM101AT  
LM101AT/883B  
LH2101AD  
LH2101AD/883B  
Notes:  
1. /883B suffix denotes Mil-Std-883. Level B processing.  
2. Contact a Fairchild Semiconductor sales office or representative for ordering information on special package/ temperature  
range combinations.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000101A  
Ó 1998 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
LM1 0 8 A/LH2 1 0 8 A  
P re c is io n Op e ra t io n a l Am p lifie rs  
Features  
Description  
• Low input bias current — 2 nA  
• Low input offset current — 200 pA  
• Low input offset voltage — 500mV  
• Low input offset drift — 5 mV/°C  
• Wide supply range — ±3V to ±20V  
• Low supply current — 0.6 mA  
• High PSRR — 96 dB  
The LM108A operational amplifiers features low input bias  
current combined with the advantages of bipolar transistor  
construction; input offset voltages and currents are kept  
low over a wide range of temperature and supply voltage.  
Fairchild Semiconductor’s superbeta bipolar manufacturing  
process includes extra treatment at epitaxial growth to ensure  
low input voltage noise.  
• High CMRR — 96 dB  
• MIL-STD-883B available  
The LH2108 consists of two LM108 ICs in one 16-lead DIP.  
The “A” versions meet tighter electrical specifications than  
the plain versions. All types are available with 883B military  
screening.  
Rev 1.0.0  
 
LM108A/LH2108A  
PRODUCT SPECIFICATION  
Pin Assignments  
8-Lead Metal Can  
8-Lead DIP  
(Top View)  
(Top View)  
Comp  
Comp  
-Input  
1
2
8
7
Comp  
8
+VS  
Comp  
7
5
1
3
+VS  
6
-Input  
Output  
2
6
5
Output  
NS  
+Input  
-VS  
3
4
+Input  
NC  
4
-VS  
65-108A-01  
16-Lead DIP  
(Top View)  
+VS (A) 1  
16  
Output (A)  
15 NC  
14 V  
Comp (A)  
Trim (A)  
2
3
4
5
6
7
8
Trim  
Comp/V  
OS  
OS  
-Input (A)  
+Input (A)  
-VS  
13  
+Input (B)  
12  
11  
-Input (B)  
Comp/V  
Trim (B)  
OS  
10  
9
Comp (B)  
+VS (B)  
NC  
Output (B)  
65-108A-02  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
Units  
V
Supply Voltage  
±20  
±10  
Differential Input Current1  
Input Voltage2  
mA  
V
±15  
Output Short-Circuit Duration2  
Operating Temperature Range  
Storage Temperature Range  
Lead Soldering Temperature (60 seconds)  
Notes:  
Continuous  
+125  
-55  
-65  
°C  
°C  
°C  
+150  
+300  
1. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, if a differential input voltage in excess  
of 1V is applied between the inputs, excessive current will flow, unless some limiting resistance is provided.  
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
2
PRODUCT SPECIFICATION  
LM108A/LH2108A  
Thermal Characteristics  
8-Lead  
8-Lead  
16-Lead  
Parameter  
Metal Can  
Ceramic DIP  
Ceramic DIP  
Maximum Junction Temperature  
+175°C  
658 mW  
+175°C  
833 mW  
+175°C  
1042 mW  
60°C/W  
Max. P T < 50°C  
D A  
Thermal Resistance, q  
Thermal Resistance, q  
50°C/W  
45°C/W  
JC  
190°C/W  
5.26 mW/°C  
150°C/W  
8.33 mW/°C  
120°C/W  
8.38 mW/°C  
JA  
For T > 50°C Derate at  
A
Electrical Characteristics  
±5V, £ V £ ±20V and T £ +25°C unless otherwise noted  
S
A
LM108A/LH2108A  
LM108/LH2108  
Parameters  
Test Conditlons  
Min.  
Typ.  
0.3  
Max.  
Min.  
Typ.  
0.7  
Max.  
2.0  
Units  
mV  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Resistance1  
0.5  
0.2  
2.0  
0.05  
0.8  
0.05  
0.8  
0.2  
nA  
2.0  
nA  
30  
80  
70  
30  
50  
70  
MW  
V/mV  
Large Signal Voltage  
Gain  
V = ±15V,  
300  
300  
S
V
±10V,  
OUT  
R ³ 10KW  
L
Supply Current  
Each Amplifier  
0.3  
0.6  
0.3  
0.6  
mA  
±5V, £ V £ ±20V; -55°C £ T £ +25°C unless otherwise noted  
S
A
Input Offset Voltage  
0.4  
1.0  
1.0  
5.0  
1.0  
3.0  
3.0  
15  
mV  
Avg. Input Offset  
Voltage Drift2  
mV/°C  
Input Offset Current  
0.1  
0.5  
0.4  
2.5  
0.1  
0.5  
0.4  
2.5  
nA  
Avg. lnput Offset  
Current Drift2  
pA/°C  
Input Bias Current  
1.0  
3.0  
1.0  
3.0  
nA  
Large Signal Voltage  
Gain  
V = ±15V,  
40  
200  
25  
200  
V/mV  
S
V
= ±10V,  
OUT  
R ³ 10 KW  
L
Output Voltage Swing  
Input Voltage Range  
R ³ 10 KW,  
V = ±20V  
S
±16  
±18  
±16  
±18  
V
L
V = ±15V  
S
±13.5  
±13.5  
V
Common Mode  
Rejection Ratio  
V
S
= ±13.5V,  
96  
110  
110  
85  
100  
96  
dB  
CM  
V = ±15V  
Power Supply Rejection V = ±15V  
96  
80  
dB  
S
Ratio  
Supply Current  
Each Amplifier  
0.6  
0.6  
mA  
Notes:  
1. Guaranteed by input bias current specification.  
2. Sample tested.  
3
LM108A/LH2108A  
PRODUCT SPECIFICATION  
cleaning procedure is required to achieve the LM108A’s  
rated performance. It is suggested that board leakage be  
minimized by encircling the input pins with a guard ring  
maintained at a potential close to that of the inputs. The  
guard ring should be driven by a low impedance source such  
as an amplifier’s output or ground.  
Typical Applications  
The LM108 series has very low input offset and bias  
currents; the user is cautioned that printed circuit board  
leakages can produce significant errors especially at high  
board temperatures. Careful attention to board layout and  
R5  
+VS  
R1  
R2  
-VIN  
R1  
200K  
R4  
R3  
50K  
2
3
2
3
6
6
LM108  
VOUT  
R2  
100  
LM108  
VOUT  
R3  
+VIN  
8
-VS  
R2  
1
Range = ±VS  
(
(
CF*  
R1 CL  
CF >  
R1  
R5  
+VIN  
(
(
R1 + R2  
(
*Bandwidth and slew rate  
are proportional to 1/CF  
(
Gain = 1 +  
CL = Load Capacitance  
R4 + R2  
65-2653  
65-2652  
Figure 1. Offset Adjustment for Non-Inverting Amplifiers  
Figure 2. Standard Compensation Circuit  
R2  
R1  
R3  
R2  
-VIN  
R1  
2
-VIN  
2
3
6
LM108  
VOUT  
R1  
6
3
LM108  
VOUT  
+VIN  
+VS  
+VIN  
8**  
CS  
100 pF  
R5  
20K  
R3  
R6  
25K  
R4  
10  
R2 = R3 + R4  
R5  
R1  
Range = ±VS  
(
(
(
R1 + R3  
*Improves rejection of power supply noise by a factor of 10.  
**Bandwidth and slew rate are proportional to 1/CS.  
-VS  
R4  
R2  
R1  
Gain =  
65-2655  
65-2654  
Figure 3. Offset Adjustment for Differential Amplifiers  
Figure 4. Alternate Frequency Compensation  
C2  
5 pF  
R3  
R2  
R1  
10K  
R4  
10K  
2
VIN  
2
6
VIN  
LM108  
VOUT  
+VS  
6
3
LM108  
1
VOUT  
R1  
200K  
3
8
R5  
50K  
R3  
3K  
R2  
R2  
100  
Range = ±VS  
(
(
C3  
10 pF  
C1  
500 pF  
R1  
-VS  
65-2650  
65-2651  
Figure 5. Offset Adjustment for Inverting Amplifiers  
Figure 6. Feedforward Compensation  
4
PRODUCT SPECIFICATION  
LM108A/LH2108A  
Mechanical Dimensions  
8-Lead TO-99 Metal Can  
øD  
Inches  
Millimeters  
Symbol  
Notes  
Min.  
Max.  
Min.  
Max.  
øD1  
A
.165  
.016  
.016  
.335  
.305  
.110  
.185  
.019  
4.19  
.41  
4.70  
.48  
øb  
1, 5  
1, 5  
F
L1  
øb1  
øD  
øD1  
øD2  
e
.021  
.375  
.335  
.41  
.53  
9.52  
8.51  
Q
A
8.51  
7.75  
2.79  
.160  
4.06  
L2  
.200 BSC  
.100 BSC  
5.08 BSC  
2.54 BSC  
e1  
F
.040  
.034  
1.02  
.86  
L
øb  
k
.027  
.69  
k1  
L
L1  
L2  
Q
a
.027  
.500  
.045  
.750  
.050  
.69  
12.70  
1.14  
19.05  
1.27  
2
1
1
1
BASE and  
SEATING  
PLANE  
REFERENCE  
PLANE  
.250  
.010  
45¡ BSC  
6.35  
.25  
45¡ BSC  
øb1  
.045  
1.14  
e
Notes:  
1. (All leads) øb applies between L1 & L2. øb1 applies between  
L2 & .500 (12.70mm) from the reference plane. Diameter is  
uncontrolled in L1 & beyond .500 (12.70mm) from the  
reference plane.  
e1  
øD2  
2. Measured from the maximum diameter of the product.  
3. Leads having a maximum diameter .019 (.48mm) measured in  
gauging plane, .054 (1.37mm) +.001 (.03mm) –.000 (.00mm)  
below the reference plane of the product shall be within  
.007 (.18mm) of their true position relative to a maximum width  
tab.  
4. The product may be measured by direct methods or by gauge.  
a
5. All leads – increase maximum limit by .003 (.08mm) when lead  
finish is applied.  
k
k1  
5
LM108A/LH2108A  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
8-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.405  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 4, 5 and 8 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2, 8  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
10.29  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 8.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 4, 5, and 8).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Six spaces.  
D
4
1
8
Note 1  
E
5
s1  
eA  
e
A
Q
c1  
a
L
b2  
b1  
6
PRODUCT SPECIFICATION  
LM108A/LH2108A  
Mechanical Dimensions (continued)  
16-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.840  
.310  
.36  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 8, 9 and 16 only.  
b1  
b2  
c1  
D
.014  
.050  
.008  
.745  
.220  
8
2
1.27  
.20  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
18.92  
5.59  
21.33  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 16.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.115  
.160  
.060  
2.92  
4.06  
1.52  
6. Applies to all four corners (leads number 1, 8, 9, and 16).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Fourteen spaces.  
D
1
8
9
NOTE 1  
E
16  
s1  
eA  
e
A
Q
c1  
a
L
b1  
7
PRODUCT SPECIFICATION  
LM108A/LH2108A  
Ordering Information  
Part Number  
LM108D  
Package  
Operation Temperature Range  
8-Lead Ceramic DIP  
8-Lead Ceramic DIP  
8-Lead Ceramic DIP  
8-Lead Ceramic DIP  
8-Lead Metal Can TO-99  
8-Lead Metal Can TO-99  
8-Lead Metal Can TO-99  
8-Lead Metal Can TO-99  
16-Lead Ceramic DIP  
16-Lead Ceramic DIP  
16-Lead Ceramic DIP  
16-Lead Ceramic DIP  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
LM108D/883B  
LM108AD  
LM108AD/883B  
LM108T  
LM108T/883B  
LM108AT  
LM108AT/883B  
LH2108D  
LH2108D/883B  
LH2108AD  
LH2108AD/883B  
Note:  
1. /883B suffix denotes Mil-Std-883, Level B processing  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000108A  
Ó 1998 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
LM1 1 1 /LH2 1 1 1  
Vo lt a g e Co m p a ra t o rs  
Features  
Description  
• Low input offset current — 4 nA  
• Low input bias current — 60 nA  
• Operates from a single +5V supply  
• Response Time — 200 ns  
These low input current voltage comparators are designed to  
operate over a wide range of supply voltages, including  
+15V and single +5V supplies. Their outputs are compatible  
with DTL, RTL, TTL and MOS devices, and can be con-  
nected in “wire-OR” configuration. The LH2111 consists of  
two LM111 ICs packaged in a 16-lead DIP. The LH2111 is  
available with MIL-STD 883B screening.  
Rev 1.0.1  
 
LM111/LH2111  
PRODUCT SPECIFICATION  
Pin Assignments  
8-Lead DIP  
(Top View)  
8-Lead Metal Can  
(Top View)  
+V  
S
Ground  
+Input  
–Input  
+V  
S
1
2
8
7
8
Ground  
+Input  
–Input  
Output  
1
7
5
Output  
A
Balance/Strobe  
Balance  
2
6
6
5
Balance/Strobe  
Balance  
3
4
3
4
–V  
S
–V  
S
65-111-01  
16-Lead Ceramic DIP  
(Top View)  
+V (A)  
S
NC  
Output (A)  
1
16  
15  
Ground (A)  
+Input (A)  
–Input (A)  
2
3
4
5
6
7
8
Balance/Strobe (A)  
Balance (A)  
A
B
14  
13  
12  
–V (A)  
S
–Input (B)  
Balance (B)  
11 +Input (B)  
10  
9
Balance/Strobe (B)  
Output (B)  
Ground (B)  
+V (B)  
S
65-111-02  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
+18  
50  
Unit  
Supply Voltage  
-18  
V
Output to –V  
V
S
Ground to –V  
30  
V
S
Differential Input Voltage  
Input Voltage1  
Power Dissipation2  
30  
V
V
-15  
+15  
500  
10  
mW  
seconds  
°C  
Output Short Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Voltage at Strobe Pin  
-65  
-55  
+150  
+125  
•C  
+V –5  
S
V
Lead Soldering Temperature (60 seconds)  
+300  
°C  
Notes:  
1. For supply voltages other than ±15V, the maximum input is equal to the supply voltage.  
2. Observe package thermal characteristics.  
2
PRODUCT SPECIFICATION  
LM111/LH2111  
Thermal Characteristics  
Parameter  
8-Lead Metal Can  
+175°C  
8-Lead Ceramic DIP 16-Lead Ceramic DIP  
Maximum Junction Temperature  
+175°C  
833 mW  
+175°C  
1042 mW  
60°C/W  
Maximum P T <50°C  
658 mW  
D
A
Thermal Resistance, q  
Thermal Resistance, q  
50°C/W  
45°C/W  
JC  
JA  
190°C/W  
150°C/W  
8.33 mW/°C  
120°C/W  
8.38 mW/°C  
For T > 50°C Derate at  
5.26 mW/°C  
A
Electrical Characteristics  
V = ±15V1 and -55°C £ T £ +125°C unless otherwise noted.  
S
A
Parameters  
Test Conditions  
Min.  
Typ.  
0.7  
4.0  
60  
Max.  
3.0  
Units  
Input Offset Voltage2  
Input Offset Current2  
Input Bias Current  
T = +25°C, R 50 kW  
mV  
nA  
A
S
T = +25°C  
A
10  
T = +25°C  
A
100  
nA  
Large Signal Voltage Gain  
Response Time  
T = +25°C  
40  
200  
V/mV  
A
T = +25°C, 100 mV step, 5 mV overdrive  
200  
3.0  
ns  
mA  
A
Output Voltage Low (V  
)
OL  
V
£ 5 mV, I = 50 mA, T = +25°C  
IN  
L
A
Output Leakage current  
V
IN  
25 mV, V  
= 35V,  
0.2  
10  
nA  
OUT  
T = +25°C, I  
= 3 mA  
A
STROBE  
Input Offset Voltage2  
Input Offset Current2  
Input Bias Current  
R
£ 50 KW  
1.5  
5.0  
100  
4.0  
20  
mV  
nA  
nA  
V
S
150  
13.0  
0.4  
Input Voltage Range  
Pin 7 pull up may go to +5V  
-14.5  
Output Voltage Low (V  
)
OL  
+V = 4.5V, -V = 0V, V £ -6 mV,  
0.23  
V
S
S
IN  
I
= 8.0 mA  
OUT  
Output Leakage Current  
Positive Supply Current  
Negative Supply Current  
Notes:  
V
³ 5 mV, V  
= 35V  
100  
5.1  
4.1  
500  
6.0  
5.0  
nA  
mA  
mA  
IN  
OUT  
T = +25°C, each amplifier  
A
T = +25°C, each amplifier  
A
1. V , I  
OS OS  
and I specifications apply for V = +5V to V = ±15V.  
B S S  
2. V and I  
OS OS  
are maximum values required to drive the output to within 1V of either supply with a 1 mA load.  
3. Do not short circuit the strobe pin to ground—drive it with a 3 to 5 mA current Instead.  
4. If the strobe and balance pins are unused, short them together for maximum AC stability.  
3
LM111/LH2111  
PRODUCT SPECIFICATION  
Typical Performance Characteristics  
30  
20  
10  
0
400  
VS  
= 15V  
VS  
= 15V  
Raised (Short Pins  
5, 6, and 8)*  
300  
Raised (Short  
Pins 5, 6 &8)*  
200  
100  
Normal  
Normal  
0
+65 +85 +105 +125  
-55  
-35 -15  
+5  
+25 +45  
( ¡C)  
-35  
+45 +65 +85 +105 +125  
-55  
-15 +5 +25  
T
T
A
( ¡C)  
A
* Pin numbers are for 8-lead packages  
* Pin numbers are for 8-lead packages  
Figure 1. Input Bias Current vs. Temperature  
Figure 2. Input Offset Current vs. Temperature  
100  
180  
160  
T A = +25 C  
Maximum  
140  
120  
VS  
= 15V  
TA = +25 C  
10  
1
100  
80  
Typical  
60  
40  
VOS = VOS+ RS I OS  
20  
0
0.1  
10K  
100K  
1M  
10M  
-16  
-12  
-8  
-4  
+16  
0
+4  
+8  
+12  
R
( ½ )  
V
(V)  
IN  
DIFF  
Figure 3. Equivalent Input Offset Voltage  
vs. Input Resistance  
Figure 4. Input Bias Current  
vs. Differential Input Voltage  
60  
50  
+VS  
Normal Output  
RL = 1K  
-0.5  
-1.0  
-1.5  
+0.4  
+0.2  
-VS  
V ++= 50V  
VS = 30V  
TA = +25 C  
Referred to ±V  
S
40  
30  
Emitter  
Follower Output  
20  
10  
RL = 600W  
Ÿ
0
-1  
-0.5  
0
+1  
+0.5  
-35  
+5  
+65 +85 +105 +125  
+45  
-55  
-15  
+25  
(¡C)  
V
(mV)  
DIFF  
T
A
Figure 5. Common Mode LImits vs. Temperature  
Figure 6. Output Voltage vs. Differential Input Voltage  
4
PRODUCT SPECIFICATION  
LM111/LH2111  
Typical Performance Characteristics (continued)  
6
6
5
4
+5V  
500  
5
T
= ±25 C  
W
Ÿ
4
3
2
1
A
VIN  
20 mV  
5 mV  
2 mV  
20 mV  
VOUT  
3
2
5 mV  
2 mV  
LM111  
+5V  
1
W
Ÿ
500  
VIN  
0
VOUT  
100  
50  
0
0
LM111  
-50  
T
= +25¡C  
A
-100  
0
0.2  
0.4  
0.6  
0.8  
0
0.2  
0.4  
0.6  
0.8  
Time (µs)  
Time (µs)  
Ÿ
Ÿ
Ÿ
Figure 7. Input Overdrive vs. Response Times  
Figure 8. Input Overdrive vs. Response Times  
20  
20  
+V  
S
15  
10  
0
20 mV  
5 mV  
2 mV  
15  
10  
0
+V  
S
V
IN  
20 mV  
5 mV  
2 mV  
V
V
OUT  
IN  
5
5
V
OUT  
2K  
0
0
LM111  
-V  
2K  
-5  
-5  
LM111  
-V  
S
-10  
0
-10  
0
S
VS  
=
15V  
-50  
-100  
100  
50  
VS  
= 15V  
TA = +25 C  
TA = +25 C  
0
4
3
1
2
4
0
3
1
2
0
Time (µs)  
Time (µs)  
Figure 9. Input Overdrive vs. Response Times  
Figure 10. Input Overdrive vs. Response Times  
0.8  
0.7  
140  
120  
100  
80  
0.7  
0.6  
TA = +125 C  
P
0.6  
0.5  
0.4  
D
TA = -55 C  
TA = +25 C  
0.5  
0.4  
0.3  
0.2  
0.3  
0.2  
60  
40  
20  
0
I
SC  
TA = +25 C  
0.1  
0
0.1  
0
0
40  
10  
20  
(mA)  
50  
30  
0
5
10  
15  
I
(V)  
65-111-14  
I
OUT  
OUT  
Figure 11. OpenSaturation Voltage vs. Output Current  
Figure 12. Short Circuit Current,  
Power Dissipation vs. Output Voltage  
5
LM111/LH2111  
PRODUCT SPECIFICATION  
Typical Performance Characteristics (continued)  
10  
VS  
= 15V  
6
TA = +25 C  
8
5
+V  
S
+V  
(Output Low)  
S
6
4
2
0
4
3
2
1
0
(Output Low)  
±V  
S
(Output High)  
±V  
S
(Output High)  
0
±5  
±10  
±15  
+125  
-55 -35  
-15 +5  
+25 +45 +65 +85 +105  
(¡C)  
T
±V (V)  
A
S
Figure 13. Supply Current vs. Supply Voltage  
Figure 14. Supply Current vs. Temperature  
100  
VS  
V
= 15V  
10  
1
= 50V  
OUT  
V
= 15V  
IN  
.1  
.01  
25  
45  
65  
85  
105  
125  
T
(¡C)  
A
Figure 15. Leakage Current vs. Temperature  
6
PRODUCT SPECIFICATION  
LM111/LH2111  
Notes:  
7
LM111/LH2111  
PRODUCT SPECIFICATION  
Notes:  
8
PRODUCT SPECIFICATION  
LM111/LH2111  
Mechanical Dimensions  
8-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.405  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 4, 5 and 8 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2, 8  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
10.29  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 8.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 4, 5, and 8).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Six spaces.  
D
4
1
8
Note 1  
E
5
s1  
eA  
e
A
Q
c1  
a
L
b2  
b1  
9
LM111/LH2111  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
16-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.840  
.310  
.36  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 8, 9 and 16 only.  
b1  
b2  
c1  
D
.014  
.050  
.008  
.745  
.220  
8
2
1.27  
.20  
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
18.92  
5.59  
21.33  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 16.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.115  
.160  
.060  
2.92  
4.06  
1.52  
6. Applies to all four corners (leads number 1, 8, 9, and 16).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Fourteen spaces.  
D
1
8
9
NOTE 1  
E
16  
s1  
eA  
e
A
Q
c1  
a
L
b1  
10  
PRODUCT SPECIFICATION  
LM111/LH2111  
Mechanical Dimensions (continued)  
8-Lead Metal Can (TO-99)  
øD  
Inches  
Millimeters  
Symbol  
Notes  
Min.  
Max.  
Min.  
Max.  
øD1  
A
.165  
.016  
.016  
.335  
.305  
.110  
.185  
.019  
4.19  
.41  
4.70  
.48  
øb  
1, 5  
1, 5  
F
L1  
øb1  
øD  
øD1  
øD2  
e
.021  
.375  
.335  
.41  
.53  
9.52  
8.51  
Q
A
8.51  
7.75  
2.79  
.160  
4.06  
L2  
.200 BSC  
.100 BSC  
5.08 BSC  
2.54 BSC  
e1  
F
.040  
.034  
1.02  
.86  
L
øb  
k
.027  
.69  
k1  
L
L1  
L2  
Q
a
.027  
.500  
.045  
.750  
.050  
.69  
12.70  
1.14  
19.05  
1.27  
2
1
1
1
BASE and  
SEATING  
PLANE  
REFERENCE  
PLANE  
.250  
.010  
45¡ BSC  
6.35  
.25  
45¡ BSC  
øb1  
.045  
1.14  
e
Notes:  
1. (All leads) øb applies between L1 & L2. øb1 applies between  
L2 & .500 (12.70mm) from the reference plane. Diameter is  
uncontrolled in L1 & beyond .500 (12.70mm) from the  
reference plane.  
e1  
øD2  
2. Measured from the maximum diameter of the product.  
3. Leads having a maximum diameter .019 (.48mm) measured in  
gauging plane, .054 (1.37mm) +.001 (.03mm) –.000 (.00mm)  
below the reference plane of the product shall be within  
.007 (.18mm) of their true position relative to a maximum width  
tab.  
4. The product may be measured by direct methods or by gauge.  
a
5. All leads – increase maximum limit by .003 (.08mm) when lead  
finish is applied.  
k
k1  
11  
PRODUCT SPECIFICATION  
LM111/LH2111  
Ordering Information  
Part Number  
LM111T/883B  
LM111D/883B  
LH2111D  
Package  
Operating Temperature Range  
8-Lead Metal Can (TO-99)  
8-Lead Ceramic DIP  
16-Lead Ceramic DIP  
16-Lead Ceramic DIP  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
LH2111D/883B  
Note:  
1. /883 B suflix denotes MIL-STD-883, Level B processing  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000111  
Ó 1998 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
LM1 2 4 /LM3 2 4  
S in g le -S u p p ly Qu a d Op e ra t io n a l Am p lifie r  
Features  
Description  
• Large DC voltage gain—100 dB  
• Compatible with all forms of logic  
• Temperature compensated  
• Unity Gain Bandwidth—1 MHz  
• Large output voltage swing—0V to (+V -1.5V)  
S
Each of the devices in this series consists of four indepen-  
dent high-gain operational amplifiers that are designed for  
single-supply operation. Operation from split power supplies  
is also possible and the low power supply drain is indepen-  
dent of the magnitude of the power supply voltage.  
• Input common mode voltage range includes ground  
Used with a dual supply, the circuit will operate over a wide  
range of supply voltages. However, a large amount of cross-  
over distortion may occur with loads to ground. An external  
current-sinking resistor to -V will reduce crossover distor-  
S
tion. There is no crossover distortion problem in  
single-supply operation if the load is direct-coupled to  
ground.  
Rev 1.0.0  
 
LM124/LM324  
PRODUCT SPECIFICATION  
Pin Assignments  
Output (A)  
-Input (A)  
+Input (A)  
+VS (A)  
Output (D)  
14  
1
2
3
4
5
6
7
-
+
-
+
13 -Input (D)  
12 +Input (D)  
11 Ground  
D
C
A
B
+Input (B)  
-Input (B)  
Output (B)  
+Input (C)  
-Input (C)  
Output (C)  
10  
9
+
-
+
-
8
Absolute Maximum Ratings  
Parameter  
Conditions  
Min.  
Max.  
+32 or ±16  
32  
Units  
Supply Voltage  
V
V
V
Differential Input Voltage  
Input Voltage  
-0.3  
+32  
Output Short Circuit to Ground1  
One Amplifier  
+V £ 15V and T = +25°C  
Continuous  
S
A
Input Current2  
V
IN  
< -0.3V  
50  
mA  
Operating Temperature Range  
LM124  
LM324  
-55  
0
+125  
+70  
°C  
°C  
Notes:  
1. Short circuits from the output to +V can cause excessive heating and eventual destruction. The maximum output current is  
S
approximately 40 mA independent of the magnitude of +V . At values of supply voltage in excess d +V , continuous short  
S
S
circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from  
simultaneous shorts on all amplifiers.  
2. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base  
junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this  
diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output  
voltages of the op amps to go to the +V voltage level (or to ground for a large overdrive) for the time duration that an input  
S
is driven negative. This is not destructive and normal output states will re-establish when the input voltage again returns to a  
value greater than 0.3V.  
Thermal Characteristics  
Parameter  
SOIC  
+125°C  
300 mW  
Plastic DIP  
+125°C  
Ceramic DIP  
+175°C  
Maximum Junction Temperature  
Max. P T < 50°C  
468 mW  
1042 mW  
60°C/W  
D
A
Thermal Resistance, q  
Thermal Resistance, q  
JC  
200°C/W  
5.0 mW/°C  
160°C/W  
6.25 mW/°C  
120°C/W  
8.38 mW/°C  
JA  
For T > 50°C Derate at  
A
2
PRODUCT SPECIFICATION  
LM124/LM324  
Electrical Characteristics  
+V = +5.0V (see Note 1) and T = +25°C, unless otherwise noted.  
S
A
LM124  
Typ.  
±2.0  
45  
LM324  
Typ.  
±2.0  
45  
Parameters  
Test Conditions  
Min.  
Max.  
±5.0  
150  
Min.  
Max. Units  
Input Offset Voltage1  
Input Bias Current2  
Input Offset Current  
Input Voltage Range3  
±7.0  
250  
±50  
mV  
nA  
±3.0  
±30  
±5.0  
nA  
+V = +30V  
S
0
+V -1.5  
S
0
+V -1.5  
S
V
Supply Current  
(Over Temperature)  
R = ¥, +V = 30V  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
mA  
mA  
V/mV  
L
S
R = ¥ on all op amps  
L
Large Signal Voltage  
Gain  
+V = 15V  
S
50  
100  
25  
100  
(for large V  
swing)  
OUT  
R ³ 2 KW  
L
Output  
Voltage Swing  
V
OH  
V
OH  
V
OL  
+V = +30V, R = 2KW  
26  
27  
26  
27  
V
V
S
L
R ³ 10 KW  
L
28  
28  
+V = +5.0V, R =  
5.0  
20  
5.0  
20  
mV  
S
L
10KW  
Common Mode  
Rejection Ratio  
70  
65  
85  
100  
-120  
40  
65  
65  
70  
100  
-120  
40  
dB  
dB  
dB  
mA  
mA  
mA  
Power Supply  
Rejection Ratio  
Channel Separation4  
F = 1 KHz to 20 KHz  
(lnput referred)  
Output  
Current  
Source  
Sink  
V
= 1V, V = 0V,  
IN-  
20  
10  
12  
20  
10  
12  
IN+  
+V = 15V  
S
V
= 1V, V  
= 0V,  
= 0V,  
20  
20  
IN–  
+V = 15V  
IN+  
S
V
IN+  
+V  
= 1V, V  
50  
50  
IN–  
= 200 mV  
OUT  
Notes:  
1. V  
= 1.4V, R = 0W with +V from 5V to 30V; and over the full common mode range (0V to +V -1.5V).  
S S S  
OUT  
2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent  
of the state of the output so no loading change exists on the input lines.  
3. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The  
upper end of the common mode voltage range is +V -1.5V, but either or both inputs can go to +32V without damage.  
S
4. Due to proximity of external components, ensure that coupling is not originating via stray capacitance between these externall  
parts. This typically can be detected as this type of capacitance increases at higher frequencies.  
3
LM124/LM324  
PRODUCT SPECIFICATION  
Electrical Characteristics  
+V = +5.0V, LM124 = -55° £ T £ 125°C, LM324 = 0°C £ T £ 70°C unless other wise noted.  
S
A
A
LM124  
LM324  
Typ.  
40  
Test  
Conditions  
Parameters  
Min.  
Typ .  
Max .  
60  
Min.  
Max .  
60  
Unit  
mA  
Short Circuit Current1  
Input Offset Voltage2  
Input Offset Voltage Drift  
Input Offset Current  
Input Offset Current Drift  
Input Bias Current3  
Input Voltage Range4  
T = +25°C  
40  
A
±7.0  
±9.0  
mV  
R = 0W  
7.0  
7.0  
mV/°C  
nA  
S
±100  
±150  
10  
40  
10  
40  
pA/°C  
nA  
300  
500  
+V = +30V  
S
0
+V -2.0  
S
0
+V -2.0  
S
V
Large Signal  
Voltage Gain  
+Vs - +15V  
(For Large  
25  
15  
V/mV  
V
Swing)  
OUT  
R ³ 2.0 KW  
L
Output Voltage  
Swing  
V
+V = +30V,  
R = 2 KW  
L
26  
27  
26  
27  
V
OH  
S
V
V
R ³ 10 KW  
L
28  
28  
V
OH  
+V = +5.0V,  
5.0  
20  
5.0  
20  
mV  
OL  
S
R = 10 KW  
L
Output Current  
Source  
Sink  
V
V
= +1.0V,  
= 0V,  
10  
20  
10  
20  
mA  
mA  
V
IN+  
IN–  
S
+V = +15V  
V
V
= +1.0V,  
= 0V,  
5.0  
8.0  
5.0  
8.0  
IN–  
lN+  
+V = +15V  
S
Differential Input Voltage4  
+V  
S
+V  
S
Notes:  
1. Short circuits from the output to +V can cause excessive heating and eventual destruction. The maximum output current is  
S
approximately 40 mA independent of the magnitude of +V . At values of supply voltage in excess of +V , continuous short  
S
S
circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from  
simultaneous shorts on an amplifiers.  
2. V  
=1.4V, R = 0W with +V from 5V to 30V and over the full common mode range (0V to +V -1.5V).  
S S S  
OUT  
3. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent  
of the state of the output so no loading change exists on the input lines.  
4. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The  
upper end of the common mode voltage range is +V -1.5V, but either or both inputs can go to +32V without damage.  
S
4
PRODUCT SPECIFICATION  
LM124/LM324  
Typical Performance Characteristics  
500  
20  
15  
10  
5
100K  
TA = +25 C  
+VS = +30V  
VO  
+15V  
450  
400  
350  
300  
250  
100  
VIN  
50 pF  
VOUT  
V IN  
+7V  
2K  
Input  
Output  
0
1K  
0
1
2
3
4
5
6
7
8
10K  
100K  
1M  
m
Time ( S)  
F (Hz)  
Figure 1. Follower Small Signal Pulse Response  
Figure 2. Output Voltage Swing vs. Frequency  
8
7
10  
+VS = +5V  
+VS = +15V  
+VS = +30V  
+V  
S
6
1
+VS /2  
VOUT  
5
+V  
S
+V /2  
S
4
3
2
+ISOURCE  
Independent of +VS  
I OUT  
0.1  
VOUT  
TA = +25 C  
TA = +25 C  
10  
1
0.01  
0
0.01  
0.1  
1
100  
0.001  
0.01  
0.1  
1
10  
100  
+ISOURCE (mA)  
ISINK (mA)  
Figure 3. Output Voltage vs. Output Source Current  
Figure 4. Output Voltage vs. Output Sink Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+IOUT  
-55 -35 -15 +5 +25 +45 +65 +85 +105+125  
T
A (°C)  
Figure 5. Current Limiting Output Current vs. Temperature  
5
LM124/LM324  
PRODUCT SPECIFICATION  
Typical Performance Characteristics (continued)  
90  
15  
10  
5
VCM = 0V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-VS  
+VS = +30V  
+VS = +15V  
+VS  
+VS = +5V  
0
0
5
10  
15  
-55 -35 -15 +5 +25 +45 +65 +85+105+125  
±VS (V)  
T
A (°C)  
Figure 6. Input Voltage vs. Supply Voltage  
Figure 7. Input Bias Current vs. Temperature  
160  
4
+VS  
ISY  
120  
3
2
1
0
Ammeter  
RL = 20 kW  
R L = 2 k W  
80  
TA = 0 C to +125 C  
40  
0
TA = -55 C  
0
5
10  
15 20 25  
30 35  
40  
0
10  
20  
30  
+VS (V)  
+VS (V)  
Figure 8. Supply Current vs. Supply Voltage  
Figure 9. Open Loop Voltage Gain vs. Supply Voltage  
4
3
2
140  
120  
100  
80  
10M  
+VS  
m
0.1  
VIN  
F
W
RL 2 k  
1
0
3
2
1
0
VS = +15V  
VOUT  
+V  
S /2  
60  
+VS = +30V and  
-55 T A +125  
C
C
40  
+VA = +10V to +15V and  
-55 C TA +125 C  
20  
0
0
5
10  
15 20 25  
30 35  
40  
1
10  
100 1K  
10K 100K 1M 10M  
F (Hz)  
Time (µS)  
Figure 10. Open Loop Voltage Gain vs. Frequency  
Figure 11. Follower Large Pulse Response Signal vs. Time  
6
PRODUCT SPECIFICATION  
LM124/LM324  
Notes:  
7
LM124/LM324  
PRODUCT SPECIFICATION  
Notes:  
8
PRODUCT SPECIFICATION  
LM124/LM324  
Mechanical Dimensions  
14-Lead Plastic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
.725  
.005  
.300  
.240  
3. Terminal numbers are shown for reference only.  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
2.93  
.36  
.195  
.022  
.070  
.015  
.795  
4.95  
.56  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
18.42  
.13  
20.19  
D1  
E
.325  
.280  
7.62  
6.10  
8.26  
7.11  
E1  
e
2
5
.100 BSC  
2.54 BSC  
eB  
L
.430  
.200  
10.92  
5.08  
.115  
2.92  
N
14  
14  
D
1
7
E1  
D1  
8
14  
E
e
A
A1  
C
L
eB  
B1  
B
9
LM124/LM324  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
14-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.785  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 7, 8 and 14 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
19.94  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 14.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 7, 8, and 14).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Twelve spaces.  
D
1
7
8
NOTE 1  
E
14  
s1  
eA  
e
A
Q
c1  
a
L
b1  
b2  
10  
PRODUCT SPECIFICATION  
LM124/LM324  
Mechanical Dimensions (continued)  
14-Lead SOIC  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.053  
.004  
.013  
.008  
.336  
.150  
.069  
.010  
.020  
.010  
.345  
.158  
1.35  
0.10  
0.33  
0.19  
8.54  
3.81  
1.75  
0.25  
0.51  
0.25  
8.76  
4.01  
A1  
B
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. "C" dimension does not include solder finish thickness.  
6. Symbol "N" is the maximum number of terminals.  
C
D
E
5
2
2
e
.050 BSC  
1.27 BSC  
H
h
.228  
.010  
.016  
.244  
.020  
.050  
5.79  
0.25  
0.40  
6.20  
0.50  
1.27  
L
3
6
N
a
14  
14  
0¡  
8¡  
0¡  
8¡  
ccc  
.004  
0.10  
14  
8
E
H
1
7
h x 45¡  
D
C
A1  
A
a
SEATING  
PLANE  
– C –  
L
e
B
LEAD COPLANARITY  
ccc C  
11  
PRODUCT SPECIFICATION  
LM124/LM324  
Ordering Information  
Part Number  
LM324M  
Package  
Operating Temperature Range  
14-Lead Plastic SOIC  
14-Lead Plastic DIP  
14-Lead Ceramic DIP  
14-Lead Ceramic DIP  
0°C to +70°C  
0°C to +70°C  
LM324N  
LM124D  
-55°C to +125°C  
-55°C to +125°C  
LM124D/883B  
Note:  
1. 883B suffix denotes Mil-Std-883, Level B processing.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000124  
Ó 1998 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
LM1 3 9 /LM1 3 9 A, LM3 3 9  
S in g le S u p p ly Qu a d Co m p a ra t o rs  
Features  
Description  
• Input common mode voltage range includes ground  
• Wide single supply voltage range—2V to 36V  
• Output compatible with TTL, DTL, ECL, MOS and  
CMOS logic systems  
Very low supply current drain (0.8 mA) independent of  
supply voltage  
These devices offer higher frequency operation and faster  
switching than can be had from internally compensated  
quad op amps. Intended for single supply applications, the  
Darlington PNP input stage allows them to compare voltages  
that include ground. The two stage common-emitter output  
circuit provides gain and output sink capacity of 3.2 mA at  
an output level of 400 mV. The output collector is left open,  
permitting the designer to drive devices in the range of 2V to  
36V.  
They are intended for applications not needing response time  
less than 1 ms, but demanding excellent op amp input param-  
eters to offset voltage, current and bias current, to ensure  
accurate comparison with a reference voltage.  
Rev. 1.0.0  
 
