CY7C346B-15JC [ETC]

UV-Erasable/OTP Complex PLD ; 紫外线可擦除/ OTP复杂可编程逻辑器件\n
CY7C346B-15JC
型号: CY7C346B-15JC
厂家: ETC    ETC
描述:

UV-Erasable/OTP Complex PLD
紫外线可擦除/ OTP复杂可编程逻辑器件\n

可编程逻辑器件 输入元件 时钟
文件: 总22页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C346B  
fax id: 6104  
CY7C346  
CY7C346B  
128-Macrocell MAX® EPLDs  
ture is 100% user configurable, allowing the devices to accom-  
modate a variety of independent logic functions.  
Features  
• 128 macrocells in 8 LABs  
• 20 dedicated inputs, up to 64 bidirectional I/O pins  
• Programmable interconnect array  
• 0.8-micron double-metal CMOS EPROM technology  
(CY7C346)  
• Advanced 0.65-micron CMOS technology to increase  
performance (CY7C346B)  
The 128 macrocells in the CY7C346/CY7C346B are divided  
into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256  
expander product terms, 32 per LAB, to be used and shared  
by the macrocells within each LAB.  
Each LAB is interconnected through the programmable inter-  
connect array, allowing all signals to be routed throughout the  
chip.  
• Available in 84-pin CLCC, PLCC, and 100-pin PGA,  
PQFP  
The speed and density of the CY7C346/CY7C346B allow it to  
be used in a wide range of applications, from replacement of  
large amounts of 7400-series TTL logic, to complex controllers  
and multifunction chips. With greater than 25 times the func-  
tionality of 20-pin PLDs, the CY7C346/CY7C346B allows the  
replacement of over 50 TTL devices. By replacing large  
amounts of logic, the CY7C346/CY7C346B reduces board  
space, part count, and increases system reliability.  
Functional Description  
The CY7C346/CY7C346B is an Erasable Programmable Log-  
ic Device (EPLD) in which CMOS EPROM cells are used to  
configure logic functions within the device. The MAX architec-  
Logic Block Diagram  
INPUT [59] (N4)  
INPUT [60] (M5)  
INPUT [61] (N5)  
INPUT [64] (N6)  
INPUT [65] (M7)  
INPUT [66] (L7)  
INPUT [67] (N7)  
INPUT [70] (L8)  
INPUT [71] (N9)  
INPUT [72] (M9)  
.
.
.
.
.
.
.
.
.
.
36  
37  
38  
41  
42  
43  
44  
47  
48  
49  
.
1 (C7) [16] INPUT/CLK  
..  
.
78 (A10) [9] .....  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
.
79 (B9) [10] .....  
80 (A9) [11] .....  
83 (A8) [14] .....  
84 (B7) [15] .....  
.
.
..  
..  
..  
..  
2
5
6
7
(A7) [17] .....  
(C6) [20] .....  
(A5) [21] .....  
(B5) [22] .....  
SYSTEM CLOCK  
LAB A  
LAB H  
MACROCELL 120  
MACROCELL 119  
MACROCELL 118  
MACROCELL 117  
MACROCELL 116  
MACROCELL 115  
MACROCELL 114  
MACROCELL 113  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
1
2
3
4
5
6
7
8
[100] (C13) NC  
[99] (D12) NC  
[98] (D13) 77  
[97] (E12) 76  
[96] (E13) 75  
[95] (F11) 74  
[92] (G13) 73  
[91] (G11) 72  
8 (B13) [1]  
9 (C12) [2]  
10 (A13) [3]  
11 (B12) [4]  
12 (A12) [5]  
13 (11) [6]  
NC (A11) [7]  
NC (B10) [8]  
MACROCELL 121–128  
MACROCELL 9–16  
LAB  
B
LAB G  
MACROCELL 104  
MACROCELL 103  
MACROCELL 102  
MACROCELL 101  
MACROCELL 100  
MACROCELL 99  
MACROCELL 98  
MACROCELL 97  
14 (A4) [23]  
15 (B4) [24]  
16 (A3) [25]  
17 (A2) [26]  
18 (B3) [27]  
21 (A1) [28]  
NC (B2) [29]  
NC (B1) [30]  
MACROCELL 17  
MACROCELL 18  
MACROCELL 19  
MACROCELL 20  
MACROCELL 21  
MACROCELL 22  
MACROCELL 23  
MACROCELL 24  
[90] (G12) NC  
[89] (H13) NC  
[86] (J13) 71  
[85] (J12) 70  
[84] (K13) 69  
[83] (K12) 68  
[82] (L13) 67  
[81] (L12) 64  
MACROCELL 105–112  
MACROCELL 25–32  
P
I
LAB C  
A
LAB F  
MACROCELL 33  
MACROCELL 34  
MACROCELL 35  
MACROCELL 36  
MACROCELL 37  
MACROCELL 38  
MACROCELL 39  
MACROCELL 40  
22 (C2) [31]  
25 (C1) [32]  
26 (D2) [33]  
27 (D1) [34]  
28 (E2) [35]  
29 (E1) [36]  
NC (F1) [39]  
NC (G2)[40]  
[80] (M13) NC  
[79] (M12) NC  
[78] (N13) 63  
[77] (M11) 60  
[76] (N12) 59  
[75] (N11) 58  
[74] (M10) 57  
[73] (N10) 56  
MACROCELL 88  
MACROCELL 87  
MACROCELL 86  
MACROCELL 85  
MACROCELL 84  
MACROCELL 83  
MACROCELL 82  
MACROCELL 81  
MACROCELL 41–48  
MACROCELL 86–96  
LAB D  
LAB E  
MACROCELL 49  
MACROCELL 50  
MACROCELL 51  
MACROCELL 52  
MACROCELL 53  
MACROCELL 54  
MACROCELL 55  
MACROCELL 56  
[58] (M4) NC  
[57] (N3) NC  
[56] (M3) 55  
[55] (N2) 54  
[54] (M2) 53  
[53] (N1) 52  
[52] (L2) 51  
[51] (M1) 50  
MACROCELL 72  
MACROCELL 71  
MACROCELL 70  
MACROCELL 69  
MACROCELL 68  
MACROCELL 67  
MACROCELL 66  
MACROCELL 65  
30 (G3) [41]  
31 (G1) [42]  
32 (H3) [45]  
33 (J1) [46]  
34 (J2) [47]  
35 (K1) [48]  
NC (K2) [49]  
NC (L1) [50]  
MACROCELL 73– 80  
MACROCELL 57– 64  
() – PERTAIN TO 100–PIN PGA PACKAGE  
] PERTAIN TO 100–PIN PQFP PACKAGE  
3, 20, 37, 54 (A6,B6,F12,F13,H1,H2,M8,N8) [18, 19, 43, 44, 68, 69, 93, 94]  
16, 33, 50, 67 (B8,C8,F2,F3,H11,H12,L6,M6) [12, 13, 37, 38, 62, 63, 87, 88]  
V
CC  
[
C346–1  
GND  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 1989 – Revised March 31, 1997  
CY7C346  
CY7C346B  
Selection Guide  
7C346–25  
7C346–30  
7C346–35  
7C346B–15 7C346B–20 7C346B–25 7C346B–30 7C346B–35  
Maximum Access Time (ns)  
15  
20  
25  
30  
35  
Maximum Operating  
Current (mA)  
