HSDL-3310#007 [ETC]

Telecomm/Datacomm ; 电信/数据通信\n
HSDL-3310#007
型号: HSDL-3310#007
厂家: ETC    ETC
描述:

Telecomm/Datacomm
电信/数据通信\n

电信 数据通信
文件: 总18页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HSDL-3310  
®
IrDA Data Compliant  
1.152 Mb/s Infrared Transceiver  
Data Sheet  
Features  
• Fully compliant to IrDA 1.3  
specifications:  
– 2.4 kb/s to 1.152 Mb/s  
– Excellent nose-to-nose operation  
– Typical link distance > 1.5 m  
Functional Description  
The HSDL-3310 can be shut down  
completely to achieve very low  
power consumption. In the shut-  
down mode, the PIN diode will be  
inactive and thus producing very  
little photocurrent even under  
very bright ambient light. Also,  
HSDL-3310 incorporates adjust-  
able optical power feature to  
• Guaranteed temperature  
performance, –20 to 70 °C  
– Critical parameters are  
guaranteed over specified  
temperatures and supply voltages  
The HSDL-3310 is a small form  
factor infrared (IR) transceiver  
module that provides interface  
between logic and IR signals for  
through-air, serial, half-duplex IR  
data link. The module is compliant  
to IrDA physical layer specifications  
1.3 and is IEC 825-Class 1  
• Low power consumption  
– Low shutdown current  
(10 nA typical)  
– Complete shutdown for  
TXD, RXD, and PIN diode  
enhance low power consumption.  
eye safe.  
The HSDL-3310 is designed to  
interface with input/output logic  
circuits as low as 1.8 V.  
• Input/output interfacing voltage of  
as low as 1.8 V  
Applications  
• Mobile telecommunication  
– Cellular phone  
– Pager  
• Small module size  
– 4 x 10 x 5 mm max (H x W x D)  
• Adjustable optical power  
management  
– Adjustable LED driver current  
for saving power while  
maintaining link integrity  
– Smart phone  
• Data communication  
– PDA  
– Printer  
• Digital imaging  
– Digital camera  
– Photo-imaging printer  
• Typically withstands >100 mV  
power supply ripple  
p-p  
• V supply 2.7 to 5.5 volts  
CC  
• Electronic wallet  
• Integrated EMI shield  
• Medical and industry data  
collection  
• LED stuck-high protection  
CX2  
CX1  
R1  
Functional Block Diagram  
LEDA (9)  
V
(3)  
CC  
I/0 V  
(2)  
CC  
CX3  
ADJUSTABLE  
OPTICAL  
POWER  
TXD (8)  
MD0 (5)  
MD1 (6)  
SHIELD  
HSDL-3310  
RXD (7)  
MIR_SEL (4)  
GND (1)  
REAR VIEW  
Pinout  
9
8
6
5
4
3
2
1
7
I/O Pins Configuration Table  
Pin Symbol  
Description  
Note  
1
2
GND  
I/OV  
Ground  
Connect to system ground.  
Input/Output ASIC V  
Connect to ASIC logic controller V voltage or supply voltage. The voltage  
at this pin must be equal to or less than supply voltage.  
CC  
CC  
CC  
3
4
V
CC  
Supply Voltage  
Regulated 2.7 to 5.5 volts.  
MIR_SEL MIR Select  
This pin to be driven high to select MIR mode and low for SIR mode.  
Do not float this pin.  
5
6
7
MD0  
MD1  
RXD  
Mode 0  
Mode 1  
This pin must be driven either high or low. Do not float this pin.  
This pin must be driven either high or low. Do not float the pin.  
Receiver Data Output. Output is a low pulse response when a light pulse is seen.  
Active Low. Active low.  
Transmitter Data Input. Logic high turns the LED on. If held high longer than ~ 50 µs, the LED is turned  
8
TXD  
Active High.  
LED Anode  
EMI Shield  
off. TXD must be either driven high or low. Do not float this pin.  
9
LEDA  
Tied to external resistor, R1, to regulated V from 2.7 to 5.5 volts.  
CC  
SHIELD  
Do not connect shield directly to ground pin; connect to system ground via a  
low inductance trace.  
2
Transceiver Control Truth Table  
MD0  
MD1  
MIR_SEL  
RXD  
Shutdown  
SIR  
TXD  
1
0
0
1
0
0
1
0
0
1
1
0
1
1
X
0
0
0
1
1
1
Shutdown  
Full Distance Power  
50 cm Distance Power  
30 cm Distance Power  
Full Distance Power  
50 cm Distance Power  
30 cm Distance Power  