LM139/LM139A, LM339  
PRODUCT SPECIFICATION  
Pin Assignments  
14  
13  
12  
11  
10  
9
1
2
3
Output B  
Output A  
Output C  
Output D  
Ground  
+V  
S
A
D
–Input A  
+Input A  
–Input B  
+Input B  
4
5
6
+Input D  
–Input D  
+Input C  
–Input C  
B
C
7
8
65-139-0-1  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
Unit.  
V
Supply Voltage  
-8  
+36 or +8  
36  
Differential Input Voltage  
Input Voltage Range2  
Output Short Circuit to Ground1  
V
-0.3  
+36  
V
Continuous  
50  
Input Current (V < -0.3V)(2)  
mA  
IN  
Operating Temperature Range  
LM139  
-55  
0
+125  
+70  
°C  
°C  
°C  
LM339  
Storage Temperature Range  
Lead Soldering Temperature  
SOIC, 10 seconds  
DIP, 60 seconds  
Notes:  
-65  
150  
+260  
+300  
°C  
°C  
1. Short circuits from the output to +V can cause excessive heating and eventual destruction. The maximum output current is  
S
approximately 20 mA independent of the magnitude of +Vs.  
2. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector base  
junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this  
diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output  
voltage of the comparators to go to the +V voltage level (or to ground for a large overdrive) for the time duration that an input  
S
is driven negative. This is not destructive and nominal output states will re-establish when the input voltage, which was neg-  
ative, again returns to a value greater than -0.3V.  
2
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Thermal Characteristics  
Parameter  
SOIC  
+125°C  
300 mW  
Plastic DIP  
+125°C  
Ceramic DIP  
+175°C  
Maximum Junction Temperature  
Maximum P T <50°C  
468 mW  
1042mW  
60°C/W  
D
A
Thermal Resistance, q  
Thermal Resistance, q  
JC  
JA  
200°C/W  
5.0 mW/°C  
160°C/W  
6.25 mW/°C  
120°C/W  
8.33 mW/°C  
For T > 50°C Derate at  
A
Electrical Characteristics  
V = +5V, see Note 1.  
S
LM139A  
Parameters  
Input Offset Voltage  
Input Bias Current  
Test Conditions  
Min.  
Typ.  
±1.0  
25  
Max.  
±2.0  
100  
Unit  
mV  
nA  
T = +25°C2  
A
Output In Linear Range  
T = +25°C3, V  
= 0V  
A
CM  
= 0V  
Input Offset Current  
Input Voltage Range  
Supply Current  
T = +25°C, V  
CM  
±3.0  
±25  
nA  
V
A
T = +25°C4, V = 30V  
+V –1.5  
S
A
S
R = ¥ on all comparators, T = +25°C  
0.8  
2.5  
mA  
V/mV  
L
A
Large Signal Voltage Gain  
R = ¥, +V = 30V, R ³ 15 KW,  
50  
200  
L
S
L
+V = +5V (to support large V  
swing)  
S
OUT  
T = +25°C  
A
Large Signal Response  
Time  
V
V
= TTL Logic Swing, V  
= 1.4V,  
= 5V, R = 5.1 KW,T = +25°C  
300  
ns  
IN  
RL  
REF  
L
A
Response Time  
V
V
V
V
= 5V, R = 5.1 KW, T = +25°C5  
1.3  
16  
ms  
mA  
mV  
mA  
mV  
nA  
nA  
V
RL  
L
A
Output Sink Current  
Saturation Voltage  
Output Leakage Current  
Input Offset Voltage2  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
Saturation Voltage  
Output Leakage Current  
Differential Input Voltage7  
Notes:  
³ 1V, V  
= 0, V £ 1.5V, T = +25°C 6.0  
OUT A  
IN–  
IN–  
IN+  
IN+  
³ 1V, V  
IN+  
= 0, I  
£ 4 mA, T = 25°C  
250  
0.1  
400  
SINK  
A
³ 1V, V = 0, V  
= 5V, T = +25°C  
IN-  
OUT  
A
±4.0  
±100  
300  
V
V
= 0V  
= 0V  
CM  
CM  
+V = 30V  
0
+V –2.0  
S
S
V
V
V
³ 1V, V  
IN+  
= 0, I  
£ 4 mA  
700  
1.0  
36  
mV  
mA  
V
IN-  
SINK  
³ 1V, V = 0, V  
IN- OUT  
= 30V  
IN+  
IN+  
³ 0V, (or -V , if used)6  
S
1. These specifications apply for +V = 5V and -55°C £ T £ +125°C, unless otherwise stated. The LM339 temperature speci-  
S
A
fications are limped to 0°C £ T £ +70°C.  
A
2. At output switch points V  
OUT  
= 1.4V, R = 0W with +V from 5V to 30V; and over the full input common mode range (V  
OUT  
S
S
to +V –1.5V).  
S
3. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent  
of the state of the output so no loading change exists on the reference or input lines.  
4. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The  
upper end of the common mode voltage range is +V –1.5V, but either or both inputs can go to +30V without damage.  
S
5. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be ob-  
tained. See Typical Performance Characteristics section.  
6. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the com-  
mon mode range, the comparator will provide a proper output state. The low input voltage stage must not be less than -0.3V  
(or 0.3V below the magnitude of the negative power supply, if used).  
7. Guaranteed by design.  
3
LM139/LM139A, LM339  
PRODUCT SPECIFICATION  
Electrical Characteristics  
V = +5V, see Note 1.  
S
LM139  
Typ  
LM339  
Parameters  
Input Offset Voltage  
Input Bias Current  
Test Conditions  
T = +25°C2  
Mln  
Max  
Mln  
Typ  
Max Units  
±2.0 ±5.0  
±2.0 ±5.0  
mV  
nA  
A
Output in Linear Range  
25  
100  
25  
250  
T = +25°C3, V  
= 0V  
A
CM  
Input Offset Current  
Input Voltage Range  
T = +25°C, V  
CM  
= 0V  
±3.0  
±25  
±5.0  
±50  
nA  
V
A
T = +25°C4, +V = 30V  
0
+V  
S
0
+V  
S
A
S
–1.5  
–1.5  
Supply Cunent  
R = ¥ on all comparators,  
L
0.8  
2.5  
0.8  
2.5  
mA  
T = +25°C  
A
Large Signal Voltage Gain R = ¥ +V = 30V,  
25  
200  
200  
V/mV  
L
S
R ³ 15 KW, +V = +5V  
L
S
(to support large V  
OUT  
swing), T = +25°C  
A
Large Signal Response  
Time  
V
V
= TTL Logic Swing,  
300  
300  
ns  
IN  
= 1.4V, V = 5V,  
REF  
RL  
R = 5.1 KW, T = +25°C  
L
A
Response Time  
V
A
= 5V, R = 5.1 KW  
1.3  
16  
1.3  
16  
mS  
mA  
mV  
mA  
RL  
L
T = +25°C5  
Output Sink Current  
V
V
³ 1V, V  
= 0,  
£ 1.5V, T = +25°C  
6.0  
6.0  
IN-  
OUT  
IN+  
A
Output Voltage, V  
OL  
V
IN  
³ 1V, V  
= 0,  
£ 4 mA, T = +25°C  
250  
0.1  
400  
250  
0.1  
400  
IN+  
I
SINK  
A
Output Leakage Current  
V
V
³ 1V, V = 0,  
IN-  
IN+  
OUT  
= 5V, T = +25°C  
A
Input Offset Voltage2  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
±9.0  
±100  
300  
±9.0  
±150  
400  
mV  
nA  
nA  
V
V
V
= 0V  
CM  
= 30V  
0
+V  
0
+V  
S
CM  
S
–2.0  
–2.0  
Output Voltage V  
OL  
V
³ 1V, V  
£ 4 mA  
= 0  
= 0  
700  
700  
mV  
mA  
V
IN–  
IN+  
I
SINK  
Output Leakage Cunent  
V
V
³ 1V, V  
IN–  
= 30V  
³ 0V (or -V , if used)6  
1.0  
36  
1.0  
36  
IN+  
OUT  
Differential Input Voltage7  
V
IN+ S  
Notes:  
1. These specifications apply for +V = 5V and -55°C £ T £ +125°C, unless otherwise stated. The LM339 temperature speci-  
S
A
fications are limped to 0°C £ TA £ +70°C.  
2. At output switch points V  
OUT  
= 1.4V, R = 0W with +V from 5V to 30V; and over the full input common mode range (V  
OUT  
S
S
to +V –1.5V).  
S
3. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent  
of the state of the output so no loading change exists on the reference or input lines.  
4. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The  
upper end of the common mode voltage range is +V –1.5V, but either or both inputs can go to +30V without damage.  
S
5. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be ob-  
tained. See Typical Performance Characteristics section.  
6. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the com-  
mon mode range, the comparator will provide a proper output state. The low input voltage stage must not be less than -0.3V  
(or 0.3V below the magnitude of the negative power supply, if used).  
7. Guaranteed by design.  
4
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Typical Performance Characteristics  
80  
60  
40  
20  
0
1.0  
T
= -55°C  
A
V
= 0V  
= 1000 MW  
IN(CM)  
R
IN(CM)  
0.8  
0.6  
0.4  
T
= 0°C  
A
T
= +25°C  
A
T
= -55°C  
= 0°C  
A
T
A
T
= +70°C  
A
A
T
= +25°C  
T
= +125°C  
A
T
= +125°C  
±15  
T
= +70°C  
A
A
0.2  
0
0
±5  
±10  
±15  
±20  
0
±5  
±10  
±20  
±V (V)  
S
±V (V)  
S
Figure 1. Supply Current vs. Supply Voltage  
Figure 2. Input Current vs. Supply Voltage  
10  
Out of  
Saturation  
{
1.0  
0.1  
T
= +125°C  
T
= -55°C  
A
A
0.01  
T
= +25°C  
1.0  
A
0.001  
0.01  
0.1  
10  
100  
I
SINK  
Figure 3. Output Saturation Voltage vs. Sink Current  
5
LM139/LM139A, LM339  
PRODUCT SPECIFICATION  
Typical Performance Characteristics (continued)  
+5V  
6.0  
5.0  
Input Overdrive = 5.0 mV  
4.0  
3.0  
V
5.1K  
2
20 mV  
IN  
4
5
2.0  
1.0  
139/339  
100 mV  
V
OUT  
0
0
-50  
T
= 25°C  
2.0  
A
-100  
65-0686  
0
0.5  
1.0  
1.5  
Time (µs)  
Figure 4. Input Overdriver Repsonse Time  
+5V  
6.0  
5.0  
Input Overdrive = 100 mV  
20 mV  
4.0  
3.0  
2.0  
1.0  
V
5.1K  
2
IN  
4
5
5 mV  
139/339  
V
OUT  
0
100  
50  
T
= 25°C  
A
0
65-0687  
0
0.5  
1.0  
1.5  
2.0  
Time (µs)  
Figure 5. Input Overdrive Response Time  
6
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Applications  
Single Supply (+V = +15V).  
S
+5V  
+5V  
+5V  
3K  
+V  
REF  
4
139/339  
V
OUT  
10K  
10K  
10K  
V
3
139/339  
12  
3
139/339  
12  
5
4
5
4
IN  
5
2
2
10M  
65-0671  
65-0672  
65-0673  
Figure 6. Driving TTL  
Figure 7. Driving CMOS  
Figure 8. Comparator with Hysteresis  
12V  
+V  
S
2R  
S
10K  
5
+V  
V
High  
REF  
Lamp  
2
139/339  
3K  
12 ESB  
4
5
2
139/339  
R
S
4
V
OUT  
IN  
7
1
2R  
S
139/339  
2N2222  
6
7
1
+V  
Low  
REF  
139/339  
6
65-0674  
65-0675  
Figure 9. ORing the Output  
Figure 10. Limit Comparator  
+V  
S
15K  
560K  
1M  
1M  
4
10M  
100K  
V
IN  
3
6
3
2
139/339  
12  
1
5
+4V  
100K  
100 pF  
139/339  
V
1µs  
OUT  
7
0
+V  
12  
S
40 µs  
o
t
t
1
0
10M  
240K  
62K  
65-0676  
Figure 11. One-Shot Multivibrator with Input Lock Out  
7
LM139/LM139A, LM339  
PRODUCT SPECIFICATION  
Applications (continued)  
Single Supply (+V = +15V).  
S
+V  
S
+V  
S
100K  
5.1K  
100K  
15K  
5.1K  
5
4
V
5.1K  
IN  
4
5
+
2
2
139/339  
20M  
139/339  
V
V
OUT  
IN  
V
1N914  
OUT  
100K  
0.5 µF  
1K  
10K  
65-0677  
Figure 12. Zero Crossing Detector (Single Power Supply)  
Figure 13. Low Frequency Op Amp  
+V  
S
15K  
D1  
R1  
1N914  
1M  
D2  
1N914  
R2  
100K  
+5V  
+V  
o
S
80 pF  
60 µs  
6 µs  
4
t
t
t
2
0
1
2
139/339  
1M  
5
V
OUT  
+V  
5
S
1M  
VOUT  
2
139/339  
-12V  
o
4
V
REF  
(+1.4V)  
10K  
1M  
-12V  
65-0679  
65-680  
Figure 14. TTL to MOS Logic Converter  
Figure 15. Pulse Generator  
8
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Mechcanical Dimensions  
14-Lead Plastic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
.725  
.005  
.300  
.240  
3. Terminal numbers are shown for reference only.  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
2.93  
.36  
.195  
.022  
.070  
.015  
.795  
4.95  
.56  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
18.42  
.13  
20.19  
D1  
E
.325  
.280  
7.62  
6.10  
8.26  
7.11  
E1  
e
2
5
.100 BSC  
2.54 BSC  
eB  
L
.430  
.200  
10.92  
5.08  
.115  
2.92  
N
14  
14  
D
1
7
E1  
D1  
8
14  
E
e
A
A1  
C
L
eB  
B1  
B
9
LM139/LM139A, LM339  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
14-Lead Plastic SOIC  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.053  
.004  
.013  
.008  
.336  
.150  
.069  
.010  
.020  
.010  
.345  
.158  
1.35  
0.10  
0.33  
0.19  
8.54  
3.81  
1.75  
0.25  
0.51  
0.25  
8.76  
4.01  
A1  
B
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. "C" dimension does not include solder finish thickness.  
6. Symbol "N" is the maximum number of terminals.  
C
D
E
5
2
2
e
.050 BSC  
1.27 BSC  
H
h
.228  
.010  
.016  
.244  
.020  
.050  
5.79  
0.25  
0.40  
6.20  
0.50  
1.27  
L
3
6
N
a
14  
14  
0¡  
8¡  
0¡  
8¡  
ccc  
.004  
0.10  
14  
8
E
H
1
7
h x 45¡  
D
C
A1  
A
a
SEATING  
PLANE  
– C –  
L
e
B
LEAD COPLANARITY  
ccc C  
10  
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Mechanical Dimensions (continued)  
14-Lead Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.785  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 7, 8 and 14 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
19.94  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 14.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 7, 8, and 14).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Twelve spaces.  
D
1
7
8
NOTE 1  
E
14  
s1  
eA  
e
A
Q
c1  
a
L
b1  
b2  
11  
PRODUCT SPECIFICATION  
LM139/LM139A, LM339  
Ordering Information  
Part Number  
LM339M  
Package  
Operating Temperature Range  
14-Lead Plastic SOIC  
14-Lead Plastic DIP  
14-Lead Ceramic DIP  
14-Lead Ceramic DIP  
14-Lead Ceramic DIP  
14-Lead Ceramic DIP  
0°C to +70°C  
0°C to +70°C  
LM339N  
LM139D  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
LM139D/883B  
LM139AD  
LM139AD/883B  
Notes:  
1. /883B suffix denotes MIL-STD-883, Level B processing  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000139  
Ó 1998 Fairchild Semiconductor Corporation  
LM1458/A/I/AI (KA1458)  
DUAL OPERATIONAL AMPLIFIER  
DUAL OPERATIONAL AMPLIFIERS  
8 DIP  
The LM1458 series are dual general purpose operational amplifiers,  
having short circuits protected and require no external components for  
frequency compensation.  
High common mode voltage range and absence of “latch up" make  
the LM1458 ideal for use as voltage followers.  
The high gain and wide range of operating voltage provides superior  
performance in integrator, summing amplifier and general feedback  
applications.  
8 SOP  
FEATURES  
·
·
·
·
·
Internal frequency compensation  
Short circuit protection  
Large common mode and differential voltage range  
No latch up  
9 SIP  
Low power consumption  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM1458N  
8 DIP  
LM1458AN  
LM1458S  
9 SIP  
8 SOP  
8 DIP  
9 SIP  
0 ~ + 70°C  
LM1458AS  
LM1458M  
LM1458AM  
LM1458IN  
LM1458AIN  
LM1458IS  
LM1458AIS  
LM1458IM  
LM1458AIM  
-25 ~ + 85°C  
8 SOP  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM1458/A/I/AI (KA1458)  
DUAL OPERATIONAL AMPLIFIER  
SCHEMATIC DIAGRAM  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
V
V
Power Supply Voltage  
Input Differential Voltage  
Input Voltage  
VCC  
VI(DIFF)  
VI  
±18  
30  
V
±15  
°C  
°C  
°C  
- 25 ~ + 85  
0 ~ + 70  
- 65 ~ + 150  
Operating Temperature Range LM1458I/AI  
LM1458/A  
TOPR  
Storage Temperature Range  
TSTG  
LM1458/A/I/AI (KA1458)  
DUAL OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC = + 15V, VEE = - 15V, TA = 25 °C unless otherwise specified)  
LM1458A/AI  
LM1458/I  
Characteristic  
Input Offset Voltage  
Test Conditions  
RS£10KW  
Symbol  
Unit  
Min Typ Max Min Typ Max  
VIO  
IIO  
2.0 6.0  
20 200  
80 500  
2.0  
10  
mV  
nA  
Input Offset Current  
20 300  
80 700  
Input Bias Current  
IBIAS  
GV  
nA  
Large Signal Voltage Gain  
Input Voltage Range  
20 200  
20 200  
V/mV  
V
VO(P-P) = ± 10V, RL³ 2.0KW  
VI(R)  
RI  
± 12 ± 13  
± 11 ± 13  
0.3 1.0  
60 90  
77 90  
Input Resistance  
0.3 1.0  
MW  
dB  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Supply Current (Both Amplifier)  
CMRR  
PSRR  
ICC  
70  
77  
90  
90  
dB  
2.3  
2.3 8.0  
±14  
5.6  
± 11  
mA  
RS£10KW  
RS£10KW  
± 12 ± 14  
± 10 ± 13  
20  
Output Voltage Swing  
VO(P.P)  
V
± 9 ± 13  
Output Short Circuit Current  
Power Consumption  
Transient Response (Unity Gain)  
Rise Time  
ISC  
PC  
20  
mA  
VO = 0V  
70 170  
70 240  
mW  
VI = 20mV,RL³ 2KW,CL£100pF  
VI = 20mV,RL³ 2KW,CL£100pF  
VI = 10V,RL³ 2KW,CL£100pF  
ms  
%
0.3  
15  
0.3  
15  
tRES  
OS  
SR  
Overshoot  
V/ms  
0.5  
0.5  
Slew Rate  
ELECTRICAL CHARACTERISTICS  
(VCC= +15V, VEE = -15V, NOTE 1, unless otherwise specified)  
LM1458A/AI  
LM1458/I  
Characteristic  
Symbol  
Test Conditions  
RS£10KW  
Unit  
Min Typ Max Min Typ Max  
Input Offset Voltage  
VIO  
IIO  
7.5  
300  
800  
12  
mV  
nA  
Input Offset Current  
400  
Input Bias Current  
IBIAS  
1000  
nA  
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
GV  
15  
70  
77  
15  
70  
77  
V/mV  
dB  
VO(P-P)= ± 10V, RL£2.0KW  
RS³ 10KW  
CMRR  
PSRR  
90  
90  
90  
90  
dB  
RS³ 10KW  
RL = 10KW  
± 12 ± 14  
± 10 ± 13  
± 12  
± 11 ± 14  
± 9 ± 13  
± 12  
Output Voltage Swing  
Input Voltage Range  
V
V
VO(P.P)  
VI(R)  
RL = 2KW  
NOTE 1  
LM1458/A: 0 °C £TA£70 °C  
LM1458I/AI: -25 °C £TA£+85 °C  
LM1458/A/I/AI (KA1458)  
DUAL OPERATIONAL AMPLIFIER  
TYPICAL PERFORMANCE CHARACTERISTICS  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
www.fairchildsemi.com  
LM1 4 8  
Lo w P o w e r Qu a d 7 4 1 Op e ra t io n a l Am p lifie r  
Features  
Description  
• 741 op amp operating characteristics  
• Low supply current drain—0.6 mA/amplifier  
• Class AB output stage—no crossover distortion  
• Pin compatible with the LM124  
• Low input offset voltage—1.0 mV  
• Low input offset current—4.0 nA  
• Low input bias current—30 nA  
• Unity gain bandwidth—1.0 MHz  
• Channel Separation—120 dB  
• Input and output overload protection  
The LM148 is a true quad 741. It consists of four  
independent high-gain, internally compensated, low-power  
operational amplifiers which have been designed to provide  
functional characteristics identical to those of the familiar  
741 operational amplifier. In addition, the total supply  
current for all four amplifiers is comparable to the supply  
current of a single 741 type op amp. Other features include  
input offset currents and input bias currents which are much  
less than those of a standard 741. Also, excellent isolation  
between amplifiers has been achieved by independently  
biasing each amplifier and using layout techniques which  
minimize thermal coupling.  
The LM148 can be used anywhere multiple 741 type  
amplifiers are being used and in applications where amplifier  
matching or high packing density is required.  
Block Diagram  
–Input (A)  
+Input (A)  
Output (A)  
–Input (D)  
A
D
+
+
+
+Input (D)  
Output (D)  
Output (B)  
+Input (B)  
–Input (B)  
Output (C)  
+Input (C)  
–Input (C)  
+
B
C
65-148-01  
Rev. 1.0.0  
 
LM148  
PRODUCT SPECIFICATION  
Pin Assignments  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Output (A)  
–Input (A))  
+Input (A)  
Output (D)  
–Input (D)  
+Input (D)  
Ground  
+V  
S
+Input (B)  
–Input (B)  
Output (B)  
+Input (C)  
–Input (C)  
Output (C)  
8
65-148-02  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
+22  
44  
Unit  
V
Supply Voltage  
-22  
Differential Input Voltage  
Input Voltage1  
V
-22  
+22  
V
Output Short Circuit Duration2  
Storage Temperature Range  
Operating Temperature Range  
Lead Soldering Temperature (60 sec.)  
Notes:  
Indefinite  
+150  
-65  
-55  
°C  
°C  
+125  
+300°C  
1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
2. Short circuit to ground on one amplifier only.  
Thermal Characteristics  
Parameter  
14-Lead Ceramic DIP  
Maximum Junction Temperature  
+175°C  
1042 mW  
60°C/W  
Maximum P T < 50°C  
D
A
Thermal Resistance, q  
Thermal Resistance, q  
JC  
JA  
120°C/W  
8.33 mW/°C  
For T > 50°C derate at  
A
2
PRODUCT SPECIFICATION  
LM148  
Electrical Characteristics  
(V = ±15V and T = 25°C, unless otherwise noted)  
S
A
Parameter  
Test Conditions  
£ 10KW  
Min.  
Typ.  
1.0  
4.0  
30  
Max.  
5.0  
Unit  
Input Offset Voltage  
R
mV  
nA  
S
Input Offset Current  
25  
Input Bias Current  
100  
nA  
Input Resistance (Differential Mode)1  
Supply Current, All Amplifiers  
Large Signal Voltage Gain  
0.8  
50  
2.5  
2.4  
160  
MW  
mA  
V = ±15V  
3.6  
S
V = ±15V, V  
S OUT  
= ±10V,  
V/mV  
R ³ 2KW  
L
Channel Separation  
Unity Gain Bandwidth  
Phase Margin  
F = 1 Hz 20 KHz  
120  
1.0  
dB  
MHz  
60  
Degrees  
V/mS  
mA  
Slew Rate  
0.5  
Short Circuit Current  
25  
The following specifications apply for V = ±15V, -55°C £ T £ +125°C.  
S
A
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
R
S
£ 10KW  
6.0  
75  
mV  
nA  
325  
nA  
Large Signal Voltage Gain  
V = ±15V, V  
S OUT  
= 10V,  
25  
V/mV  
R < 2KW  
L
Output Voltage Swing  
V = ±15V  
R = 10KW  
±12  
±10  
±12  
70  
±13  
±12  
V
S
L
R = 2KW  
L
Input Voltage Range  
V = ±15V  
S
V
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
R
£ 10KW  
£ 10KW  
90  
96  
dB  
dB  
S
S
R
77  
Note:  
1. Guaranteed by design but not tested.  
3
LM148  
PRODUCT SPECIFICATION  
Typical Performance Characteristics  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
VS = ±20V  
-55 C  
V
S = ±15V  
VS = ±10V  
S = ±5V  
4
+25 C  
3
V
+125 C  
2
1
0
-55 -35 -15 +5 +25 +45 +65 +85 +105+125  
0
±5  
±10  
±15  
±20  
±25  
±30  
T
A (¡C)  
±VS (V)  
Figure 1. Supply Current vs. Supply Voltage  
Figure 2. Input Bias Current vs. Temperature  
50  
15  
TA = +25 C  
40  
30  
20  
10  
0
VS  
=
15V  
10  
5
-55 C  
+25 C  
+125 C  
0
0
±5  
±10  
±15  
±VS  
±20  
±25  
0
5
10  
15  
20  
25  
30  
+I SOURCE (mA)  
Figure 3. Output Voltage Swing vs. Supply Voltage  
Figure 4. Positive Current Limit  
Output Voltage vs. Output Source Current  
-15  
1K  
100  
10  
VS = ±15V  
VS  
=
15V  
TA = +25 C  
-10  
AV = 100  
AV = 10  
-55 C  
+25 C  
+125 C  
-5  
1
AV = 1.0  
0
0
0.1  
100  
5
10  
15  
SINK (mA)  
20  
25  
30  
1K  
10K  
F (Hz)  
100K  
1M  
I
Figure 5. Negative Current Limit  
Output Voltage vs. Output Sink Current  
Figure 6. Output Impedance vs. Frequency  
4
PRODUCT SPECIFICATION  
LM148  
Typical Performance Characteristics (continued)  
110  
90  
70  
50  
30  
120  
100  
80  
60  
40  
20  
0
VS  
= 15V  
VS  
= 15V  
TA = +25 C  
TA = +25 C  
LM148  
LM148  
10  
0
-10  
10  
100  
1K  
10K 100K  
1M  
10M  
10  
100  
1K  
10K 100K  
F (Hz)  
1M 10M  
F (Hz)  
Figure 7. CMRR vs. Frequency  
Figure 8. Open Loop Gain vs. Frequency  
120  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS  
=
15V  
TA = +25 C  
F
10K  
AV  
100W  
VOUT  
2K  
-10  
10  
0.1  
1
65-148-12  
F (MHz)  
Figure 9. Gain, Phase vs. Frequency  
Figure 10. Gain, Phase Test Circuit  
VS  
= 15V  
100  
0
10  
0
TA = +25 C  
AV = 1  
-100  
-10  
VS  
= 15V  
TA = +25 C  
AV = 1  
RL 2K  
10  
100  
0
0
-10  
-100  
0
1
2
3
4
5
0
40  
80  
120  
160  
200  
m
m
Time ( S)  
Time ( S)  
Figure 11. Small Signal Pulse Response  
Input, Output Voltage vs. Time  
Figure 12. Large Signal Pulse Response  
Output Voltage vs. Time  
5
LM148  
PRODUCT SPECIFICATION  
Typical Performance Characteristics (continued)  
32  
4
3
2
1
0
VS  
= 15V  
28  
24  
20  
16  
12  
8
TA = +25 C  
AV = 1  
RL = 2K  
< 1% Dist.  
4
0
-55 -35 -15 +5 +25 +45 +65 +85 +105+125  
100  
1K  
10K  
100K  
T
A (¡C)  
F (Hz)  
Figure 13. Undistorted Output Voltage  
Swing vs. Frequency  
Figure 14. Gain Bandwidth Product vs. Temperature  
-20  
4
3
2
1
0
+125 C  
-15  
+25 C  
-55 C  
-10  
-5  
100  
-55 -35 -15 +5 +25 +45 +65 +85 +105+125  
-10  
-15  
-20  
T
A (¡C)  
-VS (V)  
Figure 15. Slew Rate vs. Temperature  
Figure 16. Negative Common Mode  
Input Voltage vs. Supply Voltage  
160  
140  
120  
100  
80  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VS  
= 15V  
10  
0
VS  
=
15V  
TA = +25 C  
AV = 1  
RL = 2K  
TA = +25 C  
-10  
10  
en  
IN  
60  
40  
0
-10  
20  
0
100  
0
20 40 60 80 100 120 140 160 180 200  
100  
1K  
F (Hz)  
10K  
m
Time ( S)  
Figure 17. Inverting Large Signal Pulse Response  
Input, Output Voltage vs. Time  
Figure 18. Input Noise Voltage, Current  
Densities vs. Frequency  
6
PRODUCT SPECIFICATION  
LM148  
Typical Performance Characteristics (continued)  
20  
55 C TA +125 C  
15  
10  
5
5
10  
15  
20  
+VS (V)  
Figure 19. Positive Common Mode, Input Voltage vs. Supply Voltage  
Typical Simulation  
+V  
+V  
s
s
1.803V  
RO1  
RC1  
5.3K  
RC2  
5.3K  
C1  
5.46 pF  
C2*  
30 pF  
VA  
D3  
VH  
32W  
V
OUT  
(+)  
(-)  
D1  
D4  
D2  
RO2  
42.87K  
R2  
100K  
2.803V  
VB  
GB  
RE2  
RE1  
V
A
RC  
VE  
2.712K  
2.712K  
GA  
150.8  
21.3  
Gen  
5.9  
W
CCVO  
m
247.5  
W
W
m
m
W
W
46.96  
-V  
s
VE  
bO1  
bO2  
I S = 8 x 10  
= 112  
= 14  
C
c
RE  
9.87M  
20.226 µA  
2.41 pF  
65-148-22  
-16  
-V  
s
Figure 20. LM148 Macromodel for Computer Simulation  
7
LM148  
PRODUCT SPECIFICATION  
The LM148 is short circuit protected to ground and supplies  
continuously when only one of the four amplifiers is shorted.  
If multiple shorts occur simultaneously, the unit can be  
destroyed due to excessive power dissipation.  
Applications Discussion  
The LM148 low power quad operational amplifier exhibits  
performance comparable to the popular 741. Substitution  
can therefore be made with no change in circuit behavior.  
To assure stability and to minimize pickup, feedback resis-  
tors should be placed close to the input to maximize the feed-  
back pole frequency (a function of input to ground  
capacitance). A good rule of thumb is that the feedback pole  
frequency should be 6 times the operating -3.0B frequency.  
If less, a lead capacitor should be placed between the output  
and input.  
The input characteristics of these devices allow differential  
voltages which exceed the supplies. Output phase will be  
correct as long as one of the inputs is within the operating  
common mode range. If both exceed the negative limit, the  
output will latch positive. Current limiting resistors should  
be used on the inputs in case voltages become excessive.  
When capacitive loading becomes much greater than 100pF,  
a resistor should be placed between the output and feedback  
connection in order to reduce phase shift.  
R3  
R5  
R4  
D1  
C2  
D2  
R2  
R7  
R6  
Q1  
C3  
C1  
C1  
2
3
R1  
1
6
LM148  
A
R1  
9
7
LM148  
B
A1  
5
8
LM148  
C
A2  
10  
A3  
VOUT  
1
F =  
K =  
x
K
+
2p R1C1  
R4R5  
R3  
1
R4  
1
R5  
1
+
RDS  
65-148-23  
RON  
RDS  
~
1/2  
VGS  
VP  
1 -  
F
= 5.0 KHz, THD  
0.03%  
MAX  
m
m
m
W
.
R1 = 100K pot., C1 = 0.0047 F, C2 = 0.01 F, C3 = 0.1 F, R2 = R6 = R7 = 1M, R3 = 5.1K, R4 = 12  
R5 = 240W, Q1 = NS5102, D1 = 1N914, D2 = 3.6V avalanche diode (ex. LM103), V  
= 15V  
s
A simpler version with some distortion degradation at high frequencies can be made by using A1  
as a simple inverting amplifier, and by putting back to back zeners in feedback loop of A3.  
Figure 21. One Decade Low Distortion Sinewave Generator  
8
PRODUCT SPECIFICATION  
LM148  
Applications Discussion (continued)  
3
-VIN  
1
LM148  
A
2
R
R
R/2  
R/2  
9
8
LM148  
B
VOUT  
R1  
10  
R
6
5
R2  
7
LM148  
C
+VIN  
2R  
R1  
,
-VS - 3V  
VIN CM  
+VS -3V  
+ 1  
VOUT = 2  
VS ±15V  
=
65-148-24  
R = R2, trim R2 to boost CMRR  
Figure 22. Low Cost Instrumentation Amplifier  
500K  
D1  
6
1N941  
D2  
1N914  
7
2
LM148  
B
5
VPEAK  
D3  
1
LM148  
A
3
VIN  
CP  
2N2906  
R2  
2M  
10  
9
Adjust R for minimum drift  
D3 low leakage diode  
D1 added to improve speed  
IBIAS  
8
LM148  
C
VS  
= 15V  
IBIAS  
R
1M  
65-148-25  
2
3
(+VS)  
Figure 23. Low Voltage Peak Detector with Bias Current Compensation  
9
LM148  
PRODUCT SPECIFICATION  
Applications Discussion (continued)  
R5  
100K  
R6  
C1  
C2  
m
m
0.001  
F
0.001  
F
10K  
2
R1  
6
5
1
LM148  
A
VIN  
R3  
R2  
3
7
9
LM148  
B
8
LM148  
C
VLP  
10  
R0  
VHP  
R4  
RL  
RH  
Tune Q through R0  
for predictable results: FO Q  
Use bandpass output to tune for Q  
RF  
13  
12  
4 x104  
14  
LM148  
D
VBR  
Sw0  
V(s)  
N(s)  
D(s)  
2
D(s) = S2  
+
+ w0  
=
Q
VIN(s)  
-Sw0 HOBP  
2
NHP(S) = S2 HOHP, NBP(S)  
=
NLP  
=
w0 HOLP  
Q
1/2  
R6  
R5  
t1  
t2  
1 + R4 | R3 + R4 | R0  
1 + R6 | R5  
1
1
R6  
R5  
,
t1 = R1C1, Q =  
FO  
=
=
2p  
t1t2  
1/2  
1
RH  
RL t1 t2  
1 + R5 | R6  
1 + R6 | R5  
1 + R3 | R0 + R3 | R4  
1 + R4 | R3 + R4 | R0  
1 + R3 | R0 + R3 | R4  
FNOTCH  
,
,
HOBP  
HOHP  
=
=
2p  
65-148-26  
HOLP  
=
1 + R3 | R0 + R3 | R4  
Figure 24. Universal State-Space Filter  
100K  
10K  
0.001 mF  
0.001 mF  
2
6
5
1
LM148  
A
150K  
50.3K  
3
VIN  
7
9
50.3K  
LM148  
B
8
LM148  
C
VOUT1  
10  
4.556K  
100K  
100K  
100K  
10K  
0.001 mF  
2
3
50.3K  
0.001 mF  
6
5
1
LM148  
A
50.3K  
7
9
LM148  
B
8
LM148  
C
VOUT2  
10  
39.4K  
100K  
65-148-27  
Use general equations, and tune each section separately.  
Section = 0.541, Q Section = 1.306.  
Q
1st  
2nd  
The response should have 0 dB peaking.  
Figure 25. 1 KHz 4-Pole Butterworth Filter  
10  
PRODUCT SPECIFICATION  
LM148  
Applications Discussion (continued)  
R7  
R8  
R1  
C1  
C2  
2
R2  
1
6
5
LM148  
A
R3  
3
7
9
LM148  
B
8
R6  
R5  
LM148  
C
VOUT(S)  
R4  
1
10  
V
IN(S)  
1
R6  
R3R5R7C1C2  
R1C1  
1
R8  
R7  
R8  
R7  
F
F
,
=
,
=
o
Q =  
NOTCH  
2
p
2
p
R3C2R2C1  
R2R3C1C2  
R1  
R4R7  
1
Necessary condition for notch :  
=
R6  
Examples: FNOTCH = 3 kHz, Q = 5, R1 = 270K, R2 = R3 = 20K, R4 = 27K, R5 = 20K, R6 = R8 = 10K, R7 = 100K.  
C1 = C2 = 0.001 µF.  
65-148-28  
Better noise performance than the state-space approach.  
Figure 26. 3 Amplifier Bi-Quad Notch Filter  
R5  
100K  
Gain vs Frequency  
R6  
C1  
0
C2  
-10  
2
-20  
6
5
1
LM148  
A
-30  
-40  
-50  
-60  
-70  
R3  
R2  
BP  
7
3
9
VIN  
R1  
LM148  
B
8
LM148  
C
RH  
10  
R0  
100  
1K  
10K  
100K  
R4  
F (Hz)  
RL  
R'5  
R'6  
R'  
H
C'2  
R'F  
100K  
2
3
BP'  
C'1  
R'1  
6
LM148  
A
R'2  
7
1
9
LM148  
B
5
8
13  
12  
LM148  
C
14  
10  
LM148  
D
R'L  
VOUT  
R'0  
R'4  
FC = 1 kHz, FS = 2 kHz, FP = 0.543. FZ = 2.14, Q = 0.841, F'P = 0.987, F'Z = 4.92.  
Q' = 4.403 normalized to ripple BW.  
1 + R'4/R'0  
1 + R4/R3 + R4/R0  
1 + R6/R5  
1
p
2
R6  
R5  
R'6  
R'5  
1
t
1
t
R6  
R5  
1
p
2
RH  
RL  
x
, Q' =  
FP  
=
, Q =  
x
, FZ  
=
1 + R'6/R'5 + R'6/R  
P
RH RL  
RP  
=
RH + RL  
Use the B'P outputs to tune Q, Q', tune the 2 sections separately.  
R1 = R2 = 92.6K, R3 = R4 = R5 = 100K, R6 = 10K, R0 = 107.8K, RL = 100K, RH = 155.1K,  
R'1 = R'2 = 50.9K, R'4 = R'5 = 100K, R'6 = 10K, R'0 = 5.78K, R'L = 100K, R'H = 248.12K,  
65-148-29  
R' = 100K.  
F
All capacitors are 0.001µF.  
Figure 27. 4th Order 1 KHz Elliptic Filter (4 Poles, 4 Zeros)  
11  
LM148  
PRODUCT SPECIFICATION  
Notes:  
12  
PRODUCT SPECIFICATION  
LM148  
Notes:  
13  
LM148  
PRODUCT SPECIFICATION  
Notes:  
14  
PRODUCT SPECIFICATION  
LM148  
Mechanical Dimensions  
14-Pin Ceramic DIP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Index area: a notch or a pin one identification mark shall be located  
adjacent to pin one. The manufacturer's identification shall not be  
used as pin one identification mark.  
Min.  
Max.  
A
.200  
.023  
.065  
.015  
.785  
.310  
.36  
1.14  
.20  
5.08  
.58  
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads  
number 1, 7, 8 and 14 only.  
b1  
b2  
c1  
D
.014  
.045  
.008  
8
2
1.65  
.38  
3. Dimension "Q" shall be measured from the seating plane to the base  
plane.  
8
4
19.94  
7.87  
4. This dimension allows for off-center lid, meniscus and glass overrun.  
E
.220  
5.59  
4
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each  
pin centerline shall be located within ±.010 (.25mm) of its exact  
longitudinal position relative to pins 1 and 14.  
5, 9  
7
e
.100 BSC  
.300 BSC  
2.54 BSC  
7.62 BSC  
eA  
L
.125  
.200  
.060  
3.18  
5.08  
1.52  
6. Applies to all four corners (leads number 1, 7, 8, and 14).  
Q
s1  
a
.015  
.005  
90¡  
.38  
.13  
90¡  
3
6
7. "eA" shall be measured at the center of the lead bends or at the  
centerline of the leads when "a" is 90¡.  
105¡  
105¡  
8. All leads – Increase maximum limit by .003 (.08mm) measured at the  
center of the flat, when lead finish applied.  
9. Twelve spaces.  
D
1
7
8
NOTE 1  
E
14  
s1  
eA  
e
A
Q
c1  
a
L
b1  
b2  
15  
LM148  
PRODUCT SPECIFICATION  
Ordering Information  
Operating Temperature  
Range  
Part Number  
LM148D  
Package  
14-Lead Ceramic DIP  
14-Lead Ceramic DIP  
-55°C to +125°C  
-55°C to +125°C  
LM148D/883B  
Note:  
1. 883B suffix denotes Mil-Std-883, Level B processing  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS3000148  
Ó 1998 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
LM1 8 5 1  
Gro u n d Fa u lt In t e rru p t e r  
Features  
• No potentiometer required  
• Grounded neutral fault detection  
• Direct interface to SCR  
• Meets UL943 standards  
• Supply voltage derived from AC line—26V shunt  
• Adjustable sensitivity  
• 450 mA quiescent current  
• Ideal for 120V or 220V systems  
Description  
The LM1851 is a controller for AC outlet ground fault  
interrupters. These devices detect hazardous grounding con-  
ditions (example: a pool of water and electrical equipment  
connected to opposite phases of the AC line) in consumer  
and industrial environments. The output of the IC triggers an  
external SCR, which in turn opens a relay circuit breaker to  
prevent a harmful or lethal shock.  
to line noise. A special feature is found in circuitry that  
rapidly resets the integrating timing capacitor in the event  
that noise pulses introduce unwanted charging currents.  
Also, flip-flop is included that ensures firing of even a slow  
circuit breaker relay on either half-cycle of the line voltage  
when external full wave rectification is used.  
The application circuit can be configured to detect both  
normal faults (hot wire to ground) and grounded neutral  
faults.  
Full advantage of the U.S. UL943 timing specification is  
taken to ensure maximum immunity to false triggering due  
Block Diagram  
Timing  
Capacitor  
Sensitivity  
Set Resistor  
Sense Amplifier  
Output  
+V  
S
I
TH  
=
I
for I > 0  
F
TH  
3I for I = 0  
I
I
D3  
2
TH  
TH  
F
Q2  
D1  
SCR Trigger  
I
F
Latch  
Q3  
Q1  
Q5  
+V  
A1  
S
Q4  
D2  
10V  
I
F
Ground  
65-1851-01  
Inverting Input  
Non-Inverting Input  
Rev. 1.0.0  
 