Commercial  
Military  
250  
250  
320  
320  
225  
275  
275  
250  
325  
320  
225  
275  
275  
250  
320  
320  
225  
275  
275  
250  
320  
320  
225  
275  
275  
Industrial  
Commercial  
Military  
320  
225  
Maximum Standby  
Current (mA)  
Industrial  
275  
Shaded area contains preliminary information.  
Pin Configurations  
PLCC/CLCC  
Top View  
PGA  
BottomView  
79 78 77 76  
5 4 3 2 1 84 83 82 81 80  
7
8
6
10  
75  
9
11  
I/O I/O I/O INP INP INP INP  
I/O I/O I/O I/O INP GND INP  
V
INP I/O I/O I/O  
I/O  
I/O  
N
CC  
I/O  
I/O  
12  
13  
14  
15  
I/O  
I/O  
74  
73  
72  
71  
70  
69  
68  
V
CC  
INP I/O I/O I/O  
M
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O I/O  
GND INP INP  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L
K
J
16  
I/O  
I/O  
17  
18  
19  
20  
21  
I/O  
I/O  
GND  
GND  
I/O  
67  
I/O  
V
V
V
CC  
I/O  
GND GND I/O  
I/O I/O I/O  
I/O  
H
G
F
E
CC  
66  
65  
CC  
V
7C346  
7C346B  
CC  
I/O I/O I/O  
I/O GND GND  
I/O  
22  
23  
I/O  
64  
63  
62  
61  
60  
59  
V
CC  
I/O  
V
CC  
V
CC  
7C346  
7C346B  
V
24  
25  
26  
CC  
GND  
GND  
I/O  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O  
I/O  
I/O  
I/O  
D
I/O  
I/O  
I/O  
27  
28  
29  
30  
31  
32  
I/O  
58  
57  
56  
55  
54  
I/O  
I/O  
I/O  
INP  
/CLK  
I/O I/O  
INP  
GND  
I/O  
I/O  
I/O  
C
B
I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
INP GND INP I/O I/O I/O  
INP INP INP INP I/O I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
I/O  
13  
A
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
1
2
3
4
5
6
7
9
10 11  
12  
8
C346–3  
C346–2  
2
CY7C346  
CY7C346B  
Pin Configurations (continued)  
PQFP  
Top View  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
I/O  
1
2
I/O  
80  
79  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
78  
3
4
77  
76  
I/O  
5
6
7
8
9
I/O  
75  
74  
73  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
72  
71  
70  
10  
11  
12  
13  
V
CC  
GND  
GND  
69  
68  
7C346  
7C346B  
V
CC  
INPUT  
INPUT  
INPUT  
67  
66  
65  
14  
15  
16  
17  
18  
19  
20  
21  
INPUT  
INPUT/CLK  
INPUT  
INPUT  
INPUT  
64  
63  
62  
V
CC  
GND  
V
CC  
GND  
INPUT  
INPUT  
INPUT  
61  
60  
INPUT  
INPUT  
INPUT  
59  
58  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
57  
56  
55  
54  
I/O  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
53  
52  
29  
30  
I/O  
I/O  
51  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
C346–4  
3
CY7C346  
CY7C346B  
[1]  
DC Input Voltage ........................................–3.0V to + 7.0V  
DC Program Voltage .................................................... 13.0V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage ........................................... >1100V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ..................................–65°C to+150°C  
Ambient Temperature with  
Power Applied..............................................–55°C to+125°C  
Operating Range  
Ambient  
Maximum Junction Temperature  
(under bias).................................................................. 150°C  
Range  
Commercial  
Industrial  
Military  
Temperature  
V
CC  
0°C to +70°C  
5V ± 5%  
5V ± 10%  
5V ± 10%  
Supply Voltage to Ground Potential................2.0V to+7.0V  
Maximum Power Dissipation...................................2500 mW  
–40°C to +85°C  
–55°C to +125°C (Case)  
DC V or GND Current............................................500 mA  
CC  
DC Output Current per Pin........................ –25 mA to+25 mA  
[2]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
= Min., I = –4.0 mA  
OH  
Min.  
Max.  
Unit  
V
V
V
V
2.4  
OH  
OL  
IH  
CC  
CC  
V
V
V
= Min., I = 8.0 mA  
0.45  
+0.3  
V
OL  
2.2  
–0.3  
–10  
–40  
–30  
V
V
CC  
0.8  
+10  
+40  
–90  
225  
275  
250  
320  
100  
100  
V
IL  
I
I
I
I
Input Current  
GND < V < V  
CC  
µA  
µA  
mA  
mA  
IX  
IN  
Output Leakage Current  
Output Short Circuit Current  
V
V
= V or GND  
CC  
OZ  
O
[3, 4]  
= Max., V = 0.5V  
OUT  
OS  
CC  
Power Supply Current (Stand- V = GND (No Load)  
by)  
Com’l  
Mil/Ind  
Com’l  
Mil/Ind  
CC1  
I
[5]  
I
Power Supply Current  
V = V or GND (No Load)  
mA  
CC2  
I
CC  
[4]  
f = 1.0 MHz  
t
t
Recommended Input Rise Time  
Recommended Input Fall Time  
ns  
ns  
R
F
Capacitance[6]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
Unit  
C
C
V
V
= 2V, f = 1.0 MHz  
10  
20  
pF  
pF  
IN  
IN  
= 2V, f = 1.0 MHz  
OUT  
OUT  
Notes:  
1. Minimum DC input is –0.3V. During transitions, the inputs may undershoot to –3.0V for periods less than 20 ns.  
2. Typical values are for TA = 25°C and VCC = 5V.  
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT = 0.5V has been chosen to avoid  
test problems caused by tester ground degradation.  
4. Guaranteed by design but not 100% tested.  
5. This parameter is measured with device programmed as a 16-bit counter in each LAB.  
