ETC5054FN [ETC]

u-Law CODEC ; U- Law编码解码器\n
ETC5054FN
型号: ETC5054FN
厂家: ETC    ETC
描述:

u-Law CODEC
U- Law编码解码器\n

解码器 电信集成电路 PC
文件: 总18页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ETC5054  
ETC5057  
SERIAL INTERFACE CODEC/FILTER  
COMPLETE CODEC AND FILTERING SYS-  
TEM (DEVICE) INCLUDING:  
– Transmithigh-pass and low-pass filtering.  
– Receivelow-pass filter with sin x/x correction.  
– ActiveRC noise filters  
µ-lawor A-lawcompatibleCOderandDECoder.  
– Internalprecision voltage reference.  
– Serial I/O interface.  
– Internalauto-zero circuitry.  
DIP16 (Plastic)  
A-LAW 16 PINS (ETC5057FN, 20 PINS)  
µ-LAW WITHOUT SIGNALING, 16 PINS  
(ETC5054FN, 20 PINS)  
MEETS OR EXCEEDS ALL D3/D4 AND  
CCITT SPECIFICATIONS  
ORDERING NUMBERS:  
ETC5057N  
ETC5054N  
5V OPERATION  
±
LOW OPERATING POWER - TYPICALLY 60  
mW  
POWER-DOWN STANDBY MODE - TYPI-  
CALLY 3 mW  
AUTOMATIC POWER-DOWN  
TTL OR CMOS COMPATIBLE DIGITAL IN-  
TERFACES  
SO16 (Wide)  
MAXIMIZES LINE INTERFACE CARD CIR-  
CUIT DENSITY  
0 to 70°C OPERATION  
ORDERING NUMBERS:  
ETC5057D  
ETC5054D  
DESCRIPTION  
The ETC5057/ETC5054 family consists of A-law  
and µ–law monolithic PCM CODEC/filters utilizing  
the A/D and D/A conversion architecture shown in  
the block diagram below, and a serial PCM inter-  
face. The devices are fabricated using double-  
poly CMOS process. The encode portion of each  
device consists of an input gain adjust amplifier,  
an active RC pre-filter which eliminates very high  
frequency noise prior to entering a switched-ca-  
pacitor band-pass filter that rejects signals below  
200 Hz and above 3400 Hz. Also included are  
auto-zero circuitry and a companding coder which  
samples the filtered signal and encodes it in the  
PLCC20  
ORDERING NUMBERS:  
ETC5057FN  
ETC5054FN  
companded A-law or –law PCM format. The de-  
µ
code portion of each device consists of an ex-  
panding decoder, which reconstructs the analog  
signal from the companded A-law or µ–law code,  
a low-pass filter which corrects for the sin x/x re-  
sponse of the decoder output and rejects signals  
above 3400 Hz and is followed by a single-ended  
power amplifier capable of driving low impedance  
loads. The devices require 1.536 MHz, 1.544  
MHz, or 2.048 MHz transmit and receive master  
clocks, which may be asynchronous, transmit and  
receive bit clocks which may vary from 64 kHz to  
2.048 MHz, and transmit and receive frame sync  
pulses. The timing of the frame sync pulses and  
PCM data is compatible with both industry stand-  
ard formats.  
March 2000  
1/18  
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
ETC5054 - ETC5057  
PIN CONNECTIONS (Topview)  
DIP and SO  
PLCC  
BLOCK DIAGRAM  
2/18  
ETC5054 - ETC5057  
PIN DESCRIPTION  
Pin  
N
N
°
°
Type DIP PLCC  
Name  
Function  
Description  
*
and  
SO (**)  
VBB  
S
1
1
Negative  
Power Supply  
VBB = – 5V ± 5 %.  
GNDA  
VFRO  
GND  
O
2
3
2
3
Analog Ground  
All signals are referenced to this pin.  
Analog Output of the Receive Filter  
Receive Filter  
Output  
VCC  
FSR  
S
I
4
5
5
6
Positive Power  
Supply  
VCC = + 5 V ± 5 %.  
Receive Frame  
Sync Pulse  
Enables BCLKR to shift PCM data into DR. FSR is an  
8kHz pulse train. See figures 1, 2 and 3 for timing  
details.  
DR  
I
I
6
7
7
8
Receive Data  
Input  
PCM data is shifted into DR following the FSR leading  
edge.  
BCLKR/CLKSEL  
Shift-in Clock  
Shifts data into DR after the FSR leading edge. May  
vary from 64 kHz to 2.048 MHz. Alternatively, may be  
a logic input which selects either 1.536 MHz/1.544  
MHz or 2.048 MHz for master clock in synchronous  
mode and BCLKX is used for both transmit and receive  