LM1851  
PRODUCT SPECIFICATION  
present, then I discharges C with a current equal to 3 I  
where I is the value of current set by the external R  
TH SET  
,
1
T
TH  
Functional Description  
The voltage at the supply pin is clamped to +26V by the  
internal shunt regulator D3. This shunt regulator also  
generates an artificial ground voltage for the noninverting  
input of A1 (shown as a +10V source). A1, Q1, and Q2 act a  
a current mirror for fault current signals (which are derived  
from an external transformer). When a fault signal is present,  
the mirrored current charges the external timing capacitor  
until its voltage exceeds the latch trigger threshold (typically  
17.5V). When then this threshold is exceeded, the latch  
resistor. If fault signals are present at the input of A1 (which  
is held at virtual ground, +10V), one of the two current  
mirrors in the feedback path of A1 (Q4 and Q5) will become  
active, depending on which half-cycle the fault occurs.  
This action will raise the voltage at V , switching I to a  
S
1
value equal to I , and reducing the discharge rate of C to  
TH  
T
better allow fault currents to charge it.  
Notice that I discharges C during both half-cycles of the  
TH  
T
engages and Q3 turns off, allowing I to drive the SCR  
2
connected to pin 1.  
line, while I only charges C during the half-cycle in which  
F
T
I exits pin 2 (since Q1 will only carry fault current in one  
F
direction). Thus, during one half-cycle, I -I charges C ,  
F TH  
while during the other half-cycle I discharges it.  
TH  
T
Extra Circuitry in the feedback path of A1 works with the  
switched current source I to remove any charge on C  
1
T
induced by noise in the transformer. If no fault current is  
Pin Assignments  
SCR Trigger  
– Input  
1
2
3
4
8
7
6
5
+V  
S
C
R
T
+ Input  
SET  
Ground  
Amp Out  
65-1851-02  
Definition of Terms  
Normal Fault  
Grounded Neutral Fault  
An unintentional electrical path, R , between the load termi-  
B
nal of the hot line and the ground, as shown by the dashed  
lines in Figure1.  
An unintentional electrical path between the load terminal of  
the neutral line and the ground, as shown by the dashed lines  
in Figure 2.  
Hot  
Hot  
Hot  
Hot  
Line  
R
R
GFI  
GFI  
R
LOAD  
LOAD  
B
Line  
Neutral  
Neutral  
Neutral  
Neutral  
R
IN  
R
R
G
G
65-1851-03  
65-1851-05  
Figure 1. Normal Fault  
Figure 2. Grounded Neutral Fault  
2
PRODUCT SPECIFICATION  
LM1851  
Normal Fault Plus Grounded Neutral Fault  
The combination of the normal fault and the grounded  
neutral fault, as shown by the dashed lines in Figure 3.  
Hot  
Hot  
R
GFI  
R
LOAD  
B
Line  
Neutral  
Neutral  
R
N
R
G
65-1851-04  
Figure 3. Normal Fault Plus Grounded Neutral Fault  
Absolute Maximum Ratings  
Parameter  
Conditions  
Min  
Max  
19  
Units  
Supply Current  
mA  
mW  
°C  
Power Dissipation  
Operating Temperature  
Lead Soldering Temperature  
570  
70  
-40  
SOIC, 10 seconds  
DIP, 60 seconds  
260  
300  
°C  
°C  
Thermal Characteristics  
Parameter  
Conditions  
Min  
Max  
125  
468  
300  
160  
240  
6.25  
4.17  
Units  
°C  
Maximum Junction Temperature  
Maximum P T < 50°C  
D A  
DIP  
mW  
SOIC  
DIP  
Thermal Resistance, q  
°C/W  
JA  
SOIC  
DIP  
For TA > 50°C, derate at  
mW/°C  
SOIC  
3
LM1851  
PRODUCT SPECIFICATION  
DC Electrical Characteristics  
(T = +25°C, I  
= 5 mA)  
A
SHUNT  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Units  
Power Supply Shunt Regulator  
Voltage  
Pin 8, Average Value  
22  
26  
30  
V
Latch Trigger Voltage  
Pin 7  
15  
6
17.5  
7
20  
8.2  
2.4  
240  
V
V
Sensitivity Set Voltage  
Output Drive Current  
Pin 8 to Pin 6  
Pin 1 With Fault  
Pin 1 Without Fault  
Pin 1 Without Fault  
0.5  
1
mA  
mV  
W
Output Saturation Voltage  
Output Saturation Resistance  
100  
100  
5
Output External Current Sinking  
Capability1  
Pin 1 Without Fault, V  
to 0.3V  
Held  
2
mA  
PIN1  
Noise Integration Sink Current  
Ratio  
Pin 7, Ratio of Discharge Currents  
Between No Fault Fault and Fault  
Conditions  
2.0  
2.8  
3.6  
mA/mA  
Notes:  
1. This external applied current is in addition to the internal “output drive current” source.  
AC Electrical Characteristics  
(T = +25°C, I  
= 5 mA)  
A
SHUNT  
Parameters  
Conditions  
Min  
Typ  
5
Max  
Units  
mA  
Normal Fault Current Sensitivity2  
Normal Fault Trip Time1  
See Figure 9  
3
7
500W Fault, see Figure 10  
500W Normal Fault  
2W Neutral, see Figure 10  
18  
18  
mS  
Normal Fault With Grounded  
Neutral Fault Trip Time1  
mS  
Notes:  
1. Average of 10 trials.  
2. Required UL sensitivity tolerance is such that external trimming of LM1851 sensitivity is necessary.  
4
PRODUCT SPECIFICATION  
LM1851  
Typical Performance Characteristics (T = +25°C)  
A
100  
10  
1
1000  
100  
10  
Circuit of  
Figure 10  
7V  
(rms)* x (0.91)  
R
=
SET  
I
F
Sense Transformer 1000:1  
UL943  
Normal  
Fault  
0
0.01  
0.1  
1
10  
100K  
1M  
10M  
Trip Time (Seconds)  
R
SET  
(W)  
Figure 4. Average Trip Time vs. Fault Current  
Figure 5. Normal Fault Current Threshold vs. R  
SET  
1000  
10  
1
31V  
1
5 mA  
8
100  
10  
0
31V  
IL  
5 mA  
8
1 mA  
A
VPIN1  
4
1
0.1  
0.01  
1 mA  
A
4
0.1  
1
10  
100  
0
5
10  
15  
20  
25  
30  
35  
External Load Current (mA)  
Output Voltage @ V  
(V)  
PIN1  
Figure 6. Output Drive Current vs. Output Voltage  
Figure 7. Pin 1 SaturationVoltage vs.  
External Load Current, I  
L
5
LM1851  
PRODUCT SPECIFICATION  
The correct value for R  
SET  
characteristic curve that plots equation (3). Note that this is  
an approximate calculation; the exact value of R depends  
on the specific sense transformer used and LM1851 toler-  
ances. Inasmuch as UL943 specifies a sensitivity “window”  
can also be determined from the  
Applications Discussion  
A typical ground fault interrupter circuit is shown in  
Figure 10. It is designed to operate on 120 VAC line voltage  
with 5 mA normal fault sensitivity.  
SET  
of 4 mA to 6mA, provision should be made to adjust R  
with a potentiometer.  
SET  
A full-wave rectifier bridge and a 15k/2W resistor are used  
to supply the dc power required by the IC. A 1 mF capacitor  
at pin 8 is used to filter the ripple of the supply voltage and is  
also connected across the SCR to allow firing of the SCR on  
either half-cycle. When a fault causes the SCR to trigger, the  
circuit breaker is energized and line voltage is removed from  
the load.  
Independent of setting sensitivity, the desired integration  
time can be obtained through proper selection of the timing  
capacitor, C . Due to the large number of variables involved,  
T
proper selection of C is best done empirically. The follow-  
T
ing design example should only be used as a guideline.  
At this time no fault current flows and the C discharge cur-  
rent increases from I to 3I (see Block Diagram). This  
TH TH  
T
Assume the goal is to meet UL943 timing requirements.  
Also assume that worst case timing occurs during GFI start-  
up (S1 closure) with both a heavy normal fault and a 2W  
grounded neutral fault present. This situation is shown dia-  
grammatically in Figure 8.  
quickly resets both the timing capacitor and the output latch.  
The circuit breaker can be reset and the line voltage again  
supplied to the load, assuming the fault has been removed. A  
1000:1 sense transformer is used to detect the normal fault.  
The fault current, which is basically the difference current  
between the got and neutral lines, is stepped down by 1000  
and fed into the input pin of the operational amplifier  
through a 10 mF capacitor. The 0.0033 mF capacitor between  
pin 2 and pin 3 and the 200 pF between pins 3 and 4 are  
added to obtain better noise immunity. The normal fault sen-  
sitivity is determined by the timing capacitor discharging  
S1  
Hot  
Hot  
Line  
GFI  
Neutral  
Neutral  
current, I . I can be calculated by:  
TH TH  
R
R
B
N
0.4  
500  
(0.8)I  
7V  
RSET  
------------  
ITH  
=
¸ 2  
(1)  
I
R
500  
B
(0.2)I  
At the decision point, the average fault current just equals the  
65-1851-12  
threshold current, I  
.
TH  
Figure 8.  
UL943 specifies £25 ms average trip time under these condi-  
IF(rms)  
-------------------  
2
ITH  
=
´ 0.91  
(2)  
tions. Calculation of C based upon charging currents due to  
T
normal fault only is as follows:  
Where I (rms) is the rms input fault current to the opera-  
F
tional amplifier and the factor of 2 is due to the fact that I  
charges the timing capacitor only during one half-cycle,  
while I discharges the capacitor continuously. The factor  
TH  
0.91 converts the rms value to an average value. Combining  
equations (1) and (2) we have:  
F
1. Start with a £25 ms specification. Subtract 3 ms GFI  
turn-on time (15k and 1 mF). Subtract 8 ms potential  
loss of one half-cycle due to fault current sense of half-  
cycles only.  
2. Subtract 4 ms time required to open a sluggish circuit  
breaker.  
7V  
RSET = ------------------------------------  
(3)  
IF(rms) ´ 0.91  
3. This gives a total £10 ms maximum integration time that  
For example, to obtain 5 mA(rms) sensitivity for the circuit  
in Figure 7 we have:  
could be allowed.  
4. To generate 8 ms value of integration time that accom-  
modates component tolerances and other variables:  
7V  
-----------------------------  
5 mA ´ 0.91  
-----------------------------  
1000  
RSET  
=
= 1.5MW  
(4)  
1 ´ T  
CT = ------------  
(5)  
V
6
PRODUCT SPECIFICATION  
LM1851  
In practice, the actual value of C will have to be modified to  
T
where:  
include the effects of the neutral loop upon the net charging  
current. The effect of neutral loop induced currents is diffi-  
cult to quantize, but typically they sum with normal fault  
T = integration time  
V = threshold voltage  
I = average fault current into CT  
currents, thus allowing a larger value of C .  
T
120 VAC(rms)  
RN  
ö
-----------------------  
æ
ö
æ
------------------------------------  
RB  
I =  
è
ø
è
ø
For UL943 requirements, 0.015 mF has been found to be the  
best compromise between timing and noise.  
RG + RN  
heavy fault  
portion of fault  
current shunted  
around GFI  
For those GFI standards not requiring grounded neutral  
detection, a still larger value capacity can be used and better  
noise immunity obtained.  
current generated  
(swamps I  
)
TH  
The larger capacitor can be accommodated because R and  
N
1 turn  
1000 turns  
1
è ø  
2
æ
´
ö
æ ö  
------------------------  
--  
´
´
(0.91)  
(6)  
R
G
are not present, allowing the full fault current, I, to enter  
è
ø
the GFI.  
In Figure 10, grounded neutral detection is accomplished by  
feeding the neutral coil with 120 Hz energy continuously and  
allowing some of the energy to couple into the sense trans-  
former during conditions of neutral fault.  
current  
division of  
input sense  
transformer  
CT  
rms to  
average  
conversion  
charging  
on half-  
cycles  
only  
Transformers may be obtained from Magnetic Metals, Inc.,  
21st Street and Hayes Street, Camden, NJ 08101—  
(609) 964-7842.  
therefore:  
120  
--------  
500  
0.4  
1
1000  
1
è ø  
2
æ
ö
æ
ö
æ
ö
-----------  
´
æ ö  
--  
--------------------  
1.6 + 0.4  
´
´
´ (0.91)  
è
ø
è
ø
è
ø
-----------------------------------------------------------------------------------------------------------------  
C
=
´ 0.008  
T
17.5  
(7)  
C
= 0.01 mF  
T
7
LM1851  
PRODUCT SPECIFICATION  
Application Circuits  
LM1851  
100K  
0.047 µF  
7
1
2
3
-In  
Timing  
Cap  
SCR  
+In  
Trigger  
C
0.002  
T
6
4
800 Hz  
5
8
R
Op Amp  
Output  
SET  
I
SHUNT  
1K  
A
GND  
+V  
S
300 mV  
1.5M  
31V  
65-1851-10  
Figure 9. Normal Fault Sensitivity Test Circuit  
Sense  
Coil  
Gnd/Neutral  
Coil  
Hot  
Load  
Neutral  
MOV  
200:1  
Line  
1000:1  
High µ Coil  
Circuit  
Breaker  
0.01/400V  
1.0 µF Tant  
LM1851  
7
1
2
Timing  
Cap  
–In  
5K/2W  
0.0033  
+In  
SCR  
Trigger  
3
6
C
T
0.015  
200 pF  
R
Op Amp  
Output  
SET  
SCR  
5
8
4
GND  
+V  
S
0.01/400V  
0.01  
R
SET*  
10 µF  
Tant  
65-1851-11  
*Adjust R  
for desired sensitivity.  
SET  
Figure 10. 120 Hz Neutral Transformer Application  
8
PRODUCT SPECIFICATION  
LM1851  
Schematic Diagram  
(5)  
(3)  
(2)  
(6)  
(8)  
R13  
50K  
Q54  
3X  
Q47  
.5X  
Q53  
R12  
390  
R10  
110  
Q2  
R14  
5K  
R9  
100K  
Q52  
.8X  
Q31  
.3X  
Q1  
.5X  
Q3  
R17  
100K  
.2X  
Q46  
Q45  
Q19  
R1  
13.1K  
Q44  
R3  
10K  
Q28  
.7X  
Q42  
Q41  
Q29  
2.44X  
Q4  
Q5  
(1)  
Q17  
Q18  
R2  
40K  
.3X  
D1  
Q21  
.5X  
Q20  
.5X  
Q6  
Q7  
.5X .5X  
Q56  
Q40  
Q54  
Q24  
Q16  
Q15  
Q26  
R6  
6K  
Q23  
Q22  
R15  
5.6K  
Q27  
2.44X  
Q55  
4.54X  
R5  
320  
Q8  
Q50  
Q25  
Q9  
Q48  
Q13  
R8  
2K  
Q14  
R11  
50K  
2.44X  
R16  
17.33K  
R7  
1.2K  
Q49  
R4  
20K  
Q12  
2.44X  
(4)  
C2  
8 pF  
N+  
Q30  
Q38  
2X  
Q34  
Q32  
Q33  
Q37  
.5X  
Q36  
.5X  
Q35  
.5X  
Q10  
Q39  
Q11  
(7)  
65-1851-13  
9
LM1851  
PRODUCT SPECIFICATION  
Mechanical Dimensions  
8-Lead Plastic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
3. Terminal numbers are for reference only.  
.195  
.022  
.070  
.015  
2.93  
.36  
4.95  
.56  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
.348  
.005  
.300  
.240  
.430  
.325  
.280  
8.84  
.13  
10.92  
D1  
E
7.62  
6.10  
8.26  
7.11  
2
5
E1  
e
.100 BSC  
2.54 BSC  
eB  
L
.430  
.160  
10.92  
4.06  
.115  
2.92  
N
8¡  
8¡  
D
1
4
E1  
D1  
5
8
e
E
A2  
A
A1  
C
L
eB  
B1  
B
10  
PRODUCT SPECIFICATION  
LM1851  
Mechanical Dimensions (continued)  
8-Lead Plastic SOIC Package  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or  
protrusions shall not exceed .010 inch (0.25mm).  
A
.053  
.004  
.013  
.008  
.189  
.150  
.069  
.010  
.020  
.010  
.197  
.158  
1.35  
0.10  
0.33  
0.20  
4.80  
3.81  
1.75  
0.25  
0.51  
0.25  
5.00  
4.01  
A1  
B
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. "C" dimension does not include solder finish thickness.  
6. Symbol "N" is the maximum number of terminals.  
C
D
E
5
2
2
e
.050 BSC  
1.27 BSC  
H
h
.228  
.010  
.016  
.244  
.020  
.050  
5.79  
0.25  
0.40  
6.20  
0.50  
1.27  
L
3
6
N
a
8
8
0¡  
8¡  
0¡  
8¡  
ccc  
.004  
0.10  
8
5
E
H
1
4
h x 45¡  
D
C
A1  
A
a
SEATING  
PLANE  
– C –  
L
e
LEAD COPLANARITY  
ccc C  
B
11  
LM1851  
PRODUCT SPECIFICATION  
Ordering Information  
Part Number  
LM1851AN  
RV4145M  
Package  
Operating Temperature Range  
-40°C to +70°C  
8-lead Plastic DIP  
8-lead Plastic SOIC  
-40°C to +70°C  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
5/20/98 0.0m 001  
Stock#DS30001851  
Ó 1998 Fairchild Semiconductor Corporation  
March 1995  
LM1882 54ACT/74ACT715  
#
LM1882-R 54ACT/74ACT715-R  
#
Programmable Video Sync Generator  
’ACT715-R/LM1882-R is mask programmed to default to a  
Clock Enabled state. Bit 10 of the Status Register defaults  
to a logic ‘‘1’’. Although completely (re)programmable, the  
’ACT715-R/LM1882-R version is better suited for applica-  
tions using the default 14.31818 MHz RS-170 register val-  
ues. This feature allows power-up directly into operation,  
following a single CLEAR pulse.  
General Description  
The ’ACT715/LM1882 and ’ACT715-R/LM1882-R are  
20-pin TTL-input compatible devices capable of generating  
Horizontal, Vertical and Composite Sync and Blank signals  
for televisions and monitors. All pulse widths are completely  
definable by the user. The devices are capable of generat-  
ing signals for both interlaced and noninterlaced modes of  
operation. Equalization and serration pulses can be intro-  
duced into the Composite Sync signal when needed.  
Features  
Y
Y
Y
l
130 MHz  
Maximum Input Clock Frequency  
Four additional signals can also be made available when  
Composite Sync or Blank are used. These signals can be  
used to generate horizontal or vertical gating pulses, cursor  
position or vertical Interrupt signal.  
Interlaced and non-interlaced formats available  
Separate or composite horizontal and vertical Sync and  
Blank signals available  
Y
Complete control of pulse width via register  
programming  
These devices make no assumptions concerning the sys-  
tem architecture. Line rate and field/frame rate are all a  
function of the values programmed into the data registers,  
the status register, and the input clock frequency.  
Y
Y
Y
All inputs are TTL compatible  
8 mA drive on all outputs  
Default RS170/NTSC values mask programmed into  
registers  
The ’ACT715/LM1882 is mask programmed to default to a  
Clock Disable state. Bit 10 of the Status Register, Register  
0, defaults to a logic ‘‘0’’. This facilitates (re)programming  
before operation.  
Y
Y
4 KV minimum ESD immunity  
’ACT715-R/LM1882-R is mask programmed to default  
to a Clock Enable state for easier start-up into  
14.31818 MHz RS170 timing  
The ’ACT715-R/LM1882-R is the same as the  
’ACT715/LM1882 in all respects except that the  
Connection Diagrams  
Pin Assignment for  
DIP and SOIC  
Pin Assignment  
for LCC  
TL/F/10137–1  
Order Number LM1882CN or LM1882CM  
For Default RS-170, Order Number LM1882-RCN or  
LM1882-RCM  
TL/F/10137–2  
TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.  
FACTTM is a trademark of National Semiconductor Corporation.  
C
1995 National Semiconductor Corporation  
TL/F/10137  
RRD-B30M105/Printed in U. S. A.  
 