SIR  
SIR  
MIR  
MIR  
MIR  
X = Don’t care  
Transceiver I/O Truth Table  
Inputs  
Outputs  
Transceiver Mode  
Active  
MIR_SEL  
TXD  
EI  
X
IE (LED)  
RXD  
NV  
X
0
V  
V  
V  
V  
High (On)  
Low (Off)  
Low (Off)  
Low (Off)  
Low (Off)  
IH  
IL  
IL  
IL  
[1]  
[2]  
[3]  
Active  
EI  
EI  
EI  
Low  
Low  
H
H
L
[3]  
Active  
1
Active  
X
X
High  
[4]  
[5]  
Shutdown  
X
Low (Off)  
NV  
X = Don’t care  
NV = Not valid  
EI = In-Band infrared intensity at detector  
Notes:  
1. In-Band EI 115.2 kb/s and MIR_SEL=0  
2. In-Band EI 0.576 Mb/s and MIR_SEL=1  
3. Logic low is a pulsed response.  
4. To maintain low shutdown current, TXD needs to be driven high or low and not to be left floating.  
5. RXD is internally pull-up to V through high impedance PMOS transistor (equivalent impedance is greater than 300 k).  
CC  
Recommended Application Circuit Components  
Component  
Recommended Value  
2.2 Ω ± 5%, 0.5 Watt, for 2.7 V 3.3 V operation  
R1  
CC  
2.7 Ω ± 5%, 0.5 Watt, for 3.0 V 3.6 V operation  
CC  
5.6 Ω ± 5%, 0.5 Watt, for 4.5 V 5.5 V operation  
CC  
[1]  
CX1 , CX3  
0.47 µF ± 20%, X7R Ceramic  
6.8 µF ± 20%, Tantalum  
[2]  
CX2  
Notes:  
1. CX1 must be placed within 0.7 cm from HSDL-3310 for optimum noise immunity.  
2. When using with noisy power supplies, supply rejection can be enhanced by including CX2 as  
shown in ”HSDL-3310 Functional Block Diagram.“  
Caution: The component is susceptibile to damage from electrostatic discharge. It is advised that  
normal static precautions be taken during handling and assembling of this component to prevent  
damage and/or degradation, which may be caused by ESD.  
3
Absolute Maximum Ratings  
For implementations where case to ambient thermal resistance is 50°C/W.  
Parameter  
Symbol  
Min.  
–40  
–20  
0
Max.  
Units  
°C  
°C  
V
Storage Temperature  
Operating Temperature  
LED Supply Voltage  
Supply Voltage  
T
T
100  
70  
7
S
A
V
V
LED  
0
7
V
CC  
Input/Output Voltage  
Input Voltage: TXD, MD0, MD1  
Output Voltage: RXD  
I/OV  
0
7
V
CC  
V
I
0
7
V
V
O
–0.5  
7
V
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
–20  
2.7  
Max.  
70  
Units  
Conditions  
Operating Temperature  
Supply Voltage  
T
°C  
V
A
V
CC  
5.5  
Input/Output Voltage  
I/OV  
1.8  
5.5  
V
CC  
Logic Input Voltage Logic High  
V
V
2/3 IOV  
0
IOV  
CC  
V
IH  
CC  
for TXD, MD0,  
Logic Low  
1/3 IOV  
V
IL  
CC  
MD1,MIR_SEL  
Receiver Input  
Irradiance  
2
2
[1]  
Logic High EI  
0.0036  
0.0090  
500  
500  
mW/cm  
mW/cm  
For in-band signals 115.2 kb/s  
H
L
0.576 Mb/s in-band signals  
[1]  
1.152 Mb/s  
2
Logic Low  
EI  
0.3  
µW/cm  
For in-band signals  
LED (Logic High) Current  
Pulse Amplitude  
I
400  
600  
mA  
V
= V = 3.0, V (TXD) V  
LEDA  
LED CC I IH  
MD0 = 0, MD1 = 0  
Receiver Data Rate  
Ambient Light  
0.0024  
1.152  
Mb/s  
See IrDA Serial Infrared Physical  
Layer Link Specification,  
Appendix A for ambient levels  
4
Electrical & Optical Specifications  
Specifications (Min. and Max. values) hold over the recommended operating conditions unless otherwise noted.  
Unspecified test conditions may be within the operating range. All typical values (Typ.) are at 25°C with V and IOV  
CC  
CC  
set to 3.0 V unless otherwise noted.  
Parameter  
Receiver  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Viewing Angle  
2φ  
1/2  
30  
°
Peak Sensitivity  
Wavelength  
λ
880  
nm  
p
RXD Output Voltage  
Logic High  
2
V
V
IOV –0.2  
IOV  
0.4  
7.5  
750  
100  
50  
V
I
I
= –200 µA, EI 0.3 µW/cm  
= 200 µA  
OH  
CC  
CC  
OH  
OL  
Logic Low  
0
1
V
OL  
[2]  
RXD Pulse Width (SIR)  
t
t
(SIR)  
µs  
ns  
ns  
µs  
µs  
θ
θ
15°, C = 9 pF  
L
RPW  
RPW  
1/2  
1/2  
[3]  
RXD Pulse Width (MIR)  
(MIR) 200  
15°, C = 9 pF  
L
RXD Rise and Fall Times  
