IRFR3209A [ETC]

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 3.1A I(D) | TO-252AA ; 晶体管| MOSFET | N沟道| 400V V( BR ) DSS | 3.1AI (D ) | TO- 252AA\n
IRFR3209A
型号: IRFR3209A
厂家: ETC    ETC
描述:

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 3.1A I(D) | TO-252AA
晶体管| MOSFET | N沟道| 400V V( BR ) DSS | 3.1AI (D ) | TO- 252AA\n

晶体 晶体管 开关 脉冲
文件: 总7页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFR320, IRFU320  
Data Sheet  
January 2002  
3.1A, 400V, 1.800 Ohm, N-Channel Power  
MOSFETs  
Features  
• 3.1A, 400V  
• r = 1.800Ω  
These are N-Channel enhancement mode silicon gate  
power field effect transistors. They are advanced power  
MOSFETs designed, tested, and guaranteed to withstand a  
specified level of energy in the breakdown avalanche mode  
of operation. All of these power MOSFETs are designed for  
applications such as switching regulators, switching  
convertors, motor drivers, relay drivers, and drivers for high  
power bipolar switching transistors requiring high speed and  
low gate drive power. These types can be operated directly  
from integrated circuits.  
DS(ON)  
• Single Pulse Avalanche Energy Rated  
• SOA is Power Dissipation Limited  
• Nanosecond Switching Speeds  
• Linear Transfer Characteristics  
• High Input Impedance  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA17404.  
Ordering Information  
Symbol  
D
PART NUMBER  
IRFR320  
IRFU320  
PACKAGE  
TO-252AA  
TO-251AA  
BRAND  
IFR320  
IFU320  
G
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-252AA variant in tape and reel, i.e., IRFR3209A.  
S
Packaging  
JEDEC TO-251AA  
JEDEC TO-252AA  
SOURCE  
DRAIN  
GATE  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
SOURCE  
DRAIN (FLANGE)  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
IRFR320, IRFU320  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
IRFR320, IRFU320  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
400  
400  
3.1  
2.0  
12  
±20  
50  
0.4  
190  
V
V
A
A
A
V
W
DS  
Drain to Gate Voltage (R  
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
D
D
o
T
= 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I
DM  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
D
o
W/ C  
mJ  
AS  
o
Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Maximum Temperature for Soldering  
T
-55 to 150  
C
J, STG  
o
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
C
L
o
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 0V, (Figure 10)  
MIN  
400  
2.0  
-
TYP MAX UNITS  
Drain to Source Breakdown Voltage  
Gate Threshold Voltage  
BV  
I
= 250µA, V  
D GS  
-
-
-
-
-
-
4.0  
25  
250  
-
V
V
DSS  
V
V
V
V
V
= V , I = 250µA  
DS  
GS(TH)  
GS  
DS  
DS  
DS  
D
Zero Gate Voltage Drain Current  
I
= Rated BV  
, V  
DSS GS  
= 0V  
µA  
µA  
A
DSS  
o
= 0.8 x Rated BV  
, V  
= 0V, T = 125 C  
-
DSS GS  
, V = 10V,  
DS(ON)MAX GS  
J
On-State Drain Current (Note 2)  
Gate to Source Leakage Current  
I
> I  
D(ON)  
x r  
3.1  
D(ON)  
(Figure 7)  
I
V
= ±20V  
-
-
±100  
nA  
GSS  
GS  
= 1.7A, V  
Drain to Source On Resistance (Note 2)  
Forward Transconductance (Note 2)  
Turn-On Delay Time  
r
I
= 10V, (Figures 8, 9)  
-
1.600 1.800  
DS(ON)  
