GS8160Z18T-180T [ETC]

x18 Fast Synchronous SRAM ; X18高速同步SRAM\n
GS8160Z18T-180T
型号: GS8160Z18T-180T
厂家: ETC    ETC
描述:

x18 Fast Synchronous SRAM
X18高速同步SRAM\n

内存集成电路 静态存储器 时钟
文件: 总24页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
16Mb Pipelined and Flow through 225 MHz133 MHz  
2.5 V VDD  
Synchronous NBT SRAM  
2.5 V or 3.3 V I/O  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
Features  
• User-configurable Pipeline and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
read-write-read bus utilization; Fully pin-compatible with  
both pipelined and flow through NtRAM™, NoBL™ and  
ZBT™ SRAMs  
• 2.5 V +10%/5% core power supply  
• 2.5 V or 3.3 V I/O supply  
• 3.3 V-compatible inputs  
• LBO pin for Linear or Interleave Burst mode  
• Pin compatible with 2M, 4M, and 8M devices  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered, address, data, and control  
• ZZ Pin for automatic power-down  
when the device is switched from read to write cycles.  
Because it is a synchronous device, address, data inputs, and  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
Sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• JEDEC-standard 100-lead TQFP package  
The GS8160Z18/36T may be configured by the user to operate  
in Pipeline or Flow Through mode. Operating as a pipelined  
synchronous device, meaning that in addition to the rising edge  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
-225 -200 -180 -166 -150 -133 Unit  
Pipeline tCycle 4.4  
5
5.5  
6
6.6 7.5  
ns  
ns  
3-1-1-1  
tKQ  
IDD  
2.5  
3.0 3.2 3.5 3.8 4.0  
410 375 340 310 290 260 mA  
Flow  
Through  
2-1-1-1  
tKQ  
tCycle  
IDD  
7.0  
8.5  
7.5  
10  
8
10  
8.5  
10  
10  
10  
11  
15  
ns  
ns  
255 235 235 235 235 220 mA  
The GS8160Z18/36T is implemented with GSI's high  
performance CMOS technology and is available in a JEDEC-  
Standard 100-pin TQFP package.  
Functional Description  
The GS8160Z18/36T is a 16Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
QA  
DB  
QC  
DD  
QE  
DD  
Pipelined  
Data I/O  
QA  
DB  
QC  
QE  
Rev: 2.06 8/2000  
1/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
GS8160Z18T Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A19  
NC  
NC  
VDDQ  
VSS  
NC  
DQA9  
DQA8  
DQA7  
VSS  
VDDQ  
DQA6  
DQA5  
VSS  
NC  
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
NC  
NC  
DQB1  
DQB2  
VSS  
VDDQ  
DQB3  
DQB4  
FT  
VDD  
VDD  
VSS  
DQB5  
DQB6  
5
6
7
8
9
1M x 18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Top View  
VDD  
ZZ  
DQA4  
DQA3  
VDDQ  
VSS  
DQA2  
DQA1  
NC  
VDDQ  
VSS  
DQB7  
DQB8  
DQB9  
NC  
VSS  
VDDQ  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 2.06 8/2000  
2/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
GS8160Z36T Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQB9  
DQB8  
DQB7  
VDDQ  
VSS  
DQB6  
DQB5  
DQB4  
DQB3  
VSS  
VDDQ  
DQB2  
DQB1  
VSS  
NC  
VDD  
DQC9  
DQC8  
DQC7  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
DQC6  
DQC5  
DQC4  
DQC3  
VSS  
VDDQ  
DQC2  
DQC1  
FT  
VDD  
VDD  
VSS  
DQD1  
DQD2  
VDDQ  
5
6
7
8
9
512K x 36  
Top View  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
ZZ  
DQA1  
DQA2  
VDDQ  
VSS  
DQA3  
DQA4  
DQA5  
DQA6  
VSS  
VDDQ  
DQA7  
DQA8  
DQA9  
VSS  
DQD3  
DQD4  
DQD5  
DQD6  
VSS  
VDDQ  
DQD7  
DQD8  
DQD9  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 2.06 8/2000  
3/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
100 Pin TQFP Pin Descriptions  
Pin Location  
Symbol Type  
Description  
37, 36  
A0, A1  
In  
Burst Address Inputs; Preload the burst counter  
35, 34, 33, 32, 100, 99, 84, 83,  
82, 81, 44, 45, 46,47, 48, 49, 50  
A2A18  
In  
Address Inputs  
80  
89  
93  
94  
95  
96  
88  
98  
97  
92  
86  
85  
87  
A19  
CK  
BA  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
I/O  
I/O  
Address Input (x18 Version Only)  
Clock Input Signal  
Byte Write signal for data inputs DQA1-DQA9; active low  
Byte Write signal for data inputs DQB1-DQB9; active low  
Byte Write signal for data inputs DQC1-DQC9; active low (x36 Versions Only)  
Byte Write signal for data inputs DQD1-DQD9; active low (x36 Versions Only)  
Write Enable; active low  
BB  
BC  
BD  
W
E1  
Chip Enable; active low  
E2  
Chip Enable; Active High. For self decoded depth expansion  
Chip Enable; Active Low. For self decoded depth expansion  
Output Enable; active low  
E3  
G
ADV  
CKE  