6. Part (a) in AC Test Load and Waveforms is used for all parameters except tER and tXZ, which is used for part (b) in AC Test Load and Waveforms. All external  
timing parameters are measured referenced to external pins of the device.  
4
CY7C346  
CY7C346B  
AC Test Loads and Waveforms[6]  
R1 464  
R1 464Ω  
5V  
5V  
ALL INPUT PULSES  
OUTPUT  
OUTPUT  
3.0V  
GND  
90%  
10%  
90%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
6 ns  
6 ns  
INCLUDING  
JIGAND  
INCLUDING  
JIGAND  
C346–5  
SCOPE  
SCOPE  
C346–6  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT(commercial/military)  
163Ω  
OUTPUT  
1.75V  
Externally, the CY7C346/CY7C346B provides 20 dedicated  
inputs, one of which may be used as a system clock. There  
are 64 I/O pins that may be individually configured for input,  
output, or bidirectional data flow.  
Logic Array Blocks  
There are 8 logic array blocks in the CY7C346/CY7C346B.  
Each LAB consists of a macrocell array containing 16 macro-  
cells, an expander product term array containing 32 expand-  
ers, and an I/O block. The LAB is fed by the programmable  
interconnect array and the dedicated input bus. All macrocell  
feedbacks go to the macrocell array, the expander array, and  
the programmable interconnect array. Expanders feed them-  
selves and the macrocell array. All I/O feedbacks go to the  
programmable interconnect array so that they may be access-  
ed by macrocells in other LABs as well as the macrocells in  
the LAB in which they are situated.  
Programmable Interconnect Array  
The Programmable Interconnect Array (PIA) solves intercon-  
nect limitations by routing only the signals needed by each  
logic array block. The inputs to the PIA are the outputs of every  
macrocell within the device and the I/O pin feedback of every  
pin on the device.  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
t
CONTROL DELAY  
CLR  
INPUT  
t
LAC  
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
t
LOGIC ARRAY  
DELAY  
t
t
RD  
t
RSU  
t
t
COMB  
LATCH  
t
t
IN  
RH  
t
LAD  
SYSTEMCLOCKDELAY t  
ICS  
CLOCK  
DELAY  
PIA  
DELAY  
t
IC  
t
PIA  
FEEDBACK  
DELAY  
t
FD  
I/O DELAY  
t
IO  
C346–7  
Figure 1. CY7C346/CY7C346B Internal Timing Model  
5
CY7C346  
CY7C346B  
The erasable nature of these devices allows test programs to  
be used and erased during early stages of the production flow.  
The devices also contain on-board logic test circuitry to allow  
verification of function and AC specification once encapsulat-  
ed in non-windowed packages.  
Timing Delays  
Timing delays within the CY7C346/CY7C346B may be easily  
determined using Warp2 or Warp3 software or by the mod-  
el shown in or Figure 1. The CY7C346 /CY7C346B has fixed  
internal delays, allowing the user to determine the worst case  
timing delays for any design. For complete timing information,  
Warp3 software provides a timing simulator.  
Typical I vs. f  
CC  
MAX  
400  
Design Recommendations  
Operation of the devices described herein with conditions  
above those listed under “Maximum Ratings” may cause per-  
manent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other condi-  
tions above those indicated in the operational sections of this  
datasheet is not implied. Exposure to absolute maximum rat-  
ings conditions for extended periods of time may affect device  
reliability. The CY7C346/CY7C346B contains circuitry to pro-  
tect device pins from high static voltages or electric fields, but  
normal precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages.  
300  
200  
V
=5.0V  
CC  
RoomTemp.  
100  
For proper operation, input and output pins must be con-  
strained to the range GND (VIN or VOUT) VCC. Unused  
inputs must always be tied to an appropriate logic level (ei-  
ther VCC or GND). Each set of VCC and GND pins must be  
connected together directly at the device. Power supply de-  
coupling capacitors of at least 0.2 µF must be connected  
between VCC and GND. For the most effective decoupling,  
each VCC pin should be separately decoupled to GND di-  
rectly at the device. Decoupling capacitors should have  
good frequency response, such as monolithic ceramic types  
have.  
0
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 50 MHz  
MAXIMUM FREQUENCY  
C346–8  
Output Drive Current  
100  
80  
I
OL  
Design Security  
The CY7C346/CY7C346B contains a programmable design  
security feature that controls the access to the data pro-  
grammed into the device. If this programmable feature is used,  
a proprietary design implemented in the device cannot be cop-  
ied or retrieved. This enables a high level of design control to  
be obtained since programmed data within EPROM cells is  
invisible. The bit that controls this function, along with all other  
program data, may be reset simply by erasing the entire de-  
vice.  
V
=5.0V  
CC  
60  
RoomTemp.  
40  
20  
I
OH  
The CY7C346/CY7C346B is fully functionally tested and guar-  
anteed through complete testing of each programmable  
EPROM bit and all internal logic elements thus ensuring 100%  
programming yield.  
0.45  
0
