DTA114EET1/D [ETC]

Bias Resistor Transistor ; 偏置电阻晶体管\n
DTA114EET1/D
型号: DTA114EET1/D
厂家: ETC    ETC
描述:

Bias Resistor Transistor
偏置电阻晶体管\n

晶体 晶体管
文件: 总16页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DTA114EET1 SERIES  
Preferred Devices  
Bias Resistor Transistors  
PNP Silicon Surface Mount Transistors  
with Monolithic Bias Resistor Network  
This new series of digital transistors is designed to replace a single  
device and its external resistor bias network. The BRT (Bias Resistor  
Transistor) contains a single transistor with a monolithic bias network  
consisting of two resistors; a series base resistor and a base–emitter  
resistor. The BRT eliminates these individual components by  
integrating them into a single device. The use of a BRT can reduce  
both system cost and board space. The device is housed in the  
SC–75/SOT–416 package which is designed for low power surface  
mount applications.  
http://onsemi.com  
PNP SILICON  
BIAS RESISTOR  
TRANSISTORS  
Simplifies Circuit Design  
Reduces Board Space  
Reduces Component Count  
The SC–75/SOT–416 package can be soldered using wave or reflow.  
The modified gull–winged leads absorb thermal stress during  
soldering eliminating the possibility of damage to the die.  
Available in 8 mm, 7 inch/3000 Unit Tape & Reel  
PIN 3  
COLLECTOR  
(OUTPUT)  
PIN 1  
BASE  
(INPUT)  
R1  
R2  
PIN 2  
EMITTER  
(GROUND)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
Symbol  
Value  
50  
Unit  
Vdc  
V
CBO  
3
V
CEO  
50  
Vdc  
2
I
C
100  
mAdc  
1
DEVICE MARKING AND RESISTOR VALUES  
SC–75/SOT–416  
CASE 463  
Device  
Marking  
R1 (K)  
R2 (K)  
Shipping  
STYLE 1  
DTA114EET1  
DTA124EET1  
DTA144EET1  
DTA114YET1  
DTA114TET1  
DTA143TET1  
DTA123EET1  
DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
DTA115EET1  
DTA144WET1  
6A  
6B  
6C  
6D  
6E  
6F  
6H  
6J  
6K  
6L  
6M  
6N  
6P  
10  
22  
47  
10  
10  
4.7  
2.2  
4.7  
4.7  
22  
2.2  
100  
47  
10  
22  
47  
47  
3000/Tape & Reel  
MARKING DIAGRAM  
6x  
M
2.2  
4.7  
47  
47  
47  
100  
22  
6x = Specific Device Code  
= (See Marking Table)  
M = Date Code  
x
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
January, 2000 – Rev. 3  
DTA114EET1/D  
DTA114EET1 SERIES  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
Total Device Dissipation,  
P
D
FR–4 Board (Note 1.) @ T = 25°C  
Derate above 25°C  
200  
1.6  
mW  
mW/°C  
A
Thermal Resistance, Junction to Ambient (Note 1.)  
Total Device Dissipation,  
R
600  
°C/W  
θ
JA  
P
D
FR–4 Board (Note 2.) @ T = 25°C  
Derate above 25°C  
300  
2.4  
mW  
mW/°C  
A
Thermal Resistance, Junction to Ambient (Note 2.)  
Junction and Storage Temperature Range  
R
400  
°C/W  
°C  
θ
JA  
T , T  
J
–55 to +150  
stg  
1. FR–4 @ Minimum Pad  
2. FR–4 @ 1.0 × 1.0 Inch Pad  
http://onsemi.com  
2
DTA114EET1 SERIES  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Base Cutoff Current (V = 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector–Emitter Cutoff Current (V = 50 V, I = 0)  
CE  
B
CEO  
Emitter–Base Cutoff Current  
(V = 6.0 V, I = 0)  
DTA114EET1  
DTA124EET1  
DTA144EET1  
DTA114YET1  
DTA114TET1  
DTA143TET1  
DTA123EET1  
DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
DTA115EET1  
DTA144WET1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
2.3  
1.5  
0.18  
0.13  
0.2  
0.05  
0.13  
EBO  
EB  
C
Collector–Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
Collector–Emitter Breakdown Voltage (Note 3.)  
(BR)CEO  
(I = 2.0 mA, I = 0)  
C
B
ON CHARACTERISTICS (Note 3.)  