directions (see table 1). This input has an internal pull-  
up.  
MCLKR/PDN  
I
8
9
Receive Master Clock Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be  
asynchronous with MCLKX, but should be  
synchronous with MCLKX for best performance. When  
MCLKR is connected continuously low, MCLKX is  
selected for all internal timing. When MCLKR is  
connected continuously high, the device is powered  
down.  
MCLKX  
BCLKX  
DX  
I
9
12 Transmit Master Clock Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be  
asynchronous with MCLKR.  
10  
11  
12  
14  
15  
16  
Shift-out Clock  
Shifts out the PCM data on DX. May vary from 64 kHz  
to 2.048 MHz, but must be synchronous with MCLKX.  
I
O
I
Transmit  
Data Output  
The TRI-STATE PCM data output which is enabled  
by FSX.  
FSX  
Transmit Frame  
Sync Pulse  
Enables BCLKX to shift out the PCM data on DX. FSX is  
an 8 kHz pulse train. See figures 1, 2 and 3 for timing  
details.  
TSX  
GSX  
O
O
I
13  
14  
15  
16  
17  
18  
19  
Transmit Time Slot  
Gain Set  
Open drain output which pulses low during the encoder  
time slot. Recommended to be grounded if not used.  
Analog output of the transmit input amplifier. Used to  
set gain externally.  
VFXI–  
VFXI+  
Inverting Amplifier  
Input  
Inverting Input of the Transmit Input Amplifier.  
I
20 Non-inverting Amplifier Non-inverting Input of theTransmit Input Amplifier.  
Input  
(*) I: Input, O: Output, S: Power Supply  
(**) Pins 4,10,11 and 13 are not connected  
TRI-STATE is a trademark of National Semiconductor Corp.  
3/18  
ETC5054 - ETC5057  
TRI-STATE DX output is returned to a high im-  
pedance state. With and FSR pulse, PCM data is  
latched via the DR input on the negative edge of  
BCLKX (or BCLKR if running). FSX and FSR must  
FUNCTIONAL DESCRIPTION  
POWER-UP  
When power is first applied, power-on reset cir-  
cuitry initializes the device and places it into  
the power-down mode. All non-essential circuits  
are deactivated and the DX and VFRO outputsare  
put in high impedance states. To power-up the  
device, a logical low level or clock must be ap-  
plied to the MCLKR/PDN pin and FSX and/or FSR  
pulses must be present. Thus, 2 power-down  
control modes are available. The first is to pull the  
MCLKR/PDN pin high ; the alternative is to hold  
both FSX and FSR inputs continuously low. The  
device will power-down approximately 2 ms after  
the last FSX or FSR pulse. Power-up will occur on  
the first FSX or FSR pulse. The TRI-STATE PCM  
data output, DX, will remain in the high impedance  
state until the secondFSX pulse.  
be synchronouswith MCLKX/R  
.
ASYNCHRONOUS OPERATION  
For asynchronous operation, separate transmit  
and receive clocks may be applied, MCLKX and  
MCLKR must be 2.048 MHz for the ETC5057, or  
1.536 MHz, 1.544 MHz for the ETC5054, and  
need not be synchronous. For best transmission  
performance, however, MCLKR should be syn-  
chronous with MCLKX, which is easily achieved  
by applying only static logic levels to the  
MCLKR/PDN pin. This will automatically connect  
MCLKX to all internal MCLKR functions (see pin  
description). For 1.544 MHz operation, the device  
automatically compensates for the 193rd clock  
pulse each frame. FSX starts each encoding cycle  
and must be synchronous with MCLKX and  
BCLKX. FSR starts each decoding cycle and must  
be synchronous with BCLKR. BCLKR must be a  
clock, the logic levels shown in table 1 are not  
valid in asynchronous mode. BCLKX and BCLKR  
may operate from 64 kHz to 2.048 MHz.  
SYNCHRONOUS OPERATION  
For synchronous operation, the same master  
clock and bit clock should be used for both the  
