HGTP7N60C3DS9A [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 14A I(C) | TO-263AB ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 14A I(C ) | TO- 263AB\n
HGTP7N60C3DS9A
型号: HGTP7N60C3DS9A
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 14A I(C) | TO-263AB
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 14A I(C ) | TO- 263AB\n

晶体 晶体管 双极性晶体管 栅
文件: 总9页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP7N60C3D, HGT1S7N60C3DS  
TM  
Data Sheet  
November 2000  
File Number 4150.3  
14A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diodes  
Features  
o
• 14A, 600V at T = 25 C  
C
The HGTP7N60C3D and HGT1S7N60C3DS are MOS  
gated high voltage switching devices combining the best  
features of MOSFETs and bipolar transistors. These devices  
have the high input impedance of a MOSFET and the low  
on-state conduction loss of a bipolar transistor. The much  
lower on-state voltage drop varies only moderately between  
25 C and 150 C. The IGBT used is developmental type  
TA49115. The diode used in anti-parallel with the IGBT is  
developmental type TA49057.  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 140ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
o
o
Packaging  
JEDEC TO-220AB  
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction losses  
are essential, such as: AC and DC motor controls, power  
supplies and drivers for solenoids, relays and contactors.  
EMITTER  
COLLECTOR  
GATE  
COLLECTOR (FLANGE)  
Formerly Developmental Type TA49121.  
Ordering Information  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
G7N60C3D  
G7N60C3D  
HGTP7N60C3D  
JEDEC TO-263AB  
HGT1S7N60C3DS  
NOTE: When ordering, use the entire part number. Add the suffix 9A to  
obtain the TO-263AB variant in tape and reel, i.e. HGT1S7N60C3DS9A.  
COLLECTOR  
(FLANGE)  
GATE  
Symbol  
EMITTER  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
1
HGTP7N60C3D, HGT1S7N60C3DS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP7N60C3D, HGT1S7N60C3DS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
14  
A
A
A
A
V
V
C25  
C110  
(AVG)  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
7
o
Average Diode Forward Current at 110 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
8
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
56  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 14) . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
40A at 480V  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
60  
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.487  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-40 to 150  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
260  
1
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
µs  
µs  
GE  
8
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 50Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
-
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
CES  
C
GE  
CES  
CES  
o
I
V
V
= BV  
= BV  
T
T
T
T
T
= 25 C  
-
-
-
250  
2.0  
2.0  
2.4  
6.0  
±250  
-
µA  
mA  
V
CES  
CE  
CE  
C
C
C
C
C
o
= 150 C  
-
o
Collector to Emitter Saturation Voltage  
V
I
= I  
,
= 25 C  
-
1.6  
1.9  
5.0  
-
CE(SAT)  
C
C110  
= 15V  
V
o
GE  
= 250µA, V = V  
CE GE  
= 150 C  
-
V
o
Gate-Emitter Threshold Voltage  
Gate-Emitter Leakage Current  
Switching SOA  
V
I
= 25 C  
3.0  
-
V
GE(TH)  
C
I
V
= ±25V  
nA  
A
GES  
SSOA  
GE  
o
T = 150 C, R = 50Ω,  
V
V
= 480V  
40  
6
-
-
J
G
CE(PK)  
V
= 15V, L = 1mH  
GE  
= 600V  
-
-
A
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
8
-
V
GEP  
C
Q
= I  
,
V = 15V  
GE  
-
23  
30  
8.5  
11.5  
350  
140  
165  
600  
1.9  
25  
18  
-
30  
38  
-
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
G(ON)  
C
C110  
V
= 0.5 BV  
CE  
CES  
V
= 20V  
-
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C  
-
d(ON)I  
J
I
V
V
R
= I  
CE  
C110  
t
-
-
rI  
= 0.8 BV  
CE(PK)  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
-
400  
275  
-
d(OFF)I  
= 15V  
GE  
t
-
= 50Ω  
fI  
G
L = 1mH  
Turn-On Energy  
E
-
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
-
-
OFF  
V
I
I
I
= 7A  
-
2.5  
37  
30  
2.1  
2.0  
EC  
EC  
EC  
EC  
t
= 7A, dI /dt = 200A/µs  
EC  
-
ns  
ns  
rr  
= 1A, dI /dt = 200A/µs  
EC  
-
o
Thermal Resistance  
NOTE:  
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). The HGTP7N60C3D and HGT1S7N60C3DS were tested per JEDEC standard  
CE  
No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Turn-On losses include diode losses.  
2
HGTP7N60C3D, HGT1S7N60C3DS  
Typical Performance Curves  
40  
40  
DUTY CYCLE <0.5%, V  
CE  
