ISL9G1260EG3 [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-247 ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 20A I(C ) | TO- 247\n
ISL9G1260EG3
型号: ISL9G1260EG3
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-247
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 20A I(C ) | TO- 247\n

晶体 晶体管 双极性晶体管
文件: 总11页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
Data Sheet  
January 2001  
File Number 5019  
600V, SMPS II LGC Series N-Channel IGBT  
Features  
[ /Title  
(ISL9  
G1260  
EG3,  
ISL9G  
1260E  
P3,  
ISL9G  
1260E  
S3)  
The ISL9G1260EG3, ISL9G1260EP3 and ISL9G1260ES3  
are Low Gate Charge (LGC) SMPS II IGBTs combining the  
fast switching speed of the SMPS IGBTs with lower gate  
charge and avalanche capability (UIS). These LGC devices  
shorten delay times, and reduce the power requirement of  
the gate drive. These devices are ideally suited for high  
voltage switched mode power supply applications where low  
conduction loss, fast switching times and UIS capability are  
essential. SMPS II LGC devices have been specially  
designed for:  
• >100kHz Operation at 390V,12A  
• 200kHz Operation at 390V, 9A  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . . .72ns at T = 125 C  
J
• Low Gate Charge. . . . . . . . . . . . . . . . .23nC at V = 15V  
GE  
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150mJ  
• Low Conduction Loss  
Symbol  
• Power Factor Correction (PFC) Circuits  
• Full Bridge Topologies  
• Half Bridge Topologies  
• Push-Pull Circuits  
• Uninterruptible Power Supplies  
• Zero Voltage and Zero Current Switching Circuits  
/Subjec  
t
C
(600V,  
SMPS  
II LGC  
Series  
N-  
Chann  
el  
IGBT)  
/Autho  
r ()  
/Keyw  
ords  
(Intersi  
l
Corpor  
ation,  
semico  
nducto  
r,  
G
Formerly Developmental Type TA49367.  
E
Ordering Information  
PART NUMBER  
ISL9G1260EG3  
ISL9G1260EP3  
ISL9G1260ES3  
PACKAGE  
BRAND  
G1260EG3  
TO-247  
TO-220AB  
TO-263AB  
G1260EP3  
G1260ES3  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the TO-263AB variant in tape and reel, e.g.,  
ISL9G1260ES3T.  
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB  
E
C
G
E
C
G
COLLECTOR  
(FLANGE)  
COLLECTOR  
(FLANGE)  
600V,  
SMPS  
II LGC  
Series  
N-  
JEDEC TO-263AB  
COLLECTOR  
(FLANGE)  
G
E
Chann  
el  
IGBT,  
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
ALL TYPES  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
50  
20  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
108  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
30  
Switching Safe Operating Area at T = 150 C, Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
60A at 600V  
150mJ at 12A  
100mJ at 12A  
167  
o
Single Pulse Avalanche Energy at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
C
Singlle Pulse Reverse Avalanche Energy at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . E  
C
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
AS  
o
ARV  
o
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.33  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
o
o
300  
260  
C
C
L
PKG  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
J
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
600  
-
CES  
ECS  
C
C
GE  
= 10mA, V  
= 0V  
15  
-
-
V
GE  
o
I
V
= 600V  
T = 25 C  
J
-
-
-
-
100  
2
µA  
mA  
V
CES  
CE  
o
T = 125 C  
J
o
Collector to Emitter Saturation Voltage  
V
I
V
=12A,  
T = 25 C  
J
-
1.95  
1.7  
6.5  
-
2.7  
2.0  
7.0  
250  
-
CE(SAT)  
C
GE  
= 15V  
o
T = 125 C  
-
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V = 600V  
CE  
4.5  
-
V
GE(TH)  
C
I
V
=
GE  
20V  
o
nA  
A
GES  
SSOA  
T = 150 C, R = 10Ω, V  
= 15V  
60  
-
J
G
GE  
L = 100µH, V = 600V  
CE  
Pulsed Avalanche Energy  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
E
I
I
I
= 12A, L = 2.1mH, V = 50V  
DD  
150  
-
-
-
mJ  
V
AS  
CE  
V
= 12A, V = 300V  
CE  
-
-
-
-
-
-
-
-
-
-
9.0  
23  
GEP  
C
Q
= 12A,  
= 300V  
V
= 15V  
30  
36  
-
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
g(ON)  
C
GE  
GE  
V
CE  
V
= 20V  
o