Logic Block Diagram  
TL/F/10137–3  
Pin Description  
There are  
’ACT715/LM1882.  
a
Total of 13 inputs and  
5
outputs on the  
ODD/EVEN: Output that identifies if display is in odd (HIGH)  
or even (LOW) field of interlace when device is in interlaced  
mode of operation. In noninterlaced mode of operation this  
output is always HIGH. Data can be serially scanned out on  
this pin during Scan Mode.  
Data Inputs D0D7: The Data Input pins connect to the  
Address Register and the Data Input Register.  
ADDR/DATA: The ADDR/DATA signal is latched into the  
device on the falling edge of the LOAD signal. The signal  
determines if an address (0) or data (1) is present on the  
data bus.  
VCSYNC: Outputs Vertical or Composite Sync signal based  
on value of the Status Register. Equalization and Serration  
pulses will (if enabled) be output on the VCSYNC signal in  
composite mode only.  
L/HBYTE: The L/HBYTE signal is latched into the device  
on the falling edge of the LOAD signal. The signal deter-  
mines if data will be read into the 8 LSB’s (0) or the 4 MSB’s  
(1) of the Data Registers. A 1 on this pin when an ADDR/  
DATA is a 0 enables Auto-Load Mode.  
VCBLANK: Outputs Vertical or Composite Blanking signal  
based on value of the Status Register.  
HBLHDR: Outputs Horizontal Blanking signal, Horizontal  
Gating signal or Cursor Position based on value of the  
Status Register.  
LOAD: The LOAD control pin loads data into the Address or  
Data Registers on the rising edge. ADDR/DATA and  
L/HBYTE data is loaded into the device on the falling edge  
of the LOAD. The LOAD pin has been implemented as a  
Schmitt trigger input for better noise immunity.  
HSYNVDR: Outputs Horizontal Sync signal, Vertical Gating  
signal or Vertical Interrupt signal based on value of Status  
Register.  
Register Description  
CLOCK: System CLOCK input from which all timing is de-  
rived. The clock pin has been implemented as a Schmitt  
trigger for better noise immunity. The CLOCK and the LOAD  
signal are asynchronous and independent. Output state  
changes occur on the falling edge of CLOCK.  
All of the data registers are 12 bits wide. Width’s of all puls-  
es are defined by specifying the start count and end count  
of all pulses. Horizontal pulses are specified with-respect-to  
the number of clock pulses per line and vertical pulses are  
specified with-respect-to the number of lines per frame.  
CLR: The CLEAR pin is an asynchronous input that initializ-  
es the device when it is HIGH. Initialization consists of set-  
ting all registers to their mask programmed values, and ini-  
tializing all counters, comparators and registers. The  
CLEAR pin has been implemented as a Schmitt trigger for  
better noise immunity. A CLEAR pulse should be asserted  
by the user immediately after power-up to ensure proper  
initialization of the registersÐeven if the user plans to  
(re)program the device.  
REG0ÐSTATUS REGISTER  
The Status Register controls the mode of operation, the  
signals that are output and the polarity of these outputs. The  
default value for the Status Register is 0 (000 Hex) for the  
’ACT715/LM1882 and is ‘‘512’’ (200 Hex) for the ’ACT715-  
R/LM1882-R.  
Note: A CLEAR pulse will disable the CLOCK on the ’ACT715/LM1882 and  
will enable the CLOCK on the ’ACT715-R/LM1882-R.  
2
Register Description (Continued)  
Bits 0–2  
HORIZONTAL INTERVAL REGISTERS  
The Horizontal Interval Registers determine the number of  
clock cycles per line and the characteristics of the Horizon-  
tal Sync and Blank pulses.  
B
B
B
VCBLANK VCSYNC HBLHDR HSYNVDR  
0
2
1
0
0
0
CBLANK  
CSYNC HGATE  
VGATE  
(DEFAULT)  
REG1Ð Horizontal Front Porch  
0
0
0
0
1
1
1
0
1
VBLANK  
CBLANK  
VBLANK  
CSYNC HBLANK  
VGATE  
HSYNC  
HSYNC  
REG2Ð Horizontal Sync Pulse End Time  
REG3Ð Horizontal Blanking Width  
VSYNC  
HGATE  
VSYNC HBLANK  
Ý
REG4Ð Horizontal Interval Width  
of Clocks per Line  
1
1
1
1
0
0
1
1
0
1
0
1
CBLANK  
VBLANK  
CBLANK  
VBLANK  
CSYNC CURSOR  
CSYNC HBLANK  
VINT  
VINT  
VERTICAL INTERVAL REGISTERS  
The Vertical Interval Registers determine the number of  
lines per frame, and the characteristics of the Vertical Blank  
and Sync Pulses.  
VSYNC CURSOR HSYNC  
VSYNC HBLANK  
HSYNC  
Bits 3–4  
REG5Ð Vertical Front Porch  
REG6Ð Vertical Sync Pulse End Time  
REG7Ð Vertical Blanking Width  
B
B
Mode of Operation  
4
3
0
0
Interlaced Double Serration and  
Equalization  
Ý
REG8Ð Vertical Interval Width  
of Lines per Frame  
(DEFAULT)  
EQUALIZATION AND SERRATION PULSE  
SPECIFICATION REGISTERS  
0
1
1
1
0
1
Non Interlaced Double Serration  
Illegal State  
These registers determine the width of equalization and ser-  
ration pulses and the vertical interval over which they occur.  
Non Interlaced Single Serration  
and Equalization  
REG 9РEqualization Pulse Width End Time  
REG10Ð Serration Pulse Width End Time  
Double Equalization and Serration mode will output equali-  
zation and serration pulses at twice the HSYNC frequency  
(i.e., 2 equalization or serration pulses for every HSYNC  
pulse). Single Equalization and Serration mode will output  
an equalization or serration pulse for every HSYNC pulse. In  
Interlaced mode equalization and serration pulses will be  
output during the VBLANK period of every odd and even  
field. Interlaced Single Equalization and Serration mode is  
not possible with this part.  
REG11Ð Equalization/Serration Pulse Vertical  
Interval Start Time  
REG12Ð Equalization/Serration Pulse Vertical  
Interval End Time  
VERTICAL INTERRUPT SPECIFICATION REGISTERS  
These Registers determine the width of the Vertical Inter-  
rupt signal if used.  
Bits 5–8  
REG13Ð Vertical Interrupt Activate Time  
REG14Ð Vertical Interrupt Deactivate Time  
Bits 5 through 8 control the polarity of the outputs. A value  
of zero in these bit locations indicates an output pulse active  
LOW. A value of 1 indicates an active HIGH pulse.  
CURSOR LOCATION REGISTERS  
B5Ð VCBLANK Polarity  
B6Ð VCSYNC Polarity  
B7Ð HBLHDR Polarity  
B8Ð HSYNVDR Polarity  
These 4 registers determine the cursor position location, or  
they generate separate Horizontal and Vertical Gating sig-  
nals.  
REG15Ð Horizontal Cursor Position Start Time  
REG16Ð Horizontal Cursor Position End Time  
REG17Ð Vertical Cursor Position Start Time  
REG18Ð Vertical Cursor Position End Time  
Bits 911  
Bits 9 through 11 enable several different features of the  
device.  
B9Ð Enable Equalization/Serration Pulses (0)  
Disable Equalization/Serration Pulses (1)  
Signal Specification  
HORIZONTAL SYNC AND BLANK  
SPECIFICATIONS  
B10Ð Disable System Clock (0)  
Enable System Clock (1)  
Default values for B10 are ‘‘0’’ in the ’ACT715/  
LM1882 and ‘‘1’’ in the ’ACT715-R/LM1882-R.  
All horizontal signals are defined by a start and end time.  
The start and end times are specified in number of clock  
cycles per line. The start of the horizontal line is considered  
pulse 1 not 0. All values of the horizontal timing registers are  
referenced to the falling edge of the Horizontal Blank signal  
B11Ð Disable Counter Test Mode (0)  
Enable Counter Test Mode (1)  
This bit is not intended for the user but is for internal  
testing only.  
Ý
(see Figure 1 ). Since the first CLOCK edge, CLOCK 1,  
causes the first falling edge of the Horizontal Blank refer-  
ence pulse, edges referenced to this first Horizontal edge  
a
are n  
1 CLOCKs away, where ‘‘n’’ is the width of the  
timing in question. Registers 1, 2, and 3 are programmed in  
this manner. The horizontal counters start at 1 and count  
until HMAX. The value of HMAX must be divisible by 2. This  
3
Signal Specification (Continued)  
TL/F/10137–4  
FIGURE 1. Horizontal Waveform Specification  
e
c
hper  
limitation is imposed because during interlace operation this  
value is internally divided by 2 in order to generate serration  
Vertical Frame Period (VPER)  
Vertical Field Period (VPER/n)  
REG(8)  
REG(8)  
e
c
hper/n  
c
]
1 hper/n  
c
and equalization pulses at 2  
the horizontal frequency.  
e
b
[
Vertical Blanking Width  
Vertical Syncing Width  
REG(7)  
Horizontal signals will change on the falling edge of the  
CLOCK signal. Signal specifications are shown below.  
e
b
c
]
REG(5) hper/n  
[
REG(6)  
e
b
c
[
]
Vertical Front Porch  
REG(5)  
1
hper/n  
e
e
e
e
c
ckper  
Horizontal Period (HPER)  
Horizontal Blanking Width  
Horizontal Sync Width  
Horizontal Front Porch  
REG(4)  
e
e
where n  
n
1 for noninterlaced  
2 for interlaced  
b
c
ckper  
[
[
[
]
REG(3)  
REG(2)  
REG(1)  
1
b
b
c
ckper  
]
REG(1)  
COMPOSITE SYNC AND BLANK SPECIFICATION  
c
]
1
ckper  
Composite Sync and Blank signals are created by logically  
ANDing (ORing) the active LOW (HIGH) signals of the cor-  
responding vertical and horizontal components of these sig-  
nals. The Composite Sync signal may also include serration  
and/or equalization pulses. The Serration pulse interval oc-  
curs in place of the Vertical Sync interval. Equalization puls-  
es occur preceding and/or following the Serration pulses.  
The width and location of these pulses can be programmed  
through the registers shown below. (See Figure 2B.)  
VERTICAL SYNC AND BLANK SPECIFICATION  
All vertical signals are defined in terms of number of lines  
per frame. This is true in both interlaced and noninterlaced  
modes of operation. Care must be taken to not specify the  
Vertical Registers in terms of lines per field. Since the first  
Ý
CLOCK edge, CLOCK 1, causes the first falling edge of  
the Vertical Blank (first Horizontal Blank) reference pulse,  
a
edges referenced to this first edge are n  
1 lines away,  
where ‘‘n’’ is the width of the timing in question. Registers 5,  
6, and 7 are programmed in this manner. Also, in the inter-  
laced mode, vertical timing is based on half-lines. Therefore  
registers 5, 6, and 7 must contain a value twice the total  
horizontal (odd and even) plus 1 (as described above). In  
non-interlaced mode, all vertical timing is based on whole-  
lines. Register 8 is always based on whole-lines and does  
not add 1 for the first clock. The vertical counter starts at  
the value of 1 and counts until the value of VMAX. No re-  
strictions exist on the values placed in the vertical registers.  
Vertical Blank will change on the leading edge of HBLANK.  
Vertical Sync will change on the leading edge of HSYNC.  
(See Figure 2A.)  
e
b
e
c
]
REG(1) ckper  
[
REG 9  
Horizontal Equalization PW  
REG(9)  
a
(HFP)  
(HEQP)  
a
1
e
a
ckper  
b
[
REG(10)  
Horizontal Serration PW  
REG(4)/n  
]
REG(1)  
c
e
(HSERR)  
a
1
REG 10  
b
(HFP)  
a
(HPER/  
2)  
e
e
Where n  
n
1 for noninterlaced single serration/equalization  
2 for noninterlaced double  
serration/equalization  
e
n
2 for interlaced operation  
4
Signal Specification (Continued)  
TL/F/10137–5  
FIGURE 2A. Vertical Waveform Specification  
TL/F/1013712  
FIGURE 2B. Equalization/Serration Interval Programming  
HORIZONTAL AND VERTICAL GATING SIGNALS  
and Bit 2 of the Status Register is set to the value of 1. The  
Cursor Position generates a single pulse of n clocks wide  
during every line that the cursor is specified. The signals are  
generated by logically ORing (ANDing) the active LOW  
(HIGH) signals specified by the registers used for generat-  
ing Horizontal and Vertical Gating signals. The Vertical In-  
terrupt signal generates a pulse during the vertical interval  
specified. The Vertical Interrupt signal will change in the  
same manner as that specified for the Vertical Blanking sig-  
nal.  
Horizontal Drive and Vertical Drive outputs can be utilized  
as general purpose Gating Signals. Horizontal and Vertical  
Gating Signals are available for use when Composite Sync  
and Blank signals are selected and the value of Bit 2 of the  
Status Register is 0. The Vertical Gating signal will change  
in the same manner as that specified for the Vertical Blank.  
e
b
c
[
REG(16)  
ckper  
]
Horizontal Gating Signal Width  
REG(15)  
e
b
c
[
REG(18)  
hper  
]
Vertical Gating Signal Width  
REG(17)  
e
b
c
]
REG(15)  
[
Horizontal Cursor Width  
REG(16)  
ckper  
e
b
c
]
[
Vertical Cursor Width  
REG(18)  
REG(17)  
hper  
CURSOR POSITION AND VERTICAL INTERRUPT  
e
b
c
]
REG(13) hper  
[
Vertical Interrupt Width  
REG(14)  
The Cursor Position and Vertical Interrupt signal are avail-  
able when Composite Sync and Blank signals are selected  
5
Addressing Logic  
The register addressing logic is composed of two blocks of  
logic. The first is the address register and counter  
(ADDRCNTR), and the second is the address decode  
(ADDRDEC).  
time the High Byte is written the address counter is incre-  
mented by 1. The counter has been implemented to loop on  
the initial value loaded into the address register. For exam-  
ple: If a value of 0 was written into the address register then  
the counter would count from 0 to 18 before resetting back  
to 0. If a value of 15 was written into the address register  
then the counter would count from 15 to 18 before looping  
back to 15. If a value greater than or equal to 18 is placed  
into the address register the counter will continuously loop  
on this value. Auto addressing is initiated on the falling edge  
of LOAD when ADDRDATA is 0 and LHBYTE is 1. Incre-  
menting and loading of data registers will not commence  
until the falling edge of LOAD after ADDRDATA goes to 1.  
The next rising edge of LOAD will load the first byte of data.  
Auto Incrementing is disabled on the falling edge of LOAD  
after ADDRDATA and LHBYTE goes low.  
ADDRCNTR LOGIC  
Addresses for the data registers can be generated by one of  
two methods. Manual addressing requires that each byte of  
each register that needs to be loaded needs to be ad-  
dressed. To load both bytes of all 19 registers would require  
a total of 57 load cycles (19 address and 38 data cycles).  
Auto Addressing requires that only the initial register value  
be specified. The Auto Load sequence would require only  
39 load cycles to completely program all registers (1 ad-  
dress and 38 data cycles). In the auto load sequence the  
low order byte of the data register will be written first fol-  
lowed by the high order byte on the next load cycle. At the  
Manual Addressing Mode  
Load Falling Edge  
Ý
Cycle  
Load Rising Edge  
1
2
3
4
5
6
Enable Manual Addressing  
Enable Lbyte Data Load  
Enable Hbyte Data Load  
Enable Manual Addressing  
Enable Lbyte Data Load  
Enable Hbyte Data Load  
Load Address m  
Load Lbyte m  
Load Hbyte m  
Load Address n  
Load Lbyte n  
Load Hbyte n  
TL/F/10137–7  
Auto Addressing Mode  
Load Falling Edge  
Ý
Cycle  
Load Rising Edge  
1
2
3
4
5
6
Enable Auto Addressing  
Enable Lbyte Data Load  
Enable Hbyte Data Load  
Enable Lbyte Data Load  
Enable Hbyte Data Load  
Enable Manual Addressing  
Load Start Address n  
Load Lbyte (n)  
Load Hbyte (n); Inc Counter  
a
Load Lbyte (n 1)  
a
Load Hbyte (n 1); Inc Counter  
Load Address  
TL/F/10137–8  
6
Addressing Logic (Continued)  
ADDRDEC LOGIC  
The ADDRDEC logic decodes the current address and gen-  
erates the enable signal for the appropriate register. The  
enable values for the registers and counters change on the  
falling edge of LOAD. Two types of ADDRDEC logic is en-  
abled by 2 pair of addresses, Addresses 22 or 54 (Vectored  
Restart logic) and Addresses 23 or 55 (Vectored Clear log-  
ic). Loading these addresses will enable the appropriate log-  
ic and put the part into either a Restart (all counter registers  
are reinitialized with preprogrammed data) or Clear (all reg-  
isters are cleared to zero) state. Reloading the same  
ADDRDEC address will not cause any change in the state of  
the part. The outputs during these states are frozen and the  
internal CLOCK is disabled. Clocking the part during a Vec-  
tored Restart or Vectored Clear state will have no effect on  
the part. To resume operation in the new state, or disable  
the Vectored Restart or Vectored Clear state, another non-  
ADDRDEC address must be loaded. Operation will begin in  
the new state on the rising edge of the non-ADDRDEC load  
pulse. It is recommended that an unused address be loaded  
following an ADDRDEC operation to prevent data registers  
from accidentally being corrupted. The following Addresses  
are used by the device.  
TL/F/10137–9  
FIGURE 3. ADDRDEC Timing  
GEN LOCKING  
The ’ACT715/LM1882 and ’ACT715-R/LM1882-R is de-  
signed for master SYNC and BLANK signal generation.  
However, the devices can be synchronized (slaved) to an  
external timing signal in a limited sense. Using Vectored  
Restart, the user can reset the counting sequence to a giv-  
en location, the beginning, at a given time, the rising edge of  
the LOAD that removes Vector Restart. At this time the next  
CLOCK pulse will be CLOCK 1 and the count will restart at  
the beginning of the first odd line.  
Address 0  
Status Register REG0  
Address 118 Data Registers REG1REG18  
Address 1921 Unused  
Address 22/54 Restart Vector (Restarts Device)  
Address 23/55 Clear Vector (Zeros All Registers)  
Address 2431 Unused  
Preconditioning the part during normal operation, before the  
desired synchronizing pulse, is necesasry. However, since  
LOAD and CLOCK are asynchronous and independent, this  
is possible without interruption or data and performance cor-  
ruption. If the defaulted 14.31818 MHz RS-170 values are  
being used, preconditioning and restarting can be minimized  
by using the CLEAR pulse instead of the Vectored Restart  
operation. The ’ACT715-R/LM1882-R is better suited for  
this application because it eliminates the need to program a  
1 into Bit 10 of the Status Register to enable the CLOCK.  
Gen Locking to another count location other than the very  
beginning or separate horizontal/vertical resetting is not  
possible with the ’ACT715/LM1882 nor the ’ACT715-R/  
LM1882-R.  
Address 3250 Register Scan Addresses  
Address 5153 Counter Scan Addresses  
Address 5663 Unused  
At any given time only one register at most is selected. It is  
possible to have no registers selected.  
VECTORED RESTART ADDRESS  
The function of addresses 22 (16H) or 54 (36H) are similar  
to that of the CLR pin except that the preprogramming of  
the registers is not affected. It is recommended but not re-  
quired that this address is read after the initial device config-  
uration load sequence. A 1 on the ADDRDATA pin (Auto  
Addressing Mode) will not cause this address to automati-  
cally increment. The address will loop back onto itself re-  
gardless of the state of ADDRDATA unless the address on  
the Data inputs has been changed with ADDRDATA at 0.  
SCAN MODE LOGIC  
A scan mode is available in the ACT715/LM1882 that al-  
lows the user to non-destructively verify the contents of the  
registers. Scan mode is invoked through reading a scan ad-  
dress into the address register. The scan address of a given  
a
register is defined by the Data register address  
32. The  
VECTORED CLEAR ADDRESS  
internal Clocking signal is disabled when a scan address is  
read. Disabling the clock freezes the device in it’s present  
state. Data can then be serially scanned out of the data  
registers through the ODD/EVEN Pin. The LSB will be  
scanned out first. Since each register is 12 bits wide, com-  
pletely scanning out data of the addressed register will re-  
quire 12 CLOCK pulses. More than 12 CLOCK pulses on the  
same register will only cause the MSB to repeat on the out-  
put. Re-scanning the same register will require that register  
to be reloaded. The value of the two horizontal counters and  
1 vertical counter can also be scanned out by using address  
numbers 5153. Note that before the part will scan out the  
data, the LOAD signal must be brought back HIGH.  
Addresses 23 (17H) or 55 (37H) is used to clear all registers  
to zero simultaneously. This function may be desirable to  
use prior to loading new data into the Data or Status Regis-  
ters. This address is read into the device in a similar fashion  
as all of the other registers. A 1 on the ADDRDATA pin  
(Auto Addressing Mode) will not cause this address to auto-  
matically increment. The address will loop back onto itself  
regardless of the state of ADDRDATA unless the address  
on the Data inputs has been changed with ADDRDATA at 0.  
7
Addressing Logic (Continued)  
Normal device operation can be resumed by loading in a  
non-scan address. As the scanning of the registers is a non-  
destructive scan, the device will resume correct operation  
from the point at which it was halted.  
Reg  
D Value H  
Register Description  
REG0  
0
000 Status Register (715/LM1882)  
REG0 1024 400 Status Register (715-R/LM1882-R)  
REG1  
REG2  
REG3  
REG4  
23  
91  
017 HFP End Time  
RS170 Default Register Values  
05B HSYNC Pulse End Time  
The tables below show the values programmed for the  
RS170 Format (using a 14.31818 MHz clock signal) and  
how they compare against the actual EIA RS170 Specifica-  
tions. The default signals that will be output are CSYNC,  
CBLANK, HDRIVE and VDRIVE. The device initially starts at  
the beginning of the odd field of interlace. All signals have  
active low pulses and the clock is disabled at power up.  
Registers 13 and 14 are not involved in the actual signal  
information. If the Vertical Interrupt was selected so that a  
pulse indicating the active lines would be output.  
157 09D HBLANK Pulse End Time  
910 38E Total Horizontal Clocks  
REG5  
REG6  
REG7  
REG8  
7
007 VFP End Time  
13  
41  
00D VSYNC Pulse End Time  
029 VBLANK Pulse End Time  
525 20D Total Vertical Lines  
REG9  
57 039 Equalization Pulse End Time  
REG10 410 19A Serration Pulse Start Time  
REG11  
1
001 Pulse Interval Start Time  
013 Pulse Interval End Time  
REG12 19  
REG13 41  
029 Vertical Interrupt Activate Time  
REG14 526 20E Vertical Interrupt Deactivate Time  
REG15 911 38F Horizontal Drive Start Time  
REG16 92  
REG17  
05C Horizontal Drive End Time  
001 Vertical Drive Start Time  
015 Vertical Drive End Time  
1
REG18 21  
Rate  
Period  
Input Clock  
Line Rate  
14.31818 MHz  
15.73426 kHz  
59.94 Hz  
69.841 ns  
63.556 ms  
16.683 ms  
33.367 ms  
Field Rate  
Frame Rate  
29.97 Hz  
RS170 Horizontal Data  
Signal  
Width  
ms  
1.536  
%H  
Specification (ms)  
g
1.5 0.1  
HFP  
22 Clocks  
68 Clocks  
156 Clocks  
91 Clocks  
34 Clocks  
68 Clocks  
910 Clocks  
g
4.7 0.1  
HSYNC Width  
HBLANK Width  
HDRIVE Width  
HEQP Width  
HSERR Width  
HPER iod  
4.749  
10.895  
6.356  
7.47  
17.15  
10.00  
3.74  
g
10.9 0.2  
g
0.1H 0.005H  
g
2.3 0.1  
2.375  
g
4.7 0.1  
4.749  
7.47  
63.556  
100  
RS170 Vertical Data  
VFP  
3 Lines  
3 Lines  
190.67  
190.67  
1271.12  
699.12  
6 EQP Pulses  
VSYNC Width  
VBLANK Width  
VDRIVE Width  
VEQP Intrvl  
6 Serration Pulses  
g
0.075V 0.005V  
20 Lines  
11.0 Lines  
9 Lines  
7.62  
4.20  
3.63  
g
0.04V 0.006V  
9 Lines/Field  
VPERiod (field)  
VPERiod (frame)  
262.5 Lines  
525 Lines  
16.683 ms  
33.367 ms  
16.683 ms/Field  
33.367 ms/Frame  
8
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Junction Temperature (T )  
J
Ceramic  
Plastic  
175 C  
§
140 C  
§
Note 1: Absolute maximum ratings are those values beyond which damage  
to the device may occur. The databook specifications should be met, without  
exception, to ensure that the system design is reliable over its power supply,  
temperature and output/input loading variables. National does not recom-  
mend operation of FACTTM circuits outside databook specifications.  
b
a
0.5V to 7.0V  
Supply Voltage (V  
)
CC  
DC Input Diode Current (I  
)
IK  
e b  
e
b
a
V
V
0.5V  
a
20 mA  
20 mA  
I
I
V
0.5V  
CC  
b
b
a
0.5V  
DC Input Voltage (V )  
I
0.5V to V  
0.5V to V  
CC  
Recommended Operating  
Conditions  
DC Output Diode Current (I  
)
OK  
e b  
b
a
V
V
0.5V  
a
20 mA  
20 mA  
O
O
e
V
CC  
0.5V  
Supply Voltage (V  
)
CC  
4.5V to 5.5V  
a
0.5V  
DC Output Voltage (V  
DC Output Source  
)
O
CC  
Input Voltage (V )  
I
0V to V  
0V to V  
CC  
Output Voltage (V  
)
O
CC  
g
or Sink Current (I  
)
O
15 mA  
Operating Temperature (T )  
A
DC V  
or Ground Current  
CC  
b
b
a
40 C to 85 C  
74ACT  
54ACT  
§
55 C to 125 C  
§
§
g
per Output Pin (I or I  
CC  
)
20 mA  
GND  
)
a
§
b
a
65 C to 150 C  
Storage Temperature (T  
§
§
STG  
Minimum Input Edge Rate (DV/Dt)  
V
V
from 0.8V to 2.0V  
@
IN  
4.5V, 5.5V  
125 mV/ns  
CC  
DC Characteristics For ’ACT Family Devices over Operating Temperature Range (unless otherwise specified)  
ACT/LM1882 54ACT/LM1882 74ACT/LM1882  
e b  
T
55 C  
§
A
e a  
e b  
40 C  
V
T
25 C  
T
A
§
§
CC  
A
a
e
Symbol  
Parameter  
to 125 C  
Units  
Conditions  
§
50 pF  
e
a
to 85 C  
(V)  
C
50 pF  
§
L
C
L
Typ  
Guaranteed Limits  
e b  
OUT  
V
Minimum High Level  
Output Voltage  
4.5  
5.5  
4.49  
5.49  
4.4  
5.4  
4.4  
5.4  
4.4  
5.4  
V
V
I
50 mA  
OH  
OL  
e
4.5  
5.5  
3.86  
4.86  
3.7  
4.7  
3.76  
4.76  
V
V
*V  
IN  
V /V  
IL IH  
e b  
I
8 mA  
OH  
e
V
Maximum Low Level  
Output Voltage  
4.5  
5.5  
0.001  
0.001  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
V
I
50 mA  
OUT  
e
e a  
4.5  
5.5  
0.36  
0.36  
0.5  
0.5  
0.44  
0.44  
V
V
*V  
IN  
V
/V  
IL IH  
I
8 mA  
OH  
I
I
I
I
I
Minimum Dynamic  
Output Current  
OLD  
OHD  
IN  
e
e
5.5  
5.5  
5.5  
32.0  
32.0  
mA  
mA  
mA  
V
1.65V  
OLD  
Minimum Dynamic  
Output Current  
b
b
32.0  
32.0  
V
V
3.85V  
OHD  
e
Maximum Input  
Leakage Current  
V
CC  
, GND  
I
g
g
g
1.0  
0.1  
1.0  
Supply Current  
Quiescent  
CC  
e
e
5.5  
5.5  
8.0  
160  
1.6  
80  
1.5  
mA  
V
V
V
V
, GND  
IN  
CC  
b
2.1V  
Maximum I /Input  
CC  
0.6  
mA  
CCT  
IN  
CC  
*All outputs loaded; thresholds on input associated with input under test.  
Note 1: Test Load 50 pF, 500X to Ground.  
9
AC Electrical Characteristics  
ACT/LM1882  
54ACT/LM1882  
e b  
74ACT/LM1882  
e b  
T
55 C  
T
A
40 C  
§
to 125 C  
§
to 85 C  
A
e a  
A
V
T
25 C  
§
50 pF  
CC  
a
e
a
e
Symbol  
Parameter  
Units  
§
50 pF  
§
50 pF  
e
(V)  
C
L
C
C
L
L
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
f
f
Interlaced f  
MAX  
MAXI  
MAX  
5.0  
5.0  
5.0  
170  
190  
130  
145  
3.5  
150  
MHz  
MHz  
ns  
(HMAX/2 is ODD)  
Non-Interlaced f  
MAX  
190  
4.0  
220  
175  
3.5  
(HMAX/2 is EVEN)  
t
t
Clock to Any Output  
PLH1  
PHL1  
13.0  
15.5  
19.5  
18.5  
t
t
Clock to ODDEVEN  
(Scan Mode)  
PLH2  
PHL2  
5.0  
5.0  
4.5  
4.0  
15.0  
11.5  
17.0  
16.0  
3.5  
3.0  
22.0  
20.0  
3.5  
3.0  
20.5  
19.5  
ns  
ns  
t
Load to Outputs  
PLH3  
AC Operating Requirements  
ACT/LM1882  
e a  
54ACT/LM1882  
e b  
74ACT/LM1882  
e b  
V
T
55 C  
T
A
40 C  
§
to 125 C  
§
to 85 C  
CC  
A
Symbol  
Parameter  
T
25 C  
§
Units  
A
a
a
(V)  
§
§
Typ  
Guaranteed Minimums  
Control Setup Time  
b
t
t
ADDR/DATA to LOAD  
b
3.0  
3.0  
4.0  
4.5  
4.5  
4.5  
4.5  
ns  
ns  
sc  
sc  
5.0  
5.0  
5.0  
L/HBYTE to LOAD  
4.0  
Data Setup Time  
a
t
t
D7D0 to LOAD  
2.0  
4.0  
4.5  
4.5  
ns  
sd  
hc  
Control Hold Time  
b
b
LOAD to L/HBYTE  
LOAD to ADDR/DATA  
0
0
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
ns  
ns  
Data Hold Time  
a
LOAD to D7D0  
t
t
5.0  
5.0  
1.0  
5.5  
2.0  
7.0  
2.0  
8.0  
2.0  
8.0  
ns  
ns  
hd  
a
LOAD to CLK (Note 1)  
rec  
Load Pulse Width  
LOW  
t
t
5.0  
5.0  
3.0  
3.0  
5.5  
5.0  
5.5  
7.5  
5.5  
7.5  
ns  
ns  
b
a
wld  
wld  
HIGH  
t
t
CLR Pulse Width HIGH  
5.0  
5.0  
5.5  
2.5  
6.5  
3.0  
9.5  
4.0  
9.5  
3.5  
ns  
ns  
wclr  
wck  
CLOCK Pulse Width  
(HIGH or LOW)  
Note 1: Removal of Vectored Reset or Restart to Clock.  
Capacitance  
Symbol  
Parameter  
Typ  
7.0  
Units  
Conditions  
e
e
C
C
Input Capacitance  
pF  
pF  
V
V
5.0V  
5.0V  
IN  
CC  
Power Dissipation  
Capacitance  
17.0  
PD  
CC  
10  
AC Operating Requirements (Continued)  
TL/F/10137–6  
FIGURE 4. AC Specifications  
Additional Applications Information  
POWERING UP  
PREPROGRAMMING ‘‘ON-THE-FLY’’  
The ’ACT715/LM1882 default value for Bit 10 of the Status  
Register is 0. This means that when the CLEAR pulse is  
applied and the registers are initialized by loading the de-  
fault values the CLOCK is disabled. Before operation can  
begin, Bit 10 must be changed to a 1 to enable CLOCK. If  
the default values are needed (no other programming is re-  
quired) thenFigure 5 illustrates a hardwired solution to facili-  
tate the enabling of the CLOCK after power-up. Should con-  
trol signals be difficult to obtain, Figure 6 illustrates a possi-  
ble solution to automatically enable the CLOCK upon pow-  
er-up. Use of the ’ACT715-R/LM1882-R eliminates the  
need for most of this circuitry. Modifications of the Figure 6  
circuit can be made to obtain the lone CLEAR pulse still  
needed upon power-up.  
Although the ’ACT715/LM1882 and ’ACT715-R/LM1882-R  
are completely programmable, certain limitations must be  
set as to when and how the parts can be reprogrammed.  
Care must be taken when reprogramming any End Time  
registers to a new value that is lower than the current value.  
Should the reprogramming occur when the counters are at a  
count after the new value but before the old value, then the  
counters will continue to count up to 4096 before rolling  
over.  
For this reason one of the following two precautions are  
recommended when reprogramming ‘‘on-the-fly’’. The first  
recommendation is to reprogram horizontal values during  
the horizontal blank interval only and/or vertical values dur-  
ing the vertical blank interval only. Since this would require  
delicate timing requirements the second recommendation  
may be more appropriate.  
Note that, although during a Vectored Restart none of the  
preprogrammed registers are affected, some signals are af-  
fected for the duration of one frame only. These signals are  
the Horizontal and Vertical Drive signals. After a Vectored  
Restart the beginning of these signals will occur at the first  
CLK. The end of the signals will occur as programmed. At  
the completion of the first frame, the signals will resume to  
their programmed start and end time.  
The second recommendation is to program a Vectored Re-  
start as the final step of reprogramming. This will ensure  
that all registers are set to the newly programmed values  
and that all counters restart at the first CLK position. This  
will avoid overrunning the counter end times and will main-  
tain the video integrity.  
TL/F/1013710  
FIGURE 5. Default RS170 Hardwire Configuration  
11  
Additional Applications Information (Continued)  
TL/F/1013711  
Note: A 74HC221A may be substituted for the 74HC423A Pin 6 and Pin 14 must be hardwired to GND  
Components  
R1: 4.7k  
R2: 10k  
C1: 10 mF  
C2: 50 pF  
FIGURE 6. Circuit for Clear and Load Pulse Generation  
Ordering Information  
The device number is used to form part of a simplified purchasing code where a package type and temperature range are  
defined as follows:  
74ACT 715  
P
C
QR  
Temperature Range Family  
Special Variations  
e
e
e
e
74ACT  
54ACT  
Commercial TTL-Compatible  
Military TTL-Compatible  
X
QR  
Devices shipped in 13 reels  
×
Commercial grade device with  
burn-in  
Device Type  
e
QB  
Military grade device with  
environmental and burn-in  
processing shipped in tubes.  
e
e
715  
715-R  
Default: CLOCK Disabled  
Default: CLOCK Enabled  
Package Code  
Temperature Range  
e
e
e
e
P
D
L
Plastic DIP  
Ceramic DIP  
Leadless Chip Carrier (LCC)  
Small Outline (SOIC)  
e
e
b a  
C
M
Commercial ( 40 C to 85 C)  
§
§
b a  
Military ( 55 C to 125 C)  
§
§
S
OR  
e
e
LM1882CM  
LM1882CN  
Commercial Small Outline (SOIC)  
Commercial Plastic DIP  
Default:  
CLOCK  
Disabled  
e
e
LM1882J/883  
LM1882E/883  
Military Ceramic Dip  
Military Leadless Chip Carrier  
e
e
Default  
CLOCK  
Enabled  
LM1882-RCM  
LM1882-RCN  
Commercial Small Outline (SOIC)  
Commercial Plastic DIP  
e
e
LM1882-RJ/883  
LM1882-RE/883  
Military Ceramic Dip  
Military Leadless Chip Carrier  
12  
13  
Physical Dimensions inches (millimeters)  
20-Terminal Ceramic Leadless Chip Carrier (L)  
NS Package Number E20A  
14  
Physical Dimensions inches (millimeters) (Continued)  
20-Lead Ceramic Dual-In-Line Package (D)  
NS Package Number J20A  
20-Lead Small Outline Integrated Circuit (S)  
NS Package Number M20B  
15  
Physical Dimensions inches (millimeters) (Continued)  
20-Lead Plastic Dual-In-Line Package (P)  
NS Package Number N20B  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
QUAD OPERATIONAL AMPLIFIERS  
14 DIP  
The LM224 series consists of four independent, high gain, internally  
frequency compensated operational amplifiers which were designed  
specifically to operate from a single power supply over a wide voltage  
range.  
Operation from split power supplies is also possible so long as the  
difference between the two supplies is 3 volts to 32 volts.  
Application areas include transducer amplifier, DC gain blocks and all  
the conventional OP amp circuits which now can be easily implemented  
in single power supply systems.  
14 SOP  
FEATURES  
·
·
·
Internally frequency compensated for unity gain  
Large DC voltage gain: 100dB  
Wide power supply range: LM224/A, LM324/A: 3V ~32V (or ±1.5 ~ 15V)  
LM2902: 3V~26V (or ±1.5V ~ 13V)  
·
·
·
Input common-mode voltage range includes ground  
Large output voltage swing: 0V DC to VCC -1.5V DC  
Power drain suitable for battery operation.  
ORDERING INFORMATION  
Device  
LM324N  
Package Operating Temperature  
BLOCK DIAGRAM  
14 DIP  
14 SOP  
14 DIP  
14 SOP  
LM324AN  
LM324M  
LM324AM  
LM224N  
0 ~ + 70°C  
LM224AN  
LM224M  
LM224AM  
LM2902N  
LM2902M  
-25 ~ +85 °C  
-40 ~ + 85 °C  
14 DIP  
14 SOP  
SCHEMATIC DIAGRAM (One Section Only)  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
LM224/LM224A  
LM324/LM324A  
LM2902  
Unit  
Power Supply Voltage  
Differential Input Voltage  
Input Voltage  
VCC  
VI(DIFF)  
VI  
V
V
V
±18 or 32  
32  
±18 or 32  
32  
±13 or 26  
26  
-0.3 to + 32  
-0.3 to +32  
-0.3 to +26  
Output Short Circuit to GND  
Continuous  
Continuous  
Continuous  
VCC£15V TA=25 °C(One Amp)  
mW  
°C  
PD  
Power Dissipation  
570  
570  
570  
TOPR  
TSTG  
Operating Temperature Range  
Storage Temperature Range  
-25 ~ +85  
-65 ~ + 150  
0 ~ + 70  
-40 ~ + 85  
-65 ~ + 150  
°C  
-65 ~ + 150  
ELECTRICAL CHARACTERISTICS  
(VCC=5.0V, VEE=GND, TA=25 °C, unless otherwise specified)  
LM224  
LM324  
LM2902  
Symbol  
Characteristic  
Test Conditions  
Unit  
Min Typ Max Min Typ Max Min Typ Max  
VCM = 0V to VCC = 1.5V  
Input Offset Voltage  
VIO  
1.5 5.0  
1.5 7.0  
1.5 7.0  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Current  
Input Bias Current  
Input Common-Mode  
Voltage Range  
IIO  
2.0 30  
40 150  
VCC  
3.0 50  
40 250  
VCC  
3.0 50  
40 250  
VCC  
nA  
nA  
IBIAS  
VCC = 30V  
(VCC = 26V for KA2902)  
VI(R)  
0
0
0
V
-1.5  
-1.5  
-1.5  
1.0  
3
1.0  
3
1.0  
3
mA  
mA  
RL = ¥ ,VCC = 30V (all Amps)  
ICC  
Supply Current  
RL = ¥ ,VCC = 5V (all Amps)  
(VCC = 26V for KA2902)  
VCC = 15V, RL³ 2KW  
VO(P) = 1V to 11V  
0.7 1.2  
0.7 1.2  
0.7 1.2  
100  
Large Signal  
Voltage Gain  
GV  
50 100  
25 100  
V/mV  
VCC = 30V  
26  
26  
22  
V
V
RL = 2KW  
VO(H)  
VO(L)  
Output Voltage Swing  
VCC=26V for 2902  
VCC = 5V, RL³ 10KW  
27 28  
5
27 28  
5
23 24  
5
RL = 10KW  
20  
20  
100  
mV  
Common-Mode  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Channel Separation  
Short Circuit to GND  
CMRR  
70 85  
65 75  
50 75  
dB  
dB  
PSRR  
65 100  
120  
65 100  
120  
50 100  
120  
CS  
ISC  
f = 1KHz to 20KHz  
dB  
40 60  
40 60  
40 60  
mA  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
ISOURCE  
20 40  
20 40  
20 40  
mA  
mA  
mA  
V
Output Current  
10 13  
12 45  
10 13  
12 45  
10 13  
ISINK  
VCC = 15V,VO(R) = 200mV  
Differential Input  
Voltage  
VI(DIFF)  
VCC  
VCC  
VCC  
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC = 5.0V, VEE = GND, unless otherwise specified)  
The following specification apply over the range of -25 °C £ TA £ + 85 °C for the LM224; and the 0 °C £ TA £ +70 °C for the  
LM324 ; and the - 40 °C £ TA £ +85 °C for the LM2902  
LM224  
LM324  
LM2902  
Characteristic  
Symbol  
Test Conditions  
Unit  
Min Typ Max Min Typ Max Min Typ Max  
VICM = 0V to VCC = 1.5V  
Input Offset Voltage  
VIO  
7.0  
9.0  
10.0  
200  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Voltage  
Drift  
DVIO/DT  
IIO  
7.0  
7.0  
10  
7.0  
10  
mV/ °C  
nA  
Input Offset Current  
Input Offset Current  
Drift  
100  
150  
DIIO/DT  
IBIAS  
10  
pA/ °C  
nA  
Input Bias Current  
Input Common-Mode  
Voltage Range  
Large Signal Voltage  
Gain  
300  
VCC  
-2.0  
500  
VCC  
-2.0  
500  
VCC  
-2.0  
VCC = 30V  
(VCC = 26V for KA2902)  
VIC(R)  
0
0
0
V
VCC = 15V, RL ³ 2.0KW  
VO(P) = 1V to 11V  
GV  
25  
26  
15  
26  
15  
22  
V/mV  
VCC = 30V  
V
V
RL = 2KW  
VO(H)  
VO(L)  
Output Voltage Swing  
VCC =26V for 2902  
27 28  
5
27 28  
5
23 24  
5
RL = 10KW  
20  
20  
100  
mV  
VCC = 5V, RL³ 10KW  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V, VO(P) = 2V  
ISOURCE  
10 20  
10 13  
10 20  
10 20  
mA  
mA  
V
Output Current  
ISINK  
5
8
5
8
Differential Input  
Voltage  
VI(DIFS)  
VCC  
VCC  
VCC  
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC=50V, VEE = GND, TA=25 °C, unless otherwise specified)  
LM224A  
LM324A  
Characteristic  
Symbol  
Unit  
Test Conditions  
Min Typ Max Min Typ Max  
VCM = 0V to VCC = 1.5V  
Input Offset Voltage  
VIO  
1.0 3.0  
1.5 3.0  
mV  
VO(P) = 1.4V, RS = 0 W  
Input Offset Current  
Input Bias Current  
IIO  
2
15  
80  
3.0 30  
40 100  
VCC  
nA  
nA  
IBIAS  
40  
Input Common-Mode  
Voltage Range  
VCC  
-1.5  
3
VI(R)  
ICC  
VCC = 30V  
0
0
V
-1.5  
VCC = 30V  
VCC = 5V  
1.5  
1.5  
3
mA  
mA  
Supply Current (All Amps)  
Large Signal Voltage Gain  
0.7 1.2  
0.7 1.2  
VCC = 15V, RL³ 2 KW  
VO(P) = 1V to 11V  
GV  
50 100  
25 100  
26  
V/mV  
VCC = 30V  
26  
V
V
RL = 2 KW  
VO(H)  
Output Voltage Swing  
VCC = 26V for 2902  
27  
70  
28  
5
27  
28  
5
RL = 10 KW  
VO(L)  
CMRR  
PSRR  
CS  
20  
60  
20  
60  
mV  
dB  
dB  
dB  
mA  
VCC = 5V, RL³ 10 KW  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Channel Separation  
85  
65  
85  
65 100  
120  
65 100  
120  
f = 1KHz to 20KHz  
Short Circuit to GND  
ISC  
40  
40  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V  
ISOURCE  
20  
10  
12  
40  
20  
50  
20  
10  
12  
40  
20  
50  
mA  
mA  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0v, VI(-) = 1V  
Output Current  
ISINK  
mA  
VCC = 15V, VO(P) = 200mV  
Differential Input Voltage  
VI(DIFF)  
VCC  
VCC  
V
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC = 5.0V, VEE = GND, unless otherwise specified)  
The following specification apply over the range of -25oC £ TA £ + 85 °C for the LM224A; and the 0 °C £ TA £+70 °C  
for the LM324A  
LM224A  
LM324A  
Characteristic  
Input Offset Voltage  
Test Conditions  
Symbol  
Unit  
Min Typ Max Min Typ Max  
VCM = 0V to VCC = 1.5V  
VIO  
4.0  
5.0  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Voltage Drift  
Input Offset Current  
7.0  
20  
30  
7.0  
30  
75  
DVIO/DT  
IIO  
mV/ °C  
nA  
Input Offset Current Drift  
10  
40  
200  
10  
40  
300  
DIIO/DT  
IBIAS  
pA/ °C  
nA  
Input Bias Current  
100  
VCC  
-2.0  
200  
VCC  
-2.0  
Input Common-Mode  
Voltage Range  
VI(R)  
GV  
VCC = 30V  
0
0
V
Large Signal Voltage Gain  
25  
26  
27  
15  
26  
27  
V/mV  
VCC = 15V, RL³ 2.0KW  
RL = 2KW  
VCC = 30V  
V
Output Voltage Swing  
VO(P-P)  
28  
5
28  
5
RL = 10KW  
20  
20  
mA  
mA  
VCC = 5V, RL³ 10KW  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V  
ISOURCE  
10  
5
20  
8
10  
5
20  
8
Output Current  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V  
ISINK  
mA  
V
Differential Input Voltage  
VI(DIFF)  
VCC  
VCC  
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
TYPICAL PERFORMANCE CHARACTERISTICS  
Fig. 1 INPUT VOLTAGE RANGE  
Fig. 2 INPUT CURRENT  
POWER SUPPLY VOLTAGE (±VDC  
)
TEMPERATURE (oC)  
Fig. 3 SUPPLY CURRENT  
Fig. 4 VOLTAGE GAIN  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Fig. 6 COMMON.MOOE REJECTION RATIO  
Fig. 5 OPEN LOOP FREGUENCY RESPONSE  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LM224/A, LM324/A, LM2902  
QUAD OPERATIONAL AMPLIFIER  
Fig.7 SLEW RATE  
Fig. 8 VOLTAGE FOLLOWER PULSE  
Fig. 10 OUTPUT CHARACTERISTICS  
Fig. 9 LARGE SIGNAL FREQUECY RESPONSE  
CURRENT SOURCING  
FREQUENCY (Hz)  
OUTPUT SOURCE CURRENT (mA)  
Fig. 11 OUTPUT CHARACTERISTICS  
CURRENT SINKING  
Fig. 12 CURRENT LIMITING  
OUTPUT SINK CURRENT (mA)  
TEMPERATURE (oC)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM336-2.5/B/LM236-2.5 (KA336-2.5, KA236-2.5) PROGRAMMABLE SHUNT REGULATOR  
PROGRAMMABLE SHUNT REGULATOR  
TO-92  
The LM336-2.5/B integrated Circuits are precision 2.5V shunt  
regulators. The monolithic IC voltage references operates as a low  
temperature coefficient 2.5V zener with 0.2W dynamic impedance.  
A third terminal on the KA336-2.5/B allow the reference voltage and  
temperature coefficient to be trimmed easily.  
LM3362.5/B are useful as a precision 2.5V low voltage reference for  
digital voltmeters, power supplies or op amp circuitry. The 2.5V make  
it convenient to obtain a stable reference from low voltage supplies.  
Further, since the LM336-2.5/B operate as shunt regulators, they can  
be used as either a positive or negative voltage reference.  
1: Adj. 2: + 3: -  
FEATURES  
· Low temperature coefficient  
· Guaranteed temperature stability 4mV typical  
· 0.2 W dynamic impedance  
ORDERING INFORMATION  
Device  
Package Operating Temperature  
· ±1.0% initial tolerance available.  
· Easily trimmed for minimum temperature drift  
LM336Z-2.5  
LM336Z-2.5B  
LM236Z-2.5  
0 ~ +70°C  
TO-92  
-25 ~ +85°C  
SCHEMATIC DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM336-2.5/B/LM236-2.5 (KA336-2.5, KA236-2.5) PROGRAMMABLE SHUNT REGULATOR  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
Reverse Current  
IR  
IF  
15  
10  
mA  
mA  
Forward Current  
0 ~ + 70  
- 25 ~ +85  
Operating Temperature Range LM336-2.5/B  
LM236-2.5  
°C  
°C  
°C  
TOPR  
TSTG  
Storage Temperature Range  
- 60 ~ + 150  
ELECTRICAL CHARACTERISTICS (TMIN < TA < TMAX, unless otherwise specified)  
LM336/236  
LM336B  
Min Typ Max  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
TA = +25°C  
IR = 1mA  
Reverse Breakdown Voltage  
VR  
2.44  
2.49  
2.54 2.465 2.49 2.515  
V
Reverse Breakdown  
Change with Current  
TA = +25°C  
400mA £IR £ 10mA  
2.6  
0.2  
6
2.6  
0.2  
10  
1
mV  
DVR/DIR  
TA = +25°C  
IR = 1mA  
IR = 1mA  
Reverse Dynamic Impedance  
Temperature Stability  
ZD  
0.6  
W
STT  
DVR/DIR  
ZD  
1.8  
3
6
10  
1
1.8  
3
6
mV  
mV  
T
T
MIN £ TA £ TMAX  
MIN £ TA £ TMAX  
Reverse Breakdown  
Change with Current  
12  
1.4  
400mA £ IR £10mA  
IR = 1mA  
Reverse Dynamic Impedance  
Long Term Stability  
0.4  
20  
0.4  
20  
W
T
MIN £ TA £ TMAX  
IR = 1mA  
MIN £ TA£TMAX  
ST  
ppm  
T
LM236: TMIN = -25°C, TMAX = +85°C  
LM336: TMIN = 0°C, TMAX = +70°C  
LM336-2.5/B/LM236-2.5 (KA336-2.5, KA236-2.5) PROGRAMMABLE SHUNT REGULATOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
Fig. 1. Reverse Voltage Change  
Fig. 2 Reverse Characteristics  
REVERSE CURRENT (mA)  
Fig. 3 Temperature Drift  
REVERSE VOLTAGE(V)  
Fig. 4 Forward Characteristics  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM239, LM339, LM2901, LM3302  
QUAD COMPARATOR  
QUAD DIFFERENTIAL COMPARATOR  
14 DIP  
The LM239 series consists of four independent voltage compa-  
rators designed to operate from single power supply over a wide  
voltage range.  
FEATURES  
·
·
Single or dual supply operation  
Wide range of supply voltage  
LM239/A, LM339/A, LM2901: 2 ~ 36V (or ±1 ~ ±18V)  
LM3302: 2 ~ 28V (or ±1 ~ ±14V)  
14 SOP  
·
·
·
·
·
·
·
·
Low supply current drain 800mA Typ  
Open collector outputs for wired and connectors  
Low input bias current 25nA Typ  
Low Input offset current ±2.3nA Typ.  
Low input offset voltage ±1.4mV Typ.  
Common mode input voltage range includes ground.  
Low output saturation voltage  
Output compatible with TTL. DTL and MOS logic  
system  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM339N  
14 DIP  
LM339AN  
LM339M  
LM339AM  
LM239N  
LM239AN  
LM239M  
LM239AM  
0 ~ +70°C  
14 SOP  
14 DIP  
14 SOP  
-25 ~ + 85°C  
-40 ~ + 85°C  
LM2901N 14 DIP  
LM2901M 14 SOP  
LM3302N 14 DIP  
LM3302M 14 SOP  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM239, LM339, LM2901, LM3302  
QUAD COMPARATOR  
SCHEMATIC DIAGRAM  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Supply Voltage  
Supply Voltage Only LM3302  
Differential Input Voltage  
Differential Input Voltage Only LM3302  
Input Voltage  
Input Voltage Only LM3302  
Output Short Circuit to GND  
Power Dissipation  
Operating Temperature LM339/LM339A  
LM239/LM239A  
Symbol  
Value  
Unit  
VCC  
VCC  
VI(DIFF)  
VI(DIFF)  
VI  
V
V
V
V
V
V
±18 or 36  
±14 or 28  
36  
28  
- 0.3 to +36  
- 0.3 to +28  
Continuous  
570  
0 ~ + 70  
- 25 ~ + 85  
- 40 ~ + 85  
- 65 ~ + 150  
VI  
PD  
mW  
°C  
°C  
°C  
°C  
TOPR  
TSTG  
LM2901/LM3302  
Storage Temperature  
LM239, LM339, LM2901, LM3302  
QUAD COMPARATOR  
ELECTRICAL CHARACTERISTICS  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
LM239A/LM339A  
LM239/LM339  
Characteristic  
Symbol  
VIO  
Test Conditions  
Unit  
Min Typ Max Min Typ  
Max  
VCM =0V to VCC =1.5V  
VO(P) =1.4V, RS =0W  
±1  
±2  
±1.4  
±2.3  
57  
±5  
±9.0  
±50  
Input Offset Voltage  
mV  
nA  
nA  
V
NOTE 1  
NOTE 1  
NOTE 1  
±4.0  
±2.3 ±50  
±150  
IIO  
Input Offset Current  
Input Bias Current  
±150  
250  
57  
250  
400  
IBIAS  
VI(R)  
400  
VCC-1.5  
Input Common Mode  
Voltage Range  
Supply Current  
Voltage Gain  
0
0
0
0
VCC-1.5  
VCC-2  
2.0  
NOTE 1  
VCC-2  
2.0  
ICC  
GV  
1.1  
1.1  
mA  
RL = ¥  
50 200  
50 200  
V/mV  
VCC =15V, RL³ 15KW(for large swing)  
VI =TTL Logic Swing  
Large Signal  
Response Time  
Response Time  
350  
350  
ns  
tRES  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
tRES  
ISINK  
1.4  
1.4  
ms  
Output Sink Current  
Output Saturation  
Voltage  
6
18  
6
18  
mA  
VI(-)³ 1V, VI(+) =0V, VO(P) £1.5V  
VI(-)³ 1V, VI(+) =0V  
140 400  
140  
400  
700  
VSAT  
mV  
ISINK =4mA  
VI(-) = 0V  
NOTE 1  
700  
Output Leakage  
Current  
VO(P) = 5V  
VO(P) = 30V  
NOTE 1  
0.1  
1.0  
36  
0.1  
nA  
mA  
V
IO(LKG)  
VI(DIFF)  
VI(+) = 1V  
1.0  
36  
Differential Voltage  
Note 1.  
LM339/A: 0£TA£ +70°C  
LM239/A: -25£TA£ +85°C  
LM2901/3302: -40£TA£ +85°C  
LM239, LM339, LM2901, LM3302  
QUAD COMPARATOR  
ELECTRICAL CHARACTERISTICS  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
LM2901  
LM3302  
Characteristic  
Symbol  
Test Conditions  
Unit  
Min Typ Max Min Typ Max  
2
3
VCM =0V to VCC =1.5V  
VO(P) =1.4V, RS =0W  
2
9
2.3  
50  
57  
7
15  
50  
200  
250  
20  
40  
100  
300  
250  
1000  
VCC-1.5  
VIO  
IIO  
mV  
nA  
Input Offset Voltage  
Input Offset Current  
NOTE 1  
NOTE 1  
NOTE 1  
57  
IBIAS  
VI(R)  
ICC  
Input Bias Current  
nA  
V
200 500  
VCC-1.5  
Input Common Mode  
Voltage Range  
0
0
0
0
NOTE 1  
VCC-2  
2.0  
2.5  
VCC-2  
2.0  
1.1  
1.6  
25 100  
1.1  
RL =¥  
RL =¥ , VCC =30V  
Supply Current  
mA  
V/mV  
ns  
Voltage Gain  
Large Signal  
Response Time  
Response Time  
Output Sink Current  
Output Saturation  
Voltage  
Output Leakage  
Current  
GV  
2
6
30  
VCC =15V, RL³ 15KW(for large swing)  
VI =TTL Logic Swing  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
VI(-)³ 1V, VI(+) =0V, VO(P) £1.5V  
VI(-)³ 1V, VI(+) =0V  
ISINK =4mA  
VI(-) = 0V  
tRES  
350  
350  
tRES  
ISINK  
1.4  
18  
140 400  
700  
0.1  
1.4  
18  
140 400  
700  
ms  
mA  
6
VSAT  
mV  
NOTE 1  
VO(P) = 5V  
VO(P) = 30V  
0.1  
nA  
mA  
V
IO(LKG)  
VI(DIFF)  
VI(+) = 1V  
1.0  
1.0  
Differential Voltage  
NOTE 1  
36  
36  
Note 1.  
LM339/A: 0£TA£ +70°C  
LM239/A: -25£TA£ +85°C  
LM2901/3302: -40£TA£ +85°C  
LM239, LM339, LM2901, LM3302  
QUAD COMPARATOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM248, LM348  
QUAD OPERATIONAL AMPLIFIER  
QUAD OPERATIONAL AMPLIFIERS  
The LM248/LM348 is a true quad LM741. It consists of four independ-  
ent, high-gain, internally compensated, low-power operational amplifiers  
which have been designed to provide functional characteristics identical  
to those of the familiar LM741 operational amplifier. In addition the total  
supply current for all four amplifiers is comparable to the Supply current  
of a single LM741 type OP Amp.  
14 DIP  
Other features include input offset currents and input bias current which  
are much less than those of a standard LM741. Also, excellent isolation  
between amplifiers has been achieved by independently biasing each  
amplifier and using layout techniques which minimize thermal coupling.  
14 SOP  
FEATURES  
·
·
·
·
·
·
·
·
·
·
LM741 OP Amp operating characteristics  
Low supply current drain  
Class AB output stage-no crossover distortion  
Pin compatible with the LM324 & LM3403  
Low input offset voltage: 1mV Typ.  
Low input offset current: 4nA Typ.  
Low input bias current: 30nA Typ.  
Gain bandwidth product for LM348 (unity gain): 1.0MHz Typ.  
High degree of isolation between amplifiers: 120dB  
Overload protection for inputs and outputs  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM348N  
LM348M  
LM248N  
LM248M  
14 DIP  
14 SOP  
14 DIP  
14 SOP  
0 ~ +70°C  
-25 ~ +85 °C  
SCHEMATIC DIAGRAM (One Section Only)  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM248, LM348  
QUAD OPERATIONAL AMPLIFIER  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)  
Characteristic  
Supply Voltage  
Symbol  
Value  
Unit  
V
V
V
VCC  
VI(DIFF)  
VI  
±18  
36  
Differential Input Voltage  
Input Voltage  
±18  
Output Short Circuit Duration  
Operating Temperature KA248  
KA348  
Continuous  
- 25 ~ +85  
0~ +70  
- 65~ +150  
°C  
°C  
°C  
TOPR  
Storage Temperature  
TSTG  
ELECTRICAL CHARACTERISTICS  
(VCC =15V, VEE= -15V, TA=25 °C, unless otherwise specified)  
LM248  
LM348  
Characteristic  
Symbol  
Test Conditions  
RS£10KW  
Unit  
mV  
nA  
Min Typ Max Min Typ Max  
1
6.0  
7.5  
50  
1
6.0  
7.5  
50  
VIO  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
NOTE 1  
NOTE 1  
NOTE 1  
4
4
IIO  
125  
200  
500  
100  
200  
400  
30  
30  
IBIAS  
nA  
Input Resistance  
RI  
0.8  
25  
2.5  
2.4  
160  
0.8  
2.5  
2.4  
160  
MW  
Supply Current (all Amplifiers)  
ICC  
4.5  
4.5  
mA  
25  
15  
RL³ 2KW  
Large Signal Voltage Gain  
GV  
CS  
V/mV  
dB  
NOTE 1  
15  
Channel Separation  
Common Mode Input  
Voltage Range  
f = 1KHz to 20KHz  
120  
120  
±12  
±12  
VI(R)  
NOTE 1  
V
Small Signal Bandwidth  
Phase Margin  
BW  
MPH  
SR  
GV = 1  
GV = 1  
GV = 1  
1.0  
60  
1.0  
60  
MHz  
Degree  
V/ms  
Slew Rate  
0.5  
25  
0.5  
25  
Output Short Circuit Current  
ISC  
mA  
RL³ 10KW  
±12  
±10  
70  
±13  
±12  
90  
±12 ±13  
VO(P.P)  
NOTE 1  
Output Voltage Swing  
V
+0  
70  
77  
RL³ 2KW  
±12  
90  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
NOTE 1  
NOTE 1  
dB  
dB  
RS³ 10KW  
RS³ 10KW  
77  
96  
96  
NOTE 1  
LM348: 0 £ TA £ +70°C  
LM248: -25 £ TA £ +85 °C  
LM248, LM348  
QUAD OPERATIONAL AMPLIFIER  
TYPICAL PERFORMANCE CHARACTERISTICS  
Fig. 1 SUPPLY CURRENT  
Fig. 2 VOLTAGE SWING  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
Fig. 3 SOURCE CURRENT LIMIT  
Fig. 4 SINK CURRENT LIMIT  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
Fig. 5 OUTPUT IMPEDANCE  
Fig. 6 COMMON-MODE REJECTION RATIO  
LM248, LM348  
QUAD OPERATIONAL AMPLIFIER  
Fig. 7 OPEN LOOP FREGUENCV RESPONSE  
Fig. 8 BODE PLOT  
FREQUENCYN (Hz)  
FREQUENCY (MHz)  
Fig. 9 LARGE SIGNAL PULSE RESPONSE  
Fig. 10 SMALL SIGNAL PULSE RESPONSE  
Fig. 11 UNDISTORTED OUTPUT VOLTAGE SWING  
Fig. 12 INVERTING LARGE SIGNAL  
PULSE RESPONSE  
FREQUENCY (Hz)  
TIME (ms)  
LM248, LM348  
QUAD OPERATIONAL AMPLIFIER  
Fig. 13 INPUT NOISE VOLTAGE AND  
NOISE CURRENT  
Fig. 14 POSITIVE COMMON MODE INPUT  
VOLTAGE LIMIT  
FREQUENCY (Hz)  
POSITIVE SUPPLY (V)  
Fig. 15 NEGATIVE COMMON.MODE INPUT  
VOLTAGE LIMFY  
NEGATIVE SUPPLY VOLTS(V)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
DUAL OPERATIONAL AMPLIFIERS  
8 DIP  
The LM258 series consists of four independent, high gain, internally  
Frequency compensated operational amplifiers which were designed  
specifically to operate from a single power supply over a wide range  
of voltage.  
Operation from split power supplies is also possible and the low power  
Supply current drain is independent of the magnitude of the power Supply  
voltage. Application areas include transducer amplifier, DC gain blocks and  
all the conventional OP amp circuits which now can be easily implemented  
in single 8 SOP power supply system.  
FEATURES  
·
·
·
Internally frequency compensated for unity gain  
Large DC voltage gain: 100dB  
Wide power supply range: LM258/A, LM358/A: 3V~32V (or ±1.5V~16V)  
LM2904: 3V~26V (or ±1.5V~13V)  
9 SIP  
·
·
·
Input common-mode voltage range Includes ground  
Large output voltage swing: 0V DC to Vcc - 1.5V DC  
Power drain suitable for battery operation.  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
LM358N  
Package Operating Temperature  
SCHEMATIC DIAGRAM (One section only)  
8 DIP  
9 SIP  
8 SOP  
8 DIP  
9 SIP  
8 SOP  
LM358AN  
LM358S  
0 ~ + 70°C  
LM358AS  
LM358M  
LM358AM  
LM258N  
LM258AN  
LM258S  
-25 ~ + 85 °C  
-40 ~ + 85 °C  
LM258AS  
LM258M  
LM258AM  
LM2904N  
8 DIP  
9 SIP  
LM2904S  
LM2904M  
8 SOP  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Supply Voltage  
Symbol  
LM258/LM258A  
LM358/LM358A  
LM2904  
Unit  
VCC  
VI(DIFF)  
VI  
V
V
V
±16 or 32  
32  
±16 or 32  
32  
±13 or 26  
26  
Differential Input Voltage  
Input Voltage  
-0.3 to +32  
-0.3 to +32  
-0.3 to +26  
Output Short Circuit to GND  
Continuous  
Continuous  
Continuous  
VCC£V, TA = 25 °C(One Amp)  
TOPR  
TSTG  
-25 ~ + 85  
0 ~ + 70  
-40 ~ + 85  
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
-65 ~ + 150  
-65 ~ + 150  
-65 ~ + 150  
ELECTRICAL CHARACTERISTICS  
(VCC = 5.0V, VEE = GND, T = 25 °C, unless otherwise specified)  
LM258  
LM358  
LM2904  
Unit  
Characteristic  
Symbol  
Test Conditions  
VCM = 0V to VCC -1.5V  
Min Typ Max Min Typ Max Min Typ Max  
2.9 5.0 2.9 7.0 2.9 7.0 mV  
30 50 50 nA  
Input Offset Voltage  
Input Offset Current  
VIO  
VO(P) = 1.4V, RS = 0W  
IIO  
3
5
5
Input Bias Current  
Input Common-Mode  
Voltage Range  
IBIAS  
45 150  
45 250  
45 250 nA  
VCC = 30V  
VCC  
-1.5  
VCC  
-1.5  
VCC  
V
VI(R)  
0
0
0
(KA2904, VCC = 26V)  
RL = ¥ , VCC = 30V  
(KA2902, VCC = 26V)  
-1.5  
0.8 2.0  
0.5 1.2  
0.8 2.0  
0.5 1.2  
0.8 2.0 mA  
0.5 1.2 mA  
Supply Current  
ICC  
RL = ¥ ,over full temperature range  
Large Signal  
Voltage Gain  
VCC = 15V, RL³ 2KW  
VO(P) = 1V to 11V  
GV  
50 100  
25 100  
25 100  
V/mV  
VCC = 30V  
RL = 2KW  
26  
26  
22  
V
V
VO(H)  
VO(L)  
Output Voltage Swing  
RL = 10KW  
VCC = 26V for 2904  
27 28  
5
27 28  
5
23 24  
5
20  
20  
100 mV  
VCC = 5V, RL³ 10KW  
Common-Mode  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Channel Separation  
CMRR  
PSRR  
70 85  
65 80  
50 80  
dB  
65 100  
120  
65 100  
120  
50 100  
120  
dB  
dB  
CS  
ISC  
f = 1KHz to 20KHz  
Short Circuit to GND  
40 60  
40 60  
40 60 mA  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
ISOURCE  
10 30  
10 30  
10 30  
10 15  
mA  
mA  
mA  
V
Output Current  
10 15  
12 100  
10 15  
12 100  
ISINK  
VCC = 15V, VO(P) = 200mA  
Differential Input  
Voltage  
VI(DIFF)  
VCC  
VCC  
VCC  
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC=5.0V, VEE=GND, unless otherwise specified)  
The following specification apply over the range of - 25 °C £ TA £ + 85 °C for the KA258; and the 0 °C £ TA £ + 70 °C  
for the LM358; and the -40 °C £ TA £ +85 °C for the LM2904  
LM258  
LM358  
LM2904  
Unit  
Characteristic  
Symbol  
Test Conditions  
Min Typ Max Min Typ Max Min Typ Max  
VCM = 0V to VCC = 1.5V  
7.0  
9.0  
10.0  
Input Offset Voltage  
VIO  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Voltage  
Drift  
7.0  
7.0  
7.0  
VIO  
IIO  
RS = 0W  
mV/ °C  
nA  
100  
300  
150  
500  
45 200  
10  
Input Offset Current  
Input Offset Current  
Drift  
10  
40  
10  
40  
DIIO/DT  
IBIAS  
VI(R)  
pA/ °C  
nA  
40 500  
Input Bias Current  
Input Common-Mode  
Voltage Range  
Large Signal Voltage  
Gain  
VCC = 30V  
VCC  
=2.0  
VCC  
=2.0  
VCC  
=2.0  
0
0
0
V
(KA2904,VCC = 26V)  
VCC = 15V, RL³ 2.0KW  
VO(P) = 1V to 11V  
25  
15  
15  
GV  
V/mV  
VCC = 30V  
26  
27  
26  
27  
26  
27  
RL = 2KW  
V
V
VO(H)  
VO(L)  
Output Voltage Swing  
VCC = 26V for 2904  
28  
5
28  
5
28  
RL = 10KW  
20  
20  
5
20  
VCC = 5V, RL³ 10KW  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 0V, VI(-) = 1V  
VCC = 15V, VO(P) = 2V  
mV  
10  
5
30  
8
10  
5
30  
9
10  
5
30  
ISOURCE  
mA  
mA  
V
Output Current  
9
ISINK  
Differential Input  
Voltage  
VCC  
VCC  
VCC  
VI(DIFF)  
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS  
(VCC = 5.0V. VEE=GND. TA=25 °C, unless otherwise specified)  
LM258A  
LM358A  
Symbol  
Unit  
Test Conditions  
Characteristic  
Min Typ Max MIn Typ Max  
VCM = 0V to VCC = 1.5V  
Input Offset Voltage  
VIO  
1.0  
3.0  
2.0 3.0  
30  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Current  
Input Bias Current  
Input Common-Mode  
Voltage Range  
IIO  
2
15  
80  
5
nA  
nA  
IBIAS  
40  
45 100  
VCC  
VCC  
=1.5  
2.0  
VI(R) VCC = 30V  
0
0
V
=1.5  
0.8  
0.5  
0.8 2.0  
mA  
mA  
RL = ¥ ,VCC = 30V  
Supply Current  
ICC  
GV  
1.2  
0.5 1.2  
RL = ¥ ,over full temperature range  
VCC = 15V, RL³ 2KW  
VO = 1V to 11V  
Large Signal Voltage Gain  
50 100  
26  
25 100  
26  
V/mV  
VCC = 30V  
V
V
RL = 2KW  
VOH  
Output Voltage Swing  
VCC = 26V for 2904  
VCC = 5V, RL³ 10KW  
27  
28  
5
27  
28  
5
RL = 10KW  
VO(L)  
20  
60  
20  
60  
mV  
dB  
dB  
dB  
mA  
Common-Mode Rejection Ratio CMRR  
70  
85  
65  
85  
Power Supply Rejection Ratio  
Channel Separation  
PSRR  
CS  
65 100  
120  
65 100  
120  
f = 1KHz to 20KHz  
Short Circuit to GND  
ISC  
40  
40  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
Vin + = 0V, Vin - = 1V  
VO(P) = 200mV  
20  
10  
30  
15  
20  
10  
30  
15  
mA  
mA  
ISOURCE  
Output Current  
ISINK  
12 100  
12 100  
mA  
Differential Input Voltage  
VI(DIFF)  
VCC  
VCC  
V
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS (VCC = 5.0V, VEE = GND. unless otherwise specified)  
The following specification apply over the range of -25 °C £ TA £ +85 °C for the LM258A; and the 0 °C £ TA £ +70 °C  
for the LM358A  
LM258A  
LM358A  
Test Conditions  
Characteristic  
Symbol  
Unit  
Min  
Typ  
Max  
4.0  
Min  
Typ  
Max  
5.0  
VCM = 0V to VCC = 1.5V  
Input Offset Voltage  
VIO  
mV  
VO(P) = 1.4V, RS = 0W  
Input Offset Voltage Drift  
Input Offset Current  
7.0  
15  
30  
7.0  
20  
75  
DVIO/DT  
IIO  
mV/ °C  
nA  
Input Offset Current Drift  
10  
40  
200  
10  
40  
300  
DIIO/DT  
IBIAS  
pA/ °C  
nA  
Input Bias Current  
Input Common-Mode  
Voltage Range  
100  
Vcc  
=2.0  
200  
Vcc  
=2.0  
VI(R)  
VCC = 30V  
0
0
V
VCC = 30V  
VCC = 30V  
26  
27  
26  
27  
V
V
RL = 2KW  
VO(H)  
Output Voltage Swing  
28  
5
28  
5
RL = 10KW  
VO(L)  
GV  
20  
20  
mV  
VCC = 5V, RL³ 10KW  
VCC = 15V, RL³ 2.0KW  
VO(P) = 1V to 11V  
Large Signal Voltage Gain  
25  
10  
5
15  
10  
5
V/mV  
mA  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
VI(+) = 1V, VI(-) = 0V  
VCC = 15V, VO(P) = 2V  
ISOURCE  
30  
9
30  
9
Output Current  
ISINK  
mA  
V
Differential Input Voltage  
VI(DIFF)  
VCC  
VCC  
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
TYPICAL PERFORMANCE CHARACTERISTICS  
LM258/A, LM358/A, LM2904  
DUAL OPERATIONAL AMPLIFIER  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
KA293/A, LM393/A (KA393/A), LM2903 (KA2903)  
DUAL DIFFERENTIAL COMPARATOR  
DUAL COMPARATOR  
8 DIP  
The LM/KA293 series consists of two independent voltage comparators  
designed to operate from a single power supply over a wide voltage  
range.  
FEATURES  
·
·
·
·
·
·
·
·
Single Supply Operation: 2V to 36V  
Dual Supply Operation: ± 1V to ±18V  
Allow Comparison of Voltages Near Ground Potential  
Low Current Drain 800mA Typ  
Compatible with all Forms of Logic  
Low Input Bias Current 25nA Typ  
Low Input Offset Current ±5nA WP  
Low Offset Voltage ±1mV Typ  
8 SOP  
9 SIP  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM393N (KA393)  
LM393AN (KA393A)  
KA393S  
8 DIP  
0 ~ + 75°C  
9 SIP  
8 SOP  
8 DIP  
9 DIP  
8 SOP  
KA393AS  
LM393M (KA393D)  
KA393AD  
KA293  
KA293A  
KA293S  
KA293AS  
-25 ~ + 85°C  
-40 ~ + 85°C  
KA293D  
KA293AD  
KA2903  
8 DIP  
8 SOP  
9 SIP  
KA2903D  
KA2903S  
Rev. C  
ã
1999 Fairchild Semiconductor Corporation  
 