PULSE DURATION = 250µs  
= 10V  
PULSE DURATION = 250µs,  
DUTY CYCLE <0.5%,  
C
12.0V  
35  
30  
25  
20  
15  
o
35  
T
= 25 C  
10.0V  
30  
25  
o
V
= 15.0V  
T
T
T
= 150 C  
GE  
C
C
C
20  
15  
10  
o
9.0V  
8.5V  
= 25 C  
o
= -40 C  
10  
8.0V  
7.5V  
5
0
5
0
7.0V  
4
6
8
10  
12  
14  
0
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
40  
35  
40  
35  
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
= 10V  
GE  
DUTY CYCLE <0.5%, V  
= 15V  
GE  
o
= 25 C  
o
T
T
= -40 C  
C
C
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
o
T
= -40 C  
C
o
= 150 C  
T
C
o
T
= 150 C  
C
o
T
= 25 C  
C
5
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
15  
V
= 15V  
12  
10  
8
140  
120  
100  
80  
GE  
o
V
= 360V, R = 50, T = 125 C  
G J  
CE  
12  
9
I
SC  
6
3
0
6
4
60  
t
SC  
40  
15  
2
10  
25  
50  
75  
100  
125  
150  
11  
12  
13  
14  
o
T
, CASE TEMPERATURE ( C)  
V
GE  
, GATE TO EMITTER VOLTAGE (V)  
C
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME  
3
HGTP7N60C3D, HGT1S7N60C3DS  
Typical Performance Curves (Continued)  
50  
40  
500  
450  
o
o
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
J
G
J
G
30  
20  
400  
350  
V
= 10V  
= 15V  
GE  
V
= 10V or 15V  
GE  
300  
250  
V
GE  
10  
5
200  
2
5
8
11  
14  
17  
20  
2
5
8
11  
14  
17  
20  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
200  
o
300  
o
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
J
G
J
G
250  
200  
V
= 10V  
100  
GE  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
150  
10  
5
100  
5
8
14  
17  
20  
2
11  
2
5
14  
17  
20  
8
11  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
3000  
o
2000  
o
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
J
G
T
= 150 C, R = 50, L = 1mH, V  
= 480V  
CE(PK)  
J
G
1000  
500  
V
= 10V  
= 15V  
GE  
1000  
500  
V
GE  
V
= 10V OR 15V  
GE  
100  
40  
100  
2
5
8
11  
14  
17  
20  
2
5
8
11  
14  
17  
20  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP7N60C3D, HGT1S7N60C3DS  
Typical Performance Curves (Continued)  
50  
200  
100  
o
o
o
T
= 150 C, V  
= 15V, R = 50, L = 1mH  
T
= 150 C, T = 75 C  
C
J
GE G  
J
R
= 50, L = 1mH  
G
40  
30  
V
= 15V  
GE  
V
= 10V  
+ t  
GE  
f
f
= 0.05/(t  
D(OFF)I  
)
10  
MAX1  
MAX2  
D(ON)I  
20  
10  
0
= (P - P )/(E  
+ E  
)
OFF  
D
C
ON  
P
P
= ALLOWABLE DISSIPATION  
D
C
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
o
R
= 2.1 C/W  
θJC  
1
0
500  
400  
600  
300  
100  
200  
2
10  
20  
30  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE(PK)  
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 14. MINIMUM SWITCHING SAFE OPERATING AREA  
600  
500  
400  
300  
200  
100  
0
15  
1200  
FREQUENCY = 1MHz  
12.5  
1000  
800  
C
IES  
10  
7.5  
5
V
= 200V  
= 400V  
= 600V  
CE  
V
CE  
CE  
600  
400  
V
I
= 1.044mA,  
o
G(REF)  
2.5  
0
200  
0
R
= 50, T = 25 C  
C
L
C
OES  
C
RES  
10  
, COLLECTOR TO EMITTER VOLTAGE (V)  
0
5
15  
20  
25  
5
15  
Q , GATE CHARGE (nC)  
G
30  
10  
20  
25  
0
V
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. GATE CHARGE WAVEFORMS  
0
10  
0.5  
t
1
0.2  
0.1  
P
D
-1  
t
2
10  
0.05  
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
X R  
PEAK T = (P X Z  
) + T  
JC C  
J
D
JC  
θ
θ
SINGLE PULSE  
-2  
10  
-5  
-4  
10  
-2  
-1  
-3  
10  
1
0
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
1
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
5
HGTP7N60C3D, HGT1S7N60C3DS  
Typical Performance Curves (Continued)  
30  
30  
o
T
= 25 C, dI /dt = 200A/µs  
C
EC  
25  
20  
15  
10  
t
rr  
t
a
10  
o
o
o
t
100 C  
b
175 C  
25 C  
1.0  
0.5  
5
0
0.5  
1
3
7
2.5  
0
0.5  
1.0  
1.5  
2.0  
3.0  
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
Test Circuit and Waveforms  
L = 1mH  
90%  
RHRD660  
10%  
V
V
GE  
E
E
OFF  
ON  
R
= 50Ω  
G
CE  
+
90%  
V
= 480V  
DD  
-
10%  
d(OFF)I  
I
CE  
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
6
HGTP7N60C3D, HGT1S7N60C3DS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device (Figure 13)  
is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating  
frequency plot (Figure 13) of a typical device shows f  
or  
MAX1  
whichever is smaller at each point. The information is  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t  
d(OFF)I  
+ t ).  
d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as ECCOSORBD LD26 or equivalent.  
are possible. t  
d(OFF)I  
and t  
are defined in Figure 21.  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
is important when controlling output ripple under a lightly  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM  