28  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
I
V
V
16  
d(ON)I  
J
= 12A  
CE  
t
14  
-
rI  
= 390V  
= 15V  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
42  
-
d(OFF)I  
R
= 10Ω  
G
t
18  
-
fI  
L = 200µH  
Test Circuit - Figure 20  
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
E
E
E
55  
-
ON1  
ON2  
OFF  
170  
100  
-
-
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified (Continued)  
J
PARAMETER  
Current Turn-On Delay Time  
Current Rise Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
22  
MAX  
-
UNITS  
ns  
o
t
IGBT and Diode at T = 125 C  
-
-
-
-
-
-
-
-
d(ON)I  
J
I
V
V
= 12A  
= 390V  
= 15V  
CE  
CE  
GE  
t
15  
-
ns  
rI  
d(OFF)I  
Current Turn-Off Delay Time  
Current Fall Time  
t
80  
100  
85  
ns  
R
= 10Ω  
L = 200µH  
Test Circuit - Figure 20  
G
t
72  
ns  
fI  
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
E
E
E
55  
-
µJ  
ON1  
ON2  
OFF  
230  
225  
-
280  
300  
0.75  
µJ  
µJ  
o
Thermal Resistance Junction To Case  
NOTES:  
R
C/W  
θJC  
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 20.  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
50  
70  
V
= 15V  
o
o
GE  
T
= 150 C, R = 10, V = 15V  
GE  
J
G
T
= 150 C  
J
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
0
100  
V
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
1000  
140  
120  
100  
80  
24  
20  
16  
12  
8
T
o
C
o
V
= 390V, R = 10, T = 125 C  
CE  
G
J
V
= 15V  
GE  
75 C  
I
SC  
V
= 12V  
GE  
100  
f
f
P
= 0.05 / (t  
+ t  
d(ON)I  
)
MAX1  
d(OFF)I  
= (P - P ) / (E  
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
+ E  
)
t
SC  
MAX2  
D
C
ON2  
OFF  
C
60  
o
R
= 0.75 C/W, SEE NOTES  
o
ØJC  
T
= 125 C, R = 10, L = 200µH, V  
= 390V  
10  
J
G
CE  
4
40  
10  
10  
11  
12  
13  
14  
15  
1
5
20  
30  
V
, GATE TO EMITTER VOLTAGE (V)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
GE  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
DUTY CYCLE < 0.5%, V  
= 12V  
PULSE DURATION = 250µs  
GE  
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
o
T
= 150 C  
J
o
T
= 25 C  
J
6
6
o
o
T
= 25 C  
T
= 150 C  
J
J
4
4
o
2
o
2
T
= 125 C  
J
T
= 125 C  
J
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.5  
2.0  
2.5  
1.0  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
400  
275  
R
= 10, V  
= 390V  
G
CE  
R
= 10, V  
= 390V  
G
CE  
250  
350  
300  
250  
200  
150  
100  
50  
o
225  
200  
T
= 125 C, V  
= 12V, V = 15V  
GE  
J
GE  
175  
150  
125  
100  
75  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
50  
o
25  
0
o
T
6
= 25 C, V  
= 12V, V  
10  
= 15V  
J
GE  
GE  
T
= 25 C, V  
8
= 12V OR 15V  
J
GE  
0
0
2
4
6
10  
12  
14  
0
2
4
8
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTORTO  
EMITTER CURRENT  
24  
35  
R
= 10, V = 390V  
CE  
R
= 10, V  
= 390V  
G
G
CE  
30  
25  
20  
15  
10  
5
22  
20  
18  
16  
14  
12  
10  
o
o
T
= 25 C OR T = 125 C, V  
= 12V  
GE  
o
J
J
T
= 25 C, V  
= 12V  
J
GE  
o
T
= 125 C, V  
= 12V  
= 15V  
J
GE  
o
= 25 C, V  
T
= 15V  
GE  
J
o
T
= 125 C, V  
J
GE  
o
o
T
= 25 C OR T = 125 C, V  
= 15V  
J
J
GE  
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAYTIME vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISETIME vs COLLECTORTO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
R
= 10, V = 390V  
CE  
R
= 10,  
V
= 390V  
G
G
CE  
o
V
= 15V,T = 125 C  
J
GE  
o
T
= 125 C, V = 12V OR 15V  
GE  
J
o
V
= 12V,T = 125 C  
J
GE  
o
V
= 15V,T = 25 C  
J
GE  
o
= 25 C, V  
T
= 12V OR 15V  
GE  
J
o
V
= 12V,T = 25 C  
GE  
J
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10  
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAYTIME vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 12. FALLTIME vs COLLECTORTO EMITTER  
CURRENT  
16  
o
175  
I
= 1mA, R = 25, T = 25 C  
G(REF)  
L
J
DUTY CYCLE < 0.5%, V  
= 10V  
PULSE DURATION = 250µs  
CE  
14  
12  
10  
8
150  
125  
100  
75  
o
V
= 600V  
CE  
T
= 25 C  
J
o
T
= -55 C  
J
o
T
= 125 C  
J
V
= 400V  
V
= 200V  
CE  
CE  
6
50  
4
2
25  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