transmit and receive directions. In this mode, a  
clock must be applied to MCLKX and the  
MCLKR/PDN pin can be used as a power-down  
control. A low level on MCLKR/PDN powers up  
the device and a high level powers down the de-  
vice. In either case, MCLKX will be selected as  
the master clock for both the transmit and receive  
circuits. A bit clock must also be applied to BCLKX  
and the BCLKR/CKSEL can be used to select the  
proper internal divider for a master clock of 1.536  
MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz  
operation, the device automatically compensates  
for the 193rd clock pulse each frame. With a fixed  
level on the BCLKR/CLKSEL pin, BCLKX will be  
selected as the bit clock for both the transmit and  
receive directions. Table 1 indicates the frequen-  
cies of operation which can be selected, depend-  
ing on the state of BCLKR/CLKSEL. In this syn-  
chronous mode, the bit clock, BCLKX, may be  
from 64 kHz to 2.048 MHz, but must be synchro-  
nous with MCLKX.  
SHORT FRAME SYNC OPERATION  
The device can utilize either a short frame sync  
pulse or a long frame sync pulse. Upon power in-  
itialization, the device assumes a short frame  
mode. In this mode, both frame sync pulses, FSX  
and FSR, must be one bit clock period long, with  
timing relationships specified in figure 2. With FSX  
high during a falling edge of BCLKX the next ris-  
ing edge of BCLKX enables the DX TRI-STATE  
output buffer, which will output the sign bit. The  
following seven rising edges clock out the remain-  
ing seven bits, and the next falling edge disables  
the DX output.With FSR high during a falling edge  
of BCLKR (BCLKX in synchronous mode), the  
next falling edge of BCLKR latches in the sign bit.  
The following seven falling edges latch in the  
seven remaining bits. Both devices may utilize the  
short frame sync pulse in synchronous or asyn-  
chronous operatingmode.  
Each FSX pulse begins the encoding cycle and  
the PCM data from the previous encode cycle is  
shifted out of the enabled DX output on the posi-  
tive edge of BCLKX. After 8 bit clock periods, the  
LONG FRAME SYNC OPERATION  
Table 1: SelectionofMasterClockFrequencies.  
To use the long frame mode, both the frame sync  
pulses, FSX and FSR, must be three or more bit  
clock periods long, with timing relationships speci-  
fied in figure 3. Based on the transmit frame sync,  
FSX, the device will sense whether short or long  
frame sync pulses are being used. For 64 kHz op-  
eration, the frame sync pulse must be kept low for  
a minimum of 160 ns (see fig. 1). The DX TRI-  
STATE output buffer is enabled with the rising  
edge of FSX or the rising edge of BCLKX, which-  
ever comes later, and the first bit clocked out is  
the sign bit. The following seven BCLKX rising  
Master Clock Frequency  
Selected  
BCLKR/CLKSEL  
ETC5057  
ETC5054  
Clocked  
0
2.048 MHz  
1.536 MHz or  
1.544 MHz  
2.048 MHz  
1.536 MHz or  
1.544 MHz  
1 (or open circuit)  
2.048 MHz  
1.536 MHz or  
1.544 MHz  
4/18  
ETC5054 - ETC5057  
edges clock out the remaining seven bits. The DX  
output is disabled by the falling BCLKX edge fol-  
lowing the eighth rising edge, or by FSX going  
low, which-ever comes later. A rising edge on the  
receive frame sync pulse, FSR, will cause the  
PCM data at DR to be latched in on the next eight  
falling edges of BCLKR (BCLKX in synchronous  
mode). Both devices may utilize the long frame  
sync pulse in synchronous or asynchronous  
mode.  
proximation encoding cycle begins. The 8-bit  
code is then loaded into a buffer and shifted out  
through DX at the next FSX pulse. The total en-  