D
GS  
10V, I = 2.0A, (Figure 12)  
g
V
1.7  
2.6  
10  
14  
30  
13  
13  
-
S
fs  
d(ON)  
DS  
D
t
V
V
= 200V, I 3.1A, R  
= 18, R = 63Ω,  
-
-
-
-
-
15  
21  
45  
20  
20  
ns  
ns  
ns  
ns  
nC  
DD  
GS  
D
GS  
L
= 10V  
Rise Time  
t
r
MOSFET Switching Times are Essentially Indepen-  
dent of Operating Temperature  
Turn-Off Delay Time  
t
d(OFF)  
Fall Time  
t
f
Total Gate Charge  
Q
V
= 10V, I = 3.1A, V  
DS  
= 0.8 x Rated BV  
DSS,  
g(TOT)  
GS  
D
(Gate to Source + Gate to Drain)  
I
= 1.5mA, (Figure 14)  
G(REF)  
Gate Charge is Essentially Independent of Operat-  
ing Temperature  
Gate to Source Charge  
Gate to Drain “Miller” Charge  
Input Capacitance  
Q
Q
-
-
-
-
-
-
2.2  
7.2  
350  
64  
3.3  
nC  
nC  
pF  
pF  
pF  
nH  
gs  
11  
-
gd  
C
V
= 25V, V = 0V, f = 1MHz, (Figure 11)  
GS  
ISS  
DS  
Output Capacitance  
C
-
OSS  
RSS  
Reverse Transfer Capacitance  
Internal Drain Inductance  
C
8.1  
4.5  
-
L
Measured From the Drain Modified MOSFET  
Lead, 6.0mm (0.25in) from Symbol Showing the  
-
D
S
Package to Center  
of Die  
Internal Device  
Inductances  
D
Internal Source Inductance  
L
Measured From the  
Source Lead, 6.0mm  
(0.25in) from Package to  
Source Bonding Pad  
-
7.5  
-
nH  
L
D
G
L
S
S
o
o
Thermal Resistance, Junction to Case  
Thermal Resistance, Junction to Ambient  
R
R
-
-
-
-
2.5  
C/W  
C/W  
θJC  
Typical Solder Mount  
110  
θJA  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
IRFR320, IRFU320  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.1  
UNITS  
Continuous Source to Drain Current  
I
Modified MOSFET  
Symbol Showing the In-  
tegral Reverse P-N  
Junction Rectifier  
-
-
-
-
A
A
SD  
D
Pulse Source to Drain Current  
(Note 3)  
I
12  
SDM  
G
S
o
Source to Drain Diode Voltage (Note 2)  
V
T = 25 C, I  
J
= 3.1A, V  
= 0V,  
-
-
1.6  
V
SD  
SD  
GS  
(Figure 13)  
o
Reverse Recovery Time  
Reverse Recovery Charge  
NOTES:  
t
T = 25 C, I  
J
= 3.1A, dI /dt = 100A/µs  
120  
270  
1.4  
600  
3.0  
ns  
rr  
SD  
SD  
o
Q
T = 25 C, I  
= 3.1A, dI /dt = 100A/µs  
SD  
0.64  
µC  
RR  
J
SD  
2. Pulse test: pulse width 300µs, duty cycle 2%.  
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).  
o
4. V  
DD  
= 50V, starting T = 25 C, L = 3.1mH, R  
= 25Ω, peak I = 3.1A.  
GS AS  
J
Typical Performance Curves Unless Otherwise Specified  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4.0  
3.2  
2.4  
1.6  
0.8  
0
0
125  
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
175  
150  
o
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
10  
0.5  
1
0.2  
P
DM  
0.1  
0.05  
0.02  
0.01  
0.1  
-2  
t
t
1
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
10  
-5  
-4  
10  
-3  
10  
-2  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
0.1  
1
10  
1
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
IRFR320, IRFU320  
Typical Performance Curves Unless Otherwise Specified (Continued)  
100  
10  
1
5
4
V
= 10V  
GS  
OPERATION IN THIS  
AREA IS LIMITED  
V
= 6.0V  
GS  
BY r  
DS(ON)  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
10µs  
3
2
100µs  
V
= 5.5V  
GS  
1ms  
10ms  
DC  
V
= 5.0V  
= 4.5V  
GS  
1
0
T
T
= MAX RATED  
J