t , t  
r
25  
25  
18  
C = 9 pF  
f
L
[4]  
Receiver Latency Time  
Receiver Wake Up Time  
Transmitter  
t
t
L
[5]  
2
100  
EI = 10 mW/cm  
RW  
Radiant Intensity  
IE  
100  
30  
220  
mW/sr  
I
= 400 mA, θ ≤ 15°,  
LEDA 1/2  
H
TXD V . MD0 = 0, MD1 = 0,  
T = 25°C  
IH  
A
Viewing Angle  
2θ  
60  
°
1/2  
Peak Wavelength  
λ
875  
35  
nm  
nm  
p
Spectral Line Half Width  
∆λ  
1/2  
TXD Logic Levels  
High  
V
V
2/3 IOV  
IOV  
CC  
V
V
IH  
CC  
Low  
0
1/3 IOV  
IL  
CC  
TXD Input Current  
High  
I
I
0.02  
1
1
µA  
µA  
V V  
I IH  
H
Low  
–1  
–0.02  
0 V V  
L
I
IL  
LED Current  
Off  
I
0.03  
1
µA  
V
= V = 3.0 V, V (TXD) V  
VLED  
VLED CC I IL  
MD0 = 0, MD1 = 0  
[6]  
Wakeup Time  
t
t
30  
25  
100  
50  
µs  
µs  
TW  
Maximum Optical  
PW(Max)  
[7]  
Pulse Width  
TXD Rise and  
t , t  
r
40  
ns  
t
(TXD) = 217 ns at 1.152 Mb/s  
f
PW  
Fall Time (Optical)  
TXD Pulse Width (SIR)  
TXD Pulse Width (MIR)  
t
t
(SIR) 1.5  
(MIR) 148  
1.6  
1.8  
µs  
t
t
(TXD) = 1.6 µs at 115.2 kb/s  
TPW  
TPW  
PW  
PW  
217  
260  
ns  
(TXD) = 217 ns at 1.152 Mb/s  
5
Transceiver  
MD0, MD1, MIR_SEL  
Input Current  
High  
I
I
I
0.01  
-0.02  
0.01  
1
1
1
µA  
µA  
µA  
V V , V = IOV = 5  
I IH CC CC  
H
Low  
–1  
0 V V , V = IOV = 5  
I IL CC CC  
L
Supply Current  
Shutdown  
V
SD  
V
CC  
IOV – 0.5, T = 25°C,  
CC A  
= 5.0 V  
CC1  
Idle  
I
I
290  
2
400  
8
µA  
V (TXD) V , EI = 0  
CC2  
CC3  
I
IL  
Active  
mA  
V (TXD) V  
I
IL  
Notes:  
1. An in-band optical signal is a pulse/sequence where the peak wavelength, λp, is defined as 850 nm ≤ λp 900 nm, and the pulse characteristics  
are compliant with the IrDA Serial Infrared Physical Layer Link Specification.  
2
2
2. For in-band signals 2.41 kbps to 115.2 kbps where 3.6 µW/cm EI 500 mW/cm .  
2
2
3. For in-band signals 0.576 Mbps to 1.152 Mbps where 9 µW/cm EI 500 mW/cm .  
4. Latency is defined as the time from the last TXD light output pulse until the receiver has recovered its full sensitivity.  
5. Receiver wake up time is measured from the MD0 pin high to low transition or MD1 pin low to high transition or V power on to valid RXD output.  
CC  
6. Transmitter wake up time is measured from the MD0 pin high to low transition or MD1 pin low to high transition or V power on to valid light  
CC  
output in response to a TXD pulse.  
7. Maximum optical pulse width is defined as the maximum time that the LED will remain on. This is to prevent the long LED turn on time.  
6
HSDL-3310 Package Outline with Dimensions and Recommended PC Board Layout  
SOLDERING PATTERN  
0.5  
4.9  
MOUNTING  
CENTER  
MOUNTING  
GROUNDED  
CENTER  
WHOLLY  
1.01  
1.15  
0.8  
1.9  
2.6  
1.9  
1.8  
1
1
0.7  
9.8  
2.93  
LIGHT RECEIVING  
P1.0x3 = 3  
P1.0x3 = 3  
2.7  
CENTER  
EMITTING  
CENTER  
3.7  
4
1.925  
0.45  
0.37  
9
8
7
6
5
4
3
4
2
1
0.83  
0.7  
R1.77  
4.44  
R2  
P1.0 x 8 = 8.0  
1.4  
2.3  
4.94  
1
2
3
4
5
GND  
IOV  
6
7
8
9
MD1  
RXD  
TXD  
0.7  
CC  
V
CC  
VLED  
MIR  
0.25  
MD0  
UNIT: mm  
TOLERANCE: ± 0.2  
HSDL-3310 Ordering Information  
Part Number  
Package  
Standard Package Increment  
HSDL-3310#007  
HSDL-3310#017  
Front View  
Front View  
400  
10  
7
+1  
–0.5  
HSDL-3310 Reel Dimension and Shape  
17.5  
1.6 ± 0.5  
2.0 ± 0.5  
13.0 ± 0.5  
21.0 ± 0.8  
80 ± 2  
180  
R 1.0  
LABEL PASTED HERE  
HSDL-3310 Tape and Carrier Dimensions  
0.73 ± 0.1  
1.75 ± 0.1  
+0.1  
–0  
4 ± 0.1  
1.6  
7.5 ± 0.1  
GND  
16 ± 0.3  
10.2 ± 0.1  
VLEDA  
POLARITY  
0.4 ± 0.05  
4.4 ± 0.1  
5.24 ± 0.1  
8.0 ± 0.1  
DIRECTION  
OF PULLING OUT  
HSDL-3310 Tape Configuration  
EMPTY  
PARTS MOUNTED  
LEADER  
(40 mm MIN.)  
(400 mm MIN.)  
EMPTY  
(40 mm MIN.)  
DIRECTION  
OF PULLING OUT  
8
Reflow Profile  
MAX. 245°C  
R3 R4  
230  
200  
183  
170  
R2  
150  