coding delay will be approximately 165 µs (due to  
µ
the transmit filter) plus 125 s (due to encoding  
delay), which totals 290µs. Any offset vol-tage  
due to the filters or comparator is cancelled by  
sign bit integration.  
RECEIVE SECTION  
The receive section consists of an expanding  
DAC which drives a fifth order switched-capacitor  
low pass filter clocked at 256 kHz. The decoder is  
A-law (ETC5057) or µ–law (ETC5054) and the  
5th order low pass filter corrects for the sin x/x at-  
tenuation due to the 8 kHz sample and hold.  
The filter is then followed by a 2nd order RC ac-  
tive post-filter and power amplifier capable of driv-  
ing a 600load to a level of 7.2 dBm. The re-  
ceive section is unity-gain. Upon the occurence of  
FSR, the data at the DR input is clocked in on the  
falling edge of the next eight BCLKR (BCLKX) pe-  
riods. At the end of the decoder time slot, the de-  
coding cycle begins, and 10µs later the decoder  
DAC output is updated. The total decoder delay  
TRANSMIT SECTION  
The transmit section input is an operational ampli-  
fier with provision for gain adjustment using two  
external resistors, see figure 6. The low noise and  
wide bandwidth allow gains in excess of 20 dB  
across the audio passband to be realized. The op  
amp drives a unitygain filter consisting of RD ac-  
tive pre-filter, followed by an eighth order  
switched-capacitor bandpass filter clocked at 256  
kHz. The output of this filter directly drives the en-  
coder sample-and-holdcircuit. The A/D is of com-  
panding type according to A-law (ETC5057) or µ–  
law (ETC5054) coding conventions. A precision  
voltage reference is trimmed in manufacturing to  
provide an input overload (tMAX) of nominally2.5V  
peak (see table of transmission characteristics).  
The FSX frame sync pulse controls the sampling  
of the filter output, and then the successive-ap-  
µ µ  
10 s (decoder update) plus 110 s (filter  
is  
delay) plus 62.5µs (1/2 frame), which gives ap-  
proximately 180µs. A mute circuitry is a active  
during 10ms when power up.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
VCC  
Parameter  
Value  
Unit  
V
VCC to GNDA  
VBB to GNDA  
7
– 7  
VBB  
V
VIN, VOUT  
Voltage at any Analog Input or Output  
Voltage at Any Digital Input or Output  
Operating Temperature Range  
VCC + 0.3 to VBB – 0.3  
VCC + 0.3 to GNDA – 0.3  
– 25 to + 125  
– 65 to + 150  
300  
V
V
Toper  
Tstg  
C
C
C
°
°
°
Storage Temperature Range  
Lead Temperature (soldering, 10 seconds)  
ELECTRICAL OPERATING CHARACTERISTICS VCC = 5.0 V ± 5 %, VBB = – 5.0 V ± 5%GNDA = 0 V,  
TA = 0 °C to 70 °C; Typical Characteristics Specified at VCC = 5.0 V, VBB = – 5.0 V, TA = 25 °C ; all signals  
are referenced to GNDA.  
Symbol  
VIL  
VIH  
Parameter  
Min.  
Typ.  
Max.  
0.6  
Unit  
V
V
Input Low Voltage  
Input High Voltage  
2.2  
VOL  
Output Low Voltage  
IL = 3.2mA  
D X  
TSX  
0.4  
0.4  
V
V
IL = 3.2mA, Open Drain  
VOH  
Output High Voltage  
IH = 3.2mA  
D X  
2.4  
–10  
–10  
V
IIL  
IIH  
IOZ  
Input Low Current (GNDA VIN VIL, all digital inputs)  
Input High Current (VIH VIN VCC) except BCLKR/BCLKSEL  
Output Current in HIGH Impedance State (TRI-STATE)  
10  
10  
µA  
µA  
(GNDA VO VCC  
)
DX  
–10  
10  
µA  
5/18  
ETC5054 - ETC5057  
ANALOG INTERFACE WITH TRANSMIT INPUT AMPLIFIER (all devices)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
IIXA  
Input Leakage Current  
(–2.5V V +2.5V)  
VFXI+ or VFXI-  
VFXI+ or VFXI-  
– 200  
200  
nA  
RIXA  
Input Resistance  
10  
10  
MΩ  
(–2.5V  
V
+2.5V)  
ROXA  
RLXA  
CLXA  
VOXA  
AVXA  
FUXA  
Output Resistance (closed loop, unity gain)  