DC Current Gain  
DTA114EET1  
DTA124EET1  
DTA144EET1  
DTA114YET1  
DTA114TET1  
DTA143TET1  
DTA123EET1  
DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
DTA115EET1  
DTA144WET1  
h
FE  
35  
60  
80  
60  
(V = 10 V, I = 5.0 mA)  
100  
140  
140  
250  
250  
15  
CE  
C
80  
160  
160  
8.0  
15  
80  
80  
80  
80  
80  
27  
140  
130  
140  
150  
140  
Collector–Emitter Saturation Voltage (I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
Vdc  
Vdc  
C
E
(I = 10 mA, I = 5 mA) DTA123EET1  
C
B
(I = 10 mA, I = 1 mA) DTA114TET1/DTA143TET1/  
C
B
DTA143ZET1/DTA124XET1/DTA143EET1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
DTA114EET1  
DTA124EET1  
DTA114YET1  
DTA114TET1  
DTA143TET1  
DTA123EET1  
DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
DTA144EET1  
DTA115EET1  
DTA144WET1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V = 5.0 V, V = 3.5 V, R = 1.0 k)  
CC  
B
L
(V = 5.0 V, V = 5.5 V, R = 1.0 k)  
CC  
B
L
(V = 5.0 V, V = 4.0 V, R = 1.0 k)  
CC  
B
L
Output Voltage (off) (V = 5.0 V, V = 0.5 V, R = 1.0 k)  
V
OH  
4.9  
Vdc  
CC  
B
L
(V = 5.0 V, V = 0.25 V, R = 1.0 k)  
DTA114TET1  
CC  
B
L
DTA143TET1  
DTA123EET1  
DTA143EET1  
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
3
DTA114EET1 SERIES  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Input Resistor  
DTA114EET1  
DTA124EET1  
DTA144EET1  
DTA114YET1  
DTA114TET1  
DTA143TET1  
DTA123EET1  
DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
DTA115EET1  
DTA144WET1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
2.2  
4.7  
4.7  
22  
2.2  
100  
47  
13  
28.6  
61.1  
13  
13  
6.1  
2.9  
6.1  
6.1  
28.6  
2.86  
130  
61.1  
kΩ  
15.4  
1.54  
70  
32.9  
Resistor Ratio  
DTA114EET1/DTA124EET1/DTA144EET1/  
DTA115EET1  
R /R  
1 2  
0.8  
0.17  
1.0  
0.21  
1.0  
0.1  
0.47  
0.047  
2.1  
1.2  
0.25  
DTA114YET1  
DTA114TET1/DTA143TET1  
DTA123EET1/DTA143EET1  
DTA143ZET1  
DTA124XET1  
DTA123JET1  
0.8  
1.2  
0.055  
0.38  
0.038  
1.7  
0.185  
0.56  
0.056  
2.6  
DTA144WET1  
250  
200  
150  
100  
R
= 600°C/W  
50  
0
θ
JA  
-ā50  
0
50  
100  
150  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Derating Curve  
1.0  
D = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
t, TIME (s)  
1.0  
10  
100  
1000  
Figure 2. Normalized Thermal Response  
http://onsemi.com  
4
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS – DTA114EET1  
1000  
1
V
CE  
= 10 V  
I /I = 10  
C B  
T Ă=Ă75°C  
A
T Ă=Ă-25°C  
A
25°C  
-25°C  
ā0.1  
100  
25°C  
75°C  
ā0.01  
10  
ā20  
I , COLLECTOR CURRENT (mA)  
1
10  
100  
0
ā40  
50  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 3. VCE(sat) versus IC  
Figure 4. DC Current Gain  
4
3
100  
10  
1
25°C  
75°C  
f = 1 MHz  
l = 0 V  
E
T Ă=Ă-25°C  
A
T = 25°C  
A
2
1
0
ā0.1  
ā0.01  
V = 5 V  
O
ā0.001  
0
10  
20  
30  
40  
50  
0
1
ā2  
3
ā4  
ā5  
ā6  
ā7  
ā8  
ā9  
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 5. Output Capacitance  
Figure 6. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
10  
25°C  
75°C  
1
ā0.1  
0
10  
ā20  
ā30  
ā40  
ā50  
I , COLLECTOR CURRENT (mA)  
C
Figure 7. Input Voltage versus Output Current  
http://onsemi.com  
5
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS – DTA124EET1  
1000  
10  
V
CE  
= 10 V  
I /I = 10  
C B  
T Ă=Ă75°C  
A
1
25°C  
25°C  
T Ă=Ă-25°C  
A
-25°C  
100  
75°C  
ā0.1  
10  
0.01  
1
10  
I , COLLECTOR CURRENT (mA)  
0
ā20  
ā40  
ā50  
100  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 8. VCE(sat) versus IC  
Figure 9. DC Current Gain  
4
3
2
100  
25°C  
75°C  
f = 1 MHz  
l = 0 V  
T Ă=Ă-25°C  
A
E
10  
1
T = 25°C  
A
ā0.1  
1
0
ā0.01  
V = 5 V  
O
ā0.001  
0
1
ā2  
ā3  
ā4  
ā5  
ā6  
ā7  
ā8  
ā9  
10  
0
10  
20  
30  
40  
50  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 10. Output Capacitance  