KA293/A, LM393/A (KA393/A), LM2903 (KA2903)  
SCHEMATIC DIAGRAM  
DUAL COMPARATOR  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Power Supply Voltage  
Symbol  
Value  
Unit  
VCC  
VI(DIFF)  
VI  
V
V
V
±18 or 36  
36  
Differential Input Voltage  
Input Voltage  
- 0.3 to +36  
Continuous  
570  
Output Short Circuit to GND  
Power Dissipation  
Operating Temperature  
LM393/LM393A  
PD  
mW  
0 ~ + 70  
- 25 ~ + 85  
- 40 ~ + 85  
- 65 ~ + 150  
TOPR  
°C  
LM293/LM293A  
LM2903  
°C  
Storage Temperature  
TSTG  
KA293/A, LM393/A (KA393/A), LM2903 (KA2903)  
DUAL COMPARATOR  
ELECTRICAL CHARACTERISTICS (VCC =5V, TA=25°C, unless otherwise specified)  
LM293A/LM393A  
LM293/LM393  
Characteristic  
Test Conditions  
VCM =0V to VCC =1.5V  
Unit  
Symbol  
VIO  
Min Typ Max Min Typ Max  
±1  
±5  
65  
±2  
±1  
±5  
65  
±5  
Input Offset Voltage  
mV  
nA  
nA  
V
NOTE 1  
NOTE 1  
NOTE 1  
NOTE 1  
VO(P) =1.4V, RS =0W  
±4.0  
±50  
±9.0  
±50  
IIO  
Input Offset Current  
Input Bias Current  
±150  
250  
±150  
250  
IBIAS  
VI(R)  
400  
400  
VCC-1.5  
VCC-1.5  
Input Common Mode  
Voltage Range  
0
0
0
0
VCC-2  
VCC-2  
0.6  
0.8  
1
0.6  
0.8  
1
RL = ¥  
mA  
V/mV  
ns  
Supply Current  
Voltage Gain  
ICC  
GV  
2.5  
2.5  
RL = ¥ , VCC = 30V  
50 200  
50 200  
VCC =15V, RL³ 15KW (for large VO(P-P)swing  
)
Large Signal Response  
Time  
VI =TTL Logic Swing  
350  
350  
tRES  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
Response Time  
tRES  
ISINK  
1.4  
1.4  
ms  
Output Sink Current  
6
18  
6
18  
mA  
VI(-)³ 1V, VI(+) =0V, VO(P)£1.5V  
VI(-)³ 1V, VI(+) =0V  
160 400  
700  
160  
400  
700  
VSAT  
Output Saturation Voltage  
mV  
ISINK = 4mA  
VI(-) = 0V,  
VI(+) = 1V  
NOTE 1  
VO(P) = 5V  
VO(P) = 30V  
0.1  
0.1  
nA  
IO(LKG)  
Output Leakage Current  
1.0  
1.0  
mA  
NOTE 1  
LM393/A: 0£TA£ +70°C  
LM293/A: -25£TA£ +85°C  
LM2903: -40£TA£ +85°C  
KA293/A, LM393/A (KA393/A), LM2903 (KA2903)  
DUAL COMPARATOR  
ELECTRICAL CHARACTERISTICS (VCC =5V, TA=25°C, unless otherwise specified)  
LM2903  
Typ  
Characteristic  
Symbol  
Test Conditions  
VCM =0V to VCC =1.5V  
Unit  
Min  
Max  
±1  
±9  
±7  
±15  
mV  
nA  
nA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VIO  
IIO  
IBIAS  
VI(R)  
NOTE 1  
NOTE 1  
NOTE 1  
NOTE 1  
VO(P) =1.4V, RS =0W  
±5  
±50  
±50  
65  
±200  
250  
500  
Input Common Mode  
Voltage Range  
0
0
VCC-1.5  
VCC-2  
1
0.6  
1
RL = ¥  
Supply Current  
Voltage Gain  
ICC  
GV  
mA  
2.5  
RL = ¥ , VCC = 30V  
25  
6
100  
V/mV  
VCC =15V, RL³ 15KW(for large VO(P-P)swing  
)
Large Signal Response  
Time  
VI =TTL Logic Swing  
tRES  
350  
ns  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
Response Time  
tRES  
ISINK  
1.5  
16  
ms  
Output Sink Current  
mA  
VI(-)³ 1V, VI(+) =0V, VO(P) £1.5V  
VI(-)³ 1V, VI(+) =0V  
160  
400  
700  
VSAT  
Output Saturation Voltage  
mV  
ISINK = 4mA  
VI(-) = 0V,  
VI(+) = 1V  
NOTE 1  
VO(P) = 5V  
VO(P) = 30V  
0.1  
nA  
IO(LKG)  
Output Leakage Current  
1.0  
mA  
NOTE 1  
LM393/A: 0£TA£ +70°C  
LM293/A: -25£TA£ +85°C  
LM2903: -40£TA£ +85°C  
KA293/A, LM393/A (KA393/A), LM2903 (KA2903)  
TYPICAL PERFORMANCE CHARACTERISTICS  
DUAL COMPARATOR  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench®  
QFET™  
TinyLogic™  
UHC™  
VCX™  
CoolFET™  
CROSSVOLT™  
2
E CMOS™  
FACT™  
FACT Quiet Series™  
FAST  
FASTr™  
GTO™  
HiSeC™  
QS™  
®
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at any  
time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product that has  
been discontinued by Fairchild semiconductor. The  
datasheet is printed for reference information only.  
LM293/A, LM393/A, LM2903  
DUAL COMPARATOR  
DUAL DIFFERENTIAL COMPARATOR  
8 DIP  
The LM293 series consists of two independent voltage comparators  
designed to operate from a single power supply over a wide voltage  
range.  
FEATURES  
·
·
·
·
·
·
·
·
Single Supply Operation: 2V to 36V  
Dual Supply Operation: ± 1V to ±18V  
Allow Comparison of Voltages Near Ground Potential  
Low Current Drain 800mA Typ  
Compatible with all Forms of Logic  
Low Input Bias Current 25nA Typ  
Low Input Offset Current ±5nA WP  
Low Offset Voltage ±1mV Typ  
8 SOP  
9 SIP  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM393N  
LM393AN  
LM393S  
8 DIP  
0 ~ + 75°C  
9 SIP  
8 SOP  
8 DIP  
9 DIP  
8 SOP  
LM393AS  
LM393M  
LM393AM  
LM293N  
LM293AN  
LM293S  
LM293AS  
LM293M  
LM293AM  
LM2903N  
LM2903M  
LM2903S  
-25 ~ + 85°C  
-40 ~ + 85°C  
8 DIP  
8 SOP  
9 SIP  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM293/A, LM393/A, LM2903  
DUAL COMPARATOR  
SCHEMATIC DIAGRAM  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Power Supply Voltage  
Symbol  
Value  
Unit  
VCC  
VI(DIFF)  
VI  
V
V
V
±18 or 36  
36  
Differential Input Voltage  
Input Voltage  
- 0.3 to +36  
Continuous  
570  
Output Short Circuit to GND  
Power Dissipation  
Operating Temperature  
LM393/LM393A  
PD  
mW  
0 ~ + 70  
- 25 ~ + 85  
- 40 ~ + 85  
- 65 ~ + 150  
TOPR  
°C  
LM293/LM293A  
LM2903  
°C  
Storage Temperature  
TSTG  
LM293/A, LM393/A, LM2903  
DUAL COMPARATOR  
ELECTRICAL CHARACTERISTICS (VCC =5V, TA=25°C, unless otherwise specified)  
LM293A/LM393A  
LM293/LM393  
Unit  
Characteristic  
Test Conditions  
VCM =0V to VCC =1.5V  
Symbol  
VIO  
Min Typ Max Min Typ Max  
±1  
±5  
65  
±2  
±4.0  
±50  
±150  
250  
400  
±1  
±5  
65  
±5  
Input Offset Voltage  
mV  
nA  
nA  
V
NOTE 1  
NOTE 1  
NOTE 1  
NOTE 1  
VO(P) =1.4V, RS =0W  
±9.0  
±50  
IIO  
Input Offset Current  
Input Bias Current  
±150  
250  
IBIAS  
VI(R)  
400  
V
CC-1.5  
VCC-1.5  
Input Common Mode  
Voltage Range  
0
0
0
0
VCC-2  
VCC-2  
0.6  
0.8  
1
0.6  
0.8  
1
RL = ¥  
mA  
V/mV  
ns  
Supply Current  
Voltage Gain  
ICC  
GV  
2.5  
2.5  
RL = ¥ , VCC = 30V  
50 200  
50 200  
VCC =15V, RL³ 15KW (for large VO(P-P)swing  
)
Large Signal Response  
Time  
VI =TTL Logic Swing  
350  
350  
tRES  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
Response Time  
tRES  
ISINK  
1.4  
1.4  
ms  
Output Sink Current  
6
18  
6
18  
mA  
VI(-)³ 1V, VI(+) =0V, VO(P)£1.5V  
VI(-)³ 1V, VI(+) =0V  
160 400  
700  
160  
400  
700  
VSAT  
Output Saturation Voltage  
mV  
ISINK = 4mA  
VI(-) = 0V,  
VI(+) = 1V  
NOTE 1  
VO(P) = 5V  
VO(P) = 30V  
0.1  
0.1  
nA  
IO(LKG)  
Output Leakage Current  
1.0  
1.0  
mA  
NOTE 1  
LM393/A: 0£TA£ +70°C  
LM293/A: -25£TA£ +85°C  
LM2903: -40£TA£ +85°C  
LM293/A, LM393/A, LM2903  
DUAL COMPARATOR  
ELECTRICAL CHARACTERISTICS (VCC =5V, TA=25°C, unless otherwise specified)  
LM2903  
Typ  
Characteristic  
Symbol  
Test Conditions  
VCM =0V to VCC =1.5V  
Unit  
Min  
Max  
±1  
±9  
±7  
±15  
mV  
nA  
nA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VIO  
IIO  
IBIAS  
VI(R)  
NOTE 1  
NOTE 1  
NOTE 1  
NOTE 1  
VO(P) =1.4V, RS =0W  
±5  
±50  
±50  
65  
±200  
250  
500  
Input Common Mode  
Voltage Range  
0
0
VCC-1.5  
VCC-2  
1
0.6  
1
RL = ¥  
Supply Current  
Voltage Gain  
ICC  
GV  
mA  
2.5  
RL = ¥ , VCC = 30V  
25  
6
100  
V/mV  
VCC =15V, RL³ 15KW(for large VO(P-P)swing  
)
Large Signal Response  
Time  
VI =TTL Logic Swing  
tRES  
350  
ns  
VREF =1.4V, VRL =5V, RL =5.1KW  
VRL =5V, RL =5.1KW  
Response Time  
tRES  
ISINK  
1.5  
16  
ms  
Output Sink Current  
mA  
VI(-)³ 1V, VI(+) =0V, VO(P) £1.5V  
VI(-)³ 1V, VI(+) =0V  
160  
400  
700  
VSAT  
Output Saturation Voltage  
mV  
ISINK = 4mA  
VI(-) = 0V,  
VI(+) = 1V  
NOTE 1  
VO(P) = 5V  
VO(P) = 30V  
0.1  
nA  
IO(LKG)  
Output Leakage Current  
1.0  
mA  
NOTE 1  
LM393/A: 0£TA£ +70°C  
LM293/A: -25£TA£ +85°C  
LM2903: -40£TA£ +85°C  
LM293/A, LM393/A, LM2903  
DUAL COMPARATOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM311 (KA311)  
SINGLE COMPARATOR  
8 DIP  
VOLTAGE COMPARATOR  
The LM311 series is a monolithic, low input current  
voltage comparator.  
The device is also designed to operate from dual or  
single supplies voltage  
FEATURE  
·
·
·
·
·
·
Low input bias current : 250nA (Max)  
Low input offset current : 50nA (Max)  
Differential Input Voltage : ±30V.  
Power supply voltage : single 5.0V supply to ±15V.  
Offset voltage null capability.  
8 SOP  
Strobe capability.  
BLOCK DIAGRAM  
ORDERING IN FORMATION  
Device  
LM311N  
LM311M  
Package  
8 DIP  
Operating Temperature  
0 ~ +70°C  
8 SOP  
SCHEMATIC DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM311 (KA311)  
SINGLE COMPARATOR  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
Total Supply Voltage  
VCC  
VO - VEE  
VEE  
VI(DIFF)  
VI  
36  
40  
-30  
V
V
V
V
V
Output to Negative Supply Voltage KA311  
Ground to Negative voltage  
Differential Input Voltage  
Input Voltage  
30  
±15  
Output Short Circuit Duration  
Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
sec  
mW  
°C  
°C  
10  
500  
0 ~ +70  
- 65 ~ +150  
PD  
TOPR  
TSTG  
ELECTRICAL CHARACTERISTICS (VCC = 15V, TA = 25°C, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
RS£50KW  
Min  
Typ  
Max  
Unit  
mV  
nA  
1.0  
7.5  
10  
Input Offset Voltage  
VIO  
IIO  
NOTE 1  
NOTE 1  
NOTE 1  
NOTE 2  
6
50  
Input Offset Current  
70  
100  
250  
300  
nA  
IBIAS  
Input Bias Current  
Voltage Gain  
GV  
40  
200  
200  
0.75  
V/mV  
ns  
Response Time  
tRES  
1.5  
0.4  
IO =50mA, VI£-10mV  
Saturation Voltage  
VSAT  
V
VCC³ 4.5V, VEE = 0V  
0.23  
ISINK =8mA, VI³ -10mV, NOTE 1  
Strobe “NO” Current  
ISTR(ON)  
ISINK  
3
mA  
nA  
ISTR =3mA, VI³ 10mV  
VO(P) =35V, VEE =VGND =-5V  
Output Leakage Current  
0.2  
50  
-14.5  
to 13.0  
-14.7  
to 13.8  
3.0  
Input Voltage Range  
VI(R)  
NOTE 1  
V
Positive Supply Current  
Negative Supply Current  
Strobe Current  
ICC  
IEE  
7.5  
mA  
mA  
mA  
-2.2  
3
-5.0  
ISTR  
NOTE 1. 0 £ TA £ +70°C  
2. The response time specified is for a 100mV input step with 5mV over drive.  
LM311 (KA311)  
SINGLE COMPARATOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
LM311 (KA311)  
SINGLE COMPARATOR  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM317L (KA317)  
ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)  
3-TERMINAL 0.1A POSITIVE ADJUSTABLE  
REGULATOR  
TO-92  
The LM317L is a 3-terminal adjustable positive voltage regulator  
capable of supplying in excess of 100mA over an output voltage  
range of 1 .2V to 37V. This voltage regulator is exceptionally  
easy to use and requires only two external resistors to set the  
output voltage.  
1:Adj 2:Output 3:Input  
ORDERING INFORMATION  
FEATURES  
· Output current in excess of 100mA  
· Output adjustable between 1.2V and 37V  
· Internal thermal-overload protection  
· Internal short-circuit current-limiting  
· Output transistor safe-area compensation  
· Floating operation for high-voltage applications  
Device  
Package Operating Temperature  
0 ~ 125°C  
LM317LZ  
TO-92  
BLOCK DIAGRAM  
Vin 3  
+
-
Protection  
Circuitry  
Voltage  
Reference  
Rlimit  
2
Vo  
1
Vadj  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM317L (KA317)  
ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)  
ABLOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
Input-Output Voltage Differential  
Power Dissipation  
VI - VO  
PD  
40  
V
Internally limited  
0 ~ +125  
W
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
TOPR  
TSTG  
-65 ~+125  
ELECTRICAL CHARACTERISTICS  
(VI - VO = 5V, IO = 40mA, 0°C £ TJ £ +125°C, PDMAX = 625mW, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TA = +25°C  
Min  
Typ  
Max  
Unit  
0.01  
0.02  
0.04  
0.07  
*Line Regulation  
DVO  
%/V  
3V £ VI £ VO £ 40V  
3V £ VI £ VO £ 40V  
TA = +25°C  
10mA £ IO £100mA  
VO £ 5V  
5
0.1  
25  
0.5  
mV  
*Load Regulation  
DVO  
%/ VO  
VO ³ 5V  
10mA £ IO £ 100mA  
VO £ 5V  
20  
70  
mV  
0.3  
1.5  
%/ VO  
VO ³ 5V  
Adjustment Pin Current  
IADJ  
50  
100  
mA  
3V £ VI - VO £ 40V  
10mA £ IO £ 100mA  
PD < PDMAX  
Adjustment Pin Current  
Change  
0.2  
5
DIADJ  
mA  
3V < VI - VO <40V  
10mA £ IO £100mA  
PD £ PDMAX  
Reference Voltage  
VREF  
1.20  
1.25  
1.30  
10  
V
Temperature Stability  
STT  
0.7  
3.5  
%
Minimum Load Current to  
Maintain Regulation  
IL(MIN)  
VI - VO = 40V  
mA  
VI - VO = 5V  
PD < PDMAX  
100  
25  
200  
50  
VI - VO = 40V  
PD < PDMAX, TA = +25°C  
TA =+ 25°C  
%/ VO  
eN  
0.003  
RMS Noise, % of VOUT  
10Hz < f <10KHz  
VO = 10V, f = 120Hz  
without CADJ  
65  
80  
Ripple Rejection  
RR  
ST  
66  
dB  
CADJ = 10mF  
Long-Term Stability  
0.3  
TJ = +125 °C, 1000 Hours  
%
* Load and Line regulation are specified at constant junction temperature. Change in VO due to heating effects  
must be taken into account separately. Pulse testing with low duty cycle is used.  
LM317L (KA317)  
ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)  
TYPICAL APPLICATIONS  
Fig. 1 5V Electronic Shutdown Regulator  
KA317L  
D1 protects the device during an input short circuit.  
Fig. 2 Slow Turn-On Regulator  
KA317L  
LM317L (KA317)  
ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)  
Fig. 3 Current Regulator  
KA317L  
PACKAGE DIMENSION  
LM317L (KA317)  
ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM337 (KA337) ADJUSTABLE VOLTAGE REGULATOR (NEGATIVE)  
3-TERMINAL 1.5A NEGATIVE ADJUSTABLE REGULATOR  
TO-220  
The LM337 is a 3-terminal negative adjustable regulator.  
It supply in excess of 1.5A over an output voltage range of  
-1.2V to - 37V. This regulator requires only two external  
resistor to set the output voltage. Included on the chip are  
current limiting, thermal overload protection and safe area  
compensation.  
FEATURES  
· Output current In excess of 1.5A  
· Output voltage adjustable between -1.2V and - 37V  
· Internal thermal-overload protection  
1:Adj 2:Intput 3:Output  
· Internal short-circuit current limiting  
· Output transistor safe-area compensation  
· Floating operation for high-voltage applications  
· Standard 3-pin TO-220 package  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
LM337T  
TO-220  
0 ~ + 125°C  
BLOCK DIAGRAM  
Vin 3  
+
-
Protection  
Circuitry  
Voltage  
Reference  
Rlimit  
2
Vo  
1
Vadj  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM337 (KA337) ADJUSTABLE VOLTAGE REGULATOR (NEGATIVE)  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
Input-Output Voltage Differential  
Power Dissipation  
VI - VO  
PD  
40  
V
Internally limited  
0 ~ +125  
W
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
TOPR  
TSTG  
-65 ~+125  
ELECTRICAL CHARACTERISTICS  
(VI - VO = 5V, IO = 40mA, 0°C £ TJ £ +125°C, PDMAX = 20W, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TA = +25°C  
Min  
Typ  
Max  
Unit  
0.01  
0.04  
Line Regulation  
VO  
%/ V  
- 40V £VO - VI £ -3V  
0.02  
15  
0.07  
50  
- 40V £ VO - VI £ -3V  
TA = +25°C  
10mA £ IO £0.5A  
Load Regulation  
VO  
mV  
15  
50  
150  
100  
10mA £ IO £1.5A  
Adjustable Pin Current  
Adjustable Pin Current  
IADJ  
mA  
mA  
TA =+ 25°C  
10mA £ IO £1.5A  
- 40V £ VO - VI £ -3V  
2
DIADJ  
5
-1.213  
-1.200  
-1.250  
-1.250  
-1.287  
-1.300  
TA =+ 25°C  
Reference Voltage  
VREF  
STT  
V
- 40V £ VO - V I £ -3V  
10mA £ IO £ 1.5A  
Temperature Stability  
Minimum Load Current  
to Maintain Rejection  
0.6  
2.5  
1.5  
%
10  
6
- 40V £ VO - VI £ -3V  
mA  
- 10V £ VO - VI £ -3V  
TA =+25°C 10Hz £ f £10KHz  
Output Noise  
en  
V/106  
3 ´ VOUT  
60  
Ripple Rejection Ratio  
VO = -10V, f = 120Hz  
CADJ = 10mF  
66  
77  
dB  
%
Long Term Stability  
ST  
0.3  
1
TJ = 125°C ,1000Hours  
Thermal Resistance  
Junction to Case  
REJC  
4
°C/ W  
.
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects  
must be taken into account separately. Pulse testing with low duty is used  
LM337 (KA337) ADJUSTABLE VOLTAGE REGULATOR (NEGATIVE)  
TYPICAL APPLICATIONS  
Fig. 1 Programmable Regulator  
IPROG  
R2  
+
+
Ci  
0. 1mF  
Co  
1mF  
Iadj  
R1  
Vadj  
VI  
Vo  
-VI  
KA337  
-Vo  
* Ci is required if regulator is located more then 4  
inches from power supply filter.  
A 1.0mF solid tantalum or 10mF aluminum electrolytic is recommended.  
Co is necessary for stability. A 1.0mF solid tantalum or 10mF aluminum electrolytic  
is recommended.  
VO = -1.25V (1+ R / R1  
)
2
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LF353 (LM353, KA353)  
DUAL OPERATIONAL AMPLIFIER (JFET)  
DUAL OPERATIONAL AMPLIFER  
8 DIP  
The LF353 is a JFET input operational amplifier with an internally  
compensated input offset voltage. The JFET input device provides  
with bandwidth, low input bias currents and offset currents.  
FEATURES  
·
·
·
·
·
Internally trimmed offset voltage: 10mV  
Low input bias current: 50pA  
Wide gain bandwidth: 4MHz  
High slew rate: 13V/ms  
8 SOP  
High Input impedance: 1012  
W
BLOCK DIAGRAM  
ORDERING IN FORMATION  
Device  
LF353N  
LF353M  
LF353S  
Package Operating Temperature  
i
8 DIP  
8 SOP  
9 SIP  
0 ~ + 70°C  
SCHEMATIC DIAGRAM (One Section Only)  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LF353 (LM353, KA353)  
DUAL OPERATIONAL AMPLIFIER (JFET)  
ABSOLUTE MAXIMUM RATINGS  
Characteristics  
Symbol  
Value  
Unit  
Power Supply Voltage  
VCC  
VI(DIFF)  
VI  
V
V
V
±18  
30  
Differential Input Voltage  
Input Voltage Range  
±15  
Output Short Circuit Duration  
Power Dissipation  
Continuous  
500  
PD  
mW  
°C  
0 ~ +70  
-65 ~ +150  
Operating Temperature Range  
Storage Temperature Range  
TOPR  
TSTG  
°C  
ELECTRICAL CHARACTERISTICS  
(VCC =+15V, VEE= -15V, TA=25 °C, unless otherwise specified)  
Characteristic  
Input Offset Voltage  
Symbol  
Test Conditions  
RS=10KW  
Min  
Typ  
Max  
Unit  
5.0  
10  
VIO  
DVIO/DT  
IIO  
mV  
0 °C £TA£+70 °C  
Input Offset Voltage Drift  
Input Offset Current  
10  
25  
RS=10KW  
0 °C £TA£+70 °C  
0 °C £TA£+70 °C  
0 °C £TA£+70 °C  
mV/ °C  
pA  
100  
4
nA  
50  
200  
8
pA  
IBIAS  
RI  
Input Bias Current  
Input Resistance  
nA  
1012  
100  
W
25  
15  
VO(P-P) = ±0V  
RL = 2KW  
V/mV  
Large Signal Voltage Gain  
GV  
0 °C £TA£+70 °C  
Output Voltage Swing  
Input Voltage Range  
VO(P.P)  
VI(R)  
V
V
RL = 10KW  
±12  
±11  
70  
±13.5  
±15/-12  
100  
100  
3.6  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Power Supply Current  
Slew Rate  
CMRR  
PSRR  
ICC  
dB  
RS³ 10KW  
RS³ 10KW  
70  
dB  
6.5  
mA  
V/ms  
MHz  
SR  
GV = 1  
13  
Gain-Bandwidth Product  
GBM  
4
f = 1Hz ~ 20Khz  
(Input referenced)  
Channel Seperation  
CS  
120  
120  
dB  
RS = 100W  
f = 1KHz  
f = 1KHz  
Hz  
nV/Ö  
Equivalent Input Noise Voltage  
Equivalent Input Noise Current  
VNI  
INI  
16  
16  
Hz  
pA/Ö  
0.01  
0.01  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM442/A  
DUAL OPERATIONAL AMPLIFIER (JFET)  
DUAL JFET INPUT OPERATIONAL  
8 DIP  
FEATURES  
9 SIP  
·
·
·
·
·
Low supply current: 400pA MAX  
Low input bias Current: 50pA MAX  
Low input offset voltage: 1mV MAX  
High slew rate: 1V/ms  
High gain bandwidth: 1MHz  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package Operating Temperature  
LM442N  
LM442AN  
LM442S  
LM442AS  
8 DIP  
9 SIP  
0 ~ +70°C  
SCHEMATIC DIAGRAM (One Section Only)  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM442/A  
DUAL OPERATIONAL AMPLIFIER (JFET)  
ABSOLUTE MAXIMUM RATINGS  
Characteristics  
Symbol  
Value  
Unit  
Power Supply Voltage LM442  
LM442A  
±18  
±20  
VCC  
V
Differential Input Voltage  
Input Voltage range  
VI(DIFF)  
VI  
V
V
30  
±15  
Output Short Circuit Duration  
Power Dissipation  
Continuous  
670  
PD  
mW  
°C  
Operating Temperature Range LM442/A  
Storage Temperature Range  
TOPR  
TSTG  
0 ~ + 70  
-65 ~ + 150  
°C  
ELECTRICAL CHARACTERISTICS  
(TA=25 °C, unless otherwise specified)  
LM442A  
LM442  
Typ  
Unit  
Characteristic  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Min  
Max  
0.5  
1.0  
1.0  
5.0  
7.5  
RS =10KW  
mV  
VIO  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Offset Current  
Note 1  
7
5
10  
25  
15  
50  
30  
7
5
DVIO/DT RS = 10KW  
mV/ °C  
50  
15  
pA  
IIO  
Note 1  
Note 1  
Note 1  
10  
10  
100  
30  
IBIAS  
pA  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
50  
25  
200  
200  
25  
15  
200  
200  
RL = 10KW  
GV  
V/mV  
VO(P.P)= ±0V  
Output Voltage Swing  
Input Voltage Range  
VO(P-P)  
VI(R)  
V
V
RS = 10KW  
±17  
±18  
+18  
-17  
±12  
±13  
+15  
-12  
±16  
80  
±11  
Common-Mode Rejection  
Ratio  
RS£10KW  
RS£10KW  
CMRR  
PSRR  
100  
70  
95  
90  
dB  
dB  
Power Supply Rejection  
Ratio  
80  
100  
70  
Input Resistance  
Supply Current  
RI  
1012  
300  
1
1012  
W
mA  
ICC  
SR  
400  
400  
1
500  
Slew Rate  
0.8  
0.8  
0.6  
0.6  
V/mS  
MHz  
Gain Bandwidth Product  
1
1
f = 1Hz-20KHz  
(input referenced)  
Channel Separation  
CS  
VNI  
INI  
120  
35  
120  
35  
dB  
nV/  
Ö Hz  
Equivalent Input Noise  
Voltage  
RS = 100W  
f = 1KHz  
Equivalent Input Noise  
Current  
pA /  
Ö Hz  
f = 1KHz  
0.01  
0.01  
NOTE 1. LM442/A : 0£TA£+70 °C  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM555/I  
SINGLE TIMER  
SINGLE TIMER  
8 DIP  
The LM555/I is a highly stable controller capable of producing accurate  
timing pulses. With monostable operation, the time delay is controlled  
by one external and one capacitor. With astable operation, the frequency  
and duty cycle are accurately controlled with two external resistors and  
one capacitor.  
FEATURES  
·
·
·
·
·
High Current Drive Capability (= 200mA)  
Adjustable Duty Cycle  
Temperature Stability of 0.005%/°C  
Timing From mSec To Hours  
8 SOP  
Turn Off Time Less Than 2mSec  
APPLICATIONS  
· Precision Timing  
·
·
Pulse Generation  
Time Delay Generation  
·
Sequential Timing  
ORDERING INFORMATION  
Device  
LM555CN  
LM555CM  
Package  
8 DIP  
Operating Temperature  
0 ~ +70°C  
8 SOP  
LM555CIN 8 DIP  
LM555CIM 8 SOP  
-40 ~ +85°C  
BLOCK DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM555/I  
SINGLE TIMER  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)  
Characteristic  
Supply Voltage  
Symbol  
Value  
Unit  
VCC  
TLEAD  
PD  
16  
V
Lead Temperature (soldering 10sec)  
300  
°C  
Power Dissipation  
600  
mW  
°C  
°C  
Operating Temperature Range LM555C  
LM555CI  
0 ~ + 70  
- 40 ~ + 85  
- 65 ~ + 150  
TOPR  
TSTG  
°C  
Storage Temperature Range  
ELECTRICAL CHARACTERISTICS  
(TA = 25°C, VCC = 5 ~ 15V, unless otherwise specified)  
Characteristic  
Supply Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VCC  
4.5  
16  
6
V
Supply Current  
*1(low stable)  
3
mA  
mA  
VCC = 5V, RL = ¥  
VCC = 15V, RL = ¥  
ICC  
7.5  
15  
*Timing Error  
(Monostable)  
2Initial Accuracy  
Drift with Temperature  
Drift with Supply Voltage  
RA = 1KW to  
100KW  
C = 0.1mF  
ACCUR  
Dt/DT  
1.0  
50  
%
ppm/°C  
%/V  
3.0  
0.5  
Dt/DVCC  
0.1  
*Timing Error  
(astable)  
RA = 1KW to 100KW  
C = 0.1mF  
2Intial Accuracy  
Drift with Temperature  
Drift with Supply Voltage  
ACCUR  
Dt/DT  
%
ppm/°C  
%/V  
2.25  
150  
0.3  
Dt/DVCC  
VCC = 15V  
VCC = 5V  
VCC = 15 V  
VCC = 5V  
9.0  
2.6  
10.0  
3.33  
10.0  
3.33  
0.1  
11.0  
4.0  
V
V
Control Voltage  
VC  
V
VTH  
Threshold Voltage  
V
*3Threshold Current  
Trigger Voltage  
Trigger Voltage  
Trigger Current  
Reset Voltage  
mA  
V
ITH  
VTR  
VTR  
ITR  
0.25  
2.2  
5.6  
2.0  
1.0  
0.4  
VCC = 5V  
VCC = 15V  
VTR = 0V  
1.1  
4.5  
1.67  
5
V
0.01  
0.7  
mA  
V
VRST  
IRST  
0.4  
Reset Current  
0.1  
mA  
LM555/I  
SINGLE TIMER  
ELECTRICAL CHARACTERISTICS  
(TA = 25°C, VCC = 5 ~ 15V, unless otherwise specified)  
Test  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VCC = 15V  
ISINK = 10mA  
ISINK = 50mA  
VCC = 5V  
0.06  
0.3  
0.25  
0.75  
V
V
Low Output Voltage  
VOL  
ISINK = 5mA  
0.05  
0.35  
V
VCC = 15V  
ISOURCE = 200mA  
ISOURCE = 100mA  
VCC = 5V  
12.5  
13.3  
V
V
High Output Voltage  
VOH  
12.75  
2.75  
ISOURCE = 100mA  
3.3  
100  
100  
20  
V
Rise Time of Output  
tR  
tF  
ns  
ns  
nA  
Fall Time of Output  
Discharge Leakage Current  
ILKG  
100  
Notes:  
1. Supply current when output is high is typically 1mA less at VCC = 5V  
2. Tested at VCC = 5.0V and VCC = 15V  
3. This will determine maximum value of RA + RB for 15V operation, the max. total R = 20MW, and for 5V operation the  
max. total R = 6.7MW  
APPLICATION CIRCUIT  
LM555/I  
SINGLE TIMER  
APPLICATION NOTE  
The application circuit shows astable mode.  
Pin 6 (threshold) is tied to Pin 2 (trigger) and Pin 4 (reset) is tied to VCC (Pin 8).  
The external capacitor C1 of Pin 6 and Pin 2 charges through RA, RB and discharges through RB only.  
In the internal circuit of the LM555 one input of the upper comparator is the 2/3 VCC (*R1 =R2=R3, another input if it  
If it is connected Pin 6.  
As soon as charging C1 is higher than 2/3 Vcc, discharge transistor Q1 turns on and C1 discharges to collector of  
transistor Q1.  
Therefore, the flip-flop circuit is reset and output is low.  
One input of lower comparator is the 1/3 VCC, discharge transistor Q1 turn off and C1 charges through RA and RB.  
Therefore, the flip-flop circuit is set and output is high.  
So to say, when C1 charges through RA and R1 output is high and when C1 discharges through RB output is low.  
The charge time (output is high) T1 is 0.693 (RA+RB) C1 and the discharge time (output is low) T2 is 0.693 (RB C1).  
VCC-1/3VCC  
VCC-2/3VCC  
(In  
= 0.693)  
Thus the total period time T is given by  
T=T1 +T2 = 0.693 (RA +2RB) C1.  
Then the frequency of astable mode is given by  
1
T
1.44  
(RA + 2RB)C1  
f =  
=
The duty cycle is given by  
RB  
RA + 2RB  
T2  
T
D.C =  
=
If you make use of the LM556 you can make two astable modes.  
LM555/I  
SINGLE TIMER  
Astable Operation  
The LM555 can free run as a mulitivibrator by triggering itself; refer to Fig.2. The output can swing from VDD to GND and have  
50 duty cycle square wave. Less than 1% frequency deviation can be observed, over a voltage range of 2 to 5V. f-1/1.4RC  
VCC  
O
10KW  
GND  
VCC  
1
2
8
7
O
TRIGGER  
/ / /  
DISCHARGE  
THRESHOLD  
·
O
ALTERNATE  
OUTPUT  
LM555C  
OUTPUT  
·
O
3
4
6
5
O
VCC  
RESET  
·
·
Fig. 1. Astable Operation  
C
/ / /  
Monostable Operation  
The LM555 can be used as a one-short, i.e. monostable multivibrator. Initially, because the inside discharge transistor is on  
state, external timing capacitor is held to GND potential. Upon application of a negative TRIGGER pulse pin 2, the intern  
discharge transistor is off state and the voltage across the capacitor increases with time constant T = RAC and OUTPUT  
goes to high state. When the voltage across the capacitor equals 2/3VCC the inner comparator is reset by THRESHOLD  
input and the discharge transistor goes to on state, which in turn discharges the capacitor rapidly and drives the OUTPUT  
to its low state.  
VCC  
( 18V)  
O
RA  
8
1
2
3
4
·
/ / /  
DISCHARGE  
THRESHOLD  
TRIGGER  
O
7
6
·
·
LM555C  
OUTPUT  
CONTROL  
VOLTAGE  
RESET  
O
5
OPTION  
CAPACITOR  
C
/ / /  
/ / /  
Fig. 2. Monostable Operation  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM556/I  
DUAL TIMER  
DUAL TIMER  
14 DIP  
The LM556/I series dual monolithic timing circuits are a highly stable  
controller capable of producing accurate time delays or oscillation.  
The LM556 is a dual LM555. Timing is provided an external resistor  
and capacitor for each timing function.  
The two timers operate independently of each other, sharing only  
VCC and ground.  
The circuits may be triggered and reset on falling wave forms. The  
output structures may sink or source 200mA.  
FEATURES  
·
·
·
·
·
·
Replaces Two LM555C Timers  
Operates in Both Astable and Monostable Modes  
High Output Current  
TTL Compatible  
Timing From Microsecond to Hours  
Adjustable Duty Cycle  
· Temperature Stability Of 0.005% Per °C  
ORDERING INFORMATION  
Device  
LM556CN  
LM556ICN  
Package  
14 DIP  
Operating Temperature  
0 ~ + 70°C  
APPLICATIONS  
·
·
·
·
·
Precision Timing  
Pulse Shaping  
Pulse Width Modulation  
Frequency Division  
Traffic Light Control  
14 DIP  
-40 ~ + 85°C  
· Sequential Timing  
Pulse Generator  
·
· Time Delay Generator  
· Touch Tone Encoder  
· Tone Burst Generator  
BLOCK DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM556/I  
DUAL TIMER  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)  
Characteristic  
Symbol  
Value  
Unit  
Supply Voltage  
VCC  
TLEAD  
PD  
16  
V
Lead Temperature (soldering 10sec)  
Power Dissipation  
300  
°C  
600  
mW  
Operating Temperature Range LM556  
LM556I  
0 ~ + 70  
- 40 ~ + 85  
°C  
°C  
TOPR  
TSTG  
Storage Temperature Range  
- 65 ~ + 150  
°C  
ELECTRICAL CHARACTERISTICS  
(TA = 25°C, VCC = 5 ~ 15V, unless otherwise specified)  
Characteristic  
Supply Voltage  
Symbol  
VCC  
Test Conditions  
Min  
Typ  
Max  
Unit  
4.5  
16  
12  
30  
V
5
mA  
mA  
*1 Supply Current (two timers)  
(low state)  
VCC = 5V, RL = ¥  
VCC = 15V, RL = ¥  
ICC  
16  
*2 Timing Error (monostable)  
Initial Accuracy  
Drift with Temperature  
Drift with Supply Voltage  
RA = 2kW to 100kW  
C = 0.1mF  
T = 1.1RC  
ACCUR  
Dt/DT  
%
0.75  
50  
ppm/°C  
%/V  
Dt/DVCC  
0.1  
VCC = 15V  
VCC = 5V  
VCC = 15V  
VCC = 5V  
9.0  
2.6  
8.8  
2.4  
10.0  
3.33  
10.0  
3.33  
30  
11.0  
4.0  
11.2  
4.2  
250  
5.6  
2.2  
2.0  
1.0  
0.6  
V
V
Control Voltage  
VC  
V
Threshold Voltage  
VTH  
V
ITH  
nA  
V
*3 Threshold Voltage  
VCC = 15V  
VCC = 5V  
VTH = 0V  
4.5  
1.1  
5.0  
Trigger Voltage  
VTR  
1.6  
V
Trigger Current  
*5 Reset Voltage  
Reset Current  
ITR  
VRST  
IRST  
0.01  
0.6  
mA  
V
0.4  
0.03  
mA  
VCC = 15V  
ISINK = 10mA  
ISINK = 50mA  
ISINK = 100mA  
ISINK = 200mA  
VCC = 5V  
0.1  
0.4  
2.0  
2.5  
0.25  
0.75  
3.2  
V
V
V
V
Low Output Voltage  
VOL  
ISINK = 8mA  
ISINK = 5mA  
0.25  
0.15  
0.35  
0.25  
V
V
LM556/I  
DUAL TIMER  
ELECTRICAL CHARACTERISTICS  
(TA = 25°C, VCC = 5 ~ 15V, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VCC = 15V  
ISOURCE = 200mA  
ISOURCE = 100mA  
VCC = 5V  
12.5  
13.3  
V
V
High Output Voltage  
VOH  
12.75  
2.75  
ISOURCE = 100mA  
3.3  
100  
100  
10  
V
Rise Time of Output  
tR  
t F  
300  
300  
100  
ns  
ns  
nA  
Fall Time of Output  
Discharge Leakage Current  
ILKG  
*4 Matching Characteristics  
Initial Accuracy  
Drift with Temperature  
Drfit with Supply Voltage  
ACCUR  
Dt/DT  
%
1.0  
10  
0.2  
2.0  
0.5  
ppm/°C  
%/V  
Dt/DVCC  
*2 Timing Error (astable)  
Initial Accuracy  
Drift with Temperature  
Drift with Supply Voltage  
RA,RB = 1kW to 100kW  
C = 0.1mF  
VCC = 15V  
ACCUR  
%
2.25  
150  
0.3  
Dt/DT  
ppm/°C  
%/V  
Notes:  
*1. Supply current when output is high is typically 1.0mA less at VCC = 5V  
*2. Tested at VCC = 5V and VCC = 15V  
*3. This will determine the maximum value of RA + RB for 15V operation.  
The maximum total R = 20MW, and for 5V operation the maximum total R = 6.6MW.  
*4. Matching characteristics refer to the difference between performance characteristics of each timer section in  
the monostable mode.  
*5. As reset voltage lowers, timing is inhibited and then the output goes low.  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM710/I  
SINGLE COMPARATOR  
HIGH SPEED VOLTAGE COMPARATOR  
14 DIP  
The LM710/I is a high speed voltage comparator intended for use as an  
accurate, low-level digital level sensor or as a replacement for oper-  
ational amplifiers in comparator applications where speed is of prime  
importance.  
The output of the comparator is compatible with all integrated logic  
forms.  
The LM710/I is useful as pulse height discriminators. a variable threshold  
Schmitt trigger, voltage comparator in high-speed A/D converters, a  
memory sense amplifier or a high noise immunity line receiver.  
14SOP  
FEATURES  
l
l
l
Low offset voltage: 5mV  
High gain: 1000 V/V  
High speed: 40ns Typ  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
Package Operating Temperature  
LM710N  
14 DIP  
14 SOP  
14 DIP  
14 SOP  
0 ~ 70°C  
LM710M  
LM710IN  
LM710IM  
-25 ~ 85°C  
SCHEMATIC DIAGRM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM710/I  
SINGLE COMPARATOR  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
Unit  
Positive Supply Voltage  
Negative Supply Voltage  
Peak Output Current  
Output Short Circuit Duration  
Differential Input Voltage  
Input Voltage  
VCC  
VEE  
IPK  
+14  
-7  
10  
10  
5
V
V
mA  
Sec  
V
VI(DIFF)  
VI  
V
± 7  
Power Dissipation  
Operating Temperature Range LM710  
LM710I  
PD  
mW  
°C  
°C  
°C  
500  
0 ~ + 70  
- 25 ~ + 85  
- 65 ~ + 150  
TSTG  
TSTG  
Storage Temperature Range  
ELECTRICAL CHARACTERISTICS (VCC = +12V, VEE= -6V, T = 25°C, unless otherwise specified)  
Characteristics  
Symbol  
Test Conditions  
LM710I  
Typ  
LM710  
Typ  
UNIT  
Min  
Max  
2.0  
3.0  
3.0  
7.0  
20  
Min  
Max  
Input Offset voltage  
VIO  
IIO  
IBIAS  
Gv  
Note1  
Note 2  
0.6  
1.6  
5.0  
6.5  
5.0  
7.5  
25  
mV  
nA  
RS£200W,  
Input Offset Current  
(Note 1)  
NOTE 1  
0.75  
1.8  
1.8  
Note 2  
Note 2  
Note 2  
Input Bias Current  
5.0  
7.0  
25  
nA  
27  
45  
40  
Large Signal Voltage Gain  
Input Voltage Range  
1250  
1800  
1000 1700  
V/V  
VI(R)  
VCC = -7V  
V
dB  
V
± 5.0  
80  
± 5.0  
Common Mode Rejection Ratio CMRR  
95  
70  
± 5.0  
2.5  
94  
RS£200W, NOTE 2  
Differential Input Voltage Range  
Positive Output Level  
Negative Output Level  
Output Sink Current  
VID(R)  
VO(H)  
VO(L)  
ISINK  
ICC  
± 5.0  
2.5  
2.9  
-0.5  
2.2  
4.7  
4.0  
80  
4.0  
0
2.9  
-0.5  
2.2  
4.7  
4.0  
4.0  
0
V
0 £ IO £5mA, VI ³ 5mV  
VI³ 5mV  
-1.0  
2.0  
-1.0  
1.6  
V
mA  
mA  
mA  
mV  
ns  
VO(P) =0V, VI ³ 5mV  
Positive Supply Current  
Negative Supply Current  
Power Consumption  
9.0  
7.0  
150  
9.0  
7.0  
150  
V
O(P) £ 0V  
IEE  
VO(P) = 0V, VI = 5mV  
VO(P) = 0V, VI =10mV  
(Note 3)  
PD  
Response Time  
tRES  
40  
40  
Note 1. The input offset voltage and input offset current are specified for a logic threshold voltage as follows:  
For 710I, 1.65V at -25°C, 1.4V at +25°C, 1.15V at +85°C. For 710, 1.5V at 0°C, 1.4V at +25°C, 1.2V at +70°C.  
Note 2. LM710: 0£ TA£ +70°C  
LM710I:-25£ TA£ +85°C  
Note 3. The response time specified is a 100mV input step with 5mV overdrive (LM710).  
LM710/I  
SINGLE COMPARATOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM711/I  
DUAL COMPARATOR  
DUAL HIGH-SPEED DIFFERENT  
COMPARATOR  
14 DIP  
The LM711/l consists of two voltage comparators with the  
separate differential inputs, a common output and provision  
for strobing each side independently. The device features  
high accuracy, fast response, low offset voltage, a large input  
voltage range, low power consumption and compatibility with  
practically all integrated logic forrns.  
The LM711/I can be used as a sense amplifier for memories,  
and a dual comparator with OR'ed outputs is required, such  
as a double-ended limit detector.  
14 SOP  
FEATURES  
·
·
·
·
Fast response time: 40ns (Typ)  
Output compatible with most TTL circuits  
Independent strobing of each comparator  
Low offset voltage  
ORDERING INFORMATION  
Device  
Package  
14 DIP  
Operating Temperature  
BLOCK DIAGRAM  
LM711N  
LM711M  
LM711IN  
LM711IM  
0 ~ + 70°C  
14 SOP  
14 DIP  
-25 ~ + 85°C  
14 SOP  
SCHEMATIC DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM711/I  
DUAL COMPARATOR  
ABSOLUTE MAXIMUM RATINGS (TA=25°C)  
Characteristic  
Positive Supply Voltage  
Negative Supply Voltage  
Differential Input Voltage  
Input Voltage  
Symbol  
Value  
Unit  
VCC  
VEE  
VI(DIFF)  
VI  
+14  
-7  
5
V
V
V
V
±7  
Storbe Voltage  
Peak Output Current  
Continuous Total Power Dissipation  
Operating Temperature Range LM711  
LM711I  
VSTR  
IO(P)  
PD  
V
mA  
mW  
0 ~ 6  
50  
500  
0 ~ + 70  
-65 ~ + 150  
-25 ~ + 85  
TOPR  
TSTG  
°C  
°C  
Storage Temperature Range  
ELECTRICAL CHARACTERISTICS  
(VCC = +12V, VEE = -6V, TA=25°C, unless otherwise specified)  
LM711I  
Typ  
LM711  
Typ  
Characteristic  
Input Offset Voltage  
Symbol  
Test Conditions  
Unit  
mV  
mA  
Min  
Max  
3.5  
4.5  
10.0  
20  
Min  
Max  
5.0  
6.0  
15  
RS£200W, VCH =0V  
1.0  
1.0  
VIO  
IIO  
VO(P)=1.4V  
VO(P)=1.4V  
Note 2  
Note 2  
Note 2  
Note 2  
Input Offset Current  
(Note 1)  
0.5  
0.5  
25  
25  
25  
75  
100  
150  
mA  
IBIAS  
GV  
VI(R) VEE = -7.0V  
Input Bias Current  
150  
750  
500  
1500  
700  
500  
1500  
Large Signal Voltage Gain  
Input Voltage Range  
V/V  
V
V
±5.0  
±5.0  
±5.0  
±5.0  
Differential Input Voltage Range VID(R)  
Output Resistance  
RO  
VO(H)  
VO(L)  
VOH  
VSTR  
ISINK  
ICC  
200  
4.5  
200  
4.5  
W
Output Voltage (High)  
Output Voltage (Low)  
Loaded Output High Level  
Strobed Output Level  
Output Sink Current  
Positive Supply Current  
Negative Supply Current  
Strobe Current  
5.0  
0
5.0  
0
V
VI³ 10mV  
VI£10mV  
-1.0  
2.5  
-1.0  
2.5  
-0.5  
3.5  
V
3.5  
mA  
V
VI³ 5mV, IO = 5mA  
VSTROBE³ 3V  
-1.0  
0.5  
0
-1.0  
0.5  
0
0.8  
8.6  
3.9  
1.2  
130  
40  
0.8  
8.6  
3.9  
1.2  
130  
40  
mA  
mA  
mA  
mA  
mW  
ns  
ns  
VI³ 10mV, VO(P) ³ 0V  
VO(P) =0V, VI = 10mV  
VO(P) =0V, VI =5mV  
VSTROBE = 100mV  
VO(P) =0V, VI³ 10mV  
(NOTE 1)  
IEE  
ISTR  
PD  
2.5  
2.5  
Power Consumption  
Response Time  
200  
230  
tRES  
TRE  
Strobe Release Time  
12  
12  
Note: 1. The response time specified is for a 100mV input step with 10mV overdrive  
2. LM711: 0£TA£ +70°C  
LM711I: -25£TA£ +85°C  
3. The input offset voltage and input offset current are specified for a logic threshold voltage of 711I, 1.65V  
at -25°C, 1.4V at +25°C, 1.15V at +85°C, for 711, 1.5V at 0°C, 1.4V at +25°C, 1.2V at +70°C.  
LM711/I  
DUAL COMPARATOR  
TYPICAL APPLICATIONS  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
SINGLE OPERATIONAL AMPLIFIERS  
8 DIP  
The LM741 series are general purpose operational amplifiers which  
feature improved performance over industry standards like the LM709.  
It is intended for a wide range of analog applications.  
The high gain and wide range of operating voltage provide superior  
performance in integrator, summing amplifier, and general feedback  
applications.  
8 SOP  
FEATURES  
·
·
·
·
·
Short circuit protection  
Excellent temperature stability  
Internal frequency compensation  
High Input voltage range  
Null of offset  
BLOCK DIAGRAM  
ORDERING INFORMATION  
Device  
LM741N  
Package  
Operating Temperature  
8 DIP  
LM741EN  
LM741M  
0 ~ + 70°C  
8 SOP  
8 DIP  
LM741EM  
LM741IN  
LM741EIN  
LM741IM  
LM741EIM  
-40 ~ +85 °C  
8 SOP  
SCHEMATIC DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
ABSOLUTE MAXIMUM RATINGS (TA=25°C)  
Characteristic  
Supply Voltage  
Symbol  
LM741  
LM741E  
LM741I  
Unit  
VCC  
VI(DIFF)  
VI  
V
V
V
±18  
30  
±22  
30  
±18  
30  
Differential Input Voltage  
Input Voltage  
±15  
±15  
±15  
Output Short Circuit Duration  
Power Dissipation  
Indefinite  
500  
Indefinite  
500  
Indefinite  
500  
PD  
mW  
°C  
Operating Temperature Range  
Storage Temperature Range  
TOPR  
TSTG  
0 ~ + 70  
-65 ~ + 150  
0 ~ + 70  
-65 ~ + 150  
-40 ~ + 85  
-65 ~ + 150  
°C  
ELECTRICAL CHARACTERISTICS  
(VCC = 15V, VEE = - 15V. TA = 25 °C, unless otherwise specified)  
LM741E  
LM741/LM741I  
Characteristic  
Symbol  
VIO  
Test Conditions  
RS£10KW  
Unit  
Min  
Typ Max Min Typ Max  
2.0  
6.0  
Input Offset Voltage  
mV  
mV  
0.8  
3.0  
RS£50W  
Input Offset Voltage  
Adjustment Range  
VIO(R)  
VCC = ±20V  
±10  
±15  
Input Offset Current  
Input Bias Current  
Input Resistance  
IIO  
IBIAS  
RI  
3.0  
30  
30  
80  
20  
80  
200  
500  
nA  
nA  
MW  
V
1.0  
6.0  
±13  
0.3  
2.0  
±13  
VCC =±20V  
RL³ 2KW  
Input Voltage Range  
VI(R)  
±12  
±12  
VCC =±20V,  
VO(P.P) =±15V  
VCC =±15V,  
VO(P.P) =±10V  
50  
Large Signal Voltage Gain  
Output Short Circuit Current  
V/mV  
mA  
GV  
20  
200  
25  
ISC  
10  
25  
35  
RL³ 10KW  
RL³ 10KW  
RL³ 10KW  
RL³ 10KW  
±16  
±15  
VCC = ±20V  
VCC = ±15V  
Output Voltage Swing  
VO(P.P)  
V
±12  
±10  
70  
±14  
±13  
90  
RS£10KW, VCM = ±12V  
RS£50KW, VCM = ±12V  
VCC = ±15V to VCC = ±15V  
RS£50W  
Common Mode Rejection Ratio CMRR  
dB  
dB  
80  
86  
95  
96  
Power Supply Rejection Ratio  
PSRR  
VCC = ±15V to VCC = ±15V  
RS£10KW  
77  
96  
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
ELECTRICAL CHARACTERISTICS (Continued)  
LM741E  
LM741/LM741I  
Characteristic  
Symbol  
Test Conditions  
Unit  
Min Typ Max Min Typ Max  
Transient  
Rise Time  
Overshoot  
tR  
0.25  
6.0  
1.5  
0.7  
0.8  
20  
0.3  
10  
ms  
%
Unity Gain  
Response  
OS  
BW  
SR  
ICC  
Bandwidth  
Slew Rate  
0.43  
0.3  
MHz  
V/ms  
mA  
Unity Gain  
RL= ¥ W  
0.5  
Supply Current  
1.5 2.8  
80  
150  
VCC = ±20V  
VCC = ±15V  
mW  
Power Consumption  
PC  
50  
85  
ELECTRICAL CHARACTERISTICS  
( -40 °C £TA£85 °C for the KA741I °C £TA£70 °C for the LM741 and LM741E. VCC = ±15V, unless otherwise specified)  
LM741E  
LM741/LM741I  
Characteristic  
Symbol  
Test Conditions  
RS£50W  
Unit  
Min Typ Max Min Typ Max  
4.0  
mV  
Input Offset Voltage  
VIO  
7.5  
RS£10KW  
Input Offset Voltage Drift  
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
15  
DVIO/DT  
IIO  
mV/ °C  
nA  
70  
0.5  
300  
0.8  
DIIO/DT  
IBIAS  
nA/ °C  
mA  
0.21  
Input Resistance  
RI  
0.5  
VCC = ±20V  
MW  
V
Input Voltage Range  
VI(R)  
±12 ±13  
±16  
±12 ±13  
RS³ 10KW  
RS³ 2KW  
RS³ 10KW  
RS³ 2KW  
VCC =±20V  
VCC =±15V  
±15  
Output Voltage Swing  
VO(P.P)  
V
±12 ±14  
±10 ±13  
10  
Output Short Circuit Current  
ISC  
10  
40  
40  
mA  
dB  
70  
90  
RS£10KW, VCM = ±12V  
RS£50KW, VCM = ±12V  
VCC = ±20V RS£50W  
Common Mode Rejection Ratio CMRR  
80  
86  
95  
96  
dB  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
PSRR  
77  
15  
96  
to ±5V  
RS£10KW  
32  
VCC = ±20V,  
VO(P-P) = ±15V  
VCC = ±15V,  
VO(P.P) = ±10V  
VCC = ±15V,  
VO(P-P) = ±2V  
V/mV  
GV  
RS³ 2KW  
10  
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
TYPICAL PERFORMANCE CHARACTERISTICS  
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
LM741/E/I  
SINGLE OPERATIONAL AMPLIFIER  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
3-TERMINAL 1A POSITIVE  
VOLTAGE REGULATORS  
TO-220  
The LM78XX series of three-terminal positive regulators are available in  
the TO-220/D-PAK package and with several fixed output voltages, making  
them useful in a wide range of applications. Each type employs internal  
current limiting, thermal shut-down and safe area protection, making it  
essentially indestructible. If adequate heat sinking is provided, they can  
deliver over 1A output current. Although designed primarily as fixed voltage  
D-PAK  
regulators, these devices can be used with external components to obtain  
adjustable voltages and currents.  
1
FEATURES  
1: Input 2: GND 3: Output  
·
·
·
·
·
Output Current up to 1A  
Output Voltages of 5, 6, 8, 9, 10, 11, 12, 15, 18, 24V  
Thermal Overload Protection  
Short Circuit Protection  
Output Transistor SOA Protection  
ORDERING INFORMATION  
Output Voltage  
Tolerance  
Packag  
e
Operating Temperature  
Device  
KA78XXCT  
KA78XXAT  
KA78XXIT  
KA78XXR  
KA78XXAR  
KA78XXIR  
± 4%  
0 ~ +125 °C  
-40 ~ +125 °C  
0 ~ +125 °C  
TO-220  
± 2%  
± 4%  
D-PAK  
± 2%  
± 4%  
-40 ~ +125 °C  
BLOCK DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage (for VO = 5V to 18V)  
(for VO = 24V)  
VI  
VI  
35  
40  
5
V
V
Thermal Resistance Junction-Cases  
RqJC  
RqJA  
°C/W  
°C/W  
Thermal Resistance Junction-Air  
65  
°C  
°C  
Operating Temperature Range KA78XX/A/R/RA  
KA78XXI/RI  
0 ~ +125  
-40 ~ +125  
-65 ~ +150  
TOPR  
TSTG  
Storage Temperature Range  
°C  
LM7805/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN < TJ < TMAX, IO = 500mA, VI = 10V, CI= 0.33mF, CO= 0.1mF, unless otherwise specified)  
LM7805I  
LM7805  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
4.8 5.0 5.2 4.8 5.0 5.2  
Output Voltage  
VO  
V
5.0mA £ IO £1.0A, PO £ 15W  
VI = 7V to 20V  
VI = 8V to 20V  
4.75 5.0 5.25  
4.75 5.0 5.25  
VO = 7V to 25V  
4.0 100  
1.6 50  
4.0 100  
1.6 50  
Line Regulation  
DVO  
mV  
TJ=+25°C  
VI = 8V to 12V  
IO = 5.0mA to1.5A  
TJ=+25°C  
9
4
100  
50  
8
9
4
100  
50  
8
Load Regulation  
DVO  
mV  
mA  
IO =250mA to 750mA  
Quiescent Current  
IQ  
5.0  
5.0  
TJ =+25 °C  
IO = 5mA to 1.0A  
VI= 7V to 25V  
VI= 8V to 25V  
IO= 5mA  
0.03 0.5  
0.03 0.5  
0.3 1.3  
Quiescent Current Change  
mA  
DIQ  
0.3 1.3  
-0.8  
Output Voltage Drift  
Output Noise Voltage  
-0.8  
42  
DVO/DT  
mV/ °C  
mV/Vo  
VN  
42  
f = 10Hz to 100Khz, TA=+25 °C  
f = 120Hz  
VO = 8 to 18V  
Ripple  
Rejection  
RR  
62 73  
62 73  
dB  
Dropout Voltage  
VO  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ =+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
15  
15  
230  
2.2  
230  
2.2  
VI = 35V, TA =+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects  
must be taken into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7806/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN <TJ <TMAX, IO=500mA, VI= 11V CI= 0.33mF, CO= 0.1mF, unless otherwise specified)  
LM7806I  
Typ Max Min Typ  
LM7806  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min  
Max  
5.75  
6.0  
6.25 5.75 6.0  
6.25  
Output Voltage  
VO  
V
5.0mA £ IO £1.0A, PD £ 15W  
VI = 8.0V to 21V  
5.7  
6.0  
6.3  
5.7  
6.0  
5
6.3  
120  
60  
VI = 9.0V to 21V  
VI = 8V to 25V  
TJ=+25 °C  
5
1.5  
9
120  
60  
DVO  
Line Regulation  
mV  
VI = 9V to 13V  
1.5  
9
IO =5mA to 1.5A  
TJ=+25 °C  
120  
60  
120  
60  
Load Regulation  
DVO  
mV  
mA  
IO =250mA to750A  
3
3
Quiescent Current  
IQ  
5.0  
8
5.0  
8
TJ =+25 °C  
IO = 5mA to 1A  
VI = 8V to 25V  
VI = 9V to 25V  
IO = 5mA  
0.5  
0.5  
1.3  
Quiescent Current Change  
mA  
DIQ  
1.3  
Output Voltage Drift  
Output Noise Voltage  
-0.8  
45  
-0.8  
45  
DVO/DT  
mV/ °C  
mV/VO  
VN  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 9V to 19V  
Ripple  
Rejection  
RR  
59  
75  
59  
75  
dB  
Dropout Voltage  
VD  
RD  
ISC  
IPK  
2
2
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
19  
19  
mW  
mA  
A
250  
2.2  
250  
2.2  
VI= 35V, TA=+25°C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7808/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test Circuit, TMIN <TJ< TMAX, IO = 500mA, VI = 14V, CI = 0.33mF, CO= 0.1mF, unless otherwise specified)  
LM7808I  
Min Typ Max Min Typ  
LM7808  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Max  
7.7 8.0  
8.3  
7.7 8.0  
7.6 8.0  
8.3  
Output Voltage  
VO  
V
5.0mA £ IO £ 1.0A, PO £ 15W  
VI = 10.5V to 23V  
8.4  
7.6 8.0  
5.0  
8.4  
160  
80  
VI = 11.5V to 23V  
VI = 10.5V to 25V  
5.0  
2.0  
10  
160  
80  
TJ =+ 25°C  
DVO  
Line Regulation  
mV  
VI = 11.5V to 17V  
2.0  
IO = 5.0mA to 1.5A  
10  
160  
80  
160  
80  
DVO  
mV  
mA  
Load Regulation  
TJ = +25°C  
IO= 250mA to 750mA  
TJ =+25 °C  
5.0  
5.0  
5.0  
0.05  
0.5  
Quiescent Current  
IQ  
5.0  
8
8
IO = 5mA to 1.0A  
0.05 0.5  
0.5  
1.0  
Quiescent Current Change  
VI = 10.5A to 25V  
mA  
DIQ  
VI = 11.5V to 25V  
0.5  
-0.8  
52  
1.0  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-0.8  
52  
DVO/DT  
mV/ °C  
mV/Vo  
VN  
f = 10Hz to 100Khz, TA =+25 °C  
Ripple  
Rejection  
f = 120Hz, VI= 11.5V to 21.5  
RR  
56 73  
56  
73  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
17  
17  
230  
2.2  
230  
2.2  
VI= 35V, TA =+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7809/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit. TMIN < TJ <TMAX, IO= 500mA, VI= 15V, CI = 0.33mF, CO = 0.1mF. unless otherwise specified)  
LM7809I  
LM7809  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
8.65  
8.6  
9
9.35 8.65  
9
9
9.35  
9.4  
Output Voltage  
VO  
V
5.0mA £ IO £1.0A, PD £15W  
VI= 11.5V to 24V  
VI = 12.5V to 24V  
8.6  
9.4  
9
6
2
VI = 11.5V to 25V  
180  
90  
6
2
180  
90  
DVO  
Line Regulation  
mV  
TJ=+25 °C  
VI = 12V to 25v  
IO = 5mA to 1.5A  
TJ=+25 °C  
12 180  
12 180  
DVO  
mV  
mA  
Load Regulation  
IO = 250mA to 750mA  
4
90  
8
4
90  
8
Quiescent Current  
IQ  
5.0  
5.0  
TJ=+25 °C  
IO = 5mA to 1.0A  
VI = 11.5V to 26V  
VI = 12.5V to 26V  
IO = 5mA  
0.5  
0.5  
1.3  
Quiescent Current Change  
mA  
DIQ  
1.3  
Output Voltage Drift  
Output Noise Voltage  
-1  
-1  
DVO/DT  
mV/ °C  
mV/VO  
VN  
58  
58  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 13V to 23V  
Ripple  
Rejection  
RR  
56 71  
56 71  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
17  
17  
250  
2.2  
250  
2.2  
VI= 35V, TA =+25 °C  
TJ= +25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7810/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN <TJ <TMAX, IO= 500mA, VI =16V, CI = 0.33mF, CO= 0.1mF, unless otherwise specified)  
LM7810I  
LM7810  
Characteristic  
Symbol  
Unit  
Test Conditions  
TJ =+25 °C  
Min Typ Max Min Typ Max  
9.6 10  
10.4 9.6 10  
10.4  
10.5  
Output Voltage  
VO  
V
5.0mA £ IO£1.0A, PD £15W  
VI = 12.5V to 25V  
VI= 13.5V to 25V  
9.5 10  
10.5  
9.5 10  
VI = 12.5V to 25V  
TJ =+25°C  
10  
3
200  
100  
200  
400  
8
10  
3
200  
100  
200  
400  
8
Line Regulation  
DVO  
mV  
mV  
mA  
VI = 13V to 25V  
IO = 5mA to 1.5A  
12  
4
12  
4
Load Regulation  
TJ =+25°C  
DVO  
IO = 250mA to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.1  
5.1  
IO = 5mA to 1.0A  
VI = 12.5V to 29V  
VI = 13.5V to 29V  
IO = 5mA  
0.5  
0.5  
1.0  
Quiescent Current Change  
mA  
DIQ  
1.0  
Output Voltage Drift  
Output Noise Voltage  
-1  
-1  
DVO/DT  
mV/ °C  
mV/Vo  
VN  
58  
58  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 13V to 23V  
Ripple  
Rejection  
RR  
56 71  
56 71  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
17  
17  
250  
2.2  
250  
2.2  
VI = 35V, TA=+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7811/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN<TJ<TMAX, IO = 500mA, VI=18V, CI=0.33mF, CO = 0.ImF, unless otherwise specified)  
LM7811I  
LM7811  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
10.6 11  
11.4 10.6 11  
11.4  
11.5  
Output Voltage  
VO  
V
5.0mA £ IO £1.0A, PD £15W  
VI = 13.5V to 26V  
VI= 14.5V to 26V  
10.5 11  
11.5  
10.5 11  
VI = 13.5V to 25V  
10  
3.0  
12  
4
220  
110  
220  
110  
8
10  
3
220  
110  
220  
110  
8
Line Regulation  
TJ =+25°C  
mV  
mV  
mA  
DVO  
DVO  
IQ  
VI = 14V to 21V  
IO = 5.0mA to 1.5A  
12  
4
Load Regulation  
TJ =+25°C  
IO = 250mA to 750mA  
TJ =+25 °C  
Quiescent Current  
5.1  
5.1  
IO = 5mA to 1.0A  
VI = 13.5V to 29V  
VI = 14.5V to 29V  
IO = 5mA  
0.5  
0.5  
1.0  
Quiescent Current Change  
mA  
DIQ  
1.0  
Output Voltage Drift  
Output Noise Voltage  
-1  
-1  
DVO/DT  
mV/ °C  
mV/VO  
VN  
70  
70  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 14V to 24V  
Ripple  
Rejection  
RR  
55 71  
55 71  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
18  
18  
250  
2.2  
250  
2.2  
VI = 35V, TA=+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7812/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN <TJ <TMAX, IO=500mA, VI=19V, CI= 0.33mF, CO= 0.1.mF, unless otherwise specified)  
LM7812I  
LM7812  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
11.5 12  
12.5 11.5 12  
12.5  
12.6  
Output Voltage  
VO  
V
5.0mA £ IO£1.0A, PD£15W  
VI = 14.5V to 27V  
VI= 15.5V to 27V  
11.4 12  
12.6  
11.4 12  
10  
VI = 14.5V to 30V  
TJ =+25°C  
240  
120  
240  
120  
8
10  
3.0  
11  
240  
120  
240  
120  
8
Line Regulation  
DVO  
DVO  
IQ  
mV  
VI = 16V to 22V  
3.0  
IO = 5mA to 1.5A  
11  
TJ =+25°C  
Load Regulation  
mV  
mA  
IO = 250mA to 750mA  
TJ =+25 °C  
5.0  
5.0  
5.1  
0.1  
0.5  
Quiescent Current  
5.1  
IO = 5mA to 1.0A  
VI = 14.5V to 30V  
VI = 15V to 30V  
IO = 5mA  
0.1  
0.5  
0.5  
1.0  
Quiescent Current Change  
mA  
DIQ  
1.0  
Output Voltage Drift  
Output Noise Voltage  
0.5 -1  
76  
-1  
DVO/DT  
mV/ °C  
VN  
76  
mV/VO  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 15V to 25V  
Ripple  
RR  
55 71  
55 71  
dB  
Rejection  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
18  
18  
230  
2.2  
230  
2.2  
VI = 35V, TA=+25 °C  
TJ = +25 °C  
TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7815/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN<TJ<TMAX, IO =500mA, VI =23V, CI =0.33mF, CO =0.1mF, unless otherwise specified)  
LM7815I  
LM7815  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max  
Min Typ Max  
14.4 15  
15.6 14.4  
15  
15.6  
Output Voltage  
VO  
V
5.0mA £ IO£1.0A, PD£15W  
VI = 17.5V to 30V  
VI= 18.5V to 30V  
14.2 15 15.75 14.25 15 15.75  
5
VI = 17.5V to 30V  
11  
3
300  
150  
300  
150  
8
11  
3
300  
150  
300  
150  
8
TJ =+25°C  
Line Regulation  
mV  
mV  
mA  
DVO  
DVO  
IQ  
VI = 20V to 26V  
IO = 5mA to 1.5A  
12  
4
12  
4
Load Regulation  
TJ =+25°C  
TJ =+25 °C  
IO = 250mA to 750mA  
Quiescent Current  
5.2  
5.2  
IO = 5mA to 1.0A  
VI = 17.5V to 30V  
VI = 18.5V to 30V  
IO = 5mA  
0.5  
0.5  
1.0  
Quiescent Current Change  
mA  
DIQ  
1.0  
Output Voltage Drift  
Output Noise Voltage  
-1  
-1  
DVO/DT  
mV/ °C  
mV/VO  
VN  
90  
90  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 18.5V to 28.5V  
Ripple  
Rejection  
RR  
54  
70  
54  
70  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
19  
19  
mW  
mA  
A
250  
2.2  
250  
2.2  
VI = 35V, TA=+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7818/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN<TJ<TMAX, IO =500mA, VI =27V, CI =0.33mF, CO =0.1mF, unless otherwise specified)  
LM7818I  
LM7818  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
17.3 18  
18.7 17.3 18  
18.7  
18.9  
Output Voltage  
VO  
V
5.0mA £ IO £1.0A, PD £15W  
VI = 21V to 33V  
VI= 22V to 33V  
17.1 18  
18.9  
17.1 18  
VI = 21V to 33V  
TJ =+25°C  
15  
5
360  
180  
360  
180  
8
15  
5
360  
180  
360  
180  
8
Line Regulation  
mV  
DVO  
VI = 24V to 30V  
IO = 5mA to 1.5A  
TJ =+25°C  
15  
5.0  
5.2  
15  
5.0  
5.2  
Load Regulation  
mV  
mA  
DVO  
IO = 250mA to 750mA  
Quiescent Current  
IQ  
TJ =+25 °C  
IO = 5mA to 1.0A  
VI = 21V to 33V  
VI = 22V to 33V  
IO = 5mA  
0.5  
0.5  
1
Quiescent Current Change  
mA  
DIQ  
1.0  
Output Voltage Drift  
Output Noise Voltage  
-1  
-1  
DVO/DT  
mV/ °C  
mV/VO  
VN  
110  
110  
f = 10Hz to 100Khz, TA =+25 °C  
f = 120Hz  
VI = 22V to 32V  
Ripple  
Rejection  
RR  
53 69  
53 69  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
22  
22  
250  
2.2  
250  
2.2  
VI = 35V, TA=+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7824/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, TMIN<TJ<TMAX, IO = 500mA, VI = 33V, CI = 0.33mF, CO = 0.1mF, unless otherwise specified)  
LM7824I  
LM7824  
Symbol  
Characteristic  
Test Conditions  
TJ =+25 °C  
Unit  
Min Typ Max Min Typ Max  
23 24  
25  
23 24  
25  
Output Voltage  
VO  
V
5.0mA £ IO £ 1.0A, PD £ 15W  
VI = 27V to 38V  
22.8 24 25.25  
22.8 24  
25.2  
480  
240  
480  
240  
8
VI= 28V to 38V  
VI = 27V to 38V  
17  
6
17  
6
480  
240  
480  
240  
8
Line Regulation  
TJ =+25°C  
mV  
DVO  
DVO  
IQ  
VI = 30V to 36V  
IO = 5mA to 1.5A  
15  
5.0  
5.2  
0.1  
15  
5.0  
5.2  
0.1  
0.5  
Load Regulation  
TJ =+25°C  
mV  
mA  
IO = 250mA to 750mA  
TJ =+25 °C  
Quiescent Current  
IO = 5mA to 1.0A  
VI = 27V to 38V  
VI = 28V to 38V  
IO = 5mA  
0.5  
0.5  
1
Quiescent Current Change  
mA  
DIQ  
0.5  
-1.5  
160  
1
Output Voltage Drift  
Output Noise Voltage  
-1.5  
60  
DVO/DT  
mV/ °C  
mV/VO  
VN  
f = 10Hz to 100KHz, TA =+25 °C  
f = 120Hz  
VI = 28V to 38V  
Ripple  
Rejection  
RR  
50 67  
50 67  
dB  
Dropout Voltage  
VD  
RO  
ISC  
IPK  
2
2
V
mW  
mA  
A
IO = 1A, TJ=+25 °C  
f = 1KHz  
Output Resistance  
Short Circuit Current  
Peak Current  
28  
28  
230  
2.2  
230  
2.2  
VI = 35V, TA=+25 °C  
TJ =+25 °C  
* TMIN <TJ <TMAX  
LM78XXI/RI: TMIN= - 40 °C, TMAX = +125 °C  
LM78XX/R: TMIN= 0 °C, TMAX= +125 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7805A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +I25 °C, IO = 1A, V I = 10V, C I= 0.33mF, C O= 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
4.9  
5
5.1  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £ 5W  
VI = 7.5 to 20V  
VI = 7.5 to 25V  
IO = 500mA  
4.8  
5
5
5.2  
50  
Line Regulation  
Load Regulation  
VI = 8V to 12V  
3
5
50  
50  
V
DVO  
DVO  
VI= 7.3V to 25V  
TJ =+25 °C  
VI= 8V to 12V  
1.5  
9
25  
100  
TJ =+25 °C  
IO = 5mA to 1.5A  
V
IO = 5mA to 1A  
9
4
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.0  
6
mA  
mA  
IO = 5mA to 1A  
0.5  
0.8  
0.8  
Quiescent Current Change  
VI = 8 V to 25V, IO = 500mA  
VI = 7.5V to 20V, TJ =+25 °C  
DIQ  
IO = 5mA  
DV/DT  
mV/ °C  
mV/VO  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
-0.8  
10  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
RR  
f = 120Hz, IO = 500mA  
VI = 8V to 18V  
68  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
17  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25 °C  
TJ= +25 °C  
*Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7806A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to+150 °C, IO = 1A, V I = 11V, C I= 0.33mF, C O= 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
5.58  
6
6.12  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £ 15W  
VI = 8.6 to 21V  
VI= 8.6 to 25V  
5.76  
6
5
6.24  
60  
IO = 500mA  
Line Regulation  
Load Regulation  
VI= 9V to 13V  
3
5
60  
60  
30  
mV  
DVO  
DVO  
VI= 8.3V to 21V  
TJ =+25 °C  
VI= 9V to 13V  
1.5  
TJ =+25 °C  
9
100  
IO = 5mA to 1.5A  
IO = 5mA to 1A  
IO = 250 to 750mA  
mV  
4
100  
50  
5.0  
4.3  
Quiescent Current  
IQ  
6
mA  
mA  
TJ =+25 °C  
IO = 5mA to 1A  
0.5  
0.8  
0.8  
Quiescent Current Change  
VI = 9V to 25V, IO = 500mA  
VI= 8.5V to 21V, TJ =+25 °C  
IO = 5mA  
DIQ  
DV/DT  
mV/ °C  
Output Voltage Drift  
Output Noise Voltage  
-0.8  
10  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
m V/VO  
f = 120Hz, IO = 500mA  
VI = 9V to 19V  
dB  
Ripple Rejection  
RR  
65  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2
V
mW  
mA  
A
IO = 1A, TJ =+25 °C  
f = 1KHz  
17  
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7808A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to+150 °C, IO = 1A, V I = 14V, C I = 0.33mF, C O=0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
7.84  
8
8.16  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 8.6 to 21V  
VI= 10.6 to 25V  
IO = 500mA  
7.7  
8
6
8.3  
80  
Line Regulation  
Load Regulation  
VI= 11to 17V  
3
6
2
80  
80  
40  
mV  
DVO  
VI= 10.4V to 23V  
TJ =+25 °C  
VI= 11V to 17V  
TJ =+25 °C  
IO = 5mA to 1.5A  
12  
100  
DVO  
mV  
IO = 5mA to 1A  
12  
5
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.0  
6
mA  
mA  
IO = 5mA to 1A  
0.5  
0.8  
0.8  
Quiescent Current Change  
VI = 11V to 25V, IO = 500mA  
VI= 10.6V to 23V, TJ =+25 °C  
DIQ  
DV/DT  
mV /°C  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-0.8  
10  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
mV/VO  
f = 120Hz, IO = 500mA  
VI = 11.5V to 21.5V  
Ripple Rejection  
RR  
62  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
18  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25°C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7809A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +125 °C, IO = 1A, V I = 15V, C I = 0.33mF, C O = 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
8.82  
9.0  
9.18  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 11.2 to 24V  
VI= 11.7 to 25V  
IO = 500mA  
8.65  
9.0  
6
9.35  
90  
Line Regulation  
Load Regulation  
VI= 12.5 to 19V  
4
6
2
45  
90  
45  
mV  
DVO  
VI= 11.5V to 24V  
VI= 12.5V to 19V  
TJ =+25 °C  
TJ =+25 °C  
IO = 5mA to 1.0A  
12  
100  
DVO  
mV  
IO = 5mA to 1.0A  
12  
5
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.0  
6.0  
0.8  
0.8  
0.5  
mA  
mA  
VI = 11.7V to 25V, TJ=+25 °C  
VI = 12V to 25V, IO = 500mA  
IO = 5mA to 1.0A  
Quiescent Current Change  
DIQ  
DV/DT  
mV/ °C  
mV/VO  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-1.0  
10  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 12V to 22V  
Ripple Rejection  
RR  
62  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
17  
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7810A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to+125 °C, IO = 1A, V I = 16V, C I = 0.33mF, CO = 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
9.8  
10  
10.2  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £ 15W  
VI =12.8 to 25V  
VI= 12.8 to 26V  
IO = 500mA  
9.6  
10  
8
10.4  
100  
Line Regulation  
Load Regulation  
VI= 13to 20V  
4
8
3
50  
100  
50  
mV  
DVO  
VI= 12.5V to 25V  
VI= 13V to 20V  
TJ =+25 °C  
TJ =+25 °C  
IO = 5mA to 1.5A  
12  
100  
DVO  
mV  
IO = 5mA to 1.0A  
12  
5
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.0  
6.0  
0.5  
0.8  
0.5  
mA  
mA  
VI = 13V to 26V, TJ=+25 °C  
VI = 12.8V to 25V, IO = 500mA  
IO = 5mA to 1.0A  
Quiescent Current Change  
DIQ  
DV/DT  
VN  
mV °C  
mV/VO  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-1.0  
10  
f = 10Hz to 100KHz  
TA =+25 °C  
f = 120Hz, IO = 500mA  
VI = 14V to 24V  
Ripple Rejection  
RR  
62  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
17  
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7811A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +125 °C, IO = 1A, V I = 18V, C I = 0.33mF, C O = 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
10.8  
11.0  
11.2  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 13.8 to 26V  
VI= 12.8 to 26V  
IO = 500mA  
10.6  
11.0  
10  
11.4  
110  
Line Regulation  
VI= 15 to 21V  
4
10  
3
55  
110  
55  
mV  
DVO  
VI= 13.5V to 26V  
VI= 15V to 21V  
TJ =+25 °C  
TJ =+25 °C  
12  
100  
IO = 5mA to 1.5A  
IO = 5mA to 1.0A  
IO = 250 to 750mA  
TJ =+25 °C  
Load Regulation  
DVO  
mV  
12  
5
100  
50  
Quiescent Current  
IQ  
5.1  
6.0  
0.8  
0.8  
0.5  
mA  
mA  
VI = 13.8V to 26V, TJ=+25 °C  
VI = 14V to 27V, IO = 500mA  
IO = 5mA to 1.0A  
IO = 5mA  
Quiescent Current Change  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
-1.0  
10  
DVO/DT  
mV /°C  
mV/VO  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 14V to 24V  
Ripple Rejection  
RR  
61  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
18  
V
mW  
mA  
A
IO = 1A, TJ =+25 °C  
f = 1KHz  
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7812A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +125 °C, IO = 1A, V I = 19V, C I = 0.33mF, C O= 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
11.75  
12  
12.25  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 14.8 to 27V  
VI= 14.8 to 30V  
IO = 500mA  
11.5  
12  
10  
12.5  
120  
Line Regulation  
VI= 16 to 22V  
4
10  
3
120  
120  
60  
mV  
DVO  
VI= 14.5V to 27V  
VI= 16V to 22V  
TJ =+25°C  
TJ =+25°C  
12  
100  
IO = 5mA to 1.5A  
IO = 5mA to 1.0A  
IO = 250 to 750mA  
TJ =+25 °C  
Load Regulation  
DVO  
mV  
12  
5
100  
50  
Quiescent Current  
IQ  
5.1  
6.0  
0.5  
0.8  
0.8  
mA  
mA  
VI = 15V to 30V, TJ=+25 °C  
VI = 14V to 27V, IO = 500mA  
IO = 5mA to 1.0A  
IO = 5mA  
Quiescent Current Change  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
-1.0  
10  
DVO/DT  
mV/ °C  
mV/VO  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 14V to 24V  
Ripple Rejection  
RR  
60  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
18  
V
mW  
mA  
A
IO = 1A, TJ =+25 °C  
f = 1KHz  
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7815A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +150 °C, IO =1A, V I=23V, C I = 0.33mF, C O=0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
14.7  
15  
15.3  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 17.7 to 30V  
VI= 17.9 to 30V  
IO = 500mA  
14.4  
15  
10  
15.6  
150  
Line Regulation  
VI= 20 to 26V  
5
11  
3
150  
150  
75  
mV  
DVO  
VI= 17.5V to 30V  
VI= 20V to 26V  
TJ =+25 °C  
TJ =+25 °C  
IO = 5mA to 1.5A  
12  
100  
Load Regulation  
DVO  
mV  
IO = 5mA to 1.0A  
12  
5
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.2  
6.0  
0.5  
0.8  
0.8  
mA  
mA  
VI = 17.5V to 30V, TJ =+25 °C  
VI = 17.5V to 30V, IO = 500mA  
IO = 5mA to 1.0A  
Quiescent Current Change  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-1.0  
10  
DVO/DT  
mV/ °C  
mV/VO  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 18.5V to 28.5V  
Ripple Rejection  
RR  
58  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
19  
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7818A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +150 °C, IO=1A, V I = 27V, C I= 0.33mF, C O = 0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
17.64  
18  
18.36  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 21 to 33V  
17.3  
18  
15  
18.7  
180  
VI= 21 to 33V  
IO = 500mA  
Line Regulation  
Load Regulation  
VI= 21 to 33V  
5
15  
5
180  
180  
90  
mV  
DVO  
DVO  
VI= 20.6V to 33V  
VI= 24V to 30V  
TJ =+25 °C  
TJ =+25 °C  
15  
100  
IO = 5mA to 1.5A  
IO = 5mA to 1.0A  
IO = 250 to 750mA  
TJ =+25 °C  
mV  
15  
7
100  
50  
Quiescent Current  
IQ  
5.2  
6.0  
0.5  
0.8  
0.8  
mA  
mA  
VI = 21V to 33V, TJ=+25 °C  
VI = 21V to 33V, IO = 500mA  
IO = 5mA to 1.0A  
IO = 5mA  
Quiescent Current Change  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
-1.0  
10  
DVO/DT  
mV/ °C  
mV/VO  
f = 10Hz to 100KHz  
TA =+25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 18.5V to 28.5V  
Ripple Rejection  
RR  
57  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
19  
V
IO = 1A, TJ =+25 °C  
f = 1KHz  
mW  
mA  
A
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM7824A/RA ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits. TJ = 0 to +150 °C, IO =1A, V I = 33V, C I= 0.33mF, C O=0.1mF, unless otherwise specified)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25 °C  
Min  
Typ  
Max  
Unit  
23.5  
24  
24.5  
Output Voltage  
VO  
V
IO = 5mA to 1A, PD £15W  
VI = 27.3 to 38V  
VI= 27 to 38V  
23  
24  
18  
25  
240  
IO = 500mA  
Line Regulation  
Load Regulation  
VI= 21 to 33V  
6
18  
6
240  
240  
120  
mV  
DVO  
DVO  
TJ =+25 oC  
VI= 26.7V to 38V  
VI= 30V to 36V  
TJ =+25 °C  
IO = 5mA to 1.5A  
15  
100  
mV  
IO = 5mA to 1.0A  
15  
7
100  
50  
IO = 250 to 750mA  
TJ =+25 °C  
Quiescent Current  
IQ  
5.2  
6.0  
0.5  
0.8  
0.8  
mA  
mA  
VI = 27.3V to 38V, TJ =+25 °C  
VI = 27.3V to 38V, IO = 500mA  
IO = 5mA to 1.0A  
Quiescent Current Change  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
IO = 5mA  
-1.5  
10  
DVO/DT  
mV/ °C  
mV/VO  
f = 10Hz to 100KHz  
TA = 25 °C  
VN  
f = 120Hz, IO = 500mA  
VI = 18.5V to 28.5V  
Ripple Rejection  
RR  
54  
dB  
Dropout Voltage  
Output Resistance  
Short Circuit Current  
Peak Current  
VD  
RO  
ISC  
IPK  
2.0  
20  
V
mW  
mA  
A
IO = 1A, TJ =+25°C  
f = 1KHz  
250  
2.2  
VI= 35V, TA =+25 °C  
TJ=+25 °C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Fig. 1 Quiescent Current  
Fig. 2 Peak Output Current  
Fig. 3 Output Voltage  
Fig. 4 Quiescent Current  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TYPICAL APPLICATIONS  
Fig. 5 DC Parameters  
Fig. 6 Load Regulation  
Fig. 7 Ripple Rejection  
TYPICAL APPLICATIONS (Continued)  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
Fig. 8 Fixed Output Regulator  
Fig. 9 Constant Current Regulator  
Notes:  
(1) To specify an output voltage. substitute voltage value for "XX."  
A common ground is required between the input and the Output  
voltage. The input voltage must remain typically 2.0V above the output  
voltage even during the low point on the input ripple voltage.  
(2) CI is required if regulator is located an appreciable distance from  
power Supply filter.  
(3) CO improves stability and transient response.  
Fig. 10 Circuit for Increasing Output Voltage  
Fig. 11 Adjustable Output Regulator (7 to 30V)  
IRI ³ 5 IQ  
VO = VXX (1+R2/R1)+IQR2  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TYPICAL APPLICATIONS (Continued)  
Fig. 12 High Current Voltage Regulator  
Fig. 13 High Output Current with  
Short Circuit Protection  
Fig. 14 Tracking Voltage Regulator  
Fig. 15 Split Power Supply ( ±15V-1A)  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TYPICAL APPLICATIONS (Continued)  
Fig. 16 Negative Output Voltage Circuit  
Fig. 17 switching Regulator  
LM78XX (KA78XX, MC78XX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
3-TERMINAL 0.1A POSITIVE VOLTAGE  
TO-92  
REGULATORS  
The LM78LXX series of fixed voltage monolithic integrated circuit  
voltage regulators are suitable for application that required supply  
up to 100mA.  
1: Output 2: GND 3: Input  
8 SOP  
FEATURES  
· Maximum Output Current of 100mA  
· Output Voltage of 5V, 6V, 8V, 9V, 10V, 12V, 15V, 18V and 24V  
· Thermal Overload Protection  
· Short Circuit Current Limiting  
1: Output 2: GND 3: GND 4: NC  
5: NC 6: GND 7: GND 8: Input  
· Output Voltage Offered in ± 5% Tolerance  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
°
LM78LXXACZ  
LM78LXXM  
TO-92  
8 SOP  
- 45 ~ + 125°C  
0 ~ + 125°C  
BLOCK DIAGRAM  
VI  
3
THERMAL SHUTDOWN  
CIRCUIT  
I
+
REFERENCE VOLTAGE  
-
SHORT CIRCUIT  
PROTECTION  
RSC  
V0  
1
GND  
2
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage (for VO = 5V, 8V)  
(for VO = 12V, 15V)  
VI  
30  
35  
V
V
Operating Junction Temperature Range  
TJ  
0 ~ +150  
°C  
°C  
Storage Temperature Range  
TSTG  
-65 ~ +150  
LM78L05 ELECTRICAL CHARACTERISTICS  
(VI = 10V, IO = 40mA, 0°C £ TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.8  
5.0  
8
5.2  
150  
100  
60  
V
TJ = 25°C  
TJ = 25°C  
mV  
mV  
mV  
7V £ VI £ 20V  
8V £ VI £ 20V  
DVO  
DVO  
Line Regulation  
Load Regulation  
6
11  
5.0  
1mA £ IO £ 100mA  
TJ = 25°C  
30  
mV  
V
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
5.25  
7V £VI £ 0V  
7V £VI £ VMAX  
(Note 2)  
Output Voltage  
VO  
4.75  
5.25  
V
1mA £ IO £ 70mA  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.0  
5.5  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
8V £VI £ 20V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
40  
TA = 25 °C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
mV/°C  
DVO/DT  
IO = 5mA  
-0.65  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
41  
80  
dB  
V
f = 120Hz, 8V £ VI £ 18V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78L06 ELECTRICAL CHARACTERISTICS  
(VI = 12V, IO = 40mA, 0°C £ TJ £ 125 °C , CI = 0.33mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
5.75  
6.0  
64  
6.25  
175  
125  
80  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
8.5V < VI < 20V  
9V ³ VI ³ 20V  
DVO  
Line Regulation  
54  
12.8  
5.8  
1mA < IO < 100mA  
1mA < IO < 70mA  
DVO  
VO  
IQ  
TJ =25°C  
Load Regulation  
Output Voltage  
40  
5.7  
5.7  
6.3  
6.3  
6.0  
5.5  
1.5  
0.1  
8.5 < VI < 20V, 1mA < IO < 40mA  
8.5 < VI < VMAX(Note), 1mA < IO < 70mA  
TJ = 25°C  
V
3.9  
mA  
Quiescent Current  
TJ = 125°C  
Quiescent Current  
Change  
with line  
with load  
DIQ  
DIQ  
VN  
9 < VI < 20V  
mA  
1mA < IO< 40mA  
Output Noise Voltage  
40  
TA = 25°C, 10Hz < f < 100KHz  
mV/VO  
mV/°C  
Temperature Coefficient of VO  
IO = 5mA  
0.75  
DVO/DT  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
40  
46  
dB  
V
f = 120Hz, 10V < VI < 20V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78L08 ELECTRICAL CHARACTERISTICS  
(VI = 14V, IO = 40mA, 0°C £ TJ £ 125 °C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
7.7  
8.0  
10  
8
8.3  
175  
125  
80  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
V
10.5V £ VI £ 23V  
Line Regulation  
Load Regulation  
DVO  
DVO  
11V £ VI £ 23V  
15  
8.0  
1mA £ IO £ 100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
40  
7.6  
7.6  
8.4  
10.5V £ VI £ 23V  
10.5V £ VI £ VMAX  
Output Voltage  
VO  
1mA £ IO £ 70mA  
8.4  
V
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.0  
5.5  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
11V £ VI £ 23V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
60  
TA = 25°C, 10Hz £ f £100KHz  
mV/VO  
Temperature Coefficient of VO  
IO = 5mA  
-0.8  
DVO/DT  
mV/°C  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
39  
70  
dB  
V
f = 120Hz, 11V £ VI £ 21V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78L09 ELECTRICAL CHARACTERISTICS  
(VI = 15V, IO = 40mA, 0°C £ TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
8.64  
9.0  
90  
9.36  
200  
150  
90  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
V
11.5V £ VI £ 24V  
Line Regulation  
Load Regulation  
DVO  
DVO  
100  
20  
13V £ VI £ 24V  
1mA £ IO £ 100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
10  
45  
8.55  
8.55  
9.45  
11.5V £ VI £ 24V  
Output Voltage  
VO  
11.5V £ VI £ VMAX  
9.45  
V
1mA £ IO £ 70mA  
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.1  
6.0  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
13V £ VI £ 24V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
70  
TA = 25°C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
IO = 5mA  
-0.9  
mV/°C  
DVO/DT  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
38  
44  
dB  
V
f = 120Hz, 12V £ VI £ 22V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78L10 ELECTRICAL CHARACTERISTICS  
(VI = 16V, IO = 40mA, 0°C < TJ < 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
9.6  
10.0  
100  
100  
20  
10.4  
220  
170  
94  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
12.5 < VI < 25V  
14V ³ VI ³ 25V  
DVO  
DVO  
VO  
Line Regulation  
1mA < IO< 100mA  
1mA < IO < 70mA  
TJ =25°C  
Load Regulation  
Output Voltage  
10  
47  
9.5  
9.5  
10.5  
10.5  
6.5  
12.5 < VI < 25V, 1mA < IO < 40mA  
12.5 < VI < VMAX(Note), 1mA < IO < 70mA  
TJ = 25°C  
V
4.2  
mA  
IQ  
Quiescent Current  
6.0  
TJ = 125°C  
Quiescent Current  
Change  
with line  
with load  
1.5  
DIQ  
DIQ  
VN  
12.5 < VI < 25V  
mA  
0.1  
1mA < IO < 40mA  
Output Noise Voltage  
74  
TA = 25°C, 10Hz < f < 100KHz  
mV/VO  
mV/°C  
Temperature Coefficient of VO  
IO = 5mA  
0.95  
DVO/DT  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
38  
43  
dB  
V
f = 120Hz, 15V < VI < 25V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78L12 ELECTRICAL CHARACTERISTICS  
(VI = 19V, IO = 40mA, 0°C £TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
11.5  
12  
20  
15  
20  
10  
12.5  
250  
200  
100  
50  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
V
14.5V £ VI £ 27V  
Line Regulation  
Load Regulation  
DVO  
DVO  
16V £ VI £ 27V  
1mA £ IO £ 100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
11.4  
11.4  
12.6  
14.5V £ VI £ 27V  
Output Voltage  
VO  
14.5V £ VI £ VMAX  
1mA £ IO £ 70mA  
12.6  
V
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.1  
6.0  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
16V £ VI £ 27V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
80  
TA = 25°C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
IO = 5mA  
-1.0  
mV/°C  
DVO/DT  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
37  
65  
dB  
V
f = 120Hz, 15V £ VI £ 25V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78L15 ELECTRICAL CHARACTERISTICS  
(VI = 23V, IO = 40mA, 0°C £ TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
14.4  
15  
25  
20  
25  
12  
15.6  
300  
250  
150  
75  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
V
17.5V £ VI £ 30V  
Line Regulation  
Load Regulation  
DVO  
DVO  
20V £ VI £ 30V  
1mA £ IO £ 100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
14.25  
14.25  
15.75  
17.5V £ VI £ 30V  
Output Voltage  
VO  
17.5V £ VI £ VMAX  
1mA £ IO £ 70mA  
15.75  
V
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.1  
6.0  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
20V £ VI £ 30V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
90  
TA = 25°C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
IO = 5mA  
-1.3  
mV/°C  
DVO/DT  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
34  
60  
dB  
V
f = 120Hz, 18.5V £ VI £ 28.5V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78L18 ELECTRICAL CHARACTERISTICS  
(VI = 27V, IO = 40mA, 0°C £ TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
17.3  
18  
145  
135  
30  
18.7  
300  
250  
170  
85  
V
TJ = 25°C  
TJ =25°C  
mV  
mV  
mV  
mV  
V
21V £ VI £ 33V  
Line Regulation  
Load Regulation  
DVO  
DVO  
22V £ VI £ 33V  
1mA £ IO£100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
15  
17.1  
17.1  
18.9  
21V £ VI £ 33V  
Output Voltage  
VO  
21V £ VI £ VMAX  
18.9  
V
1mA £ IO £ 70mA  
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.2  
6.0  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
21V £ VI £ 33V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
150  
-1.8  
TA = 25°C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
mV/°C  
DVO/DT  
IO = 5mA  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
34  
48  
dB  
V
f = 120Hz, 23V £ VI £ 33V, TJ = 25°C  
TJ = 25°C  
1.7  
LM78L24 ELECTRICAL CHARACTERISTICS  
(VI = 33V, IO = 40mA, 0°C £ TJ £ 125°C, CI = 0.33 mF, CO = 0.1mF, unless otherwise specified. (Note 1)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
23  
24  
160  
150  
40  
25  
V
TJ = 25°C  
TJ =25°C  
300  
250  
200  
100  
25.2  
mV  
mV  
mV  
mV  
V
27V £ VI £ 38V  
Line Regulation  
Load Regulation  
DVO  
DVO  
28V £ VI £ 38V  
1mA £ IO £ 100mA  
1mA £ IO £ 40mA  
1mA £ IO £ 40mA  
TJ =25°C  
20  
22.8  
22.8  
27V £ VI £ 38V  
Output Voltage  
VO  
27V £ VI £ VMAX  
1mA £ IO £ 70mA  
25.2  
V
(Note 2)  
Quiescent Current  
Quiescent Current  
Change  
IQ  
2.2  
6.0  
1.5  
0.1  
mA  
mA  
TJ = 25°C  
with line  
with load  
DIQ  
DIQ  
VN  
28V £ VI £ 38V  
1mA £ IO £ 40mA  
mA  
Output Noise Voltage  
200  
-2.0  
TA = 25°C, 10Hz £ f £ 100KHz  
mV/VO  
Temperature Coefficient of VO  
Ripple Rejection  
IO = 5mA  
mV/°C  
DVO/DT  
RR  
VD  
34  
45  
dB  
V
f = 120Hz, 28V £ VI £ 38V, TJ = 25°C  
TJ = 25°C  
Dropout Voltage  
1.7  
Notes  
1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead  
length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation  
of tests.  
2. Power dissipation £ 0.75W.  
LM78LXX (KA78LXX, MC78LXX) FIXED VOLTAGE REGULATOR (POSITIVE)  
TYPICAL APPLICATION  
3(8)  
1(1)  
KA78LXXA  
NOTE 1  
INPUT  
OUTPUT  
C1  
0.33 mF  
NOTE 2  
2(2,3,6,7)  
mF  
0. 1  
NOTE 2  
’( )’ : 8SOP Type  
Notes  
1. To specify an output voltage, substitute voltage value for “XX”.  
2. Bypass Capacitors are recommend for optimum stability and transient response and should be located as close as  
possible to the regulator  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
www.fairchildsemi.com  
MC78MXX (LM78MXX) (KA78MXX)  
3-Terminal 0.5A Positive Voltage Regulators  
Features  
Description  
• Output Current up to 0.5A  
• Output Voltages of 5, 6, 8, 10, 12, 15, 18, 20, 24V  
• Thermal Overload Protection  
The MC78MXX (LM78MXX) (KA78MXX) series of three-  
terminal positive regulators are available in the TO-220/  
D-PAK package with several fixed output voltages making it  
useful in a wide range of applications.  
• Short Circuit Protection  
• Output Transistor SOA Protection  
• Industrial and commercial temperature range  
TO-220  
D-PAK  
1. Input 2. GND 3. Output  
Rev. 1.0.0  
©2000 Fairchild Semiconductor Corporation  
 