Load Resistance  
1
3
GSX  
GSX  
GSX  
k
Load Capacitance  
50  
pF  
V
Output Dynamic Range (RL 10K )  
Voltage Gain (VFXI+ to GSX)  
2.8  
±
5000  
1
V/V  
MHz  
mV  
V
Unity Gain Bandwidth  
2
V
OSXA Offset Voltage  
– 20  
– 2.5  
60  
20  
V
CMXA Common-mode Voltage  
2.5  
CMRRXA Common-mode Rejection Ratio  
PSRRXA Power Supply Rejection Ratio  
dB  
dB  
60  
ANALOG INTERFACE WITH RECEIVE FILTER (all devices)  
Symbol  
RORF  
RLRF  
Parameter  
Min.  
600  
Typ.  
Max.  
Unit  
Output Resistance  
VFRO  
1
3
Load Resistance (VFRO = ±2.5V)  
CLRF  
Load Capacitance  
500  
200  
pF  
mV  
VOSRO Output DC Offset Voltage  
– 200  
POWER DISSIPATION (all devices)  
Symbol  
ICC  
IBB  
ICC  
IBB  
Parameter  
Min.  
Typ.  
0.5  
Max.  
1.5  
Unit  
mA  
mA  
mA  
mA  
0
Power-down Current  
Power-down Current  
Active Current  
0
0.05  
6.0  
0.3  
1
9.0  
1
Active Current  
6.0  
9.0  
6/18  
ETC5054 - ETC5057  
TIMING SPECIFICATIONS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
1/tPM  
Frequency of master clocks  
Depends on the device used and the BCLKR/CLKSEL Pin  
MCLKX and MCLKR  
1.536  
1.544  
2.048  
MHz  
MHz  
MHz  
tWMH  
tWML  
tRM  
Width of Master Clock High  
Width of Master Clock Low  
MCLKX and MCLKR  
160  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MCLKX and MCLKR  
MCLKX and MCLKR  
MCLKX and MCLKR  
Rise Time of Master Clock  
50  
50  
tFM  
Fall Time of Master Clock  
tPB  
Period of Bit Clock  
485  
160  
160  
488  
15.725  
tWBH  
tWBL  
tRB  
Width of Bit Clock High (VIH = 2.2V)  
Width of Bit Clock Low (VIL = 0.6V)  
Rise Time of Bit Clock (tPB = 488ns)  
Fall Time of Bit Clock (tPB = 488ns)  
50  
50  
tFB  
tSBFM  
Set-up time from BCLKX high to MCLKX falling edge.  
(first bit clock after the leading edge of FSX)  
100  
0
tHBF  
Holding Time from Bit Clock Low to the Frame Sync  
(long frame only)  
ns  
tSFB  
Set-up Time from Frame Sync to Bit Clock (long frame only)  
80  
ns  
ns  
tHBFI  
Hold Time from 3rd Period of Bit Clock  
Low to Frame Sync (long frame only)  
FSX or FSR  
100  
tDZF  
Delay time to valid data from FSX or BCLKX, whichever comes later  
and delay time from FSX to data output disabled.  
(CL = 0pF to 150pF)  
20  
0
165  
ns  
ns  
tDBD  
Delay time from BCLKX high to data valid.  
(load = 150pF plus 2 LSTTL loads)  
180  
165  
tDZC  
tSDB  
tHBD  
tHOLD  
Delay time from BCLKX low to data output disabled.  
Set-up time from DR valid to BCLKR/X low.  
Hold time from BCLKR/X low to DR invalid.  
50  
50  
50  
0
ns  
ns  
ns  
ns  
Holding Time from Bit Clock High to Frame Sync  
(short frame only)  
tSF  
tHF  
Set-up Time from FSX/R to BCLKX/R Low  
(short frame sync pulse) - Note 1  
80  
ns  
ns  
Hold Time from BCLKX/R Low to FSX/R Low  
(short frame sync pulse) - Note 1  
100  
tXDP  
tWFL  
Delay Time to TSXlow (load = 150pF plus 2 LSTTL loads)  
140  
ns  
ns  
Minimum Width of the Frame Sync Pulse (low level)  
64kbit/s operating mode)  
160  
Note 1: For short frame sync timing FSX and FSR must go high while their respective bit clocks are high.  
Figure 1: 64kbits/sTIMING DIAGRAM (see next page for complete timing).  
FSx  
FSR  
7/18  
ETC5054 - ETC5057  
Figure 2: Short Frame Sync Timing  
8/18  
ETC5054 - ETC5057  
Figure 3: Long Frame Sync Timing  
9/18  
ETC5054 - ETC5057  
TRANSMISSION CHARACTERISTICS  
TA = 0 to 70°C, VCC = +5V ±5%, VBB = –5V ±5%, GNDA = 0V, f = 1.0KHz, VIN = 0dBm0 transmit input  
amplifier connected for unity-gain non-inverting (unless otherwise specified).  
AMPLITUDE RESPONSE  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Absolute levels - nominal 0 dBm0 level is 4 dBm (600 )  