1
2
3
4
5
V
O
OUTPUTVOLTAGE (V)  
C346–9  
6
CY7C346  
CY7C346B  
lowest frequency. The lowest of these frequencies is the  
maximum data path frequency for the asynchronous config-  
uration.  
Timing Considerations  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum ex-  
The parameter t  
indicates the system compatibility of this  
OH  
pander delay t  
to the overall delay. Similarly, there is an  
EXP  
device when driving other synchronous logic with positive  
input hold times, which is controlled by the same synchro-  
additional t  
delay for an input from an I/O pin when com-  
PIA  
pared to a signal from straight input pin.  
nous clock. If t is greater than the minimum required input  
OH  
When calculating synchronous frequencies, use t if all in-  
hold time of the subsequent synchronous logic, then the de-  
vices are guaranteed to function properly with a common  
synchronous clock under worst-case environmental and  
supply voltage conditions.  
S1  
puts are on dedicated input pins. The parameter t should  
S2  
be used if data is applied at an I/O pin. If t is greater than  
S2  
t
, 1/t becomes the limiting frequency in the data path  
CO1  
S2  
mode unless 1/(t  
+ t ) is less than 1/t  
.
S2  
WH  
WL  
The parameter t  
indicates the system compatibility of this  
AOH  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, t to t . Determine which  
device when driving subsequent registered logic with a pos-  
itive hold time and using the same asynchronous clock as  
the CY7C346/CY7C346B.  
EXP  
S1  
of 1/(t  
+ t ), 1/t  
, or 1/(t  
+ t ) is the lowest fre-  
WH  
WL  
CO1  
EXP S1  
quency. The lowest of these frequencies is the maximum  
data path frequency for the synchronous configuration.  
In general, if t  
is greater than the minimum required input  
AOH  
hold time of the subsequent logic (synchronous or asynchro-  
nous) then the devices are guaranteed to function properly  
under worst-case environmental and supply voltage condi-  
tions, provided the clock signal source is the same. This also  
applies if expander logic is used in the clock signal path of  
the driving device, but not for the driven device. This is due  
to the expander logic in the second device’s clock signal path  
When calculating external asynchronous frequencies, use  
t
if all inputs are on the dedicated input pins. If any data  
AS1  
is applied to an I/O pin, t  
must be used as the required  
AS2  
set-up time. If (t  
+ t ) is greater than t  
, 1/(t  
+ t  
)
AS2  
AH  
ACO1  
AS2  
AH  
becomes the limiting frequency in the data path mode unless  
1/(t + t ) is less than 1/(t + t ).  
AWH  
AWL  
AS2  
AH  
adding an additional delay (t  
from the preceding device to change prior to the arrival of  
the clock signal at the following device’s register.  
) causing the output data  
EXP  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, t to t . Determine  
EXP  
AS1  
which of 1/(t  
+ t  
), 1/t  
, or 1/(t  
+ t  
) is the  
AWH  
AWL  
ACO1  
EXP  
AS1  
7
CY7C346  
CY7C346B  
Commercial and Industrial External Synchronous Switching Characteristics[6] Over Operating Range  
7C346–25  
7C346–30  
7C346–35  
7C346B–15 7C346B–20 7C346B–25 7C346B–30 7C346B–35  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
Dedicated Input to Combinatorial  
Output Delay  
15  
25  
23  
20  
32  
30  
25  
40  
37  
30  
45  
44  
35  
55  
55  
ns  
ns  
ns  
PD1  
PD2  
PD3  
[7]  
t
t
I/O Input to Combinatorial  
[8]  
Output Delay  
Dedicated Input to Combinatorial  
Output Delay with  
[9]  
Expander Delay  
t
I/O Input to Combinatorial  
Output Delay with  
Expander Delay  
33  
42  
52  
59  
75  
ns  
PD4  
[4,10]  
[4,7]  
t
t
t
Input to Output Enable Delay  
15  
15  
7
20  
20  
8
25  
25  
14  
30  
30  
16  
35  
35  
20  
ns  
ns  
ns  
EA  
[4,7]  
Input to Output Disable Delay  
ER  
Synchronous Clock Input to  
Output Delay  
CO1  
t
t
Synchronous Clock to Local  
Feedback to Combinatorial  
Output  
17  
20  
30  
35  
42  
ns  
ns  
CO2  
S1  
[4,11]  
Dedicated Input or Feedback  
Set-Up Time to  
10  
13  
15  
20  
25  
[7,12]  
Synchronous Clock Input  
t
t
t
t
I/O Input Set-Up Time to  
Synchronous Clock Input  
20  
0
24  
0
30  
0
36  
0
45  
0
ns  
ns  
ns  
ns  
S2  
H
[7]  
Input Hold Time from  
Synchronous Clock Input  
[7]  
Synchronous Clock Input  
HIGH Time  
5
7
8
10  
10  
12.5  
12.5  
WH  
WL  
Synchronous Clock Input  
LOW Time  
5
7
8
[4,7]  
t
t
Asynchronous Clear Width  
16  
16  
22  
22  
25  
25  
30  
30  
35  
35  
ns  
ns  
RW  
RR  
Asynchronous Clear Recovery  
[4,7]  
Time  
t
Asynchronous Clear to Regis-  
tered  
Output Delay  
15  
20  
25  
30  
35  
ns  
RO  
[7]  
[4,7]  
t
t
Asynchronous Preset Width  
15  
15  
20  
20  
25  
25  
30  
30  
35  
35  
ns  
ns  
PW  
PR  
Asynchronous Preset Recovery  
[4,7]  
Time  
t
Asynchronous Preset to Regis-  
tered  
Output Delay  
15  
3
20  
3
25  
3
30  
3
35  
6
ns  
PO  
[7]  
t
t
f
f
Synchronous Clock to Local  
ns  
ns  
CF  
[4,13]  