MC78MXX (LM78MXX) (KA78MXX)  
Internal Block Diagram  
2
MC78MXX (LM78MXX) (KA78MXX)  
Absolute Maximum Ratings (Ta=+25°C, Unless otherwise specified)  
Parameter  
Input Voltage (for V = 5V to 18V)  
Symbol  
Value  
Unit  
V
V
35  
40  
V
V
O
I
I
(for V = 24V)  
O
Thermal Resistance Junction-Cases  
Thermal Resistance Junction-Air  
R
5
°C/W  
°C/W  
θJC  
R
65  
θJA  
Operating Temperature Range KA78MXXI/RI  
KA78MXX/R  
T
OPR  
-40~ + 125  
0~ + 125  
°C  
°C  
Storage Temperature Range  
T
STG  
-65~ + 150  
°C  
KA78M05/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =10V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
4.8  
Typ.  
Max.  
5.2  
Units  
Output Voltage  
V
O
T =+25°C  
5
5
V
J
I
= 5 to 350mA  
4.75  
5.25  
O
V = 7 to 20V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA  
V = 7 to 25V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 8 to 25V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
100  
50  
O
O
J
= 5mA to 200mA, T =+25 °C  
-
4.0  
-
O
J
I
Q
T =+25°C  
6
mA  
mA  
J
Quiescent Current  
Change  
I  
Q
I
= 5mA to 350mA  
0.5  
0.8  
O
I
= 200mA  
-
O
V = 8 to 25V  
I
Output Voltage Drift  
V/T  
I
= 5mA  
-
- 0.5  
-
mV/°C  
O
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
40  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
62  
dB  
O
V = 8 to 18V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T =+25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
J
PK  
NOTE:  
1. T  
<T <T  
MIN MAX  
J
KA78MXX/Rl: T  
= -40°C, T  
= 0°C, T  
= +125°C  
= +125°C  
MIN  
MAX  
KA78MXX/R: T  
MIN MAX  
2. Load and line regulation are specified at constant junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
3
MC78MXX (LM78MXX) (KA78MXX)  
KA78M06/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =11V, unless otherwise specified, C = 0.33mF, C =0.1mF)(  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
5.75  
5.7  
Typ.  
Max.  
Units  
Output Voltage  
V
O
TJ=+25°C  
6
6
6.25  
6.3  
V
I
= 5 to 350mA  
O
V = 8 to 21V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 8 to 25V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 9 to 25V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
120  
60  
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.0  
-
O
J
I
Q
T =+25°C  
6
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 9 to 25V  
I
Output Voltage Drift  
V/T  
I
O
= 5mA  
-
- 0.5  
-
mV/°C  
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
45  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
59  
dB  
O
V = 9 to 19V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
KA78MXX/R: T  
= -40°C  
= 0°C  
MIN  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
4
MC78MXX (LM78MXX) (KA78MXX)  
KA78M08/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =14V, unless otherwise specified, C =0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
7.7  
Typ.  
Max.  
Units  
Output Voltage  
V
O
T =+25 °C  
8
8
8.3  
8.4  
V
J
I
= 5 to 350mA  
7.6  
O
V = 10.5 to 23V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 10.5 to 25V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 11 to 25V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
160  
80  
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.0  
-
O
J
I
Q
T =+25°C  
6
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 10.5 to 25V  
I
Output Voltage Drift  
RR  
I
O
= 5mA  
-
- 0.5  
-
mV/°C  
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
52  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
56  
dB  
O
V = 9 to 19V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C,I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T =+25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
5
MC78MXX (LM78MXX) (KA78MXX)  
KA78M10/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =17V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
9.6  
Typ.  
10  
Max.  
Units  
Output Voltage  
V
O
T = +25°C  
10.4  
10.5  
V
J
I
= 5 to 350mA  
9.5  
10  
O
V = 12.5 to 25V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 12.5 to 25V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 13 to 25V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
200  
100  
6
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.1  
-
O
J
I
Q
T =+25°C  
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 12.5 to 25V  
I
Output Voltage Drift  
V/T  
I
O
= 5mA  
-
- 0.5  
-
mV/°C  
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
65  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
55  
dB  
O
V = 13 to 23V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
6
MC78MXX (LM78MXX) (KA78MXX)  
KA78M12/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T 125°C, I =350mA, V =19V, unless otherwise specified, C =0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
11.5  
11.5  
Typ.  
12  
Max.  
12.5  
12.6  
Units  
Output Voltage  
V
O
T =+25°C  
V
J
I
= 5 to 350mA  
12  
O
V = 14.5 to 27V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 14.5 to 30V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 16 to 30V  
I
-
-
VO  
I
I
= 5mA to 0.5A, T =+25°C  
240  
120  
6
O
J
= 5mA to 200mA, T =+25°C  
-
O
J
I
Q
T =+25°C  
4.1  
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 14.5 to 30V  
I
Output Voltage Drift  
V/T  
I
= 5mA  
-
- 0.5  
75  
-
mV/°C  
O
J
T = 0 to +125°C  
Output Noise Voltage  
Ripple Rejection  
V
N
f = 10Hz to 100KHz  
-
-
-
mV/V  
O
RR  
f = 120Hz, I = 300mA  
55  
dB  
O
V = 15 to 25V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T = +25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
7
MC78MXX (LM78MXX) (KA78MXX)  
KA78M15/I/R/RI ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =23V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
14.4  
Typ.  
15  
Max.  
15.6  
Units  
Output Voltage  
V
O
T =+25°C  
V
J
I
O
= 5 to 350mA  
14.25  
15  
15.75  
V = 17.5 to 30V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 17.5 to 30V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 20 to 30V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
300  
150  
6
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.1  
-
O
J
I
Q
T =+25°C  
mA  
mA  
J
Quiescent Current Change  
I  
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
Q
O
-
O
V = 17.5 to 30V  
I
Output Voltage Drift  
V/T  
I
= 5mA  
-
- 1  
-
-
mV/°C  
O
J
T = 0 to +125°C  
Output Noise Voltage  
Ripple Rejection  
V
N
f = 10Hz to 100KHz  
-
100  
mV/V  
O
RR  
f = 120Hz, I = 300mA  
54  
dB  
O
V = 18.5 to 28.5V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T = + 25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
8
MC78MXX (LM78MXX) (KA78MXX)  
KA78M18/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =26V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
17.3  
17.1  
Typ.  
18  
Max.  
18.7  
18.9  
Units  
Output Voltage  
V
O
T =+25°C  
V
J
I
= 5 to 350mA  
18  
O
V = 20.5 to 33V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 21 to 33V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
I
T =+25°C  
V = 24 to 33V  
I
-
J
VΟ  
I
O
I
O
= 5mA to 0.5A, T =+25°C  
-
360  
180  
6
J
= 5mA to 200mA, T =+25°C  
-
4.2  
-
J
I
Q
T =+25°C  
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 21 to 33V  
I
Output Voltage Drift  
V/T  
I
=5mA  
-
-1.1  
100  
-
mV/°C  
O
J
T =0 to 125°C  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
N
f=10Hz to 100KHz  
-
-
-
-
-
µV/V  
O
RR  
f=120Hz, I =300mA  
53  
-
dB  
V
O
V
D
T =+25°C, I =500mA  
2
J
O
I
T =+25°C, V =35V  
-
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
-
PK  
J
NOTE:  
1. T  
:
MIN  
KA78MXX/R: T  
KA78MXX/R: T  
= -40°C  
= 0°C  
MIN  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
9
MC78MXX (LM78MXX) (KA78MXX)  
KA78M20/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =29V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
19.2  
19  
Typ.  
20  
Max.  
Units  
Output Voltage  
V
O
T = +25°C  
20.8  
21  
V
J
I
= 5 to 350mA  
20  
O
V = 23 to 35V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 23 to 35V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 24 to 35V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
400  
200  
6
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.2  
-
O
J
I
Q
T =+25°C  
mA  
mA  
J
Quiescent Current Change  
I  
Q
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
O
-
O
V = 23 to 35V  
I
Output Voltage Drift  
V/T  
I
= 5mA  
-
-1.1  
-
mV/°C  
O
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
110  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
53  
dB  
O
V = 24 to 34V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25°C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T = +25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
10  
MC78MXX (LM78MXX) (KA78MXX)  
KA78M24/I/R/RI Electrical Characteristics  
(Refer to the test circuits, T  
T +125°C, I =350mA, V =33V, unless otherwise specified, C = 0.33mF, C =0.1mF)  
MIN  
J
O
I
I
O
Parameter  
Symbol  
Conditions  
Min.  
23  
Typ.  
24  
Max.  
25  
Units  
Output Voltage  
V
O
T =+25°C  
J
V
I
= 5 to 350mA  
22.8  
24  
25.2  
O
V = 27 to 38V  
I
Line Regulation  
Load Regulation  
Quiescent Current  
V  
I
= 200mA V = 27 to 38V  
-
-
-
-
-
-
-
-
100  
50  
mV  
mV  
O
O
J
I
T =+25°C  
V = 28 to 38V  
I
-
V  
I
I
= 5mA to 0.5A, T =+25°C  
-
480  
240  
6
O
O
J
= 5mA to 200mA, T =+25°C  
-
4.2  
-
O
J
I
Q
T =+25°C  
mA  
mA  
J
Quiescent Current Change  
I  
I
I
= 5mA to 350mA  
= 200mA  
0.5  
0.8  
Q
O
-
O
V = 27 to 38V  
I
Output Voltage Drift  
V/T  
I
= 5mA  
-
- 1.2  
-
mV/°C  
O
T = 0 to +125°C  
J
Output Noise Voltage  
Ripple Rejection  
V
f = 10Hz to 100KHz  
-
170  
-
-
-
mV/V  
O
N
RR  
f = 120Hz, I = 300mA  
50  
dB  
O
V = 28 to 38V  
I
Dropout Voltage  
Short Circuit Current  
Peak Current  
V
T =+25°C, I = 500mA  
-
-
-
2
-
-
-
V
D
J
O
I
T = +25 °C, V = 35V  
300  
700  
mA  
mA  
SC  
J
I
I
T =+25°C  
J
PK  
NOTE:  
1. T  
:
MIN  
KA78MXX/RI: T  
= -40°C  
= 0°C  
MIN  
KA78MXX/R: T  
MIN  
2. Load and line regulation are specified at constant, junction temperature. Change in V due to heating effects must be taken  
O
into account separately. Pulse testing with low duty is used.  
11  
MC78MXX (LM78MXX) (KA78MXX)  
Typical Applications  
Figure 1. Fixed Output Regulator  
Figure 2. Constant Current Regulator  
Notes:  
1. To specify an output voltage, substitute voltage value for "XX"  
2. Although no output capacitor is needed for stability, it does improve transient response.  
3. Required if regulator is located an appreciable distance from power Supply filter  
Figure 3. Circuit for Increasing Output Voltage  
12  
MC78MXX (LM78MXX) (KA78MXX)  
Figure 4. Adjustable Output Regulator (7 to 30V)  
Figure 5. 0.5 to 10V Regulator  
13  
MC78MXX (LM78MXX) (KA78MXX)  
Ordering Information  
Device  
MC78MXXCT (LM78XXCT) (KA78MXX)  
KA78MXXI  
Package  
Operating Temperature  
0 ~ + 125°C  
TO-220  
-40 ~ +125°C  
MC78MXXCDT (KA78MXXR)  
KA78MXXRI  
D-PAK  
0 ~ + 125°C  
-40 ~ + 125°C  
14  
MC78MXX (LM78MXX) (KA78MXX)  
Package Dimensions  
15  
MC78MXX (LM78MXX) (KA78MXX)  
Package Dimensions (Continued)  
16  
MC78MXX (LM78MXX) (KA78MXX)  
17  
MC78MXX (LM78MXX) (KA78MXX)  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
1/18/00 0.0m 001  
Stock#DSxxxxxxxx  
1999 Fairchild Semiconductor Corporation  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
3-TERMINAL 0.5A POSITIVE  
VOLTAGE REGULATORS  
TO-220  
The LM78MXXC/I series of three-terminal positive regulators are avail-  
able in the TO-220 package with several fixed output voltages making  
it useful in a wide range of applications.  
FEATURES  
1:Input 2: GND 3: Output  
·
·
·
Output Current up to 0.5A  
Output Voltages of 5; 6; 8; 10; 12; 15; 18; 20; 24V  
Thermal Overload Protection  
ORDERING INFORMATION  
·
·
·
Short Circuit Protection  
Output Transistor SOA Protection  
lndustrial and commercial temperature range  
Device  
Package  
TO-220  
TO-220  
Operating Temperature  
0 ~ + 125°C  
LM78MXXT  
LM78MXXlT  
- 40 ~ +125°C  
BLOCK DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
ABSOLUTE MAXIMUM RATINGS (TA=25°C, unless otherwise specified)  
 