0 dBm0  
1.2276  
Vrms  
tMAX  
Max Overload Level  
3.14 dBm0 (A LAW)  
3.17 dBm0 (U LAW)  
2.492  
2.501  
VPK  
VPK  
GXA  
GXR  
Transmit Gain, Absolute (TA = 25 °C, VCC = 5 V, VBB = – 5 V)  
Input at GSX = 0 dBm0 at 1020 Hz  
– 0.15  
0.15  
dB  
Transmit Gain, Relative to GXA  
f = 16 Hz  
– 40  
– 30  
– 26  
– 0.2  
– 0.1  
0.15  
0.05  
0
f = 50 Hz  
f = 60 Hz  
f = 180 Hz  
– 2.8  
– 1.8  
– 0.15  
– 0.35  
– 0.7  
f = 200 Hz  
dB  
f = 300 Hz - 3000 Hz  
f = 3300 Hz  
f = 3400 Hz  
f = 4000 Hz  
– 14  
– 32  
f = 4600 Hz and up, Measure Response from 0Hz to 4000 Hz  
GXAT  
GXAV  
GXRL  
Absolute Transmit Gain Variation with Temperature  
TA = 0 to +70 C  
– 0.1  
0.1  
dB  
dB  
°
Absolute Transmit Gain Variation with Supply Voltage  
(VCC = 5 V ± 5 %, VBB = – 5 V ± 5 %)  
– 0.05  
0.05  
Transmit Gain Variations with Level  
Sinusoidal Test Method Reference Level = – 10 dBm0  
VFXI+ = – 40 dBm0 to + 3 dBm0  
VFXI+ = – 50 dBm0 to – 40 dBm0  
VFXI+ = – 55 dBm0 to – 50 dBm0  
– 0.2  
– 0.4  
– 1.2  
0.2  
0.4  
1.2  
dB  
dB  
dB  
GRA  
GRR  
Receive Gain, Absolute (TA = 25°C, VCC = 5V, VBB = –5V)  
Input = Digital Code Sequence for 0dBm0 Signal at 1020Hz  
– 0.15  
0.15  
dB  
Receive Gain, Relative to GRA  
f = 0Hz to 3000Hz  
f = 3300Hz  
f = 3400Hz  
f = 4000Hz  
– 0.35  
– 0.35  
– 0.7  
0.20  
0.05  
0
dB  
dB  
dB  
dB  
– 14  
GRAT  
GRAV  
GRRL  
Absolute Transmit Gain Variation with Temperature  
A
T = 0 to +70 C  
– 0.1  
0.1  
dB  
dB  
°
Absolute Receive Gain Variation with Supply Voltage  
(VCC = 5 V ± 5 %, VBB = – 5 V ± 5 %)  
– 0.05  
0.05  
Receive Gain Variations with Level  
Sinusoidal Test Method; Reference input PCM code  
corresponds to an ideally encoded – 10 dBm0 signal  
PCM level = – 40 dBm0 to + 3 dBm0  
– 0.2  
– 0.4  
– 1.2  
0.2  
0.4  
1.2  
dB  
dB  
dB  
PCM level = – 50 dBm0 to – 40 dBm0  
PCM level = – 55 dBm0 to – 50 dBm0  
VRO  
Receive Output Drive Level (R = 600 )  
– 2.5  
2.5  
V
L
10/18  
ETC5054 - ETC5057  
TRANSMISSION (continued)  
ENVELOPEDELAY DISTORTION WITH FREQUENCY  
Symbol  
DXA  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Transmit Delay, Absolute (f = 1600Hz)  
290  
315  
s
µ
DXR  
Transmit Delay, Relative to DXA  
f = 500Hz - 600Hz  
195  
120  
50  
20  
55  
80  
130  
220  
145  
75  
40  
75  
105  
155  
f = 600Hz - 800Hz  
f = 800Hz - 1000Hz  
f = 1000Hz - 1600Hz  
f = 1600Hz - 2600Hz  
f = 2600Hz - 2800Hz  
f = 2800Hz - 3000Hz  
µs  
DRA  
DRR  
Receive Delay, Absolute (f = 1600Hz)  
180  
200  
s
s
µ
µ
Receive Delay, Relative to DRA  
f = 500Hz - 1000Hz  
f = 1000Hz - 1600Hz  
f = 1600Hz - 2600Hz  
f = 2600Hz - 2800Hz  
f = 2800Hz - 3000Hz  
– 40  
– 30  
– 25  
– 20  
70  
100  
145  
90  
125  
175  
NOISE  
Symbol  
NXP  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Transmit Noise, P Message Weighted (A LAW, VFXI + = 0 V)  
1)  
– 74  
– 69 dBm0p  
NRP  
Receive Noise, P Message Weighted  
(A LAW, PCM code equals positive zero)  
Transmit Noise, C Message Weighted µ LAW (VFXI + = 0 V)  
– 82  
12  
– 79 dBm0p  
NXC  
NRC  
15  
11  
dBmC0  
dBrnC0  
Receive Noise, C Message Weighted  
(µ LAW, PCM Code Equals Alternating Positive and Negative Zero)  
8
NRS  
Noise, Single Frequency  
f = 0 kHz to 100 kHz, Loop around Measurement,  
VFXI + = 0 Vrms  
– 53  
dBm0  
dBp  
PPSRX Positive Power Supply Rejection, Transmit (note 2)  
VCC = 5.0 VDC + 100 mVrms, f = 0 kHz-50 kHz  
40  
40  
NPSRX Negative Power Supply Rejection, Transmit (note 2)  
VBB = – 5.0 VDC + 100 mVrms,  
f = 0 kHz-50 kHz  
dBp  
PPSRR Positive Power Supply Rejection, Receive  
(PCM code equals positive zero, VCC = 5.0 VDC + 100mVrms)  