Advance/Load; Burst address counter control pin  
Clock Input Buffer Enable; active low  
58, 59, 62,63, 68, 69, 72, 73, 74 DQA1DQA9  
8, 9, 12, 13, 18, 19, 22, 23, 24 DQB1DQB9  
Byte A Data Input and Output pins (x18 Version Only)  
Byte B Data Input and Output pins (x18 Version Only)  
51, 52, 53, 56, 57, 75, 78, 79,  
NC  
I/O  
I/O  
No Connect (x18 Version Only)  
1, 2, 3, 6, 7, 25, 28, 29, 30  
51, 52, 53, 56, 57, 58, 59, 62,63 DQA1DQA9  
Byte A Data Input and Output pins (x36 Versions Only)  
Byte B Data Input and Output pins (x36 Versions Only)  
68, 69, 72, 73, 74, 75,  
DQB1DQB9  
78, 79, 80  
1, 2, 3, 6, 7, 8, 9, 12, 13  
DQC1DQC9  
I/O  
I/O  
In  
Byte C Data Input and Output pins (x36 Versions Only)  
Byte D Data Input and Output pins (x36 Versions Only)  
Power down control; active high  
18, 19, 22, 23, 24, 25, 28, 29, 30 DQD1DQD9  
64  
ZZ  
FT  
14  
31  
In  
Pipeline/Flow Through Mode Control; active low  
Linear Burst Order; active low  
LBO  
VDD  
In  
15, 16, 41, 65, 91  
In  
3.3 V power supply  
5,10, 17, 21, 26, 40, 55, 60, 67,  
71, 76, 90  
VSS  
In  
Ground  
VDDQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
38, 39, 42, 43, 66  
In  
3.3 V output power supply for noise reduction  
No Connect  
Rev: 2.06 8/2000  
4/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
GS8160Z18/36 NBT SRAM Functional Block Diagram  
s p m A e s n e S  
s r e v i r D e t i r W  
Rev: 2.06 8/2000  
5/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted Low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.  
Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock.  
The Byte Write Enable inputs (BA, BB, BC, & BD) determine which bytes will be written. All or none may be activated. A write  
cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 2.06 8/2000  
6/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-  
lect cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W  
pin is sampled low but no Byte Write pins are active so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during  
write cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write  
signals are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 2.06 8/2000  
7/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Pipeline and Flow Through Read Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes:  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B and D represent input command  
codes ,as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipeline and Flow Through Read/Write Control State Diagram  
Rev: 2.06 8/2000  
8/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes:  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 2.06 8/2000  
9/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 2.06 8/2000  
10/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
Mode Pin Functions  
Pin  
Mode Name  
Burst Order Control  
Output Register Control  
Power Down Control  
State  
Function  
Name  
L
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
LBO  
H or NC  
L
FT  
ZZ  
H or NC  
L or NC  
H
Active  
Standby, IDD = ISB  
Note:  
There are pull-up devices on the LBO and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected  
and the chip will operate in the default states as specified in the above tables.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Rev: 2.06 8/2000  
11/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a deselect or read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found  
on Pin 14. Not all vendors offer this option, however most mark Pin 14 as VDD or VDDQ on pipelined parts and VSS on flow  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Pin 66, a No Connect (NC) on GSI’s GS8160Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS8161Z18/36  
NBT SRAM, is often marked as a power pin on other vendor’s NBT compatible SRAMs. Specifically, it is marked VDD or VDDQ  
on pipelined parts and VSS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity  
feature may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline mode  
applications or tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open. By  
using the pull-up resistor, rather than tying the pin to one of the power rails, users interested in upgrading to GSI’s ByteSafe NBT  
SRAMs (GS8161Z18/36), featuring Parity Error detection and JTAG Boundary Scan, will be ready for connection to the active  
low, open drain Parity Error output driver at Pin 66 on GSI’s TQFP ByteSafe RAMs.  
Rev: 2.06 8/2000  