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage (for VO = 5V to 18V)  
(for VO = 24V)  
VI  
VI  
35  
40  
V
V
°C /W  
°C /W  
Thermal Resistance Junction-Cases  
Thermal Resistance Junction-Air  
Operating Temperature Range KA78XXI  
KA78XX  
REJC  
REJA  
5
65  
°C  
°C  
-40~ + 125  
0~ + 125  
-65~ + 150  
TOPR  
TSTG  
°C  
Storage Temperature Range  
LM78M05/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=10V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
4.8  
5
5.2  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 7 to 20V  
IO = 200mA  
4.75  
5
5.25  
VI= 7 to 25V  
VI = 8 to 25V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
100  
50  
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
mV  
mA  
DVO  
Load Regulation  
Quiescent Current  
IQ  
4.0  
6
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 8 to 25V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 0.5  
40  
mV/°C  
TJ = 0 to 125°C  
f = 10Hz to 100KHz  
VN  
mV  
f = 120Hz, IO = 300mA  
VI = 8 to 18V  
RR  
62  
dB  
Dropout Voltage  
Short Circuit Current  
Peak Current  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
300  
700  
mA  
mA  
*
TMIN TJ TMAX  
LM78MXXl:TMIN=-40°C, TMAX = +125°C  
LM78MXX: TMIN=0°C, TMAX = +125°C  
*
Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects  
must be taken into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M06/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=11V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
5.75  
6
6.25  
Output Voltage  
IO = 5 to 350mA  
VI= 8 to 21V  
IO = 200mA  
5.7  
6
6.3  
VI= 8 to 25V  
VI = 9 to 25V  
100  
50  
Line Regulation  
DVO  
mV  
TJ = 25°C  
120  
60  
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
Load Regulation  
DVO  
mV  
mA  
Quiescent Current  
IQ  
4.0  
6
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 9 to 25V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 0.5  
45  
mV/°C  
mV  
TJ = 0 to 125°C  
f = 10Hz to 100KHz  
VN  
f = 120Hz, IO = 300mA  
VI = 9 to 19V  
RR  
59  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M08/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=14V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
7.7  
8
8.3  
Output Voltage  
IO = 5 to 350mA  
VI= 10.5 to 23V  
IO = 200mA  
7.6  
8
8.4  
VI= 10.5 to 25V  
VI = 11 to 25V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
160  
80  
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.0  
6
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
0.5  
0.8  
Quiescent Current Change  
mA  
DIQ  
VI = 10.5 to 25V  
IO = 5mA  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 0.5  
52  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 9 to 19V  
RR  
56  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M10/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=17V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
9.6  
10  
10.4  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 12.5 to 25V  
IO = 200mA  
9.5  
10  
10.5  
VI= 12.5 to 25V  
VI = 13 to 25V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
200  
100  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.1  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 12.5 to 25V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 0.5  
65  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 13 to 23V  
RR  
55  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M12/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=19V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
11.5  
12  
12.5  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 14.5 to 27V  
IO = 200mA  
11.5  
12  
12.6  
VI= 14.5 to 30V  
VI = 16 to 30V  
100  
50  
DVO  
Lines Regulation  
mV  
TJ = 25°C  
240  
120  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.1  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 14.5 to 30V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 0.5  
75  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 15 to 25V  
RR  
55  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M15/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=23V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
TJ= 25°C  
Min  
Typ  
Max  
Unit  
V
14.4  
15  
15.6  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 17.5 to 30V  
IO = 200mA  
14.25  
15  
15.75  
VI= 17.5 to 30V  
VI = 20 to 30V  
100  
50  
DVO  
mV  
Line Regulation  
TJ = 25°C  
300  
150  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.1  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 17.5 to 30V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 1  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
100  
mV  
f = 120Hz, IO = 300mA  
VI = 18.5 to 28.5V  
RR  
54  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M18/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=26V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
VO  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
17.3  
18  
18.7  
TJ= 25°C  
Output Voltage  
IO = 5 to 350mA  
VI= 20.5 to 33V  
IO = 200mA  
17.1  
18  
18.9  
VI= 21 to 33V  
VI = 24 to 33V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
360  
180  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.2  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 21 to 33V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 1.1  
100  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 22 to 32V  
RR  
53  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M20/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=29V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
19.2  
20  
20.8  
TJ= 25°C  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 23 to 35V  
IO = 200mA  
19  
20  
21  
VI= 23 to 35V  
VI = 24 to 35V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
400  
200  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.2  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
VI = 23 to 35V  
IO = 5mA  
0.5  
Quiescent Current Change  
mA  
DIQ  
0.8  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
mV/°C  
- 1.1  
110  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 24 to 34V  
RR  
53  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
LM78M24/I ELECTRICAL CHARACTERISTICS  
(Refer to the test circuits, TMIN TJ 125°C, IO=350mA, VI=33V, unless otherwise specified, CI = 0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
23  
24  
25  
TJ= 25°C  
Output Voltage  
VO  
IO = 5 to 350mA  
VI= 27 to 38V  
IO = 200mA  
22.8  
24  
25.2  
VI= 27 to 38V  
VI = 28 to 38V  
100  
50  
DVO  
Line Regulation  
mV  
TJ = 25°C  
480  
240  
6
IO = 5mA to 0.5A, TJ = 25°C  
IO = 5mA to 200mA, TJ = 25°C  
DVO  
Load Regulation  
mV  
mA  
Quiescent Current  
IQ  
4.2  
TJ= 25°C  
IO = 5mA to 350mA  
IO = 200mA  
0.5  
0.8  
Quiescent Current Change  
mA  
DIQ  
VI = 27 to 38V  
IO = 5mA  
DVO  
DT  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
- 1.2  
170  
mV/°C  
TJ = 0 to 125°C  
VN  
f = 10Hz to 100KHz  
mV  
f = 120Hz, IO = 300mA  
VI = 28 to 38V  
RR  
50  
dB  
Dropout Voltage  
VD  
ISC  
IPK  
2
V
TJ = 25°C, IO = 500mA  
TJ= 25°C, VI= 35V  
TJ = 25°C  
Short Circuit Current  
300  
700  
mA  
mA  
Peak Current  
*TMIN  
LM78MXXI:TMIN=-40°C  
LM78MXX:TMIN=0°C  
* Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM78MXX/I  
FIXED VOLTAGE REGULATOR (POSITIVE)  
APPLICATION CIRCUIT  
Fig. 1 Fixed output regulator  
Fig. 2 Constant current regulator  
Notes:  
(1) To specify an output voltage, substitute voltage value for "XX".  
(2) Although no output capacitor is needed for stability, it does  
improve transient response.  
(3) Required if regulator is located an appreciable distance from  
power Supply filter.  
Fig. 4 Adjustable output regulator (7 to 30V)  
Fig. 3 Circuit for Increasing output voltage  
Fig. 5 0.5 to 10V Regulator  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
3-TERMINAL 1A NEGATIVE VOLTAGE REGULATORS  
The LM79XX series of three-terminal negative regulators are available in  
TO-220  
TO-220 package and with several fixed output voltages, making them useful  
in a wide range of applications. Each type employs internal current limiting,  
thermal shut-down and safe area protection, making it essentially indestructible.  
FEATURES  
·
·
·
·
·
Output Current in Excess of 1A  
Output Voltages of -5, -6, -8, -12, -15, -18, -24V  
Internal Thermal Overload Protection  
Short Circuit Protection  
1: GND 2: Input 3: Output  
Output Transistor Safe-Area Compensation  
ORDERING INFORMATION  
Output Voltage  
Tolerance  
Device  
Package  
Operating Temperature  
LM79XXCT  
LM79XXAT  
± 4%  
± 2%  
TO-220  
0 ~ +125°C  
BLOCK DIAGRAM  
GND  
R1  
VOLTAGE  
REFERENCE  
R2  
Out  
+
-
Q1  
Q2  
PROTECTION  
CIRCUITRY  
I1  
I2  
Rsc  
In  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
ABSOLUTE MAXIMUM RATINGS (TA=+25°C, unless otherwise specified)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage  
VI  
-35  
5
V
°C / W  
°C /W  
Thermal Resistance Junction-Cases  
Junction-Air  
RqJC  
RqJA  
TOPR  
TSTG  
65  
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
0 ~ +125  
- 65 ~ +150  
LM7905 ELECTRICAL CHARACTERISTICS  
(VI = 10V, lO = 500mA, 0°C £TJ £ +125°C, CI =2.2mF, CO =1mF, unless otherwise specified.)  
Characteristic  
Symbol  
Test Conditions  
TJ =+25°C  
Min  
Typ  
Max  
Unit  
V
- 4.8  
- 5.0  
- 5.2  
- 5.25  
50  
IO = 5mA to 1A, PO 15W  
VI = -7 to -20V  
Output Voltage  
VO  
- 4.75  
-5.0  
5
VI = -7 to -20V  
mV  
IO=1A  
TJ =25°C  
VI = -8 to -12V  
2
25  
IO=1A  
DVO  
Line Regulation  
Load Regulation  
VI = -7.5 to -25V  
7
7
50  
50  
VI= -8 to -12V  
IO=1A  
IO = 5mA to 1.5A  
10  
3
100  
50  
TJ =+25°C  
mV  
DVO  
IO = 250 to 750mA  
TJ =+25°C  
Quiescent Current  
IQ  
3
6
mA  
mA  
IO = 5mA to 1A  
VI = -8 to -25V  
IO = 5mA  
0.05  
0.1  
0.5  
0.8  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
- 0.4  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+25°C  
VN  
40  
60  
2
f = 120Hz, IO = -35V  
DVI = 10V  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
TJ=+25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ =+25°C, VI = -35V  
TJ =+25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be  
taken into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7906 ELECTRICAL CHARACTERISTICS  
(VI = 11V, lO = 500mA, 0°C £TJ£ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ = +25°C  
Min  
Typ  
Max  
Unit  
V
- 5.75  
- 6  
- 6.25  
IO = 5mA to 1A, PO 15W  
VI = - 9 to - 21V  
Output Voltage  
- 5.7  
- 6  
- 6.3  
VI = - 8 to - 25V  
10  
5
120  
60  
TJ = 25°C  
mV  
DVO  
Line Regulation  
Load Regulation  
VI= - 9 to -12V  
TJ =+ 25°C  
10  
120  
60  
IO = 5mA to 1.5A  
TJ =+ 25°C  
IO = 250 to 750mA  
TJ =+ 25°C  
mV  
DVO  
3
3
Quiescent Current  
IQ  
6
mA  
mA  
IO = 5mA to 1A  
VI = -9 to -25V  
IO = 5mA  
0.5  
1.3  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.5  
130  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
60  
2
dB  
V
DVI = 10V  
TJ=+ 25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ= +25°C, VI = -35V  
TJ= +25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be  
taken into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7908 ELECTRICAL CHARACTERISTICS  
(VI = 14V, lO = 500mA, 0°C £TJ £ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
V
- 7.7  
- 8  
- 8.3  
IO = 5mA to 1A, PO 15W  
VI = -1.5 to -23V  
Output Voltage  
- 7.6  
- 8  
- 8.4  
VI = -10.5 to -25V  
TJ = 25°C  
10  
5
100  
80  
DVO  
Line Regulation  
Load Regulation  
mV  
VI= -11 to -17V  
TJ =+ 25°C  
IO = 5mA to 1.5A  
TJ =+ 25°C  
IO = 250 to 750mA  
TJ =+ 25°C  
12  
4
160  
80  
DVO  
mV  
Quiescent Current  
IQ  
3
6
0.5  
1
mA  
mA  
IO = 5mA to 1A  
VI = -11.5 to -25V  
IO = 5mA  
0.05  
0.1  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.6  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
175  
60  
2
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
DVI = 10V  
TJ=+ 25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C, VI = -35V  
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7909 ELECTRICAL CHARACTERISTICS  
(VI = 14V, lO = 500mA, 0°C £TJ £+ 125°C, CI =2.2mF, CO = 1mF, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
V
- 8.7  
- 9.0  
- 9.3  
IO = 5mA to 1A, PO 15W  
VI = -1.5 to -23V  
Output Voltage  
- 8.6  
- 9.0  
- 9.4  
VI = -10.5 to -25V  
TJ = 25°C  
10  
5
180  
90  
DVO  
Line Regulation  
Load Regulation  
mV  
VI= -11 to -17V  
TJ =+ 25°C  
IO = 5mA to 1.5A  
12  
4
180  
90  
mV  
DVO  
TJ =+ 25°C  
IO = 250 to 750mA  
Quiescent Current  
IQ  
3
6
0.5  
1
mA  
mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -11.5 to -25V  
IO = 5mA  
0.05  
0.1  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.6  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
175  
60  
2
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
DVI = 10V  
TJ=+ 25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ= +25°C, VI = -35V  
TJ =+25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7912 ELECTRICAL CHARACTERISTICS  
(VI= 18V, lO =500mA, 0°C £TJ£ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
Test Conditions  
TJ = +25°C  
Min  
Typ  
Max  
Unit  
-11.5  
-12  
-12.5  
IO = 5mA to 1A, PO 15W  
VI = -15.5 to -27V  
Output Voltage  
VO  
V
-11.4  
-12  
-12.6  
VI = -14.5 to -30V  
12  
6
240  
120  
DVO  
TJ = 25°C  
Line Regulation  
Load Regulation  
mV  
VI= -16 to -22V  
TJ =+ 25°C  
IO = 5mA to 1.5A  
TJ =+ 25°C  
IO = 250 to 750mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -15 to -30V  
IO = 5mA  
12  
4
240  
120  
DVO  
mV  
Quiescent Current  
IQ  
3
0.05  
0.1  
6
0.5  
1
mA  
mA  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.8  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
200  
60  
2
f = 120Hz  
DVI = 10V  
TJ= +25°C  
IO = 1A  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
TJ=+ 25°C, VI = -35V  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7915 ELECTRICAL CHARACTERISTICS  
(VI = 23V, IO = 500mA, 0°C £TJ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
V
-14.4  
-15  
-15.6  
IO = 5mA to 1A, PO 15W  
VI = -18 to -30V  
Output Voltage  
-14.25  
-15  
-15.75  
VI = -17.5 to -30V  
VI= -20 to -26V  
12  
6
300  
150  
TJ = 25°C  
Line Regulation  
Load Regulation  
DVO  
mV  
TJ =+ 25°C  
12  
4
300  
150  
IO = 5mA to 1.5A  
DVO  
mV  
TJ =+ 25°C  
IO = 250 to 750mA  
Quiescent Current  
IQ  
3
6
0.5  
1
mA  
mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -18.5 to -30V  
IO = 5mA  
0.05  
0.1  
Quiescent Current Change  
DIQ  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.9  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100Khz  
TA =+ 25°C  
VN  
250  
60  
2
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
DVI = 10V  
TJ=+25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C, VI = -35V  
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7918 ELECTRICAL CHARACTERISTICS  
(VI = 27V, lO = 500mA, 0°C £TJ £+125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
V
-17.3  
-18  
-18.7  
IO = 5mA to 1A, PO 15W  
VI = -22.5 to -33V  
Output Voltage  
VO  
-17.1  
-18  
-18.9  
VI= -21 to -33V  
15  
8
360  
180  
DVO  
TJ = 25°C  
Line Regulation  
Load Regulation  
mV  
VI= -24 to -30V  
TJ =+ 25°C  
15  
360  
180  
IO = 5mA to 1.5A  
DVO  
mV  
TJ =+ 25°C  
5
3
IO = 250 to 750mA  
Quiescent Current  
IQ  
6
0.5  
1
mA  
mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -22 to -33V  
IO = 5mA  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-1  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
300  
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
60  
2
dB  
V
DVI = 10V  
TJ=+ 25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C, VI = -35V  
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7924 ELECTRICAL CHARACTERISTICS  
(VI = 33V, lO = 500mA, 0°C £TJ £+125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ =+25°C  
Min  
Typ  
Max  
Unit  
V
- 23  
- 24  
- 25  
Output Voltage  
IO = 5mA to 1A, PO £15W  
VI = -27 to -38V  
- 22.8  
- 24  
- 25.2  
VI = - 27 to - 38V  
VI= - 30 to - 36V  
15  
8
480  
180  
mV  
DVO  
Line Regulation  
Load Regulation  
TJ = 25°C  
TJ = +25°C  
15  
480  
240  
IO = 5mA to 1.5A  
DVO  
mV  
TJ =+ 25°C  
5
3
IO = 250 to 750mA  
Quiescent Current  
IQ  
6
0.5  
1
mA  
mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -27 to -38V  
IO = 5mA  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-1  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
400  
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
60  
2
dB  
V
DVI = 10V  
TJ= +25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C, VI = -35V  
TJ=+25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
LM7905A ELECTRICAL CHARACTERISTICS  
(VI = 10V, lO = 500mA, 0°C £TJ £ +125°C, CI =2.2mF, CO =1mF, unless otherwise specified.)  
Characteristic  
Symbol  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
V
- 4.9  
- 5.0  
- 5.1  
IO = 5mA to 1A, PO 15W  
VI = -7 to -20V  
Output Voltage  
VO  
- 4.8  
-5.0  
5
- 5.2  
50  
VI = -7 to -20V  
mV  
IO=1A  
TJ =+25°C  
VI = -8 to -12V  
2
25  
IO=1A  
DVO  
Line Regulation  
Load Regulation  
VI = -7.5 to -25V  
7
7
50  
50  
VI= -8 to -12V  
IO=1A  
IO = 5mA to 1.5A  
10  
3
100  
50  
TJ =+ 25°C  
mV  
DVO  
IO = 250 to 750mA  
TJ = +25°C  
Quiescent Current  
IQ  
3
6
mA  
mA  
IO = 5mA to 1A  
VI = -8 to -25V  
IO = 5mA  
0.05  
0.1  
0.5  
0.8  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
- 0.4  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+ 25°C  
VN  
40  
60  
2
f = 120Hz, IO = -35V  
DVI = 10V  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
TJ=+ 25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ =+ 25°C, VI = -35V  
TJ =+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be  
taken into account separately. Pulse testing with low duty is used.  
LM7912A ELECTRICAL CHARACTERISTICS  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
(VI= 18V, lO =500mA, 0°C £TJ£ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
Test Conditions  
TJ =+ 25°C  
Min  
Typ  
Max  
Unit  
-11.75  
-12  
-12.25  
IO = 5mA to 1A, PO 15W  
VI = -15.5 to -27V  
Output Voltage  
VO  
V
-11.5  
-12  
-12.5  
VI = -14.5 to -30V  
12  
6
240  
120  
TJ =+25°C  
DVO  
Line Regulation  
Load Regulation  
mV  
VI= -16 to -22V  
TJ = +25°C  
IO = 5mA to 1.5A  
TJ =+ 25°C  
IO = 250 to 750mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -15 to -30V  
IO = 5mA  
12  
4
240  
120  
DVO  
mV  
Quiescent Current  
IQ  
3
0.05  
0.1  
6
0.5  
1
mA  
mA  
DIQ  
Quiescent Current Change  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.8  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100Khz  
TA =+ 25°C  
VN  
200  
60  
2
f = 120Hz  
DVI = 10V  
TJ=+ 25°C  
IO = 1A  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
TJ=+ 25°C, VI = -35V  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM7915A ELECTRICAL CHARACTERISTICS  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
(VI = 23V, lO = 500mA, 0°C £TJ£ +125°C, CI =2.2mF, CO = 1mF, unless otherwise specified.)  
Characteristic  
Symbol  
VO  
Test Conditions  
TJ = +25°C  
Min  
Typ  
Max  
Unit  
V
-14.7  
-15  
-15.3  
IO = 5mA to 1A, PO 15W  
VI = -18 to -30V  
Output Voltage  
-14.4  
-15  
-15.6  
VI = -17.5 to -30V  
12  
6
300  
150  
TJ =+25°C  
Line Regulation  
Load Regulation  
DVO  
mV  
VI= -20 to -26V  
TJ =+ 25°C  
12  
4
300  
150  
IO = 5mA to 1.5A  
DVO  
mV  
TJ =+ 25°C  
IO = 250 to 750mA  
Quiescent Current  
IQ  
3
6
0.5  
1
mA  
mA  
TJ =+ 25°C  
IO = 5mA to 1A  
VI = -18.5 to -30V  
IO = 5mA  
0.05  
0.1  
Quiescent Current Change  
DIQ  
Temperature Coefficient of VD  
Output Noise Voltage  
-0.9  
DVO/DT  
mV/°C  
mV  
f = 10Hz to 100KHz  
TA =+25°C  
VN  
250  
60  
2
f = 120Hz  
Ripple Rejection  
Dropout Voltage  
RR  
VD  
54  
dB  
V
DVI = 10V  
TJ= +25°C  
IO = 1A  
Short Circuit Current  
Peak Current  
ISC  
IPK  
300  
2.2  
mA  
A
TJ=+ 25°C, VI = -35V  
TJ=+ 25°C  
* Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
TYPICAL PERFORMANCE CHARACTERISTICS  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
Fig.1 Output Voltage  
Fig. 2 Load Regulation  
15  
5.1  
5.05  
5
Vin=10V  
Io=40mA  
13  
11  
9
Io=1.5A  
7
4.95  
4.9  
4.85  
4.8  
5
3
1
-1  
-3  
-5  
Vin=25V  
Io=100mA  
Io=0.75A  
-40 -25  
0
25  
50  
75  
100 125  
-40  
-25  
0
25  
50  
75  
100  
125  
TA, Ambient Temperature [oC]  
TA, Ambient Temperature [oC]  
Fig.3 Quiescent Current  
Fig. 4 Dropout Voltage  
4
3.5  
3
5
4.5  
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
Io=1A  
1.5  
1
0.5  
0
0.5  
0
-40  
-25  
0
25  
50  
75  
100  
125  
-40 -25  
0
25  
50  
75  
100 125  
TA, Ambient Temperature [oC]  
TA, Ambient Temperature [oC]  
Fig.5 Short Circuit Current  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-40  
-25  
0
25  
50  
75  
100  
125  
TA, Ambient Temperature [oC]  
TYPICAL APPLICATIONS  
LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)  
Fig. 6 Negative Fixed output regulator  
Notes:  
(1)  
To specify an output voltage, substitute voltage value  
for “XX “  
2.2mF  
1mF  
+
+
(2)  
Required for stability. For value given, capacitor  
must be solid tantalum. If aluminum electronics are  
used, at least ten times value shown should be  
selected. CI is required if regulator is located an  
appreciable  
1
CO  
CI  
2
3
- VI  
KA79XX  
- VO  
distance from power supply filter.  
(3)  
To improve transient response. If large capacitors  
are used, a high current diode from input to output  
(1N400l or similar) should be introduced to protect  
the device from momentary input short circuit.  
Fig. 7 Split power supply (±12V/1A)  
3
1
KA7812  
2
+ 15V  
+12V  
GND  
-12V  
+
+
+
1N4001  
*
0.33mF  
1mF  
1mF  
2.2mF  
+
1N4001  
1
*
2
3
KA7912  
- 15V  
*: Against potential latch-up problems.  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
MC79LXXA (LM79LXXA) (KA79LXXA)  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
3-TERMINAL 0.1A NEGATIVE VOLTAGE  
REGULATORS  
TO-92  
These regulators employ internal current limiting and thermal shutdown,  
making them essentially indestructible.  
FEATURES  
·
·
Output current up to 100mA  
No external components  
1: GND 2: Input 3: Output  
·
Internal thermal over load protection  
·
Internal short circuit current limiting  
·
·
Output Voltage Offered in ± 5% Tolerance  
Output Voltage of -5V,-12V,-15V,-18V and -24V  
ORDERING INFORMATION  
Device  
Package  
TO - 92  
Operating Temperature  
MC79LXXACP (LM79LXXACZ) KA79LXXAZ  
0 ~ + 125°C  
SCHEMATIC DIAGRAM  
Rev. C  
ã
1999 Fairchild Semiconductor Corporation  
 