, GATE CHARGE (nC)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Q
G
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
10  
o
1.4  
1.2  
T
= 125 C, V  
= 390V, V  
GE  
= 15V  
J
CE  
V
= 10,  
CE  
= 390V  
R
G
E
= E  
ON2  
+ E  
TOTAL  
OFF  
E
= E  
ON2  
+ E  
OFF  
TOTAL  
1.0  
0.8  
0.6  
I
I
I
= 24A  
= 12A  
= 6A  
CE  
CE  
CE  
I
= 24A  
CE  
1
0.4  
0.2  
I
I
= 12A  
= 6A  
CE  
CE  
0.1  
3
0
25  
10  
1000  
100  
, GATE RESISTANCE ()  
50  
75  
100  
125  
150  
R
o
G
T
, CASE TEMPERATURE ( C)  
C
FIGURE 15. TOTAL SWITCHING LOSS vs CASE  
TEMPERATURE  
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
1400  
1200  
1000  
800  
600  
400  
200  
0
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, V  
PULSE DURATION = 250µs,T = 25 C  
= 15V  
GE  
o
J
C
IES  
I
= 18A  
CE  
I
I
= 12A  
= 6A  
CE  
C
OES  
CE  
C
RES  
0
20  
40  
60  
80  
100  
10  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 17. CAPACITANCE vs COLLECTORTO EMITTER  
VOLTAGE  
FIGURE 18. COLLECTORTO EMITTER ON-STATEVOLTAGE  
vs GATE TO EMITTER VOLTAGE  
0
10  
0.5  
0.2  
0.1  
t
1
-1  
10  
P
0.05  
D
t
0.02  
0.01  
2
DUTY FACTOR, D = t / t  
1
2
X R  
PEAK T = (P X Z  
) + T  
J
D
θJC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
10  
0
1
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 19. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
ISL9H1260EP3  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 200µH  
V
CE  
R
= 10Ω  
G
90%  
10%  
d(OFF)I  
I
+
-
CE  
t
t
rI  
ISL9G1260EP3  
V
= 390V  
t
DD  
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26” or equivalent.  
are possible. t  
and t are defined in Figure 21.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T  
.
JM  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E  
). The  
ON2  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
the conduction losses (P ) are approximated by  
P
.
D
D
JM θJC  
C
3. Tips of soldering irons should be grounded.  
D
4. Devices should never be inserted into or removed from  
circuits with power on.  
C
= (V  
x I )/2.  
CE  
C
CE  
5. GateVoltage Rating - Never exceed the gate-voltage  
E
and E are defined in the switching waveforms  
OFF  
rating of V  
. Exceeding the rated V can result in  
ON2  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
shown in Figure 21. E  
is the integral of the instantaneous  
ON2  
power loss (I  
CE  
integral of the instantaneous power loss (I x V ) during  
turn-off. All tail losses are included in the calculation for  
x V ) during turn-on and E  
CE OFF  
is the  
6. GateTermination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
CE CE  
E
; i.e., the collector current equals zero (I = 0).  
CE  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
TO-247  
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
TERM. 4  
ØP  
E
SYMBOL  
MAX  
0.190  
0.051  
0.070  
0.105  
0.026  
0.820  
0.625  
MIN  
4.58  
MAX  
4.82  
NOTES  
ØS  
A
b
0.180  
0.046  
0.060  
0.095  
0.020  
0.800  
0.605  
-
Q
1.17  
1.29  
2, 3  
ØR  
b
b
1.53  
1.77  
1, 2  
1
2
D
2.42  
2.66  
1, 2  
c
0.51  
0.66  
1, 2, 3  
D
E
e
20.32  
15.37  
20.82  
15.87  
-
-
L
1
b1  
b2  
0.219 TYP  
0.438 BSC  
0.090  
5.56 TYP  
11.12 BSC  
4
4
5
-
L
c
e
1
b
J
0.105  
0.640  
0.155  
0.144  
0.220  
0.205  
0.270  
2.29  
2.66  
16.25  
3.93  
3.65  
5.58  
5.20  
6.85  
1
L
0.620  
0.145  
0.138  
0.210  
0.195  
0.260  
15.75  
3.69  
3.51  
5.34  
4.96  
6.61  
1
2
3
3
2
1
J
e
1
L
1
-
BACK VIEW  
1
ØP  
Q
e1  
-
ØR  
-
ØS  
-
NOTES:  
1. Lead dimension and finish uncontrolled in L .  
1
2. Lead dimension (without solder).  
3. Add typically 0.002 inches (0.05mm) for solder coating.  
4. Position of lead to be measured 0.250 inches (6.35mm) from bottom  
of dimension D.  
5. Position of lead to be measured 0.100 inches (2.54mm) from bottom  
of dimension D.  
6. Controlling dimension: Inch.  
7. Revision 1 dated 1-93.  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
TO-263AB SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE  
E
A
INCHES  
MIN  
MILLIMETERS  
A
1