12/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
Description  
Value  
0.5 to 3.6  
Unit  
V
Voltage on VDD Pins  
VDDQ  
VCK  
Voltage in VDDQ Pins  
0.5 to 3.6  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
0.5 to 6  
V
VI/O  
0.5 to VDDQ+0.5 (3.6 V max.)  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
0.5 to 3.6  
+/20  
V
IIN  
mA  
mA  
W
IOUT  
PD  
+/20  
1.5  
oC  
oC  
TSTG  
55 to 125  
55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to  
Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of  
time, may affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min.  
2.375  
Typ.  
2.5  
2.5  
Max.  
2.7  
Unit  
V
Notes  
I/O Supply Voltage  
2.375  
3.6  
V
0.7 * VDD  
Input High Voltage  
3.6  
V
1
1
2
2
VIL  
Input Low Voltage  
0.3  
0
0.3 * VDD  
70  
V
TA  
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
°C  
°C  
TA  
40  
25  
85  
Note:  
1. The part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications  
quoted are evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDD+2 V with a pulse width not to exceed 20% tKC.  
Rev: 2.06 8/2000  
13/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)  
Parameter  
Control Input Capacitance  
Input Capacitance  
Symbol  
CI  
Test conditions  
VDD = 2.5 V  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
3
4
6
4
5
7
CIN  
pF  
COUT  
VOUT = 0 V  
Output Capacitance  
pF  
Note: This parameter is sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RΘJA  
Max  
40  
Unit  
Notes  
1,2  
single  
four  
°C/W  
°C/W  
°C/W  
RΘJA  
24  
1,2  
RΘJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 2.06 8/2000  
14/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225Ω  
225Ω  
DQ  
30pF*  
50Ω  
5pF*  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
1 uA  
1 uA  
VDD VIN VIH  
0 V VIN VIH  
1 uA  
1 uA  
1 uA  
300 uA  
IINZZ  
ZZ Input Current  
VDD VIN VIL  
0 V VIN VIL  
300 uA  
1 uA  
1 uA  
1 uA  
IINM  
Mode Pin Input Current  
IOL  
Output Disable, VOUT = 0 to VDD  
IOH = 8 mA, VDDQ = 2.375 V  
IOH = 8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
VOH  
VOH  
VOL  
0.4 V  
Rev: 2.06 8/2000  
15/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Rev: 2.06 8/2000  
16/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
AC Electrical Characteristics  
-225  
-200  
-180  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock Cycle Time  
tKC  
tKQ  
4.4  
1.5  
1.5  
8.5  
3.0  
3.0  
1.3  
1.5  
1.5  
0
2.5  
7.0  
2.5  
2.5  
5.0  
3.0  
7.5  
5.5  
3.2  
8.0  
6.0  
3.5  
8.5  
3.5  
3.5  
6.7  
3.8  
10.0  
3.8  
3.8  
7.5  
1.5  
1.5  
15.0  
3.0  
3.0  
1.7  
2
4.0  
11.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pipeline  
tKQX  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
tLZ1  
tKC  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQ  
Flow  
Through  
tKQX  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.5  
1.7  
1.5  
tLZ1  
tKH  
tKL  
Clock LOW Time  
tHZ1  
tOE  
Clock to Output in High-Z  
G to Output Valid  
3.0 1.5 3.2  
1.5  
0
3.2  
3.2  
tOLZ1  
G to output in Low-Z  
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
2.5  
1.5  
0.5  
5
3.0  
1.5  
0.5  
5
3.2  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
1.5  
0.5  
5
4.0  
ns  
ns  
ns  
ns  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
1
1
ns  
ns  
100  
100  
100  
100  
100  
100  
Rev: 2.06 8/2000  
17/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
tH  
tH  
tH  
tH  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
(A4+1)  
DQA–DQD  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tH  
tS  
tOEHZ  
tOELZ  
G
Write  
D(A5)  
Write  
D(A2) Write  
D(A2+1)  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 2.06 8/2000  
18/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0–An  
DQ  
A1  
A2  
A3  
A4  
A5  
tKHQZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQHZ  
NOP  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
CONTINUE  
DESELECT  
Write  
D(A1)  
DESELECT  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 2.06 8/2000  
19/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
tH  
A7  
A0–An  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
DQ  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tOELZ  
tKQX  
tH  
tS  
tOEHZ  
G
Write  
D(A5)  
Write  
D(A2)  
BURST Read  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
Write  
Q(A3)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 2.06 8/2000  