Figure 11. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
10  
25°C  
75°C  
1
ā0.1  
0
10  
ā20  
ā30  
ā40  
ā50  
I , COLLECTOR CURRENT (mA)  
C
Figure 12. Input Voltage versus Output Current  
http://onsemi.com  
6
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS – DTA144EET1  
1
1000  
I /I = 10  
C B  
T Ă=Ă75°C  
A
T Ă=Ă-25°C  
A
25°C  
25°C  
75°C  
-25°C  
100  
ā0.1  
ā0.01  
10  
0
10  
20  
30  
40  
1
10  
I , COLLECTOR CURRENT (mA)  
100  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 13. VCE(sat) versus IC  
Figure 14. DC Current Gain  
1
100  
25°C  
-25°C  
T Ă=Ă75°C  
A
f = 1 MHz  
l = 0 V  
E
0.8  
10  
1
T = 25°C  
A
0.6  
0.4  
ā0.1  
ā0.01  
0.2  
0
V = 5 V  
O
ā0.001  
0
10  
20  
30  
40  
50  
0
1
2
3
ā4  
ā5  
ā6  
ā7  
ā8  
Ă9  
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 15. Output Capacitance  
Figure 16. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
25°C  
75°C  
10  
1
Ă0.1  
0
10  
ā20  
ā30  
ā40  
ā50  
I , COLLECTOR CURRENT (mA)  
C
Figure 17. Input Voltage versus Output Current  
http://onsemi.com  
7
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS – DTA114YET1  
1
180  
T Ă=Ă75°C  
A
I /I = 10  
C B  
V
CE  
= 10 V  
160  
140  
120  
100  
80  
T Ă=Ă-25°C  
A
25°C  
-25°C  
25°C  
0.1  
75°C  
0.01  
60  
40  
20  
0.001  
0
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 18. VCE(sat) versus IC  
Figure 19. DC Current Gain  
4.5  
4
100  
10  
1
T Ă=Ă75°C  
f = 1 MHz  
l = 0 V  
A
25°C  
E
3.5  
3
T = 25°C  
A
-25°C  
2.5  
2
1.5  
1
0.5  
0
V = 5 V  
O
0
2
4
6
8
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 20. Output Capacitance  
Figure 21. Output Current versus Input Voltage  
10  
+12 V  
V = 0.2 V  
O
25°C  
T Ă=Ă-25°C  
A
75°C  
Typical Application  
for PNP BRTs  
1
LOAD  
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 22. Input Voltage versus Output Current  
Figure 23. Inexpensive, Unregulated Current Source  
http://onsemi.com  
8
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — DTA115EET1  
1
1000  
75°C  
T = –25°C  
A
100  
25°C  
0.1  
75°C  
25°C  
10  
1
–25°C  
V
CE  
= 10 V  
I /I = 10  
C
B
0.01  
0
1
2
3
4
5
6
7
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 24. Maximum Collector Voltage versus  
Collector Current  
Figure 25. DC Current Gain  
100  
10  
1.2  
25°C  
75°C  
1.0  
0.8  
0.6  
0.4  
f = 1 MHz  
I
E
= 0 V  
T = –25°C  
A
T = 25°C  
A
1
0.2  
0
V
= 5 V  
8
O
0.1  
0
1
2
3
4
5
6
7
9
10  
0
10  
20  
30  
40  
50  
60  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 26. Output Capacitance  
Figure 27. Output Current versus Input Voltage  
100  
T = –25°C  
A
25°C  
10  
V
O
= 0.2 V  
75°C  
1
0
2
4
6
8
10 12  
14  
16 18 20  
I , COLLECTOR CURRENT (mA)  
C
Figure 28. Input Voltage versus Output Current  
http://onsemi.com  
9
DTA114EET1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — DTA144WET1  
1
1000  
75°C  
T = –25°C  
A
75°C  
T = –25°C  
A
0.1  
100  
25°C  
25°C  
V
CE  
= 10 V  
I /I = 10  
C
B
0.01  
10  
0
5
10 15  
20 25 30 35 40 45 50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 29. Maximum Collector Voltage versus  
Collector Current  
Figure 30. DC Current Gain  
100  
10  
1
1.4  
75°C  
f = 1 MHz  
1.2  
1.0  
0.8  
0.6  
0.4  
I
E
= 0 V  
T = –25°C  
A
T = 25°C  
A
25°C  
0.1  
0.01  
V
O
= 5 V  
0.2  
0
0.001  
0
1
2
3
4
5
6
7
8
9
10 11  
0
10  
20  
30  
40  
50  
60  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 31. Output Capacitance  
Figure 32. Output Current versus Input Voltage  
100  
V
O
= 0.2 V  
T = –25°C  
A
10  
75°C  
25°C  
1
0
5
10  
15  
20  
25  
I , COLLECTOR CURRENT (mA)  
C
Figure 33. Input Voltage versus Output Current  
http://onsemi.com  
10  
DTA114EET1 SERIES  
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.5 min. (3x)  
TYPICAL  