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
-
MIN  
4.32  
MAX  
4.57  
1.32  
0.86  
1.39  
-
NOTES  
H
1
A
0.170  
0.048  
0.030  
0.045  
0.310  
0.018  
0.405  
0.395  
-
4, 5  
4, 5  
4, 5  
2
TERM. 4  
A
1.22  
1
b
0.77  
D
L
b
b
1.15  
1
2
7.88  
L
2
c
0.022  
0.425  
0.405  
0.46  
0.55  
10.79  
10.28  
4, 5  
-
L
1
D
E
e
10.29  
10.04  
-
1
3
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
7
b
b1  
c
e
e
7
1
J
1
e1  
H
0.045  
0.055  
0.105  
0.195  
0.110  
0.070  
-
1.15  
1.39  
2.66  
4.95  
2.79  
1.77  
-
-
1
0.450  
(11.43)  
TERM. 4  
J
0.095  
0.175  
0.090  
0.050  
0.315  
2.42  
4.45  
2.29  
1.27  
8.01  
-
1
L
-
L
L
L
4, 6  
3
1
2
3
L
3
0.350  
(8.89)  
2
b
2
0.700  
(17.78)  
NOTES:  
1. These dimensions are within allowable dimensions of Rev. C of  
JEDEC TO-263AB outline dated 2-92.  
2. L and b dimensions established a minimum mounting surface  
3
2
0.150  
(3.81)  
for terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
3
1
0.080 TYP (2.03)  
0.062 TYP (1.58)  
5. Add typically 0.002 inches (0.05mm) for solder plating.  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.120 inches (3.05mm) from bottom  
of dimension D.  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
8. Controlling dimension: Inch.  
9. Revision 10 dated 5-99.  
4.0mm  
1.5mm  
1.75mm  
DIA. HOLE  
USER DIRECTION OF FEED  
2.0mm  
C
TO-263AB  
L
24mm TAPE AND REEL  
24mm  
16mm  
COVER TAPE  
40mm MIN.  
ACCESS HOLE  
30.4mm  
13mm  
330mm  
100mm  
GENERAL INFORMATION  
1. 800 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
24.4mm  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
E
ØP  
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
MIN  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
MAX  
4.57  
NOTES  
A
1
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
-
Q
H
1
A
1.32  
-
1
b
0.86  
3, 4  
TERM. 4  
D
b
1.39  
2, 3  
1
o
45  
E
1
c
0.48  
2, 3, 4  
D
1
D
15.49  
4.06  
-
-
L
1
D
1
b1  
b
E
0.395  
-
10.04  
-
10.41  
0.76  
-
L
E
-
c
1
e
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
5
5
-
o
60  
e
1
2
e
e1  
3
1
J
1
H
0.235  
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
6.47  
2.79  
13.97  
3.81  
3.88  
2.84  
1
1
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.54  
13.47  
3.31  
6
-
L
L
2
-
1
ØP  
Q
3.79  
2.60  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of  
JEDEC TO-220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
©2001 Fairchild Semiconductor Corporation  
ISL9G1260EG3, ISL9G1260EP3, ISL9G1260ES3 Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
PACMAN™  
POP™  
PowerTrench  
QFET™  
QS™  
QT Optoelectronics™  
Quiet Series™  
SILENT SWITCHER  
SMART START™  
Star* Power™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic™  
UHC™  
FAST  
FASTr™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MICROWIRE™  
OPTOLOGIC™  
OPTOPLANAR™  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
UltraFET  
VCX™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT™  
FACT Quiet Series™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H1  

相关型号:

ISL9G1260EP3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-220AB
ETC

ISL9G1260ES3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-263AB
ETC

ISL9G1260ES3T

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-263AB
ETC

ISL9G2060EG3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 35A I(C) | TO-247
ETC

ISL9G2060EP3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 35A I(C) | TO-220AB
ETC

ISL9G2060ES3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 35A I(C) | TO-263AB
ETC

ISL9G2060ES39A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 35A I(C) | TO-263AB
ETC

ISL9H1260EG3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-247
ETC

ISL9H1260EP3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-220AB
ETC

ISL9H1260ES3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-263AB
ETC

ISL9H1260ES3T

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 20A I(C) | TO-263AB
ETC

ISL9H2060EG3

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 35A I(C) | TO-247
ETC