90 sec.  
MAX.  
ABOVE  
183°C  
125  
100  
R1  
R5  
50  
25  
0
50  
100  
150  
200  
250  
300  
t-TIME (SECONDS)  
P1  
HEAT  
UP  
P2  
SOLDER PASTE DRY  
P3  
SOLDER  
REFLOW  
P4  
COOL  
DOWN  
Process Zone  
Symbol  
P1, R1  
P2, R2  
P3, R3  
P3, R4  
P4, R5  
T  
Maximum T/time  
4°C/s  
Heat Up  
25°C to 125°C  
125°C to 170°C  
Solder Paste Dry  
Solder Reflow  
0.5°C/s  
170°C to 230°C (245°C max.)  
230°C to 170°C  
4°C/s  
-4°C/s  
Cool Down  
170°C to 25°C  
-3°C/s  
The reflow profile is a straight  
second to allow for even heating  
of both the PC board and  
HSDL-3310 castellation I/O pins.  
of 90 seconds, the intermetallic  
growth within the solder connec-  
tions becomes excessive, result-  
ing in the formation of weak and  
unreliable connections. The  
temperature is then rapidly  
reduced to a point below the soli-  
dus temperature of the solder,  
usually 170°C (338°F), to allow  
the solder within the connections  
to freeze solid.  
line representation of a nominal  
temperature profile for a convec-  
tive reflow solder process. The  
temperature profile is divided into Process zone P2 should be of  
four process zones, each with  
different T/time temperature  
change rates. The T/time rates  
are detailed in the above table.  
sufficient time duration (> 60  
seconds) to dry the solder paste.  
The temperature is raised to a  
level just below the liquidus point  
The temperatures are measured at of the solder, usually 170°C  
the component to printed-circuit  
board connections. We recom-  
mend using convection (forced-  
medium) reflow instead of IR  
reflow to eliminate the possibility  
of delamination damage and  
shadow effects.  
(338°F).  
Process zone P3 is the solder  
reflow zone. In zone P3, the  
Process zone P4 is the cool  
down after solder freeze. The  
cool down rate, R5, from the  
liquidus point of the solder to  
25°C (77°F) should not exceed  
–3°C per second maximum. This  
limitation is necessary to allow  
the PC board and HSDL-3310  
castellation I/O pins to change  
dimensions evenly, putting mini-  
mal stresses on the HSDL-3310  
transceiver.  
temperature is quickly raised  
above the liquidus point of solder  
to 230°C (446°F) for optimum  
results. The dwell time above the  
liquidus point of solder should be  
between 15 and 90 seconds. It  
usually takes about 15 seconds to  
assure proper coalescing of the  
solder balls into liquid solder and  
the formation of good solder  
connections. Beyond a dwell time  
In process zone P1, the PC  
board and HSDL-3310  
castellation I/O pins are heated to  
a temperature of 125°C to  
activate the flux in the solder  
paste. The temperature ramp up  
rate, R1, is limited to 4°C per  
9
PCB Layout Suggestion  
The following PCB layout shows a  
recommended layout that should  
result in good electrical and EMI  
performance. Things to note:  
A reference layout of a 2-layer  
Agilent evaluation board for HSDL-  
3310 based on the guidelines  
stated above is shown below. For  
more details, please refer to  
1. In case a separate ground  
plane is available in a multi-  
layer board, the ground plane  
should be continuous under  
the part, but should not extend  
under the trace.  
Agilent Application Note 1114,  
Infrared Transceiver PC Board  
Layout for Noise Immunity, or to  
design guidelines in Agilent IrDA  
Data Link Design Guide.  
2. The shield trace is a wide, low  
inductance trace back to the  
system ground.  
3. The AGND pin is connected to  
the ground plane and not to  
the shield tab.  
4. C1 is an optional V filter  
CC  
capacitor. It may be left out if  
the V is clean.  
CC  
5. V  
can be connected to  
LED  
either unfiltered or unregu-  
lated power. If C1 is used, and  
if V  
uses the same supply  
LED  