Feedback Input  
External Synchronous Clock  
12  
15  
16  
20  
25  
P
[4]  
Period (1/(f  
))  
MAX3  
External Feedback Maximum  
58.8  
76.9  
47.6  
62.5  
34.5  
55.5  
27.7  
43.4  
22.2  
32.2  
MHz  
MHz  
MAX1  
MAX2  
[4,14]  
Frequency (1/(t  
+ t ))  
CO1  
S1  
Internal Local Feedback  
Maximum Frequency, lesser of  
[4,15]  
(1/(t + t )) or (1/t )  
S1  
CF  
CO1  
Shaded area contains preliminary information.  
8
CY7C346  
CY7C346B  
Commercial and Industrial External Synchronous Switching Characteristics[6] Over Operating Range  
7C346–25  
7C346–30  
7C346–35  
7C346B–15 7C346B–20 7C346B–25 7C346B–30 7C346B–35  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
f
Data Path Maximum Frequency,  
100  
71.4  
62.5  
50  
40  
MHz  
MAX3  
lesser of (1/(t  
+ t )),  
WL  
WH  
[4,16]  
(1/(t + t )) or (1/t )  
S1  
H
CO1  
f
t
Maximum Register Toggle  
100  
3
71.4  
3
62.5  
3
50  
3
40  
3
MHz  
ns  
MAX4  
OH  
[4,17]  
Frequency (1/(t  
+ t ))  
WL  
WH  
Output Data Stable Time from  
[4,18]  
Synchronous Clock Input  
Shaded area contains preliminary information.  
Notes:  
7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial  
output on any output pin. This delay assumes no expander terms are used to form the logic function.  
When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous  
preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.  
If an input signal is applied to an I/O pin an additional delay equal to tPIA should be added to the comparable delay for a dedicated input. If expanders are  
used, add the maximum expander delay tEXP to the overall delay for the comparable delay without expanders.  
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used  
to form the logic function.  
9. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36, 66, or 68) to  
combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic  
delay for one pass through the expander logic.  
10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used  
to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array  
and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB.  
This parameter is tested periodically by sampling production material.  
12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are tS2 for  
synchronous operation and tAS2 for asynchronous operation.  
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array  
input. This delay plus the register set-up time, tS1, is the minimum internal period for an internal synchronous state machine configuration. This delay is  
for feedback within the same LAB. This parameter is tested periodically by sampling production material.  
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can  
operate. It is assumed that all data inputs and external feedback signals are applied to dedicated inputs.  
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states  
must also control external points, this frequency can still be observed as long as this frequency is less than 1/tCO1. All feedback is assumed to be local  
originating within the same LAB.  
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data  
input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, tS2 is the appropriate tS for calculation.  
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a  
clock signal applied to the dedicated clock input pin.  
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.  
9
CY7C346  
CY7C346B  
Commercial and Industrial External Asynchronous Switching Characteristics[6] Over Operating Range  
7C346–25  
7C346–30  
7C346–35  
7C346B–15 7C346B–20 7C346B–25 7C346B–30 7C346B–35  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
Asynchronous Clock Input to  
Output Delay  
15  
25  
20  
32  
25  
39  
30  
46  
35  
55  
ns  
ns  
ACO1  
[7]  
t
t
Asynchronous Clock Input to  
ACO2  
Local Feedback to Combinatorial  
[19]  
Output  
Dedicated Input or Feedback  
Set-Up Time to Asynchronous  
5
5
5
6
8
ns  
AS1  
[7]  
Clock Input  
t
t
t
t
t
t
f
I/O Input Set-Up Time to  
Asynchronous Clock Input  
14.5  
17  
6
19  
6
22  
8
28  
10  
16  
14  
ns  
ns  
AS2  
AH  
[7]  
Input Hold Time from  
Asynchronous Clock Input  
5
9
7
[7]  
Asynchronous Clock Input  
10  
8
11  
9
14  
11  
ns  
AWH  
AWL  
ACF  
AP  
[7]  
HIGH Time  
Asynchronous Clock Input  
ns  
[7, 20]  
LOW Time  
Asynchronous Clock to Local  
11  
13  
15  
18  
22  
ns  
[4,21]  
Feedback Input  
External Asynchronous Clock  
16  
50  
18  
40  
20  
25  
30  
ns  
[4]  
Period (1/(f  
))  
MAXA4  
External Feedback Maximum  
33.3  
27.7  
23.2  
MHz  
MAXA1  
Frequency in Asynchronous  
[4,22]  
Mode (1/(t  
+ t  
))  
ACO1  
AS1  
f
f
f
Maximum Internal Asynchronous  
Frequency  
62.5  
66.6  
62.5  
55.5  
50  
50  
40  
50  
40  
33.3  
40  
33.3  
28.5  
33.3  
MHz  
MHz  
MHz  
MAXA2  
MAXA3  
MAXA4  
[4,23]  
Data Path Maximum Frequency  
[4,24]  
in Asynchronous Mode  
Maximum Asynchronous  
55.5  
Register Toggle Frequency  
[4,25]  
1/(t  
+ t  
)
AWH  
AWL  
t
Output Data Stable Time from  
Asynchronous Clock Input  