f = 0Hz to 4000Hz  
40  
40  
36  
dBp  
dB  
dB  
f = 4KHz to 25KHz  
f = 25KHz to 50KHz  
NPSRR Negative Power Supply Rejection, Receive  
(PCM code equals positive zero, VBB = 5.0 VDC + 100mVrms)  
f = 0Hz to 4000Hz  
40  
40  
36  
dBp  
dB  
dB  
f = 4KHz to 25KHz  
f = 25KHz to 50KHz  
11/18  
ETC5054 - ETC5057  
TRANSMISSION CHARACTERISTICS (continued)  
NOISE (continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
SOS  
Spurius out-of-band Signals at theChannel Output  
Loop around measurement, 0dBm0, 300Hz - 3400Hz input applied  
to DR, measure individual image signals at DX  
4600Hz - 7600Hz  
– 32  
– 40  
– 32  
dB  
dB  
dB  
7600Hz - 8400Hz  
8400Hz - 100,000Hz  
DISTORTION  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
STDX  
or  
STDR  
Signal to Total Distortion (sinusoidal test method)  
Transmit or Receive Half-channel  
Level = 3.0dBm0  
33  
36  
29  
30  
14  
15  
Level = 0dBm0 to –30dBm0  
Level = –40dBm0  
XMT  
R CV  
XMT  
RCV  
dBp  
Level = –55dBm0  
SFDX  
SFDR  
IMD  
Single Frequency Distortion, Transmit (T = 25 C)  
–46  
–46  
dB  
dB  
°
A
Single Frequency Distortion, Receive (T = 25 C)  
°
A
Intermodulation Distortion  
Loop Around Measurement, VFXI+ = –4dBm0 to –21dBm0, two  
–41  
dB  
Frequencies in the Range 300Hz - 3400Hz  
CROSSTALK  
Symbol  
Parameter  
Min.  
Typ.  
– 90  
– 90  
Max.  
– 75  
– 70  
Unit  
dB  
CTX-R  
Transmit to Receive Crosstalk, 0 dBm0 Transmit Level  
f = 300Hz to 3400Hz, DR = Steady PCM Mode  
CTR-X  
Receive to Transmit Crosstalk, 0 dBm0 Receive Level  
f = 300Hz to 3400Hz, (note 2)  
dB  
Notes:  
1) Measured by extrapolation from distortion test results.  
2) PPSRX, NPSRX, CTR-X is measured with a –50dBm0 activating signal applied at VFXI+.  
ENCODING FORMAT AT DX OUTPUT  
A-Law (including even bit inversion)  
Law  
µ
V
V
V
IN (at GSX) = +Full-scale  
IN (at GSX) = 0V  
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IN (at GSX) = – Full-scale  
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
12/18  
ETC5054 - ETC5057  
N2 1  
APPLICATION INFORMATION  
POWER SUPPLIES  
Z1 . Z 2  
2
=
R3  
N
While the pins at the ETC505X family are well  
protected against electrical misuse, it is recom-  
mended that the standard CMOS practice be fol-  
lowed, ensuring that ground is connected to the  
device before any-other connections are made. In  
applications where the printed circuit board may  
be plugged into a ”hot” socket with power and  
clocks already present, an extra long ground pin  
in the connector should be used.  
N2 −  
1
R3 = Z1  
2
+
1
N
2NS  
RECEIVE GAIN ADJUSTMENT  
For applications where  
CODEC/filter receive output must drive a 600Ω  
load, but a peak swing lower then 2.5V is re-  
a
ETC505X family  
±
All ground connections to each device should  
meet at a common point as close as possible to  
the GNDA pin. This minimizes the interaction of  
ground return currents flowing through a common  
quired, the receive gain can be easily adjusted by  
inserting a matched T-pad or π –pad at the out-  
put. Table II lists the required resistor values for  
600terminations. As these are generally non-  
standard values, the equations can be used to  
compute the attenuationof the closest pratical set  
of resistors. It may be necessary to use unequal  
values for the R1 or R4 arms of the attenuatorsto  
achieve a precise attenuation. Generally it is tol-  
erable to allow a small deviation of the input im-  
pedance from nominal while still maintaining a  
good return loss. For example a 30dB return loss  
against 600is obtained if the output impedance  
µ
bus impedance. 0.1 F supply decoupling capaci-  