MC79LXXA (LM79LXXA) (KA79LXXA)  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)  
Characteristic  
Input Voltage (-5V)  
Symbol  
Value  
Unit  
-30  
-35  
(-12V to -18V)  
(-24V)  
VI  
VDC  
-40  
Operating Temperature Range  
TOPR  
TSTG  
0 ~ +125  
°C  
°C  
Storage Temperature Range  
-65 ~ +150  
MC79L05A ELECTRICAL CHARACTERISTICS  
(VI = -10V, IO = 40mA, CI = 0.33mF, CO = 0.1mF, 0°C £TJ £ +125°C, unless otherwise specified)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
TJ = +25°C  
Min  
Typ  
Max  
Unit  
VO  
- 4.8  
- 5.0  
15  
- 5.2  
150  
100  
60  
V
-7.0V ³ VI ³ -20V  
-8V ³ VI ³ -20V  
Line Regulation  
mV  
TJ =+25°C  
TJ =+25°C  
DVO  
DVO  
20  
10  
1.0mA £ IO £ 100mA  
1.0mA £ IO £ 40mA  
mV  
V
Load Regulation  
Output Voltage  
30  
- 4.75  
- 4.75  
- 5.25  
- 5.25  
6.0  
-7.0V>VI >-20V, 1.0mA£ IO £40mA  
VI = -10V, 1.0mA£ IO £70mA  
TJ = +25°C  
VO  
IQ  
2.0  
mA  
Quiescent Current  
Quiescent  
5.5  
TJ = +125°C  
With Line  
1.5  
-8V³ VI ³ -20V  
DIQ  
VN  
mA  
mV  
dB  
Current Change With Load  
Output Noise Voltage  
0.1  
1.0mA£ IO £40mA  
TA = +25°C,10Hz£f£100KHz  
f = 120Hz, -8V³ VI ³ -18V  
TJ = +25°C  
30  
60  
Ripple Rejection  
Dropout Voltage  
RR  
41  
VD  
1.7  
V
TJ = +25°C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects  
must be taken into account separately. Pulse testing with low duty is used.  
MC79LXXA (LM79LXXA) (KA79LXXA)  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
MC79L12A ELECTRICAL CHARACTERISTICS  
(VI = -19V, IO = 40mA, CI = 0.33mF, CO = 0.1mF, 0°C £TJ £ +125°C, unless otherwise specified)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
-11.5  
-12.0  
-12.5  
250  
200  
100  
50  
V
TJ = +25°C  
TJ =+25°C  
-14.5V ³ VI ³ -27V  
mV  
mV  
DVO  
DVO  
Line Regulation  
Load Regulation  
Output Voltage  
-16V³ VI ³ -27V  
1.0mA£ IO £100mA  
1.0mA£ IO £40mA  
TJ =+25°C  
-11.4  
-11.4  
-12.6  
-12.6  
6.5  
-14.5V>VI >-27V, 1.0mA£IO£40mA  
VI = -19V, 1.0mA£ IO £70mA  
TJ = +25°C  
VO  
V
Quiescent Current  
Quiescent  
IQ  
mA  
6.0  
TJ = +125°C  
With Line  
1.5  
-16V³ VI ³ -27V  
DIQ  
mA  
mV  
dB  
Current Change With Load  
Output Noise Voltage  
0.1  
1.0mA£ IO £40mA  
VN  
80  
42  
TA = +25°C,10Hz  
f 100KHz  
f = 120Hz, -150V³ VI ³ -25V  
TJ = +25°C  
Ripple Rejection  
RR  
37  
Dropout Voltage  
VD  
1.7  
V
TJ = +25°C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
MC79L15A ELECTRICAL CHARACTERISTICS  
(VI = -23V, IO = 40mA, CI = 0.33mF, CO = 0.1mF, 0°C £TJ £ +125°C, unless otherwise specified)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
-14.4  
-15.0  
-15.6  
300  
250  
150  
75  
V
TJ = +25°C  
TJ =+25°C  
-17.5V³ VI ³ -30V  
mV  
mV  
DVO  
DVO  
Line Regulation  
-27V³ VI ³ -30V  
1.0mA£ IO £100mA  
1.0mA£ IO £40mA  
TJ =+25°C  
Load Regulation  
Output Voltage  
-14.25  
-14.25  
-15.75  
-15.75  
6.5  
-17.5V>VI >-30V, 1.0mA£ IO £40mA  
VI = -23V, 1.0mA£ IO £70mA  
TJ = +25°C  
VO  
IQ  
V
Quiescent Current  
Quiescent  
mA  
6.0  
TJ = +125°C  
With Line  
1.5  
-20V³ VI ³ -30V  
DIQ  
VN  
mA  
mV  
dB  
Current Change With Load  
Output Noise Voltage  
0.1  
1.0mA£ IO £40mA  
90  
39  
TA = 25°C,10Hz£f£100KHz  
f = 120Hz, -18.5V³ VI ³ -28.5V  
TJ = +25°C  
Ripple Rejection  
RR  
34  
Dropout Voltage  
VD  
1.7  
V
TJ = +25°C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
MC79LXXA (LM79LXXA) (KA79LXXA)  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
MC79L18A ELECTRICAL CHARACTERISTICS  
(VI = -27V, IO = 40mA, CI = 0.33mF, CO = 0.1mF, 0°C £TJ £ +125°C, unless otherwise specified)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
-17.3  
-18.0  
-18.7  
325  
275  
170  
85  
V
TJ =+25°C  
TJ =+25°C  
-20.7V³ VI ³ -33V  
mV  
mV  
DVO  
DVO  
VO  
Line Regulation  
-21V³ VI ³ -33V  
1.0mA£ IO £100mA  
1.0mA£ IO £40mA  
TJ =+25°C  
Load Regulation  
Output Voltage  
-17.1  
-17.1  
-18.9  
-18.9  
6.5  
-20.7V>VI >-33V, 1.0mA£ IO £40mA  
VI = -1.0V, 1.0mA£ IO £70mA  
TJ = +25°C  
V
Quiescent Current  
Quiescent  
mA  
IQ  
6.0  
TJ = +125°C  
With Line  
1.5  
-21V³ VI ³ -33V  
DIQ  
VN  
mA  
Current Change With Load  
Output Noise Voltage  
0.1  
1.0mA£ IO £40mA  
150  
48  
TA =+25°C,10Hz£f£100KHz  
f = 120Hz, -23V³ VI ³ -33V  
TJ = +25°C  
mV  
Ripple Rejection  
Dropout Voltage  
RR  
33  
dB  
VD  
1.7  
V
TJ = +25°C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
MC79L24A ELECTRICAL CHARACTERISTICS  
(VI = -33V, IO = 40mA, CI = 0.33mF, CO = 0.1mF, 0°C £TJ£+ 125°C, unless otherwise specified)  
Characteristic  
Output Voltage  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VO  
-23  
-24  
-25  
350  
300  
200  
100  
-25.2  
-25.2  
6.5  
V
TJ = +25°C  
TJ =+25°C  
-27V³ VI ³ -38V  
mV  
mV  
V
DVO  
DVO  
Line Regulation  
-28V³ VI ³ -38V  
1.0mA£ IO £100mA  
1.0mA£ IO £40mA  
TJ =+25°C  
Load Regulation  
Output Voltage  
-22.8  
-22.8  
-27V>VI >-38V, 1.0mA£ IO£40mA  
VI = -33V, 1.0mA£ IO £70mA  
TJ = +25°C  
VO  
IQ  
mA  
mA  
Quiescent Current  
Quiescent  
6.0  
TJ = +125°C  
With Line  
1.5  
-28V³ VI ³ -38V  
DIQ  
Current Change With Load  
Output Noise Voltage  
0.1  
1.0mA£ IO £40mA  
VN  
200  
47  
TA = +25°C,10Hz£f£100KHz  
f = 120Hz, -29V³ VI ³ -35V  
TJ = +25°C  
mV  
Ripple Rejection  
Dropout Voltage  
RR  
31  
dB  
VD  
1.7  
V
TJ = +25°C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
MC79LXXA (LM79LXXA) (KA79LXXA)  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
TYPICAL APPLICATIONS  
Design Considerations  
The MC79LXXA Series of fixed voltage regulators  
are designed with Thermal Overload Protection that  
shuts down the circuit when subjected to an excessive  
power overload condition. Internal Short-Circuit  
Protection that limits the maximum current the circuit  
will pass.  
In many low current applications, compensation  
capacitors are not required. However, it is  
recommended that the regulator input be bypassed  
with a capacitor if the regulator is connected to the  
power supply filter with long wire lengths, or if the  
output load capacitance is large. An input bypass  
capacitor should be selected to provide good high -  
frequency characteristics to insure stable operation  
under all load conditions. A 0.33mF or larger tantalum,  
mylar, or other capacitor having low internal  
impedance at high frequencies should be chosen. The  
bypass capacitor should be mounted with the shortest  
possible leads directly across the regulator's input  
terminals. Normally good construction techniques  
should be used to minimize ground loops and lead  
resistance drops since the regulator has no external  
sense lead. Bypassing the output is also  
recommended.  
Fig. 1 Positive And Negative Regulator  
Fig. 2 Typical Application  
OUTPUT  
A common ground is required between the Input  
and the output voltages. The input voltage must  
remain typically 2.0V above the output voltage even  
during the low point on the input ripple voltage.  
= C1 is required if regulator is located an  
appreciable distance from power supply filter.  
* * = CO improves stability and transient response.  
MC79LXXA (LM79LXXA) (KA79LXXA)  
PACKAGE DIMENSION  
FIXED VOLTAGE REGULATOR (NEGATIVE)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench®  
QFET™  
TinyLogic™  
UHC™  
VCX™  
CoolFET™  
CROSSVOLT™  
2
E CMOS™  
FACT™  
FACT Quiet Series™  
FAST  
FASTr™  
GTO™  
HiSeC™  
QS™  
®
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at any  
time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product that has  
been discontinued by Fairchild semiconductor. The  
datasheet is printed for reference information only.  
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
3-TERMINAL 0.5A NEGATIVE VOLTAGE REGULATORS  
TO- 220  
The LM79MXX series of 3-Terminal medium current negative voltage  
regulators are monolithic integrated circuits designed as fixed voltage  
regulators. These regulators employ internal current limiting, thermal  
shutdown and safe-area compensation making them essentially in  
destructible.  
D-PAK  
1
1: GND 2: Input 3: Output  
FEATURES  
·
·
No external components required  
Output current in excess of 0.5A  
·
·
·
·
Internal thermal-overload  
Internal short circuit current limiting  
Output transistor safe-area compensation  
ORDERING INFORMATION  
Device  
Package  
TO-220  
D-PAK  
Operating Temperature  
Output Voltages of -5V, -6V,-8V,-12V,-15V,-18V and -24V  
0 ~ +125 °C  
LM79MXX  
0 ~ +125 °C  
LM79MXXR  
SCHEMATHIC DIAGRAM  
Rev. B  
ã
1999 Fairchild Semiconductor Corporation  
 
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
ABSOLUTE MAXIMUM RATINGS (TA = +25 °C, unless otherwise specified)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage(for VO = -5V to -18V)  
(for VO = -24V)  
VI  
VI  
-35  
-40  
5
V
V
Thermal Resistance Junction-Cases  
RqJC  
RqJA  
TOPR  
TSTG  
°C /W  
°C /W  
°C  
Thermal Resistance Junction-Air  
Operating Temperature Range  
Storage Temperature Range  
65  
0 ~ +125  
65 ~ +125  
°C  
LM79MO5/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI =10V,unless otherwise specified, CI =0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
VO  
Test condition  
TJ= +25 °C  
MIN  
TYP  
MAX  
Unit  
V
-4.8  
-5  
-5  
-5.2  
Output Voltage  
IO = 5 to 350mA  
VI = -7 to -25V  
-4.75  
-5.25  
VI= -7 to -25V  
VI= -8 to -25V  
7.0  
2.0  
50  
30  
DVO  
Line Regulation  
TJ= +25°C  
mV  
IO = 5mA to 500mA  
Load Regulation  
30  
100  
mV  
mA  
DVO  
TJ = 25 °C  
Quiescent Current  
IQ  
3.0  
6.0  
0.4  
0.4  
TJ= 25 °C  
IO = 5 to 350mA  
IO = 200mA  
VI = -8V to -25V  
IO = 5mA  
Quiescent Current  
Change  
mA  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
-0.2  
40  
DVO/DT  
mV/ °C  
mV  
f = 10Hz, 100Khz  
TJ = +25 °C  
VN  
f = 120Hz  
Vj = -8 to -18V  
TJ =+25 °C, IO = 500mA  
Ripple Rejection  
RR  
54  
60  
dB  
Dropout Voltage  
Short Circuit Current  
Peak Current  
VD  
ISC  
IPK  
1.1  
140  
650  
V
mA  
mA  
TJ= +25 °C, VI = -35V  
TJ= +25 °C  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be  
taken into account separately. Pulse testing with low duty is used.  
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79MO6/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = -11V,unless otherwise specified)  
Characteristic  
Symbol  
Test condition  
Min  
Typ  
Max  
Unit  
V
- 5.75  
- 6.0  
- 6.25  
TJ= +25 °C  
Output Voltage  
VO  
IO = 5 to 350mA  
VI = -8.0 to -25V  
- 5.7  
- 6.0  
7.0  
2.0  
30  
- 6.3  
60  
VI = -8 to -25V  
DVO  
Line Regulation  
TJ= +25 °C  
mV  
VI = -9 to -19V  
40  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
120  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -8V to -25V  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
IO = 5mA  
0.4  
50  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -9 to -19V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
60  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79MO8/R ELECTRICAL CHARACTERISTICS  
O
O
(Refer to test circuit, 0 C £TJ £ +125 C, lO =350mA, VI = -14V,unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
O
TJ= +25  
C
- 7.7  
- 8.0  
- 8.3  
Output Voltage  
IO = 5 to 350mA  
VI = -10.5 to -25V  
- 7.6  
- 8.0  
7.0  
2.0  
30  
- 8.4  
80  
VI = -10.5 to -25V  
VI = -11 to -21V  
O
DVO  
Line Regulation  
TJ= +25  
C
mV  
50  
O
O
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
TJ= +25  
TJ= +25  
C
C
IO = 5.0mA to 500mA  
160  
6
mV  
mA  
DVO  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -8V to -25V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-0.6  
60  
DVO/DT  
VN  
mV/ °C  
mV  
O
f = 10Hz to 100KHz,TA = +25  
C
RR  
VD  
f = 120Hz,VI = -9 to -19V  
54  
59  
dB  
O
IO = 500mA, TJ = +25  
C
1.1  
140  
650  
V
O
ISC  
VI = -35V, TJ = +25  
C
mA  
mA  
O
IPK  
TJ = +25  
C
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79M12/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 19V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
-11.5  
-12  
-12.5  
TJ= +25 °C  
Output Voltage  
IO = 5 to 350mA  
VI = -14.5 to -30V  
-11.4  
-1.2  
8.0  
3.0  
30  
-12.6  
80  
VI = -14.5 to -30V  
Line Regulation  
TJ = +25 °C  
DVO  
mV  
VI = -15 to -25V  
50  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
240  
6
mV  
mA  
DVO  
TJ= +25°C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -14.5V to -30V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-0.8  
75  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA =+25 °C  
f = 120Hz,VI = -15 to -25V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
60  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79M15/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 23V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
O
TJ= +25  
C
- 14.4  
- 15  
- 15.6  
Output Voltage  
IO = 5 to 350mA  
VI = -17.5 to -30V  
- 14.25  
- 15  
9.0  
5.0  
30  
- 15.75  
80  
VI = -17.5 to -30V  
DVO  
mV  
TJ = +25 °C  
Line Regulation  
VI = -18 to -28V  
50  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
240  
6
mV  
mA  
DVO  
TJ= +25°C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -17.5V to -28V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-1.0  
90  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -18.5 to -28.5V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
59  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79M18/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 27V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
- 17.3  
- 18  
- 18.7  
TJ= +25 °C  
Output Voltage  
IO = 5 to 350mA  
VI = -21 to -33V  
V
- 17.1  
- 18  
9.0  
5.0  
30  
- 18.9  
80  
VI = -21 to -33V  
mV  
DVO  
Line Regulation  
TJ =+ 25 °C  
VI = -24 to -30V  
80  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
360  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -21V to -33V  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
IO = 5mA  
-1.0  
110  
59  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -22 to -32V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
dB  
1.1  
V
ISC  
140  
650  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79M24/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 33V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
- 23  
- 24  
- 25  
TJ= +25 °C  
Output Voltage  
IO = 5 to 350mA  
VI = -27 to -38V  
- 22.8  
- 24  
9.0  
5.0  
30  
- 25.2  
80  
VI = -27 to -38V  
DVO  
Line Regulation  
TJ = +25 °C  
mV  
VI = -30 to -36V  
70  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
300  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
VI = -27V to -38V  
IO = 5mA  
0.4  
0.4  
mA  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-1.0  
180  
58  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -28 to -38V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
dB  
1.1  
V
ISC  
140  
650  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
TYPICAL APPLICATIONS  
Bypass capacitors are recommended for stable operation of the KA79MXX series of regulators over the input voltage and output  
current ranges. Output bypass capacitors will improve the transient response of the regulator.  
The bypass capacitors, (2mF on the input, 1mF on the output) should be ceramic or solid tantalum which have good high frequency  
characteristics. If aluminum electronics are used, their values should be 10mF or larger. The bypass capacitors should be  
mounted with the shortest leads, and if possible, directly across the regulator terminals.  
Fig. 1 Fixed Output Regulator  
Fig. 2 Variable Output  
Note  
1. Required for stability. For value given, capacitor must  
be solid tantalum. 25mF aluminum electrolytic may  
be substituted.  
2. C2 improves transient response and ripple rejection.  
Do not increase beyond 50mF.  
Select R2 as follows  
KA79M 05: 300W, KA79M12: 750W, KA79M15: 11W  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
3-TERMINAL 0.5A NEGATIVE VOLTAGE REGULATORS  
TO- 220  
D-PAK  
The KA79MXX series of 3-Terminal medium current negative voltage  
regulators are monolithic integrated circuits designed as fixed voltage  
regulators. These regulators employ internal current limiting, thermal  
shutdown and safe-area compensation making them essentially in  
destructible.  
1
FEATURES  
·
·
·
·
·
·
No external components required  
Output current in excess of 0.5A  
Internal thermal-overload  
Internal short circuit current limiting  
Output transistor safe-area compensation  
Output Voltages of -5V, -6V,-8V,-12V,-15V,-18V and -24V  
1: GND 2: Input 3: Output  
ORDERING INFORMATION  
Device  
KA79MXX  
KA79MXXR  
Package  
TO-220  
D-PAK  
Operating Temperature  
0 ~ +125 °C  
0 ~ +125 °C  
SCHEMATHIC DIAGRAM  
Rev. C  
ã
1999 Fairchild Semiconductor Corporation  
 
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
ABSOLUTE MAXIMUM RATINGS (TA = +25 °C, unless otherwise specified)  
Characteristic  
Symbol  
Value  
Unit  
Input Voltage(for VO = -5V to -18V)  
(for VO = -24V)  
VI  
VI  
-35  
-40  
5
V
V
Thermal Resistance Junction-Cases  
RqJC  
°C /W  
Thermal Resistance Junction-Air  
Operating Temperature Range  
Storage Temperature Range  
65  
RqJA  
TOPR  
TSTG  
°C /W  
°C  
0 ~ +125  
65 ~ +125  
°C  
LM79MO5/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI =10V,unless otherwise specified, CI =0.33mF, CO=0.1mF)  
Characteristic  
Symbol  
Test condition  
TJ= +25 °C  
MIN  
TYP  
MAX  
Unit  
V
-4.8  
-5  
-5  
-5.2  
Output Voltage  
VO  
IO = 5 to 350mA  
VI = -7 to -25V  
-4.75  
-5.25  
VI= -7 to -25V  
VI= -8 to -25V  
7.0  
2.0  
50  
30  
DVO  
Line Regulation  
TJ= +25°C  
mV  
IO = 5mA to 500mA  
Load Regulation  
30  
100  
mV  
mA  
DVO  
TJ = 25 °C  
Quiescent Current  
IQ  
3.0  
6.0  
0.4  
0.4  
TJ= 25 °C  
IO = 5 to 350mA  
IO = 200mA  
VI = -8V to -25V  
IO = 5mA  
Quiescent Current  
Change  
mA  
DIQ  
Output Voltage Drift  
Output Noise Voltage  
-0.2  
40  
DVO/DT  
mV/ °C  
mV  
f = 10Hz, 100Khz  
TJ = +25 °C  
VN  
f = 120Hz  
Vj = -8 to -18V  
Ripple Rejection  
RR  
54  
60  
dB  
Dropout Voltage  
Short Circuit Current  
Peak Current  
VD  
ISC  
IPK  
1.1  
140  
650  
V
TJ =+25 °C, IO = 500mA  
TJ= +25 °C, VI = -35V  
TJ= +25 °C  
mA  
mA  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be  
taken into account separately. Pulse testing with low duty is used.  
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79MO6/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = -11V,unless otherwise specified)  
Characteristic  
Symbol  
Test condition  
Min  
Typ  
Max  
Unit  
V
- 5.75  
- 6.0  
- 6.25  
TJ= +25 °C  
Output Voltage  
VO  
IO = 5 to 350mA  
VI = -8.0 to -25V  
- 5.7  
- 6.0  
7.0  
2.0  
30  
- 6.3  
60  
VI = -8 to -25V  
DVO  
Line Regulation  
TJ= +25 °C  
mV  
VI = -9 to -19V  
40  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
120  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -8V to -25V  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
IO = 5mA  
0.4  
50  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -9 to -19V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
60  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79MO8/R ELECTRICAL CHARACTERISTICS  
O
O
(Refer to test circuit, 0 C £TJ £ +125 C, lO =350mA, VI = -14V,unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
O
TJ= +25  
C
- 7.7  
- 8.0  
- 8.3  
Output Voltage  
IO = 5 to 350mA  
VI = -10.5 to -25V  
- 7.6  
- 8.0  
7.0  
2.0  
30  
- 8.4  
80  
VI = -10.5 to -25V  
VI = -11 to -21V  
O
DVO  
Line Regulation  
TJ= +25  
C
mV  
50  
O
O
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
TJ= +25  
TJ= +25  
C
C
IO = 5.0mA to 500mA  
160  
6
mV  
mA  
DVO  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -8V to -25V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-0.6  
60  
DVO/DT  
VN  
mV/ °C  
mV  
O
f = 10Hz to 100KHz,TA = +25  
C
RR  
VD  
f = 120Hz,VI = -9 to -19V  
54  
59  
dB  
O
IO = 500mA, TJ = +25  
C
1.1  
140  
650  
V
O
ISC  
VI = -35V, TJ = +25  
C
mA  
mA  
O
IPK  
TJ = +25  
C
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79M12/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 19V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
-11.5  
-12  
-12.5  
TJ= +25 °C  
Output Voltage  
IO = 5 to 350mA  
VI = -14.5 to -30V  
-11.4  
-1.2  
8.0  
3.0  
30  
-12.6  
80  
VI = -14.5 to -30V  
Line Regulation  
TJ = +25 °C  
DVO  
mV  
VI = -15 to -25V  
50  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
240  
6
mV  
mA  
DVO  
TJ= +25°C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -14.5V to -30V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-0.8  
75  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA =+25 °C  
f = 120Hz,VI = -15 to -25V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
60  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79M15/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 23V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
V
O
TJ= +25  
C
- 14.4  
- 15  
- 15.6  
Output Voltage  
IO = 5 to 350mA  
VI = -17.5 to -30V  
- 14.25  
- 15  
9.0  
5.0  
30  
- 15.75  
80  
VI = -17.5 to -30V  
DVO  
mV  
TJ = +25 °C  
Line Regulation  
VI = -18 to -28V  
50  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
240  
6
mV  
mA  
DVO  
TJ= +25°C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -17.5V to -28V  
IO = 5mA  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
-1.0  
90  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -18.5 to -28.5V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
59  
dB  
1.1  
140  
650  
V
ISC  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
LM79M18/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 27V, unless otherwise specified)  
Characteristic  
Symbol  
VO  
Test condition  
Min  
Typ  
Max  
Unit  
- 17.3  
- 18  
- 18.7  
TJ= +25 °C  
Output Voltage  
IO = 5 to 350mA  
VI = -21 to -33V  
V
- 17.1  
- 18  
9.0  
5.0  
30  
- 18.9  
80  
VI = -21 to -33V  
mV  
DVO  
Line Regulation  
TJ =+ 25 °C  
VI = -24 to -30V  
80  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
360  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
DIQ  
mA  
VI = -21V to -33V  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
IO = 5mA  
-1.0  
110  
59  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -22 to -32V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
dB  
1.1  
V
ISC  
140  
650  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
LM79M24/R ELECTRICAL CHARACTERISTICS  
(Refer to test circuit, 0 °C £TJ £ +125 °C, lO =350mA, VI = - 33V, unless otherwise specified)  
Characteristic  
Symbol  
Test condition  
Min  
Typ  
Max  
Unit  
V
- 23  
- 24  
- 25  
TJ= +25 °C  
Output Voltage  
VO  
IO = 5 to 350mA  
VI = -27 to -38V  
- 22.8  
- 24  
9.0  
5.0  
30  
- 25.2  
80  
VI = -27 to -38V  
DVO  
Line Regulation  
TJ = +25 °C  
mV  
VI = -30 to -36V  
70  
Load Regulation  
Quiescent Current  
Quiescent Current  
Change  
IO = 5.0mA to 500mA  
300  
6
mV  
mA  
DVO  
TJ= +25 °C  
TJ= +25 °C  
IQ  
3
IO = 5 to 350mA  
0.4  
0.4  
mA  
DIQ  
VI = -27V to -38V  
Output Voltage Drift  
Output Noise Voltage  
Ripple Rejection  
Dropout Voltage  
Short Circuit Current  
Peak Current  
IO = 5mA  
-1.0  
180  
58  
DVO/DT  
VN  
mV/ °C  
mV  
f = 10Hz to 100KHz,TA = +25 °C  
f = 120Hz,VI = -28 to -38V  
IO = 500mA, TJ = +25 °C  
VI = -35V, TJ = +25 °C  
TJ= +25 °C  
RR  
VD  
54  
dB  
1.1  
V
ISC  
140  
650  
mA  
mA  
IPK  
* Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken  
into account separately. Pulse testing with low duty is used.  
KA79MXX  
FIXED VOLTAGE REGULATOR(NEGATIVE)  
TYPICAL APPLICATIONS  
Bypass capacitors are recommended for stable operation of the KA79MXX series of regulators over the input voltage and output  
current ranges. Output bypass capacitors will improve the transient response of the regulator.  
The bypass capacitors, (2mF on the input, 1mF on the output) should be ceramic or solid tantalum which have good high frequency  
characteristics. If aluminum electronics are used, their values should be 10mF or larger. The bypass capacitors should be  
mounted with the shortest leads, and if possible, directly across the regulator terminals.  
Fig. 1 Fixed Output Regulator  
Fig. 2 Variable Output  
Note  
1. Required for stability. For value given, capacitor must  
be solid tantalum. 25mF aluminum electrolytic may  
be substituted.  
2. C2 improves transient response and ripple rejection.  
Do not increase beyond 50mF.  
Select R2 as follows  
KA79M 05: 300W, KA79M12: 750W, KA79M15: 11W  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench®  
QFET™  
TinyLogic™  
UHC™  
VCX™  
CoolFET™  
CROSSVOLT™  
2
E CMOS™  
FACT™  
FACT Quiet Series™  
FAST  
FASTr™  
GTO™  
HiSeC™  
QS™  
®
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at any  
time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product that has  
been discontinued by Fairchild semiconductor. The  
datasheet is printed for reference information only.  

相关型号:

LM79L18ACZ

3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATORS
BOCA

LM79L18ACZ

Fixed Negative Standard Regulator, 18V, PBCY3, TO-92, 3 PIN
MICROSEMI

LM79L18D

Regulator
FCI-CONNECTOR

LM79L18F

3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATOR
HTC

LM79L18LP

Regulator
FCI-CONNECTOR

LM79L18S

Analog IC
ETC

LM79L18T

Analog IC
ETC

LM79L18TA

3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATOR
HTC

LM79L24

3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATORS
BOCA

LM79L24

3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATOR
HTC

LM79L24

LM79L00 Series 3-Terminal Negative Output voltage Regulators
FCI