12  
12  
15  
15  
15  
ns  
AOH  
[4,26]  
Shaded area contains preliminary information.  
Notes:  
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB  
logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input.  
The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production  
material.  
20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the tAWH and tAWL parameters must be swapped.  
If a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL  
.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay  
plus the asynchronous register set-up time, tAS1, is the minimum internal period for an internal asynchronously clocked state machine configuration. This  
delay is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated  
input pin. This parameter is tested periodically by sampling production material.  
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the  
clock signal path or data path.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.  
This parameter is determined by the lesser of (1/(tACF + tAS1)) or (1/(tAWH + tAWL)). If register output states must also control external points, this frequency  
can still be observed as long as this frequency is less than 1/tACO1  
.
This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a  
single LAB. This parameter is tested periodically by sampling production material.  
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined  
by the lesser of 1/(tAWH + tAWL), 1/(tAS1 + tAH) or 1/tACO1. It assumes data and clock input signals are applied to dedicated input pins and no expander  
logic is used.  
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode  
by a clock signal applied to an external dedicated input pin.  
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied  
to an external dedicated input pin.  
10  
CY7C346  
CY7C346B  
Commercial and Industrial Internal Switching Characteristics Over Operating Range  
7C346–25  
7C346–30  
7C346–35  
7C346B–15 7C346B–20 7C346B–25 7C346B–30 7C346B–35  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
Dedicated Input Pad and  
Buffer Delay  
3
3
4
4
5
6
7
6
9
9
ns  
ns  
IN  
t
I/O Input Pad and Buffer De-  
lay  
IO  
t
t
t
t
t
Expander Array Delay  
8
8
5
3
5
10  
10  
7
12  
12  
10  
5
14  
14  
12  
5
20  
16  
13  
6
ns  
ns  
ns  
ns  
ns  
EXP  
LAD  
LAC  
OD  
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay  
Output Buffer Enable De-  
3
5
10  
11  
13  
ZX  
[27]  
lay  
t
t
Output Buffer Disable Delay  
5
5
10  
11  
13  
ns  
ns  
XZ  
Register Set-Up Time  
Relative to Clock Signal  
at Register  
4
4
5
5
6
6
8
8
10  
10  
RSU  
t
Register Hold Time Relative  
to Clock Signal at Register  
ns  
RH  
t
t
t
t
t
t
Flow Through Latch Delay  
Register Delay  
1
1
1
2
1
2
3
1
3
4
2
4
4
2
4
ns  
ns  
ns  
ns  
ns  
ns  
LATCH  
RD  
[28]  
Transparent Mode Delay  
COMB  
CH  
Clock HIGH Time  
Clock LOW Time  
4
4
6
6
8
8
10  
10  
12.5  
12.5  
CL  
Asynchronous Clock Logic  
Delay  
6
8
14  
16  
18  
IC  
t
t
t
Synchronous Clock Delay  
Feedback Delay  
0.5  
1
0.5  
1
1
1
5
1
1
6
1
2
7
ns  
ns  
ns  
ICS  
FD  
Asynchronous Register  
Preset Time  
3
3
PRE  
t
t
t
t
Asynchronous Register  
Clear Time  
3
3
5
6
7
ns  
ns  
ns  
ns  
CLR  
PCW  
PCR  
PIA  
Asynchronous Preset and  
Clear Pulse Width  
3
3
4
4
5
5
6
6
7
7
Asynchronous Preset and  
Clear Recovery Time  
Programmable Interconnect  
Array Delay Time  
10  
12  
14  
16  
20  
Shaded area contains preliminary information.  
Notes:  
27. Sample tested only for an output change of 500 mV.  
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combi-  
natorial operation.  
11  
CY7C346  
CY7C346B  
Military External Synchronous Switching Characteristics[6] Over Operating Range  
7C346–30  
7C346B–30  
7C346–35  
7C346B–35  
7C346B–20  
7C346B–25  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
t
Dedicated Input to Combinatorial  
Output Delay  
20  
25  
30  
35  
ns  
PD1  
PD2  
PD3  
PD4  
[7]  
t
t
t
I/O Input to Combinatorial  
32  
30  
42  
39  
37  
51  
45  
44  
59  
55  
55  
75  
ns  
ns  
ns  
[8]  
Output Delay  
Dedicated Input to Combinatorial  
Output Delay with Expander Delay  
[9]  
I/O Input to Combinatorial  
Output Delay with  
[4,10]  
Expander Delay  
[4,7]  
t
t
t
Input to Output Enable Delay  
20  
20  
8
25  
25  
14  
30  
30  
16  
35  
35  
20  
ns  
ns  
ns  
EA  
[4,7]  
Input to Output Disable Delay  
ER  
Synchronous Clock Input to  
Output Delay  
CO1  
t
t
Synchronous Clock to Local  
Feedback to Combinatorial  
Output  
20  
30  
35  
42  
ns  
ns  
CO2  
S1  
[4,11]  
Dedicated Input or Feedback  
Set-Up Time to  
13  
15  
20  
25  
[7,12]  
Synchronous Clock Input  
t
t
t
I/O Input Set-Up Time to  
Synchronous Clock Input  
24  
0
29  
0
36  
0
45  
0
ns  
ns  
S2  
H
[7]  
Input Hold Time from  
Synchronous Clock Input  
[7]  
Synchronous Clock Input HIGH Time  
Synchronous Clock Input LOW Time  
7
7
8
8
10  
10  
30  
30  
12.5  
12.5  
35  
ns  
ns  
ns  
ns  
WH  
t
WL  
[4,7]  
t
t
Asynchronous Clear Width  