as V , the connection should  
CC  
be made such that V  
is  
LED  
filtered by C1 as well.  
27.1 mm  
GND  
UL  
CX3  
GND  
GND  
2
1
2
2
1
GND  
2
1
1
Cx1  
Cx2  
1
GND  
2
Cx4  
1
3
5
7
9
11  
2
4
6
8
10 12  
7.60001 mm  
17 mm  
5.08  
mm  
TOP LAYER  
BOTTOM LAYER  
10  
1.0 Solder Pad, Mask, and Metal Solder Stencil Aperture  
METAL STENCIL  
FOR SOLDER PASTE  
PRINTING  
STENCIL  
APERTURE  
LAND PATTERN  
SOLDER  
MASK  
PCBA  
Figure 1. Stencil and PCBA.  
1.1 Recommended Land Pattern for HSDL-3310  
SHIELD SOLDER PAD  
Rx LENS  
DIM.  
mm  
2.40  
0.65  
1.00  
1.80  
1.70  
3.71  
3.66  
INCHES  
0.095  
0.026  
0.039  
0.071  
0.067  
0.146  
0.144  
a
Tx LENS  
e
b
c (PITCH)  
d
e
f
d
g
b
g
Y
f
a
X
theta  
c
9x PAD  
FIDUCIAL  
FIDUCIAL  
Figure 2. Top view of land pattern.  
11  
1.2 Adjacent Land Keepout and Solder Mask Areas  
Dim.  
mm  
Inches  
min. 0.008  
0.425  
h
j
min. 0.2  
10.8  
4.7  
k
l
0.185  
3.2  
0.126  
j
• Adjacent land keep-out is the  
maximum space occupied by  
the unit relative to the land  
pattern. There should be no  
other SMD components within  
this area.  
Tx LENS  
Rx LENS  
SOLDER  
MASK  
k
LAND  
h
Y
• “h” is the minimum solder  
resist strip width required to  
avoid solder bridging adjacent  
pads.  
X
• It is recommended that 2  
fiducial cross be place at  
mid-length of the pads for unit  
alignment.  
l
Note: Wet/Liquid Photo-  
Imageable solder resist/mask is  
recommended.  
Figure 3. PCBA – Adjacent land keep-out and solder mask.  
2.0 Recommended Solder Paste/  
Cream Volume for Castellation  
Joints  
Based on the evaluation for  
HDSL-3600, the printed solder  
paste volume required per  
castellation pad is 0.30 cubic mm  
(based on either no-clean or  
aqueous solder cream types with  
typically 60 to 65% solid content  
by volume).  
12  
2.1 Recommended Metal Solder  
Stencil Aperture  
It is recommended that only  
0.152 mm (0.006 inch) or  
0.127 mm (0.005 inch) thick  
stencil be used for solder paste  
printing. This is to ensure  
adequate printed solder paste  
volume and no shorting. The  
following combination of metal  
stencil aperture and metal stencil  
thickness should be used:  
See Figure 4.0  
t, Nominal Stencil Thickness  
l, Length of Aperture  
mm  
mm  
inches  
0.006  
inches  
0.152  
0.127  
3.0 ± 0.05  
0.12 ± 0.002  
0.15 ± 0.002  
0.005  
3.7 ± 0.05  
w, the width of aperture is fixed at 0.65 mm (0.026 inch)  
Aperture opening for shield pad is 1.8 mm x 1.8 mm as per land dimension.  
APERTURE AS PER  
LAND DIMENSIONS  
t (STENCIL THICKNESS)  
SOLDER  
PASTE  
w
l
Figure 4. Solder paste stencil aperture.  
13  
Moisture-Proof Packaging  
The HSDL-3310 is shipped in  
moisture-proof packaging. Once  
opened, moisture absorption  
begins.  
Recommended Stortage Conditions  
Storage Temperature  
10°C to 30°C  
Relative Humidity  
Below 60% RH  
Time from Unsealing to Soldering  
After removal from the bag, the  
parts should be soldered within  
two days if stored at the recom-  
mended storage conditions. If the  
parts have been removed from  
the bag for more than two days,  
the parts must be stored in a dry  
box.  
Baking  
If the parts are not stored in a dry  
environment, they must be baked  
before reflow process to prevent  
damage to parts. Baking should  
be done only once.  
Packaging  
Baking Temperature  
Baking Time  
48 hours  
4 hours  
2 hours  
1 hour  
In Reel  
10°C  
100°C  
125°C  
150°C  
In Bulk  
14  
Optical Port Dimensions for  
HSDL-3310  
without vignetting. The maximum  
dimensions minimize the effects  
of stray light. The minimum size  
corresponds to a cone angle of  
30° and the maximum size corre-  
sponds to a cone angle of 60°.  
To ensure IrDA compliance, some  
constraints on the height and  
width of the window exist. The  