V
= 4.0V  
GS  
V
o
GS  
= 25 C  
C
SINGLE PULSE  
0.1  
0
40  
80  
120  
160  
200  
1
10  
100  
1000  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. OUTPUT CHARACTERISTICS  
5
10  
1
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS  
V
Š350V  
DS  
4
V
= 6.0V  
GS  
3
2
V
= 5.5V  
GS  
o
o
T
= 150 C  
T
= 25 C  
J
J
0.1  
-2  
V
= 5.0V  
= 4.5V  
GS  
1
0
V
= 4.0V  
V
GS  
GS  
10  
0
6
9
12  
15  
3
0
2
4
6
8
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 6. SATURATION CHARACTERISTICS  
FIGURE 7. TRANSFER CHARACTERISTICS  
10  
8
3.0  
2.4  
1.8  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 1.7A  
GS  
D
V
= 10V  
GS  
6
V
= 20V  
GS  
1.2  
0.6  
4
2
0
0
-40  
0
40  
80  
120  
160  
0
3
6
9
12  
15  
o
I , DRAIN CURRENT (A)  
T , JUNCTION TEMPERATURE ( C)  
D
J
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
IRFR320, IRFU320  
Typical Performance Curves Unless Otherwise Specified (Continued)  
1.25  
1.15  
1.05  
750  
600  
450  
300  
150  
0
I
= 250µA  
V
= 0V, f = 1MHz  
D
GS  
ISS  
C
C
C
= C  
+ C  
GS  
= C  
GD  
RSS  
OSS  
GD  
C + C  
DS  
GD  
C
ISS  
C
OSS  
0.95  
0.85  
C
RSS  
0.75  
-40  
0
40  
80  
120  
160  
2
1
2
5
10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
2
5
10  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
5
100  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
V
= 0V  
GS  
4
o
10  
1
T
= 25 C  
J
3
o
o
o
T
= 150 C  
T = 25 C  
J
T
= 150 C  
J
J
2
1
0
0.1  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
1
2
3
4
5
I , DRAIN CURRENT (A)  
V , SOURCE TO DRAIN VOLTAGE (V)  
SD  
D
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT  
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE  
20  
I
= 3.1A  
D
V
V
V
= 320V  
= 200V  
= 80V  
DS  
DS  
DS  
16  
12  
8
4
0
0
4
8
12  
16  
20  
Q
, TOTAL GATE CHARGE (nC)  
G(TOT)  
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
IRFR320, IRFU320  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
R
L
V
DS  
90%  
90%  
+
V
DD  
10%  
10%  
R
G
0
0
-
DUT  
90%  
50%  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
(ISOLATED  
SUPPLY)  
CURRENT  
REGULATOR  
V
DD  
Q
SAME TYPE  
AS DUT  
g(TOT)  
V
GS  
12V  
BATTERY  
0.2µF  
Q
gd  
50kΩ  
0.3µF  
Q
gs  
D
S
V
DS  
G
DUT  
0
0
I
G(REF)  
0
V
I
DS  
G(REF)  
I
CURRENT  
SAMPLING  
RESISTOR  
I
CURRENT  
SAMPLING  
RESISTOR  
G
D
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
IRFR320, IRFU320 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

IRFR320A

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 3.1A I(D) | TO-252AA
ETC

IRFR320ATF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

IRFR320ATM

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

IRFR320B

400V N-Channel MOSFET
FAIRCHILD

IRFR320BTF

暂无描述
FAIRCHILD

IRFR320BTM

3.1A, 400V, 1.75ohm, N-CHANNEL, Si, POWER, MOSFET, TO-252, DPAK-3
ROCHESTER

IRFR320BTM

Power Field-Effect Transistor, 3.1A I(D), 400V, 1.75ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252, DPAK-3
FAIRCHILD

IRFR320PBF

HEXFET Power MOSFET
INFINEON

IRFR320PBF

Power MOSFET
VISHAY

IRFR320PBF

Power MOSFET
KERSEMI

IRFR320TR

Power MOSFET
VISHAY

IRFR320TRA

Power MOSFET
KERSEMI