20  
20  
25  
25  
RW  
RR  
Asynchronous Clear Recovery  
35  
[4,7]  
Time  
t
Asynchronous Clear to Registered  
Output Delay  
20  
25  
30  
35  
ns  
RO  
[7]  
[4,7]  
t
t
Asynchronous Preset Width  
20  
20  
25  
25  
30  
30  
35  
35  
ns  
ns  
PW  
PR  
Asynchronous Preset Recovery  
[4,7]  
Time  
t
t
t
f
Asynchronous Preset to Registered  
Output Delay  
20  
3
25  
3
30  
3
35  
6
ns  
ns  
PO  
CF  
[7]  
Synchronous Clock to Local  
[4,13]  
Feedback Input  
External Synchronous Clock  
14  
16  
20  
25  
ns  
P
[4]  
Period (1/(f  
))  
MAX3  
External Feedback Maximum  
47.6  
34.5  
27.7  
22.2  
MHz  
MAX1  
[4,14]  
Frequency (1/(t  
+ t ))  
CO1  
Shaded area contains preliminary information.  
S1  
12  
CY7C346  
CY7C346B  
Military External Synchronous Switching Characteristics[6] Over Operating Range (continued)  
7C346–30  
7C346B–30  
7C346–35  
7C346B–35  
7C346B–20  
7C346B–25  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
f
Internal Local Feedback  
62.5  
55.5  
43.4  
32.2  
MHz  
MAX2  
Maximum Frequency, lesser of  
[4,15]  
(1/(t + t )) or (1/t )  
S1  
CF  
CO1  
f
Data Path Maximum Frequency,  
lesser of (1/(t + t )),  
71.4  
62.5  
50  
40  
MHz  
MAX3  
WL  
WH  
[4,16]  
(1/(t + t )) or (1/t )  
S1  
H
CO1  
f
t
Maximum Register Toggle  
71.4  
3
62.5  
3
50  
3
40  
3
MHz  
ns  
MAX4  
OH  
[4,17]  
Frequency (1/(t  
+ t ))  
WL  
WH  
Output Data Stable Time from  
[4,18]  
Synchronous Clock Input  
Shaded area contains preliminary information.  
Military External Asynchronous Switching Characteristics[6] Over Operating Range  
7C346–30  
7C346B–30  
7C346–35  
7C346B–35  
7C346B–20  
7C346B–25  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
t
Asynchronous Clock Input to  
Output Delay  
20  
25  
30  
35  
ns  
ACO1  
[7]  
t
t
Asynchronous Clock Input to  
32  
39  
46  
55  
ns  
ns  
ACO2  
Local Feedback to Combinatorial  
[19]  
Output  
Dedicated Input or Feedback  
Set-Up Time to Asynchronous  
6
5
6
8
AS1  
[7]  
Clock Input  
t
t
t
t
t
t
f
I/O Input Set-Up Time to  
Asynchronous Clock Input  
17  
6
19  
6
22  
8
28  
10  
16  
14  
ns  
ns  
AS2  
AH  
[7]  
Input Hold Time from  
Asynchronous Clock Input  
[7]  
Asynchronous Clock Input  
10  
8
11  
9
14  
11  
ns  
AWH  
AWL  
ACF  
AP  
[7]  
HIGH Time  
Asynchronous Clock Input  
ns  
[7, 20]  
LOW Time  
Asynchronous Clock to Local  
13  
15  
18  
22  
ns  
[4,21]  
Feedback Input  
External Asynchronous Clock  
18  
40  
20  
25  
30  
ns  
[4]  
Period (1/(f  
))  
MAXA4  
External Feedback Maximum  
33.3  
27.7  
23.2  
MHz  
MAXA1  
Frequency in Asynchronous  
[4,22]  
Mode (1/(t  
+ t  
))  
ACO1  
AS1  
f
f
f
Maximum Internal Asynchronous  
Frequency  
55.5  
50  
50  
40  
50  
40  
33.3  
40  
33.3  
28.5  
33.3  
MHz  
MHz  
MHz  
MAXA2  
MAXA3  
MAXA4  
[4,23]  
Data Path Maximum Frequency  
[4,24]  
in Asynchronous Mode  
Maximum Asynchronous  
55.5  
Register Toggle Frequency  
[4,25]  
1/(t  
+ t  
)
AWH  
AWL  
t
Output Data Stable Time from  
Asynchronous Clock Input  
12  
15  
15  
15  
ns  
AOH  
[4,26]  
Shaded area contains preliminary information.  
13  
CY7C346  
CY7C346B  
Military Typical Internal Switching Characteristics Over Operating Range  
7C346–30  
7C346B–30  
7C346–35  
7C346B–35  
7C346B–20  
7C346B–25  
Parameter  
Description  
Min.  
Max. Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
t
Dedicated Input Pad and  
Buffer Delay  
4
5
7
9
ns  
IN  
t
t
t
t
t
t
t
t
I/O Input Pad and Buffer Delay  
Expander Array Delay  
4
10  
10  
7
6
6
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IO  
12  
14  
14  
12  
5
20  
16  
13  
6
EXP  
LAD  
LAC  
OD  
ZX  
Logic Array Data Delay  
12  
Logic Array Control Delay  
Output Buffer and Pad Delay  
10  
3
5
[27]  
Output Buffer Enable Delay  
5
10  
11  
11  
13  
13  
Output Buffer Disable Delay  
5
10  
XZ  
Register Set-Up Time Relative  
to Clock Signal at Register  
5
5
6
8
8
10  
10  
RSU  
t
Register Hold Time Relative  
to Clock Signal at Register  
6
ns  
RH  
t
t
t
t
t
t
t
t
t
t
t
Flow Through Latch Delay  
Register Delay  
2
1
2
3
4
2
4
4
2
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LATCH  
RD  
1
[28]  
Transparent Mode Delay  
3
COMB  
CH  
Clock HIGH Time  
6
6
8
10  
10  
12.5  
12.5  
Clock LOW Time  
8
CL  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Feedback Delay  
8
0.5  
1
14  
2
16  
2
18  
3
IC  
ICS  
1
1
2
FD  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
3
5
6
7
PRE  
CLR  
PCW  
3
5
6
7
Asynchronous Preset and  
Clear Pulse Width  
4
4
5
6
6
7
7
t
t
Asynchronous Preset and  
Clear Recovery Time  
5
ns  
ns  
PCR  
PIA  
Programmable Interconnect  
Array Delay Time  
12  
14  
16  
20  
Shaded area contains preliminary information.  
14  
CY7C346  
CY7C346B  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
[7]  
PD1  
[8]  
t
/t  
PD2  
COMBINATORIAL  
OUTPUT  
[7]  
ER  
t
HIGH-IMPEDANCE  
THREE-STATE  
COMBINATORIAL OR  
REGISTERED OUTPUT  
[7]  
t
EA  
HIGH-IMPEDANCE  
THREE-STATE  