minimum dimensions ensure that  
the IrDA cone angles are met  
IR TRANSPARENT WINDOW  
OPAQUE MATERIAL  
Y
X
K
IR TRANSPARENT WINDOW  
OPAQUE MATERIAL  
Z
A
D
distance of the module from the  
back of the window (Z). If they  
are comparable, Z' replaces Z in  
the above equation. Z' is defined  
as  
In the figure above, X is the width  
of the window, Y is the height of  
the window, and Z is the distance  
from the HSDL-3310 to the back  
of the window. The distance from  
the center of the LED lens to the  
center of the photodiode lens, K,  
is 5.63 mm. The equations for  
computing the window dimensions  
are as follows:  
The depth of the LED image  
inside the HSDL-3310, D, is  
8 mm. ‘A’ is the required half  
angle for viewing. For IrDA com-  
pliance, the minimum is 15° and  
the maximum is 30°. These equa-  
tions result in the following tables  
and graphs:  
Z' = Z + t/n  
where ‘t’ is the thickness of the  
window and ‘n’ is the refractive  
index of the window material.  
X = K + 2*(Z + D)*tanA  
Y = 2*(Z + D)*tanA  
The above equations assume that  
the thickness of the window is  
negligible compared to the  
15  
Module Depth  
(Z) mm  
Aperture Width (X) mm  
Aperture Height (Y) mm  
Max.  
Min.  
Max.  
Min.  
0
1
2
3
4
5
6
7
8
9
14.8676  
16.0223  
17.17701  
18.33171  
19.48641  
20.64111  
21.79581  
22.95051  
24.10521  
25.25991  
9.917187  
10.45309  
10.98898  
11.52488  
12.06078  
12.59668  
13.13258  
13.66848  
14.20437  
14.74027  
9.237604  
10.3923  
11.54701  
12.70171  
13.85641  
15.01111  
16.16581  
17.32051  
18.47521  
19.62991  
4.287187  
4.823085  
5.358984  
5.894882  
6.430781  
6.966679  
7.502577  
8.038476  
8.574374  
9.110273  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
0
X MAX.  
X MIN.  
5
0
Y MAX.  
Y MIN.  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
MODULE DEPTH (Z) – mm  
MODULE DEPTH (Z) – mm  
Aperture width (X) vs. module depth.  
Aperture height (Y) vs. module depth.  
16  
Window Material  
If the window must be curved for  
mechanical or industrial design  
reasons, place the same curve on  
the back side of the window that  
has an identical radius as the  
front side. While this will not  
completely eliminate the lens  
effect of the front curved surface,  
it will significantly reduce the  
effects. The amount of change in  
the radiation pattern is dependent  
upon the material chosen for the  
window, the radius of the front  
and back curves, and the distance  
from the back surface to the  
transceiver. Once these items are  
known, a lens design can be  
made which will eliminate the  
effect of the front surface curve.  
Almost any plastic material will  
work as a window material. Poly-  
carbonate is recommended. The  
surface finish of the plastic should  
be smooth, without any texture.  
An IR filter dye may be used in the  
window to make it look black to  
the eye, but the total optical loss  
of the window should be 10 per-  
cent or less for best optical  
The following drawings show the  
effects of a curved window on the  
radiation pattern. In all cases, the  
center thickness of the window is  
1.5 mm, the window is made of  
polycarbonate plastic, and the  
distance from the transceiver to  
the back of the window is 3 mm.  
performance. Light loss should be  
measured at 875 nm.  
Shape of the Window  
From an optics standpoint, the  
window should be flat. This en-  
sures that the window will not  
alter either the radiation pattern  
of the LED, or the receive pattern  
of the photodiode.  
Flat Window  
Curved Front and Back  
Curved Front, Flat Back  
(First Choice)  
(Second Choice)  
(Do Not Use)  
17  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2001 Agilent Technologies, Inc.  
April 4, 2001  
5988-0129EN  