C
θJC  
The sum of device switching and conduction losses must  
4. Devices should never be inserted into or removed from  
circuits with power on.  
not exceed P . A 50% duty factor was used (Figure 13)  
D
and the conduction losses (P ) are approximated by  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
P
= (V  
x I )/2.  
rating of V  
. Exceeding the rated V can result in  
C
CE  
CE  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
ON  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup on  
the input capacitor due to leakage currents or pickup.  
shown in Figure 21. E  
power loss (I  
integral of the instantaneous power loss during turn-off. All  
tail losses are included in the calculation for E ; i.e. the  
collector current equals zero (I  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
OFF  
= 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate  
protection is required an external zener is recommended.  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7
HGTP7N60C3D, HGT1S7N60C3DS  
TO-263AB SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE  
E
A
INCHES  
MIN  
MILLIMETERS  
A
1
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
-
MIN  
4.32  
MAX  
4.57  
1.32  
0.86  
1.39  
-
NOTES  
H
1
A
0.170  
0.048  
0.030  
0.045  
0.310  
0.018  
0.405  
0.395  
-
4, 5  
4, 5  
4, 5  
2
TERM. 4  
A
1.22  
1
b
0.77  
D
L
b
b
1.15  
1
2
7.88  
L
2
c
0.022  
0.425  
0.405  
0.46  
0.55  
10.79  
10.28  
4, 5  
-
L
1
D
E
e
10.29  
10.04  
-
1
3
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
7
b
b1  
c
e
e
7
1
J
1
e1  
H
0.045  
0.055  
0.105  
0.195  
0.110  
0.070  
-
1.15  
1.39  
2.66  
4.95  
2.79  
1.77  
-
-
1
0.450  
(11.43)  
TERM. 4  
J
0.095  
0.175  
0.090  
0.050  
0.315  
2.42  
4.45  
2.29  
1.27  
8.01  
-
1
L
-
L
L
L
4, 6  
3
1
2
3
L
3
0.350  
(8.89)  
2
b
2
0.700  
(17.78)  
NOTES:  
1. These dimensions are within allowable dimensions of Rev. C of  
JEDEC TO-263AB outline dated 2-92.  
2. L and b dimensions established a minimum mounting surface  
3
2
0.150  
(3.81)  
for terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
3
1
0.080 TYP (2.03)  
0.062 TYP (1.58)  
5. Add typically 0.002 inches (0.05mm) for solder plating.  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.120 inches (3.05mm) from bottom  
of dimension D.  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
8. Controlling dimension: Inch.  
9. Revision 10 dated 5-99.  
4.0mm  
1.5mm  
1.75mm  
DIA. HOLE  
USER DIRECTION OF FEED  
2.0mm  
C
TO-263AB  
24mm TAPE AND REEL  
L
24mm  
16mm  
COVER TAPE  
40mm MIN.  
ACCESS HOLE  
30.4mm  
13mm  
330mm  
100mm  
GENERAL INFORMATION  
1. 800 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
24.4mm  
8
HGTP7N60C3D, HGT1S7N60C3DS  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
E
ØP  
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
MIN  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
MAX  
4.57  
NOTES  
A
1
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
-
Q
H
1
A
1.32  
-
1
b
0.86  
3, 4  
TERM. 4  
D
b
1.39  
2, 3  
1
o
45  
E
1
c
0.48  
2, 3, 4  
D
1
D
15.49  
4.06  
-
-
L
1
D
1
b1  
b
E
0.395  
-
10.04  
-
10.41  
0.76  
-
L
E
-
c
1
e
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
5
5
-
o
60  
e
1
2
e
3
1
J
1
H
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
6.47  
2.79  
13.97  
3.81  
3.88  
2.84  
1
1
e1  
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.54  
13.47  
3.31  
6
-
L
L
2
-
1
ØP  
Q
3.79  
2.60  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of  
JEDEC TO-220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Intersil Ltd.  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
Mercure Center  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
9

相关型号:

HGTP7N60C3D_05

14A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
FAIRCHILD

HGTP7N60C3D_NL

Insulated Gate Bipolar Transistor, 14A I(C), 600V V(BR)CES, N-Channel, TO-220AB, TO-220AB, 3PIN
FAIRCHILD

HGTP7N60C3S

14A, 600V, N-CHANNEL IGBT, TO-252AA
FAIRCHILD

HGTP7N60C3S9A

Insulated Gate Bipolar Transistor, 14A I(C), 600V V(BR)CES, N-Channel, TO-252AA
FAIRCHILD

HGV115

Systeme modulaire a profiles ajoures
HAMMOND

HGV135

Systeme modulaire a profiles ajoures
HAMMOND

HGV155

Systeme modulaire a profiles ajoures
HAMMOND

HGV175

Systeme modulaire a profiles ajoures
HAMMOND

HGV195

Systeme modulaire a profiles ajoures
HAMMOND

HGV35

Systeme modulaire a profiles ajoures
HAMMOND

HGV55

Systeme modulaire a profiles ajoures
HAMMOND

HGV75

Systeme modulaire a profiles ajoures
HAMMOND