VALID OUTPUT  
C346–10  
External Synchronous  
DEDICATED INPUTS OR  
REGISTERED  
[7]  
FEEDBACK  
t
S1  
t
H
t
t
WL  
WH  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t /t  
RR PR  
CO1  
RW PW  
ASYNCHRONOUS  
CLEAR/PRESET  
t
OH  
[7]  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[7]  
REGISTERED FEEDBACK  
C346–11  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
AWL  
t
AH  
AWH  
AS1  
ASYNCHRONOUS  
CLOCK INPUT  
t
ACO1  
t
/t  
t
/t  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
AOH  
t
/t  
RO PO  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
ACO2  
COMBINATORIAL OUTPUT FROM  
ASYNCHRONOUS REGISTERED  
FEEDBACK  
C346–12  
15  
CY7C346  
CY7C346B  
Switching Waveforms (continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
I/O PIN  
t
PIA  
t
IO  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
C346–13  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
C346–14  
Internal Synchronous  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IN  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
C346–15  
16  
CY7C346  
CY7C346B  
Switching Waveforms (continued)  
Internal Synchronous  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH IMPEDANCE  
STATE  
OUTPUT PIN  
C346–16  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C346B–15HC/HI  
CY7C346B–15JC/JI  
CY7C346B–15NC/NI  
CY7C346B–15RC/RI  
CY7C346B–20HC/HI  
CY7C346B–20JC/JI  
CY7C346B–20NC/NI  
CY7C346B–20RC/RI  
CY7C346B–20HMB  
CY7C346B–20RMB  
CY7C346–25HC/HI  
CY7C346–25JC/JI  
CY7C346–25NC/NI  
CY7C346–25RC/RI  
CY7C346B–25HC/HI  
CY7C346B–25JC/JI  
CY7C346B–25NC/NI  
CY7C346B–25RC/RI  
CY7C346B–25HMB  
CY7C346B–25RMB  
CY7C346–30HC/HI  
CY7C346–30JC/JI  
CY7C346–30NC/NI  
CY7C346B–30HC/HI  
CY7C346B–30JC/JI  
CY7C346B–30NC/NI  
CY7C346B–30RC/RI  
CY7C346–30HMB  
CY7C346–30RMB  
CY7C346B–30HMB  
CY7C346B–30RMB  
Package Type  
15  
H84  
J83  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
Commercial/Industrial  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
20  
25  
Commercial/Industrial  
J83  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
Military  
R100  
H84  
Commercial/Industrial  
J83  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
J83  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
Military  
R100  
H84  
30  
Commercial/Industrial  
J83  
N100  
H84  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
J83  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
Military  
R100  
H84  
R100  
Shaded area contains preliminary information.  
17  
CY7C346  
CY7C346B  
Ordering Information (continued)  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C346–35JC/JI  
CY7C346–35NC/NI  
CY7C346–35RC/RI  
CY7C346B–35HC/HI  
CY7C346B–35JC/JI  
CY7C346B–35NC/NI  
CY7C346B–35RC/RI  
CY7C346–35HMB  
CY7C346–35RMB  
CY7C346B–35HMB  
CY7C346B–35RMB  
Name  
Package Type  
35  
J83  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
Commercial/Industrial  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
100-Lead Plastic Quad Flatpack  
J83  
N100  
R100  
H84  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
84-Pin Windowed Leaded Chip Carrier  
100-Pin Windowed Ceramic Pin Grid Array  
Military  
R100  
H84  
R100  
Shaded area contains preliminary information.  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameter  
Subgroups  
1, 2, 3  
Parameter  
Subgroups  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
V
V
V
V
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
OH  
PD1  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
OL  
IH  
IL  
PD2  
PD3  
CO1  
S1  
I
I
I
IX  
OZ  
S2  
CC1  
H
WH  
WL  
RO  
PO  
ACO1  
ACO2  
AS1  
AH  
AWH  
AWL  
Document #: 38–00244–D  
MAX is a registered trademark of Altera Corporation.  
Warp2 and Warp3 are registered trademarks of Cypress Semiconductor Corporation.  
18  
CY7C346  
CY7C346B  
Package Diagrams  
84-Lead Windowed Leaded Chip Carrier H84  
19  
CY7C346  
CY7C346B  
Package Diagrams (continued)  
84-Lead Plastic Leaded Chip Carrier J83  
20  
CY7C346  
CY7C346B  
Package Diagrams (continued)  
100-Lead Plastic Quad Flatpack N100  
21  
CY7C346  
CY7C346B  
Package Diagrams (continued)  
100-Pin Windowed Ceramic Pin Grid Array R100  
© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C346B-15JCR

OT PLD, 33ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-15JCT

OT PLD, 33ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-15JI

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-15JIR

OT PLD, 33ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-15JIT

OT PLD, 33ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-15NC

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-15NI

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-15RC

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-15RI

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-20HC

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-20HI

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-20HMB

UV-Erasable/OTP Complex PLD
ETC