相关型号:

HSDL-3310#017

Telecomm/Datacomm
ETC

HSDL-3310007

SPECIALTY TELECOM CIRCUIT, SMA9, 10 X 5 MM, 4 MM HEIGHT, MODULE-9
AVAGO

HSDL-3600

IrDA Compliant 4 Mb/s 3 V Infrared Transceiver
AGILENT

HSDL-3600

IrDA㈢ Compliant 4 Mb/s 3 V Infrared Transceiver
AVAGO

HSDL-3600#007

FIBER OPTIC TRANSCEIVER
ETC

HSDL-3600#008

FIBER OPTIC TRANSCEIVER
ETC

HSDL-3600#017

FIBER OPTIC TRANSCEIVER
ETC

HSDL-3600#018

FIBER OPTIC TRANSCEIVER
ETC

HSDL-3600008

Interface Circuit, BICMOS, 12.2 X 5.1 MM, 4 MM HEIGHT, LOW PROFILE, MODULE-10
AGILENT

HSDL-3600017

SPECIALTY INTERFACE CIRCUIT, SMA10, 12.2 X 5.1 MM, 4 MM HEIGHT, LOW PROFILE, MODULE-10
AGILENT

HSDL-3600018

Interface Circuit, BICMOS, 12.2 X 5.1 MM, 4 MM HEIGHT, LOW PROFILE, MODULE-10
AGILENT

HSDL-3600117

Interface Circuit, BICMOS, 12.2 X 5.1 MM, 4 MM HEIGHT, LOW PROFILE, MODULE-10
AGILENT