tors should be connected from this common  
ground point to VCC and VBB as close to the de-  
vice as possible.  
For best performance, the ground point of each  
CODEC/FILTER on a card should be connected  
to a common card ground in star formation, rather  
than via a ground bus. This common ground point  
should be decoupled to VCC and VBB with 10µF  
capacitors.  
of the attenuator is in the range 282 to 319  
(assuming a perfect transformer).  
Figure 4: T-PAD Attenuator  
Table 2 : AttenuatorTables For  
Z1 = Z2 = 300 (all values in ).  
dB  
R1  
R2  
R3  
R4  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
2
1.7  
3.5  
26k  
13k  
8.7k  
6.5k  
5.2k  
4.4k  
3.7k  
3.3k  
2.9k  
2.6k  
1.3k  
850  
650  
494  
402  
380  
284  
244  
211  
184  
161  
142  
125  
110  
98  
3.5  
6.9  
52k  
26k  
N2 + 1  
N
5.2  
10.4  
13.8  
17.3  
21.3  
24.2  
27.7  
31.1  
34.6  
70  
17.4k  
13k  
R1 = Z1  
2 Z1 . Z 2  
N2  
1
N2  
6.9  
8.5  
1
10.5k  
8.7k  
7.5k  
6.5k  
5.8k  
5.2k  
2.6k  
1.8k  
1.3k  
1.1k  
900  
785  
698  
630  
527  
535  
500  
473  
450  
430  
413  
386  
366  
10.4  
12.1  
13.8  
15.5  
17.3  
34.4  
51.3  
68  
N
N2 1  
=
2
R2 2 Z1.Z  
POWERIN  
Where: N =  
3
107  
144  
183  
224  
269  
317  
370  
427  
490  
550  
635  
720  
816  
924  
1.17k  
1.5k  
POWEROUT  
4
5
84  
Z1  
Z2  
and: S =  
6
100  
115  
129  
143  
156  
168  
180  
190  
200  
210  
218  
233  
246  
7
8
.
Also : Z = ZSC ZOC  
9
10  
11  
12  
13  
14  
15  
16  
18  
20  
Where ZSC = impedancewith shortcircuit termi-  
nation and ZOC = impedancewith opencircuit ter-  
mination.  
Figure 5: Π-PAD Attenuator  
77  
61  
13/18  
ETC5054 - ETC5057  
Figure 6: Typical SynchronousApplication.  
14/18  
ETC5054 - ETC5057  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
A1  
B
C
D
E
e
2.35  
0.1  
2.65 0.093  
0.3 0.004  
0.104  
0.012  
0.020  
0.013  
0.413  
0.299  
0.33  
0.23  
10.1  
7.4  
0.51 0.013  
0.32 0.009  
10.5 0.398  
7.6  
0.291  
1.27  
0.050  
H
h
10  
0.25  
0.4  
10.65 0.394  
0.75 0.010  
1.27 0.016  
0.419  
0.030  
0.050  
L
SO16 Wide  
K
0° (min.)8° (max.)  
L
h x 45  
A
B
e
K
A1  
C
H
D
9
8
16  
E
1
15/18  
ETC5054 - ETC5057  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.51  
0.77  
0.020  
1.65 0.030  
0.065  
0.787  
0.5  
0.020  
0.010  
b1  
D
E
e
0.25  
20  
8.5  
0.335  
0.100  
0.700  
2.54  
17.78  
e3  
F
7.1  
5.1  
0.280  
0.201  
I
L
3.3  
0.130  
DIP16  
Z
1.27  
0.050  
16/18  
ETC5054 - ETC5057  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
B
9.78  
8.89  
4.2  
10.03 0.385  
9.04 0.350  
4.57 0.165  
0.395  
0.356  
0.180  
D
d1  
d2  
E
2.54  
0.56  
0.100  
0.022  
7.37  
8.38 0.290  
0.330  
0.004  
e
1.27  
0.38  
0.050  
0.015  
F
G
0.101  
M
M1  
1.27  
1.14  
0.050  
0.045  
PLCC20  
B
M
M1  
3
2
1
20 19  
18  
4
5
6
7
8
M
M1  
F
e
17  
16  
15  
14  
E
9
10 11 12  
13  
d2  
A
d1  
D
G (Seating Plane Coplanarity)  
PLCC20ME  
17/18  
ETC5054 - ETC5057  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics – Printed in Italy – AllRights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
18/18  

相关型号:

ETC5054FN-X

u-Law CODEC
ETC

ETC5054J

u-Law CODEC
ETC

ETC5054J-X

u-Law CODEC
ETC

ETC5054J/G

IC,PCM CODEC,SINGLE,CMOS,DIP,16PIN,CERAMIC
STMICROELECTR

ETC5054N

SERIAL INTERFACE CODEC/FILTER
STMICROELECTR

ETC5054N-X

MU-LAW, PCM CODEC, PDIP16, PLASTIC, DIP-16
STMICROELECTR

ETC5056J

IC,PCM CODEC,SINGLE,CMOS,DIP,20PIN,CERAMIC
STMICROELECTR

ETC5057

SERIAL INTERFACE CODEC/FILTER
STMICROELECTR

ETC5057D

SERIAL INTERFACE CODEC/FILTER
STMICROELECTR

ETC5057D-X

A-Law CODEC
ETC

ETC5057FN

A-Law CODEC
ETC

ETC5057FN-X

A-Law CODEC
ETC