20/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0–An  
DQ  
tKHQZ  
Q(A2)  
D(A1)  
Q(A5)  
Q(A3)  
D(A4)  
NOP  
tKQHZ  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
Write  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 2.06 8/2000  
21/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
TQFP Package Drawing  
θ
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
20.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
7°  
θ
0°  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
BPR 1999.05.18  
Rev: 2.06 8/2000  
22/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
Ordering InformationGSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
1M x 18  
1M x 18  
GS8160Z18T-225  
GS8160Z18T-200  
GS8160Z18T-180  
GS8160Z18T-166  
GS8160Z18T-150  
GS8160Z18T-133  
GS8160Z36T-225  
GS8160Z36T-200  
GS8160Z36T-180  
GS8160Z36T-166  
GS8160Z36T-150  
GS8160Z36T-133  
GS8160Z18T-225I  
GS8160Z18T-200I  
GS8160Z18T-180I  
GS8160Z18T-166I  
GS8160Z18T-150I  
GS8160Z18T-133I  
GS8160Z36T-225I  
GS8160Z36T-200I  
GS8160Z36T-180I  
GS8160Z36T-166I  
GS8160Z36T-150I  
GS8160Z36T-133I  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
225/7  
200/7.5  
180/8  
C
C
C
C
C
C
C
C
C
C
C
C
I
1M x 18  
1M x 18  
166/8.5  
150/10  
133/11  
225/7  
1M x 18  
1M x 18  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
200/7.5  
180/8  
166/8.5  
150/10  
133/11  
225/7  
Not Available  
Not Available  
1M x 18  
200/7.5  
180/8  
I
1M x 18  
I
1M x 18  
166/8.5  
150/10  
133/11  
225/7  
I
1M x 18  
I
1M x 18  
I
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
Notes:  
I
Not Available  
Not Available  
200/7.5  
180/8  
I
I
166/8.5  
150/10  
133/11  
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8160Z36T-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are  
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 2.06 8/2000  
23/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  
Preliminary  
GS8160Z18/36T-225/200/180/166/150/133  
0.18u 16M Sync SRAM Data Sheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Converted from 0.25u 3.3V process to 0.18u 2.5V process. Master  
File Rev B  
• Added x72 Pinout.  
GS8160Z18/36T 1.00 9/  
1999A;GS8160Z18/36T2.0012/  
1999B  
Content  
Format  
• Added new GSI Logo  
GS8160Z18/36T2.00 12/  
1999BGS8160Z18/36T2.01 1/  
2000C  
• Front page; Features - changed 2.5V I/O supply to 2.5V or3.3V I/O  
supply; Completeness  
• Absolute Maximum Ratings; Changed VDDQ - Value: From: -.05 to  
VDD : to : -.05 to 3.6; Completeness.  
GS8160Z18/36T2.01 1/  
2000DGS8160Z18/36T2.03 2/  
2000E  
• Recommended Operating Conditions;Changed: I/O Supply Voltage-  
Max. from VDD to 3.6; Input High Voltage- Max. from VDD +0.3 to  
3.6; Same page - took out Note 1;Completeness  
• Electrical Characteristics - Added second Output High Voltage line to  
table; completeness.  
• Note: There was not a Rev 2.02 for the 8160Z or the 8161Z.  
• Removed pin 14 from V in pin description table.  
GS8160Z18/36T2.03 2/2000E;  
8160Z18_r2_04  
SS  
Content  
Content  
• ADV changed to pin 85 in pin description table.  
• Changed the value of ZZ recovery in the AC Electrical Characteristics  
table on page 17 from 20 ns to 100 ns  
8160Z18_r2_04;  
8160Z18_r2_05  
• Added 225 MHz speed bin  
8160Z18_r2_05;  
8160Z18_r2_06  
• Updated Pg. 1 table, AC Characteristics table, and Operating Cur-  
rents table to match 815xxx  
Content  
• Updated format to comply with Technical Publications standards  
Rev: 2.06 8/2000  
24/24  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
This Material Copyrighted by Its Respective Manufacturer  

相关型号:

GS8160Z18T-200

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-200I

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-200IT

ZBT SRAM, 1MX18, 6.5ns, CMOS, PQFP100, TQFP-100
GSI

GS8160Z18T-200T

ZBT SRAM, 1MX18, 6.5ns, CMOS, PQFP100, TQFP-100
GSI

GS8160Z18T-225

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-225I

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-225IT

ZBT SRAM, 1MX18, 6ns, CMOS, PQFP100, TQFP-100
GSI

GS8160Z18T-225T

ZBT SRAM, 1MX18, 6ns, CMOS, PQFP100, TQFP-100
GSI

GS8160Z18T-250

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-250I

18Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS8160Z18T-250IT

ZBT SRAM, 1MX18, 5.5ns, CMOS, PQFP100, TQFP-100
GSI

GS8160Z18T-250T

ZBT SRAM, 1MX18, 5.5ns, CMOS, PQFP100, TQFP-100
GSI