SOLDERING PATTERN  
Unit: mm  
1.4  
SOT–416/SC–75 POWER DISSIPATION  
The power dissipation of the SOT–416/SC–75 is a  
function of the pad size. This can vary from the minimum  
pad size for soldering to the pad size given for maximum  
power dissipation. Power dissipation for a surface mount  
into the equation for an ambient temperature T of 25°C,  
one can calculate the power dissipation of the device which  
in this case is 200 milliwatts.  
A
150°C – 25°C  
PD  
=
= 200 milliwatts  
device is determined by T  
, the maximum rated  
J(max)  
600°C/W  
junction temperature of the die, R , the thermal  
θJA  
The 600°C/W assumes the use of the recommended  
footprint on a glass epoxy printed circuit board to achieve a  
power dissipation of 200 milliwatts. Another alternative  
would be to use a ceramic substrate or an aluminum core  
board such as Thermal Clad . Using a board material such  
as Thermal Clad, a higher power dissipation can be  
achieved using the same footprint.  
resistance from the device junction to ambient; and the  
operating temperature, T . Using the values provided on  
A
the data sheet, P can be calculated as follows:  
D
TJ(max) – TA  
PD  
=
Rθ  
JA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference should be a maximum of 10°C.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
11  
DTA114EET1 SERIES  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones,  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 34 shows a typical heating  
profile for use when soldering a surface mount device to a  
printed circuit board. This profile will vary among  
soldering systems but it is a good starting point. Factors that  
can affect the profile include the type of soldering system in  
use, density and types of components on the board, type of  
solder used, and the type of board or substrate material  
being used. This profile shows temperature versus time.  
The line on the graph shows the actual temperature that  
might be experienced on the surface of a test board at or  
near a central solder joint. The two profiles are based on a  
high density and a low density board. The Vitronics  
SMD310 convection/infrared reflow soldering system was  
used to generate this profile. The type of solder used was  
62/36/2 Tin Lead Silver with a melting point between  
177–189°C. When this type of furnace is used for solder  
reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
SPIKE"  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
RAMP"  
STEP 2  
VENT  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
SOAK"  
SOAK" ZONES 2 & 5  
RAMP"  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
200°C  
150°C  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100°C  
50°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 34. Typical Solder Heating Profile  
http://onsemi.com  
12  
DTA114EET1 SERIES  
Notes  
http://onsemi.com  
13  
DTA114EET1 SERIES  
Notes  
http://onsemi.com  
14  
DTA114EET1 SERIES  
PACKAGE DIMENSIONS  
SC–75/SOT–416  
CASE 463–01  
ISSUE B  
–A–  
NOTES:  
S
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
2
3
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
–B–  
MIN  
MAX  
0.031  
0.071  
0.035  
0.012  
1
A
B
C
D
G
H
J
0.70  
1.40  
0.60  
0.15  
0.80 0.028  
1.80 0.055  
0.90 0.024  
0.30 0.006  
D 3 PL  
0.20 (0.008)  
M
B
0.20 (0.008) A  
K
1.00 BSC  
0.039 BSC  
---  
0.10  
1.45  
0.10  
0.10  
---  
0.004  
0.010  
0.069  
0.008  
0.25 0.004  
1.75 0.057  
0.20 0.004  
K
L
S
0.50 BSC  
0.020 BSC  
J
C
STYLE 1:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
L
H
http://onsemi.com  
15  
DTA114EET1 SERIES  
Thermal Clad is a registered trademark of the Bergquist Company  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
DTA114EET1/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY